Reviewer 2:

The authors utilized 84880 and 44304 field measurements at 30cm depth and 100cm depth
and combined with biome-specific machine learning approaches to map SOC at 100m spatial
resolution. This novel idea would provide significant spatially explicit information in reducing
uncertainties related to SOC estimation. However, there are a few issues that need to be
addressed before the paper being accepted. The detailed comments are as follows.

Author Response:

Thank you for your careful review and helpful comments. We hope the changes we
made address your suggestions and improve the manuscript.

Line 13, 1-hectare refers to the area, instead of the spatial resolution of the map, please
make this consistent with the “100m” spatial resolution that mentioned in the title.

Author Response: Thank you. We have corrected this.
Line 18, What is the “average of prior estimates”, which research?
Author Response:

Thank you for pointing this out. We have clarified the source of the “average of prior
estimates” in the revised manuscript.

Revised text:

“We estimate global soil organic carbon stocks of 1,023 = 20 Pg C at 30 cm and 2,837
+ 57 Pg C at 100 cm, representing increases of 28 % and 46 %, respectively, relative to the
average of previous estimates (798 Pg C at 30cm; 1,947 Pg C at 100 cm) calculated from
SoilGrids v1-v2, Sanderman et al. (2017), GSOCmap v1.5, WISE30sec, GSDE, and HWSD
v1.21”

Line 110, Please add a map to provide the spatial distribution of all the field measurements.
Also, please add a table describing the basic information of sampled points in each biome,
such as the total number of samples, mean and standard deviation values of soil samples in
each biome.
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Author Response:

Thank you for the suggestion. We have added Figure S2 to show the spatial distribution of
ground-truth SOC observations across biomes. The figure illustrates the global extent of
biomes (in orange) and the locations of SOC measurements (in dark grey) at 30 cm and 100
cm depths, and includes summary statistics (number of observations, mean SOC, and
standard deviation) for each biome. A subset of representative maps is shown below. Figure
S2 presents the full set of 27 maps in the Supplementary Material.

Tropical & subtropical moist broadleaf forests (TMB)
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9830 points; Mean SOC: 71 tC/ha; Std: 99 tC/ha 2155 points; Mean SOC: 436 tC/ha; Std: 458 tC/ha

Tropical and subtropical grasslands, savannas, and shrublands (TrG)

30cm 100 cm
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4074 points; Mean SOC: 47 tC/ha; Std: 75 tC/ha 1406 points; Mean SOC: 160 tC/ha; Std: 327 tC/ha

Figure S2 (subsection). Global distribution of biomes and ground-truth soil organic carbon
(SOC) data with summary statistics. This figure shows the spatial extent of the biomes in
orange and the locations of ground-truth SOC observations for 0-30 cm and 0-100 cm depths,
in grey. The number of observations, mean SOC density (t C/ha), and standard deviation are
reported for each biome and depth.
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Line 153, This approach may introduce mistakes in treating gridded products as ground truth,
leading to biased models, especially in data-scarce regions where underlying map quality is
uncertain. Additionally, subsampling and binning may not fully capture spatial or ecological
variability, and global performance metrics can obscure significant local errors. | suggest the
authors provide (1) analysis that does not include samples that are sampled from these maps
(2) model metrics and R? that are not including these samples. As samples collected from
maps are not ground truth, which will change the model’s performance.

Author Response: We thank the reviewer for highlighting this point. We have added detail
regarding the inclusion of subsampled data in Section 2.1.3 of the methodology, which now
reads:

“We analysed model performance both with and without subsamples derived from the
previously described gridded datasets. The results show that, when subsamples are
excluded, model performance remains largely robust, with only minor reductions of 0.01-0.02
in R? values across most biomes and ecosystems (Table S8). Montane grasslands are an
exception, showing a larger drop in R? due to the low number of samples in this biome. At
100 cm depth, removing subsamples similarly preserves model performance, with only
marginal changes of 0.02-0.03 in R?, again with the exception of montane grasslands. These
results indicate that, although map-derived samples contribute to model training, they do not
fundamentally alter overall model performance or spatial patterns. The model is therefore not
overly reliant on these potentially biased samples. We include these samples to improve
spatial representativeness, but we have verified that their inclusion does not introduce
substantial bias in our predictions. The full biome-level results with and without subsamples
are available in Table S8.”
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with subsamples without subsamples

Biome/Ecosystem soc30

Full Count Full R? Full Count Full R?

