
Dear Reviewer 2, 

We are sincerely grateful for your careful review of our manuscript and for the constructive 

feedback you have provided. Your thoughtful suggestions have been very valuable for improving the 

overall quality and presentation of our study. In the following, we offer detailed, point-by-point 

responses to each of your comments. For ease of reading, the reviewer’s comments are shown in black 

and our responses in blue. Sentences proposed as revisions or additions to the manuscript are 

highlighted in gold with quotation marks. 

 

General comment: 

This paper constructs a long-term meteorological variable dataset by decoding the nonlinear 

relationships between six meteorological variables and their spatial covariates. The method is 

innovative and the dataset is usable, but the paper needs to be revised based on the following points. 

Response: We sincerely thank the reviewer for the positive overall assessment of our work, 

especially the recognition of the methodological innovation and the usability of the dataset. We also 

fully acknowledge the reviewer ’ s suggestion that revisions are needed, and we have carefully 

addressed all the specific points raised. Detailed responses are provided below. 

 

Comment 1: 

Abbreviations such as “CC” in the abstract should be spelled out in full. 

Response: We sincerely thank the reviewer for this valuable suggestion. In the revised manuscript, 

we have spelled out “CC” in full in the abstract as requested. Moreover, we have also expanded other 

abbreviations (e.g., “RMSE” and “ME”) at their first occurrence in accordance with academic writing 

standards. The revised abstract can be found in our response to Comment 2. 

 

Comment 2: 

The abstract does not adequately reflect the research objectives and significance of the study and needs 

to be improved. 



Response: We sincerely thank the reviewer for this valuable comment. We agree that the abstract 

should explicitly highlight the research objectives and significance. In the revised version, we have 

emphasized these points at the beginning of the abstract. In addition, we slightly refined the overall 

description of the abstract to keep it concise and balanced, thereby improving its readability. The 

revised abstract is shown below: 

“The lack of fine-resolution and high-accuracy meteorological datasets in China has limited 

progress in climate, hydrological, and ecological studies. In this study, we present a 1 km daily dataset 

spanning 1961–2021 across China, which includes six key variables—mean, maximum, and minimum 

temperature, atmospheric pressure, relative humidity, and sunshine duration—to provide a reliable 

foundation for advancing related research and applications. The dataset was generated using a novel 

hierarchical reconstruction framework that leveraged daily observations from 2345 meteorological 

stations and incorporated topographic attributes. This approach effectively decodes the nonlinear 

relationships between the meteorological variables and their spatial covariates, ensuring the generation 

of gridded daily fields that are both high-resolution and spatially continuous. Validation against 118 

independent stations confirmed the high accuracy of the dataset. For average, maximum, and minimum 

temperatures, the errors are minimal (median root mean square errors (RMSEs): 1.03°C, 1.19°C, 1.34°

C; median mean errors (MEs): -0.09°C, -0.10°C, -0.08°C), and the consistency with in-situ data is very 

high (median correlation coefficients (CCs): 1.00, 0.99, 0.99). Atmospheric pressure also shows very 

small errors (median RMSE: 2.48 hPa; median ME: -0.02 hPa) and strong correlation (median CC: 

0.98). Relative humidity exhibits relatively lower accuracy (median RMSE: 6.02%; median ME: -

0.5%; median CC: 0.90), but it still exceeds standard benchmarks. Sunshine duration maintains high 

precision (median RMSE: 1.48 h; median ME: 0.05 h; median CC: 0.93), indicating the robustness 

and reliability of the dataset. Further comparison reveals that in high-altitude and topographically 

complex regions, the reconstructed product demonstrates higher actual accuracy than suggested by 

station-to-grid validation, as spatial mismatches between stations and grid cells lead to systematic 

underestimation. Free access to the dataset available at https://doi.org/10.11888/Atmos.tpdc.301341 or 

https://cstr.cn/18406.11.Atmos.tpdc.301341.” 

 



Comment 3: 

The first paragraph of the introduction should provide some supporting citations. 