Forests
Tropical and subtropical moist broadleaf forests 9,830 0.84 9,162 0.82
Tropical and subtropical dry broadleaf forests 3,438 0.74 3,424 0.74
Tropical and subtropical coniferous forests 1,234 0.79 1,232 0.79
Temperate broadleaf and mixed forests 24,935 0.72 24,889 0.73
Temperate coniferous forest 8,820 0.71 8,781 0.71
Boreal forests / taiga and tundra 4,595 0.60 No subsamples
Mangroves - based on Global Mangrove Watch (2020) extent 1,577 0.80 1,238 0.79
Grasslands and shrublands
Tropical and subtropical grasslands, savannas and shrublands 4,074 0.83 3,439 0.83
Temperate grasslands, savannas and shrublands 8,667 0.74 8,448 0.74
Flooded grasslands and savannas 1,298 0.76 1,024 0.76
Montane grasslands and shrublands 418 0.73 33 0.40
Other biomes
Mediterranean forests, woodlands and scrub 7,042 0.79 6,962 0.79
Deserts and xeric shrublands 9,041 0.70 8,493 0.70
Peatlands - based on UNEP classification (2022) 3,372 0.67 2,805 0.67
with subsamples without subsamples

Biome/Ecosystem soc100

Full Count Full R? Full Count Full R?

Forests

Tropical and subtropical moist broadleaf forests 2,155 0.90 1,573 0.87
Tropical and subtropical dry broadleaf forests 1,322 0.71 1,295 0.71
Temperate broadleaf and mixed forests 14,516 0.72 14,503 0.72
Temperate coniferous forest 6,919 0.70 6,873 0.70
Boreal forests / taiga and tundra 1,716 0.68 No subsamples
Mangroves - based on Global Mangrove Watch (2020) extent 1,453 0.80 1,097 0.78
Grasslands and shrublands

Tropical and subtropical grasslands, savannas and shrublands 1,406 0.90 1,360 0.90
Temperate grasslands, savannas and shrublands 8,236 0.62 8,219 0.62
Flooded grasslands and savannas 1,034 0.77 790 0.75
Montane grasslands and shrublands 385 0.56 21 0.28
Other biomes

Mediterranean forests, woodlands and scrub 1,298 0.83 1,297 0.83
Deserts and xeric shrublands 4,431 0.66 4,370 0.66
Peatlands - based on UNEP classification (2022) 1,936 0.77 1,286 0.75

Table S8. Model performance (R?) and sample count per biome and ecosystem for soil
organic carbon (SOC) predictions for 0-30 cm and 0-100 cm depths. Results are shown for
biome-specific models trained with the full dataset and with or without the inclusion of
subsampled gridded datasets.
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Line 177, The differences in SOC lab methods (e.g., dry combustion vs. Walkley-Black) are
not accounted for. Could this introduce systematic regional bias in SOC predictions?

Author Response:

Thank you for this comment. To address it, we have added the following clarification to
Methods Section 2.1.4 of the manuscript:

“Soil organic carbon was assessed using different methods (e.g., dry combustion or
Walkley-Black) across datasets, reflecting the extended timeline over which data were
collected. Most datasets compiled in this study had already been internally harmonized using
conversion factors, and we did not apply further adjustments for potential method-based
discrepancies. Most datasets reported final soil carbon stocks standardized in t C/ha. Older
campaigns relied more on loss on ignition (LOI) and Walkley-Black methods, potentially
introducing regional differences despite conversions. In contrast, more recent datasets, which
we integrated to enhance spatial coverage, were predominantly analysed using dry
combustion. Thus, methodological differences remain a potential source of bias in the
compiled SOC estimates; however, remaining method-related effects are expected to be
relatively minor compared with the overall spatial variability captured by the model.”

Line 197, Please replace “Environment” with “environment”.
Author Response: Thank you. We corrected this.
Line 213, Please justify why ET was included for SOC estimation.

Author Response:
Thank you. We have updated the manuscript to include a clear justification for including ET.
The revised text now reads:

“To account for climate-driven factors influencing soil carbon, we integrated MODIS
Evapotranspiration (ET) data (kg/m?8-day; MODIS/061/MOD16A2GF). ET serves as an
indicator of both water availability and ecosystem productivity, which directly affect plant
growth, litter input, and soil organic carbon accumulation. By including ET, we capture spatial
variations in climate that help explain SOC distribution globally.”

Line 219, Is fire frequency also derived from MODIS based products?
Author Response:

Thank you for the comment. In the Discussion section of the manuscript, we clarified the use
of MODIS products for fire frequency. Further, we expanded Methods Section 2.2. The fire
raster used as an input layer was derived from the MODIS/061/MCD64A1 dataset for 2000—
2023 and represents the average number of burned days per pixel per year. This raster was
then converted into a binary fire mask, with pixels having an average annual burned days =1
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assigned a value of 1 (fire-prone) and all others assigned 0 (not fire-prone). Zonal statistics
were computed using this binary mask.

Line 222, Please specify which years’ ALOS2 data have been utilized.

Author Response:
Thank you. This information is provided in the manuscript, which reads:

“We used ALOS-2 PALSAR-2 data for synthetic aperture radar (SAR) backscatter (HH
and HV bands) to account for the effects of soil moisture and structure on soil carbon. We
calculated the median for the years 2019-2020 for each band.”

Line 225, Please replace NiR with “NIR” and justify why these bands in Landsat8 were
selected?

Author Response:

Thank you. We have corrected “NiR” to “NIR” and updated the manuscript to justify the
selection of these bands. The revised text now reads:

“We processed Landsat 8 data (bands red, NIR, SWIR1, and SWIR2), taking the
median for 2022 and gap-filling with data from prior years. These four bands capture
vegetation and surface reflectance, providing insight into land cover, vegetation type, and
land-use patterns, which are factors closely associated with soil organic carbon distribution
at the landscape-scale. Furthermore, these bands capture spectral signals related to
vegetation recovery and land cover dynamics, reflecting temporal changes across
landscapes. This information helps to contextualize historical soil measurements. Of all
Landsat 8 bands, these four are the most informative and commonly used for SOC
estimation.”

Line 229, The spatial resolution of all the remote sensing data or remote sensing-based
products are not the same, how the mismatch in spatial resolution was handled? Please
provide more details.

Author Response:

We thank the reviewer for this important comment. We have revised Methods Section 2.4
to further detail our approach. As described in the manuscript:

“All geospatial input raster layers were reprojected to a standardized spatial reference
system and a uniform 100 m spatial resolution prior to model training and inference. The input
datasets, described in previous sections, included: Copernicus Global Land Cover (100 m),
Landsat 8 bands (30 m), MODIS Land Surface Temperature (1 km), MODIS
Evapotranspiration (500 m), ALOS PALSAR (25 m), SoilGrids soil properties (250 m),
GPM2.0 global peatland map (1 km), Global Mangrove Watch forest extent (25 m), NCSCDv2

6/13



permafrost map (1 km), WRB soil classification (250 m), Congo Basin peatland map (50 m),
Peruvian peatland map (50 m), and MarSOC tidal marsh map (10 m). Differences in native
spatial resolution among datasets were addressed through interpolation-based resampling.
The harmonized 100 m layers were then used as predictor variables in the RF modeling
framework to generate the final global 100 m resolution product.”

Also, how did the temporal mismatch between different Earth Observation sources
and the temporal mismatch between SOC data and EO were handled? SOC maps often
combine soil profile data collected over decades with environmental covariates reflecting
more recent conditions. This ignores soil property changes over time, particularly in areas
affected by land-use change or degradation.

Author Response:
Thank you. To address it, we have added the following section to the manuscript.
4.3.1 Baseline map for research and monitoring

“We present a high-resolution (100 m) soil organic carbon map at two depths,
representing baseline SOC stocks circa 2022. Soil profile data collected from the 1950s to
the 2020s were combined with contemporary remote sensing covariates, using Landsat 8
bands to capture landscape conditions around 2022. The use of long-term soil datasets aligns
with previous global mapping efforts, such as SoilGrids v1-v2 and GSOCmap v1.5, which
integrate multi-decadal data to capture large-scale spatial patterns. The primary goal of this
work was to represent SOC variation across diverse landscape gradients with a resolution
fine enough to capture local differences while maintaining global coverage. The resulting map
can support applications in land management, nature-based climate solutions, and future
assessments of SOC dynamics.