Response: We thank the reviewer for this valuable suggestion. In the revised manuscript, we have 

added supporting citations in the first paragraph of the introduction to strengthen the background and 

provide authoritative references. Specifically, we now cite representative works demonstrating how 

advances in computational power and remote sensing technologies have driven hydrological modeling 

toward more physically based and fully distributed simulations (Lettenmaier et al., 2015; Singh, 2018), 

climate change research across broader scales (IPCC, 2021), as well as studies emphasizing the 

importance of high-resolution meteorological datasets in ungauged and topographically complex 

basins such as the Tibetan Plateau (Fu et al., 2020; Zhou et al., 2024). The revised paragraph as follows: 

“With advances in computational power and remote sensing technologies, hydrological modeling 

has increasingly evolved toward fully distributed simulations (Lettenmaier et al., 2015; Singh, 2018), 

while climate change research continues to expand across broader spatial and temporal scales (IPCC, 

2021). These developments have placed growing demands on the resolution and accuracy of basic 

meteorological inputs, particularly in ungauged and topographically complex basins such as the 

Tibetan Plateau (Fu et al., 2020; Zhou et al., 2024). High-resolution and high-quality meteorological 

datasets are essential for capturing fine-scale climate signals, representing land – atmosphere 

interactions, and supporting hydrological, ecological, and environmental assessments.” 

The newly added references are as follows: 

Fu, Y., Ma, Y., Zhong, L., Yang, Y., Guo, X., Wang, C., Xu, X., Yang, K., Xu, X., Liu, L., Fan, G., Li, Y., and Wang, D. : 

Land-surface processes and summer-cloud-precipitation characteristics in the Tibetan Plateau and their effects on 

downstream weather: a review and perspective, National Science Review, 7, 500–515, https://doi.org/10.1093/nsr/nwz226, 

2020. 

IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report 

of the Intergovernmental Panel on Climate Change, Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., 

Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, 

T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B. (eds.), Cambridge University Press, Cambridge, United Kingdom 

and New York, NY, USA, 2391 pp., https://doi.org/10.1017/9781009157896, 2021. 



Lettenmaier, D. P., Alsdorf, D., Dozier, J., Huffman, G. J., Pan, M., and Wood, E. F.: Inroads of remote sensing into 

hydrologic science during the WRR era, Water Resources Research, 51, 7309–7342, 

https://doi.org/10.1002/2015WR017616, 2015. 

Singh, V. P.: Hydrologic modeling: progress and future directions, Geosci. Lett. 5, 15, https://doi.org/10.1186/s40562-018-

0113-z, 2018. 

Zhou, P., Tang, J., Ma, M., Ji, D., Shi, J.: High resolution Tibetan Plateau regional reanalysis 1961–present, Sci Data, 11, 

444, https://doi.org/10.1038/s41597-024-03282-4, 2024. 

 

Comment 4: 

I noticed that the “Materials”  section includes observation sites from different sources, but the 

verification sites were only selected from CMA. Have you considered selecting verification sites based 

on the weight of the number of sites from different sources? 

Response: We sincerely thank the reviewer for raising this important point regarding the selection 

of validation sites. We appreciate the opportunity to clarify our methodology and believe the following 

explanation adequately addresses the concern. 

Our validation strategy was guided by two main objectives: (1) ensuring strict internal consistency 

in the training dataset and utilizing as many stations as possible for training (since deep learning 

algorithms require sufficient data to achieve good performance), and (2) achieving independence and 

robustness in validation. To this end, we employed 2,345 CMA stations for model training and withheld 

95 independent CMA stations for validation. The selection of these 95 stations followed the principles 

described in Section 2.1 , which state: 

“To support independent model validation, a total of 95 stations were selected as evaluation sites 

based on three principles: (1) ensuring geographical representativeness in terms of longitude, latitude, 

and elevation; (2) in densely monitored areas such as eastern China, a greater number of evaluation 

stations were retained without significantly reducing the size of the training dataset; and (3) in sparsely 

monitored regions such as western China (including Tibet and Xinjiang), fewer stations were assigned 

to the evaluation set in order to preserve sufficient data for model training.” 

However, we acknowledge that in key regions such as Taiwan and the Tibetan Plateau, CMA 



evaluation stations are very limited (with no stations in Taiwan). To address this, we supplemented the 

validation dataset with additional independent observations. Specifically, we incorporated 12 ground-

based meteorological stations from the Department of Water Resources (DWR) located in the Tibetan 

Plateau region (see Section 2.2.1), and 8 international stations from the Global Surface Summary of 

Day (GSOD) dataset covering Taiwan (see Section 2.2.3). These supplementary data were added to 

ensure broader coverage and a more reliable evaluation in regions with sparse CMA observations. 

In addition, for comparison against the China Meteorological Forcing Dataset (CMFD v2.0), we 

collected 31 field stations concentrated over the Tibetan Plateau from literature-based datasets archived 

at the National Tibetan Plateau Data Center (see Section 2.2.2). Since CMFD has assimilated or 

blended CMA data, and we cannot determine which specific CMA stations were used, these 

independent TP field stations were used as a fair and unbiased benchmark for inter-product comparison. 

Through this combined strategy—using CMA-based stations for consistency and multi-source 

stations (DWR and GSOD) for robustness—we expanded the final validation set to 115 sites. In 

addition, 31 independent TP field stations from the National Tibetan Plateau Data Center were 

specifically reserved for inter-product comparison to ensure fairness and independence. This approach 

provides a more comprehensive and balanced evaluation of our dataset, especially in high-altitude and 

data-sparse regions. The spatial distribution of both training and validation sites is shown in Figure 1. 

We are grateful for the reviewer’s comment, which allowed us to better articulate the rationale 

and implementation of our validation design. 

 

Comment 5: 

How to consider the cumulative error caused by progressively inputted meteorological variables during 

the modeling process, especially in the sunshine duration model. 

Response: We thank the reviewer for raising this important point. We would like to clarify that 

cumulative error does not occur during the training stage, since each step of model training was 

performed using the true location information (longitude, latitude, and elevation) and observed 

meteorological values from CMA stations. For example, when training the mean temperature model, 

longitude, latitude, and elevation were used as predictors and the observed mean temperature as the 



target variable; when training the maximum temperature model, the observed mean temperature 

together with site attributes was used as input and the observed maximum temperature as the target. 

This procedure was applied similarly to other variables 

But potential cumulative error could only arise during the reconstruction phase, when multiple 1 

km gridded meteorological fields are generated from gridded mean temperature fields reconstructed 

using the 1 km DEM. Nevertheless, evaluation against independent ground observations demonstrated 

that the reconstructed products maintained high accuracy. In particular, sunshine duration — as the 

final step in the progressive framework, where cumulative error would theoretically be greatest — 

still exhibited consistently high precision (median RMSE: 1.48 h; median ME: 0.05 h; median CC: 

0.93). This demonstrates the robustness and reliability of the dataset and indicates that, although error 

amplification is theoretically possible, it did not significantly affect the final results. 

 

Comment 6: 

How can authors reduce errors caused by the boundaries of the study area during modeling, given that 

these areas have fewer observation stations? 

Response: We thank the reviewer for this valuable comment. In our modeling process, we did 

not apply specific correction schemes to reduce potential boundary effects. However, the evaluation 

results demonstrate that the hierarchical deep-learning framework exhibits strong extrapolation and 

generalization ability. Taiwan provides a typical example of this capability: although no CMA stations 

were included in training phase, the model was still able to reasonably reconstruct air temperature 

fields in this region. Independent validation using 8 international stations from the GSOD dataset 

(providing average, maximum, and minimum temperature) further confirmed the accuracy of the 

reconstruction. 

We also analyzed this issue in the manuscript (see Section 4.2). As stated: “The spatial 

distribution of RMSE, ME, and CC for all six meteorological variables is further illustrated in Figures 

6. Consistent with expectations, the Subtropical and Southern Temperate Zones in southeastern China 

(STZ-southeastern China) display the best performance across all variables, largely due to the high 

density of training stations in these regions. In contrast, performance metrics are relatively lower in 



the Middle Temperate, Southern Temperate, and Plateau Climate Zones of northwestern China 

(MSPZ–northwest China), as well as in Taiwan, where no stations were included in training. 

Nevertheless, model performance in these regions remains robust. Notably, despite the absence of 

training data in Taiwan, the MLP model accurately reconstructs air temperature in that region, 

suggesting strong spatial generalizability.” 