SOC data inevitably span decades, while Earth observation covariates reflect more
recent conditions. In landscapes without major human disturbances, SOC is assumed to
remain relatively stable over time, so historical soil measurements can reliably represent
baseline stocks when combined with current remote sensing data. In areas affected by land-
use change, degradation, or recovery, such as forests regrowing after wildfire, agricultural
rotations, or restored wetlands, SOC may have changed since sampling. For instance,
samples from western CONUS encompass forests at different successional stages
recovering from events such as wildfires or storms. Remote sensing captures spectral signals
related to land cover and vegetation recovery, helping to contextualize historical soil
measurements. Consequently, the SOC map reflects not only static soil conditions but also
the imprints of temporal changes across landscapes. To address potential temporal
discrepancies at the pixel level, we generated an uncertainty map alongside the SOC
estimates, allowing users to assess confidence in areas where SOC may have changed
substantially since sampling.

7/13



Our dataset integrates both natural and human-modified landscapes, including
agricultural areas, managed forests, wetlands, and coastal ecosystems such as mangroves.
By combining long-term soil measurements with remote sensing covariates and machine
learning models, the map captures both spatial variation in SOC and the influence of historical
land-use changes and recovery processes. Overall, the high-resolution SOC maps represent
a valuable tool for carbon management and conservation. The maps enable fine-scale
detection of spatial variability, supports assessments of land-use impacts, and provides a
foundation for monitoring SOC dynamics over time, even in regions with limited historical soil
data.”

Line 250, The abstract mentioned a bio-specific machine learning approach for mapping
SOC, more details needed to describe the bio-specific approach.

Author Response:
Thank you. We have added the following clarification to Methods Section 2.5 to clarify the
biome-specific approach:

“We then explored spatially stratified models based on different levels of ecological
classification, using the WWF biomes classification, which delineates the following biomes
globally (Olson et al., 2001): TMB-Tropical and subtropical moist broadleaf forests; TDB-
Tropical and subtropical dry broadleaf forests; TCF-Tropical and subtropical coniferous
forests; TeBF-Temperate broadleaf and mixed forests; TeCF-Temperate coniferous forest;
BoF-Boreal forests/taiga; TUN-Tundra; TrG-Tropical and subtropical grasslands, savannas,
and shrublands; TeG-Temperate grasslands, savannas, and shrublands; FGr-Flooded
grasslands and savannas; MtG-Montane grasslands and shrublands; MeF-Mediterranean
forests, woodlands, and scrub; DES-Deserts and xeric shrublands.

For each biome, we tested model performance when biomes were subdivided by
continent or region (e.g., TMB in South America vs. Africa vs. Asia). While this biome-by-
continent approach often produced high R? values in certain regions, it also introduced
considerable variability and data imbalance. Some biome-continent combinations had strong
performance (e.g., R? > 0.7), while others suffered from limited sample size or overfitting. For
example, TMB reached R? of 0.53 in South America, 0.77 in Africa, and 0.49 in Asia and
TeBF achieved R? of 0.31 in the Americas, 0.85 in Asia, and 0.47 in Europe. Based on these
findings, we selected a consistent set of 12 biome models that maintained ecological
specificity while preserving sufficient data volume and geographic breadth for each model.

Peatland (P) and mangrove (MG) ecosystems were modeled separately at both 30 cm
and 100 cm depths due to their distinct biophysical characteristics and the importance of their
soil carbon stocks. To minimize the inclusion of non-mangrove or non-peatland sites, we
relied on the most accurate and spatially explicit global datasets available: the Global
Mangrove Watch v3.0 (2020) (Bunting et al., 2022) and the Global Peatland Assessment
Database v2 (GPM2.0, 2022) from UNEP, both of which account for small-scale land use
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changes such as local farming and deforestation. The Global Peatland Assessment Database
2022 v.2 (GPM2.0) from UNEP categorizes peatlands into two primary classes: ‘peat
dominated’, where peat is the dominant land cover, and ‘peat-in-soil mosaic’, where peat
occurs in smaller patches within other land cover types. We combined both classes (GPM2.0
classes 1 and 2) into a single mask to capture the full extent of peat-dominated and peat-in-
soil mosaics. To improve regional accuracy, we integrated high-resolution peatland datasets
for the Congo Basin and Peruvian Amazon. These higher-resolution regional datasets were
prioritized in overlapping areas, such that where both global and regional datasets were
available, the regional data replaced the global data, while areas outside these regions
retained the GPM2.0 coverage. While not all SOC ground-truth points had land cover
metadata, 58% of points within the mangrove extent at 30 cm (71% at 100 cm) were explicitly
identified as mangrove, and 14% of points within the peatland extent at 30 cm (35% at
100 cm) were identified as peatland.