 

Comment 7: 

I noticed that Figure 4 contains a large amount of information, but the poor resolution and color quality 

make it difficult to see clearly. Please improve this. 

Response: We sincerely thank the reviewer for this helpful comment. We will revise Figure 4 by 

increasing its resolution and optimizing the color scheme to enhance readability. The improved version 

will be provided in the final manuscript. 

 

Comment 8: 

Please indicate whether adjustments were made when the author encountered situations where the 

sunshine duration was less than 0 during the verification. 

Response: We thank the reviewer for raising this important point. Indeed, to guarantee the 

physical validity of our dataset, we implemented a quality control procedure wherein any predicted 

sunshine duration value below 0 was reset to 0. This was necessary as the model's unconstrained 

regression output can generate physiologically impossible negative values near zero. 

 

Comment 9: 

The author mentioned the limitations of satellite remote sensing in estimating the meteorological 

variables in the “introduction”. However, sunshine duration is greatly affected by cloud and aerosol 

parameters observed by remote sensing. When comparing sunshine duration products, please consider 

comparing sunshine duration datasets estimated based on remote sensing data 

(https://doi.org/10.5194/essd-17-1427-2025) and explain the advantages of the research method used 

in this study. 



Response: Thank you very much for this insightful comment. Following the reviewer ’ s 

suggestion, we have incorporated the Himawari AHI–based daily sunshine duration (SD) dataset 

(Zhang et al., 2025) into our comparative analysis. This satellite-derived, high-resolution product (5 

km, 2016–2023) complements the homogenized station-based SSD dataset (2°, 1961–2022) and 

provides an independent benchmark for recent years. 

To ensure logical consistency, Section 2.5 Existing gridded products for comparison in the 

Materials was rewritten to include the Himawari SD dataset alongside CMFD 2.0 and SSD, clearly 

outlining the rationale for selecting these complementary products. Furthermore, Section 4.3.2 

Sunshine duration in the Results and Discussion was substantially revised to present a comprehensive 

comparison of our reconstructed dataset against both SSD and Himawari SD. 

The revised analysis demonstrates that the reconstructed dataset achieves accuracy comparable 

to SSD in long-term temporal consistency, while also performing competitively with Himawari SD in 

recent high-resolution comparisons. Specifically, our reconstruction yields smaller systematic bias 

than Himawari, while Himawari attains slightly higher correlation in daily variability. These 

complementary findings highlight the robustness of the reconstruction framework and its combined 

strengths: reduced bias relative to satellite products, temporal stability comparable to homogenized 

long-term datasets, and the unique provision of six decades of 1 km daily sunshine duration fields for 

hydrometeorological applications in topographically complex regions. 

The revised content of Section 2.5 Existing gridded products for comparison is provided below: 

“To assess the reliability and application potential of the reconstructed meteorological variables, 

representative and widely used gridded datasets were selected for comparison based on their scientific 

relevance and availability. Specifically, for average temperature, atmospheric pressure, and relative 

humidity, we employed the latest version of the China Meteorological Forcing Dataset (CMFD 2.0), 

whose earlier versions have been extensively used in land surface, hydrological, and ecological 

modeling over China (He et al., 2020).  

The CMFD 2.0 (He et al., 2024) provides high-resolution (0.1°), 3-hourly gridded meteorological 

data for the period 1951–2020, covering the land area between 70°E–140°E and 15°N–55°N. It 

includes near-surface temperature, surface pressure, specific humidity, wind speed, radiation, and 



precipitation. Compared to previous versions, CMFD 2.0 incorporates ERA5 reanalysis and station 

observations through updated data sources and artificial intelligence techniques, particularly for 

radiation and precipitation variables. It also introduces metadata on station relocations and expands 

the spatial coverage beyond China's borders, thereby improving temporal consistency and cross-

regional applicability. 