To evaluate predictive performance of biome- and ecosystem-models, we
conducted k-fold cross-validations with 50 simulations. In each simulation, the dataset was
partitioned into training and test subsets. A separate model was trained on the training subset
and evaluated on both subsets. Model performance (R?) was computed for each simulation,
and the mean and standard deviation for the 50 simulations are reported (Table 1). In
addition, a weighted R?, which combines training and test performance, is reported in Table
1. Overall, the stratified biome-model approach provided a balance between model
complexity and generalizability.”

Line 251, How the parameter of “mtry” has been trained and specified in the random forest
model?

Author Response:
Thank you. We have clarified this point in Methods section 2.6 as follows:

“The number of candidate features considered at each split in the Random Forest
(mtry) was not explicitly tuned (tuner_num_trials = 0); the TensorFlow Decision Forests (TF-
DF) RandomForestModel used default regression settings, automatically setting mtry to one-
third of the available features.”

Line 325, Does the average represent all the aforementioned SOC products? Please
consider adding the average SOC of each SOC map.

Author Response:

Thank you for the comment. Yes, the average represents the SOC products
mentioned in the text. We have added the SOC value of each map in Figure 1, in the table
attached below:
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Global Soil Organic Carbon Stocks

Digital soil mapping

calculate-first interpolate-first Taxotransfer method
this study SoilGridsv2 Sanderman SoilGridsvl GSOCv1.5 | WISE30sec GSDE HWSDv1.21
Global (Pg C) 2021 2017 2017 2018 2016 2014 2012
soc30 1023 £ 20 594 869 1,176 684 883 794 588
soc100 2837 + 57 - 1,960 2,769 - 1,969 1,907 1,130

Line 267, Please provide other model evaluations metrics for mapping SOC such as RMSE
instead of only R2,

Author Response:
Thank you for the suggestion. We have included additional model evaluation metrics to

complement R2. These metrics are presented in the Supplementary Information as
follows:
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Biome/Ecosystem soc30 Train . | Test .| Full .
Forests Count TrainR Count TestR Count FullR
Tropical and subtropical moist broadleaf forests TMB 7,864 0.84| 1,966 0.62 9,830 0.84
Tropical and subtropical dry broadleaf forests TDB 2,750 0.73 688 0.52 3,438 0.74
Tropical and subtropical coniferous forests TCF 987 0.78 247 0.43 1,234 0.79
Temperate broadleaf and mixed forests TeBF 19,947 0.73| 4,988 0.33| 24,935 0.72
Temperate coniferous forest TeCF 7,055 0.68| 1,765 043 8,820 0.71
Boreal forests / taiga and tundra BoF-TUN 3,675 0.59 920 0.12 4,595 0.60
Mangroves - based on Global Mangrove Watch (2020) extent MG 1,261 0.79 316 0.57 1,577 0.80
Grasslands and shrublands

Tropical and subtropical grasslands, savannas and shrublands TrG 3,259 0.82 815 0.65 4,074 0.83
Temperate grasslands, savannas and shrublands TeG 6,932 0.73| 1,735 0.49 8,667 0.74
Flooded grasslands and savannas FGr 1,038 0.77 260 042 1,298 0.76
Montane grasslands and shrublands MtG 334 0.93 84 0.12 418 0.73
Other biomes

Mediterranean forests, woodlands and scrub MeF 5,632 0.79| 1,410 0.43 7,042 0.79
Deserts and xeric shrublands DES 7,232 0.70| 1,809 0.33 9,041 0.70
Peatlands - based on UNEP classification (2022) P 2,697 0.66 675 0.22 3,372 0.67
Biome/Ecosystem soc30 Train  Train Test Test Full Full
Forests Count RMSE | Count RMSE | Count RMSE
Tropical and subtropical moist broadleaf forests TMB 7,864 38| 1,966 67 9,830 39
Tropical and subtropical dry broadleaf forests TDB 2,750 42 688 44 3,438 40
Tropical and subtropical coniferous forests TCF 987 20 247 33 1,234 20
Temperate broadleaf and mixed forests TeBF 19,947 60| 4,988 100 24,935 62
Temperate coniferous forest TeCF 7,055 84| 1,765 111 8,820 80
Boreal forests / taiga and tundra BoF-TUN 3,675 143 920 229 4,595 144
Mangroves - based on Global Mangrove Watch (2020) extent MG 1,261 25 316 34 1,577 24
Grasslands and shrublands