As CMFD 2.0 does not include sunshine duration, we incorporated two additional datasets for its 

evaluation. This step is critical because sunshine duration reconstruction constitutes the final step in 

our hierarchical framework, necessitating a thorough accuracy assessment to evaluate potential 

uncertainty propagation. To this end, we selected two complementary benchmarks: one long-term 

station-based product and one recent high-resolution satellite product. 1) The sunshine duration (SSD) 

dataset (He, 2024) serves as the long-term, station-based benchmark. It provides a homogenized daily 

sunshine duration record across China from 1961 to 2022 at a 2.0° × 2.0° resolution. Developed 

from over 2,200 meteorological stations and corrected for non-climatic influences (e.g., station 

relocations and instrumental changes), it offers a reliable baseline for evaluating the temporal stability 

and long-term climatological consistency of our reconstruction. 2) The Himawari AHI-based daily 

sunshine duration (SD) dataset (Zhang et al., 2025) provides a recent, high-resolution (5 km) satellite 

perspective for 2016–2023. It enables a direct assessment of our product's quality during the 2016–

2019 overlap period and serves as a benchmark for evaluating fine-scale spatial accuracy.” 

The revised content of Section 4.3.2 Sunshine duration is provided below: 

“To comprehensively evaluate the accuracy of the reconstructed product, two representative 

benchmark datasets were employed: the homogenized station-based SSD product (2°) to assess long-

term temporal consistency, and the high-resolution satellite-based Himawari SD product (5 km) to 

examine spatial performance. 

As shown in Figure 8, when compared with the SSD dataset over 1961–2019, the reconstructed 

product demonstrated highly consistent accuracy. The median RMSE values were identical for both 

products (1.48 h), and the median CC values were likewise identical (0.93). The ME differed only 

slightly (0.05 h for the reconstructed dataset and 0.02 h for SSD), indicating comparable bias levels. 

Boxplot analysis further indicated that the reconstructed product exhibited slightly narrower 

interquartile ranges, whereas the SSD dataset showed fewer outliers in RMSE and CC. It should be 



noted that although some of the 95 CMA validation stations may have been included in the SSD 

development, our reconstruction model excluded these stations from training, ensuring a higher degree 

of validation independence. 

For spatial performance, the reconstructed dataset was compared with the Himawari SD dataset 

over the overlapping period of 2016–2019 (Figure 9). The evaluation was based on 91 stations, since 

three of the 95 validation stations had invalid sunshine duration values during this period and one 

station was located within the SD control region. Both products showed comparable RMSE levels 

(1.53 h for the reconstructed dataset compared with 1.48 h for Himawari). The satellite dataset 

achieved a slightly higher CC (0.94 compared with 0.92), reflecting stronger agreement in daily 

variations, while the reconstructed dataset exhibited a smaller ME (0.08 h compared with 0.21 h), 

indicating reduced bias. 

 
Figure 8: Boxplot comparison of RMSE, ME, and CC for sunshine duration between SSD (2.0°) and the reconstructed dataset 

developed in this study (1 km) from 1961 to 2019. 

 

Figure 9: Boxplot comparison of RMSE, ME, and CC for sunshine duration between the Himawari AHI–based SD dataset (5 

km) and the reconstructed dataset developed in this study (1 km) from 2016 to 2019. 

These complementary results indicate that the reconstruction framework can achieve accuracy 



comparable to both a long-term homogenized station-based dataset and a high-resolution satellite-

derived dataset.” 

 

Comment 10: 

Is the model independent on a daily scale? Did the authors consider modeling based on different days 

of year (DOYs) to enhance the model's generalization ability in the future? 

Response: We thank the reviewer for this helpful question. Our reconstruction framework is 

indeed independent on a daily scale: for each day, the model relies exclusively on station observations 

and spatial covariates corresponding to that specific day, without drawing on information from 

preceding or subsequent days. This design ensures that daily fields are generated without temporal 

autocorrelation, thereby simplifying interpretation and enhancing operational applicability. Moreover, 

because each day is reconstructed independently, occasional data gaps on specific days do not affect 

the performance on other days. 

In fact, we note that we also tested an alternative transformer-based approach in which temporal 

context from surrounding days was incorporated. This experiment, however, showed limited skill in 

capturing day-to-day fluctuations compared to our daily-independent model. Because ESSD primarily 

emphasizes the quality and validation of datasets rather than extensive methodological comparisons, 

we did not include this exploratory test in the main text. We acknowledge that further exploration of 

temporal approaches, including the reviewer's suggestion to model based on different days of the year 

(DOY) to capture seasonal cycles, could be valuable for future improvements in long-term high-

resolution meteorological reconstructions. 