Tropical and subtropical grasslands, savannas and shrublands TrG 3,259 31 815 47 4,074 31
Temperate grasslands, savannas and shrublands TeG 6,932 35| 1,735 40 8,667 34
Flooded grasslands and savannas FGr 1,038 45 260 44 1,298 43
Montane grasslands and shrublands MtG 334 9 84 54 418 21
Other biomes

Mediterranean forests, woodlands and scrub MeF 5,632 24| 1,410 35 7,042 24
Deserts and xeric shrublands DES 7,232 28| 1,809 35 9,041 27
Peatlands - based on UNEP classification (2022) P 2,697 127 675 216 3,372 129
Biome/Ecosystem soc30 Train  Train Test Test Full Full
Forests Count MAE |Count MAE | Count MAE
Tropical and subtropical moist broadleaf forests TMB 7,864 15| 1,966 27 9,830 15
Tropical and subtropical dry broadleaf forests TDB 2,750 16 688 26 3,438 16
Tropical and subtropical coniferous forests TCF 987 13 247 24 1,234 13
Temperate broadleaf and mixed forests TeBF 19,947 23| 4,988 39| 24,935 23
Temperate coniferous forest TeCF 7,055 35| 1,765 59 8,820 35
Boreal forests / taiga and tundra BoF-TUN 3,675 67 920 108 4,595 68
Mangroves - based on Global Mangrove Watch (2020) extent MG 1,261 14 316 25 1,577 14
Grasslands and shrublands

Tropical and subtropical grasslands, savannas and shrublands TrG 3,259 11 815 18 4,074 10
Temperate grasslands, savannas and shrublands TeG 6,932 14| 1,735 22 8,667 13
Flooded grasslands and savannas FGr 1,038 19 260 28 1,298 18
Montane grasslands and shrublands MtG 334 6 84 15 418 8
Other biomes

Mediterranean forests, woodlands and scrub MeF 5,632 13| 1,410 22 7,042 13
Deserts and xeric shrublands DES 7,232 11| 1,809 17 9,041 10
Peatlands - based on UNEP classification (2022) P 2,697 58 675 103 3,372 59

Table S9. Biome-specific model performance metrics for 0-30cm soil organic carbon

(SOC30).
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Biome/Ecosystem soc100 Train Train R Test Test R? Full Full R2
Forests Count Count Count

Tropical and subtropical moist broadleaf forests TMB 1,724 0.89 431 0.79 2,155 0.90
Tropical & subtropical dry broadleaf and coniferous forests TDB-TCF 1,057 0.73 265 0.27 1,322 0.71
Temperate broadleaf and mixed forests TeBF 11,612 0.70] 2,904 0.36| 14,516 0.72
Temperate coniferous forest TeCF 5,535 0.70| 1,384 0.26 6,919 0.70
Boreal forests / taiga and tundra BoF-TUN 1,372 0.71 344 0.28 1,716 0.68
Mangroves - based on Global Mangrove Watch (2020) extent MG 1,162 0.78 291 0.52 1,453 0.80
Grasslands and shrublands

Tropical and subtropical grasslands, savannas and shrublands TrG 1,124 0.89 282 0.91 1,406 0.90
Temperate grasslands, savannas and shrublands TeG 6,588 0.58( 1,648 0.40 8,236 0.62
Flooded grasslands and savannas FGr 827 0.76 207 0.45 1,034 0.77
Montane grasslands and shrublands MtG 308 0.52 77 0.60 385 0.56
Other biomes

Mediterranean forests, woodlands and scrub MeF 1,038 0.81 260 0.64 1,298 0.83
Deserts and xeric shrublands DES 3,544 0.64 887 0.24 4,431 0.66
Peatlands - based on UNEP classification (2022) P 1,548 0.74 388 0.41 1,936 0.77
Biome/Ecosystem soc100 Train  Train Test Test Full Full
Forests Count RMSE [ Count RMSE | Count RMSE
Tropical and subtropical moist broadleaf forests TMB 1,724 155 431 196 2,155 145
Tropical & subtropical dry broadleaf and coniferous forests TDB-TCF 1,057 125 265 243 1,322 135
Temperate broadleaf and mixed forests TeBF 11,612 193 2,904 286 14,516 189
Temperate coniferous forest TeCF 5,635 201| 1,384 258 6,919 193
Boreal forests / taiga and tundra BoF-TUN 1,372 270 344 478 1,716 288
Mangroves - based on Global Mangrove Watch (2020) extent MG 1,162 91 291 123 1,453 87
Grasslands and shrublands

Tropical and subtropical grasslands, savannas and shrublands TrG 1,124 113 282 82 1,406 105
Temperate grasslands, savannas and shrublands TeG 6,588 129| 1,648 144 8,236 121
Flooded grasslands and savannas FGr 827 131 207 277 1,034 140
Montane grasslands and shrublands MtG 308 68 77 37 385 61
Other biomes

Mediterranean forests, woodlands and scrub MeF 1,038 91 260 124 1,298 87
Deserts and xeric shrublands DES 3,544 94 887 134 4,431 91
Peatlands - based on UNEP classification (2022) P 1,548 283 388 502 1,936 278
Biome/Ecosystem soc100 Train  Train Test Test Full Full
Forests Count MAE |Count MAE | Count MAE
Tropical and subtropical moist broadleaf forests TMB 1,724 74 431 108 2,155 70
Tropical & subtropical dry broadleaf and coniferous forests TDB-TCF 1,057 47 265 98 1,322 49
Temperate broadleaf and mixed forests TeBF 11,612 63| 2,904 100 14,516 62
Temperate coniferous forest TeCF 5,535 83| 1,384 128 6,919 80
Boreal forests / taiga and tundra BoF-TUN 1,372 129 344 232 1,716 135
Mangroves - based on Global Mangrove Watch (2020) extent MG 1,162 50 291 82 1,453 47
Grasslands and shrublands

Tropical and subtropical grasslands, savannas and shrublands TrG 1,124 38 282 45 1,406 35
Temperate grasslands, savannas and shrublands TeG 6,588 42| 1,648 67 8,236 41
Flooded grasslands and savannas FGr 827 60 207 108 1,034 59
Montane grasslands and shrublands MtG 308 18 77 27 385 16
Other biomes

Mediterranean forests, woodlands and scrub MeF 1,038 42 260 68 1,298 41
Deserts and xeric shrublands DES 3,544 41 887 67 4,431 41
Peatlands - based on UNEP classification (2022) P 1,548 126 388 212 1,936 123

Table S10. Biome-specific model performance metrics for 0-100 cm soil organic carbon

(SOC100).
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Line 356, Please position the captions below the figure, same comment for all the figures.

Author Response: Captions have been placed below the figures.

Line 202, The authors mentioned that they used SoilGrids2 data as the inputs of the models.
However, SoilGrids2 itself is a modeled product with known spatial biases and uncertainties.
Could the authors clarify what steps were taken to mitigate the risk of error propagation from
SoilGrids2 into the final SOC predictions?

Author Response: We used a set of soil characteristics from SoilGrids2 to support global
SOC modeling. We recognize that SoilGrids2 is itself a predictive product derived from ground
observations and ancillary data, and therefore may contain spatial biases and uncertainties
in magnitude. Nevertheless, we chose to include these datasets for three main reasons:

1.

Comparative modeling tests: We evaluated SOC models with and without
SoilGrids2 layers, using only remote-sensing, vegetation, and climate data in the latter
case. Treating SOC measurements as independent targets, our results showed that
including SoilGrids2 layers substantially improved mapping accuracy at both global
and biome scales.

. Feature space enrichment: In principle, any dataset, even if noisy or weakly

correlated with SOC, can serve as part of the feature space for SOC prediction.
Features that do not contribute meaningfully can simply be excluded during model
optimization.

Error characterization: While SoilGrids2 does not provide pixel-level uncertainty
estimates that could propagate through modeling frameworks, our approach relies on
cross-validation and pixel-level SOC uncertainty estimates. Consequently, the errors
we report represent true prediction uncertainties at both pixel and regional levels. The
main limitation is that fine-scale spatial variability, which may reflect SoilGrids2’s
inherent spatial errors, cannot be fully quantified. However, at larger spatial scales and
biome levels, these uncertainties are unlikely to exert a significant effect.
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