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Abstract. We introduce the development of CLIMADAT-GRid, the first publicly available daily air temperature and 15 

precipitation gridded climate dataset for Greece at a high resolution of 1 km x 1 km, covering the period 1981–2019. The 

dataset is derived from quality-controlled and homogenized daily measurements from an extensive network of 

meteorological stations: 122 for temperature and 312 for precipitation.  Several approaches are evaluated for generating daily 

gridded datasets, including Fixed Random Kriging, Generalized Additive Models, K-Nearest Neighbors, and Support Vector 

Machines. Based on the evaluation analysis against withheld observational data, Fixed Random Kriging is selected as the 20 

method for the CLIMADAT-GRid construction. To address the lack of a dense temperature observational network, high-

resolution simulations from the WRF model are blended with observational data to produce the gridded temperature 

datasets.Several approaches are evaluated for generating the daily gridded datasets, and their accuracy is assessed against 

withheld observational data. To address the lack of observations in high-elevation areas, high-resolution simulations from 

the WRF model are blended with the observational data to provide the gridded temperature data. CLIMADAT-GRid is 25 

benchmarked against the CHELSA-W5E5, a global climate product with a similar resolution, for the overlapping period 

1981–2016. While both datasets show comparable results for temperature, CLIMADAT-GRid demonstrates superior spatial 

performancevariability and closer agreement with observational data for both the mean and for the extreme values. 

Regarding precipitation, CLIMADAT-GRid consistency indicates higher values than CHELSA-W5E5, especially during the 

rainy season, but exhibits better agreement with observations. In terms of the number of wet days, both datasets overestimate 30 

spatial means relative to observations, with CLIMADAT-GRid showing a more pronounced orographic pattern than 

CHELSA-W5E5. Both datasets show similar results for the number of days with precipitation amounts equal to or higher 



2 

 

than 10 mm, with CLIMADAT-GRid indicating better overall agreement with the observations. The CLIMADAT-GRid 

dataset is publicly available at https://doi.org/10.5281/zenodo.14637536 and can be cited as Varotsos et al. (2025). 

1 Introduction 35 

High-resolution gridded climate datasets, both spatially and temporally, are becoming a valuable resource for research and 

information in climate studies as well as in other areas such as hydrology, agriculture, energy and health (Herrera et al., 

2012). In addition, high-resolution gridded datasets are used to evaluate, bias adjust and statistically downscale both regional 

and global climate models and seasonal forecasts (Lorenz et al., 2021; Nilsen et al., 2022; Varotsos et al., 2023a; Karali et 

al., 2023). Depending on the data sources and derivation techniques, gridded climate datasets can be divided into two main 40 

categories: (i) reanalysis datasets and (ii) gridded observational datasets. Reanalysis datasets provide a numerical description 

of the recent climate by combining dynamical models that assimilate observations, while gridded observational datasets are 

based on the statistical transformation of point meteorological station data into grid using geostatistical modelling. 

As for the second category, which is the focus of this study, the remarkable advances in computing power and software have 

led to the development and creation of gridded observational datasets at both global, regional/national and sub-national 45 

levels. These datasets include E-OBS (Cornes et al., 2018) which is the state-of-art daily gridded observational dataset for 

the entire European domain with a resolution of 0.1°, while on the regional/national and sub-national scale a number of 

datasets have recently emerged in Europe. These include Iberia01 (Herrera et al., 2019) for the Iberian Peninsula (daily 

gridded dataset for temperatures and precipitation at 0.1° grid), SPREAD (Serrano-Notivoli et al., 2017) and STEAD 

(Serrano-Notivoli et.al., 2019) for Spain (daily datasets for precipitation and temperatures at 5 km x 5 km, respectively), 50 

SiCLIMA (Serrano-Notivoli et al., 2024) for Aragon, Spain (daily dataset for precipitation and temperatures at 500 m x 500 

m), PTHRES (Fonseca and Santos 2018) for Portugal (daily dataset for temperatures at 1 km x 1 km), HYRAS (Krähenmann 

et al., 2018) for Germany (hourly dataset for a number of variables at 1km x1km), HadUK‐Grid (Hollis et al. 2019) for the 

United Kingdom (daily dataset for a number of variables at 1 km x 1 km), seNorge2 (Lussana et al., 2018a,b) for Norway 

(daily dataset for precipitation and temperatures at 1 km x 1 km, respectively), SLOCLIM (Škrk et al., 2021) for Slovenia 55 

(daily dataset for precipitation and temperatures at 1 km x 1 km), MeteoSerbia1km (Sekulić et al. 2021) for Serbia (daily 

dataset for a number of variables at 1 km x 1 km) and GAA.HRES (Varotsos et al., 2023a) for Attica, Greece (daily dataset 

for precipitation and temperatures at 1 km x 1 km). It is important for users to recognize that these gridded observational 

products are geostatistically generated, rather than direct observations. Consequently, they are subject to several limitations 

and the accuracy of these datasets largely depends on the quality and spatial density of the underlying meteorological station 60 

network. In particular, interpolation methods tend to perform poorly in regions with sparse station coverage or complex 

topography (Hofstra et al., 2010; Beguería et al., 2016; Herrera et al., 2019). While most of these datasets are built upon 

dense networks of ground-based observations, in areas with limited station density or insufficient representation of elevation 

gradients it is often required enhancement through the integration of satellite data, reanalysis products, and atmospheric 

https://doi.org/10.5281/zenodo.14637536
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models to improve spatial coverage and reliability (Doblas-Reyes et al., 2021; Varotsos et al., 2023a). It should be noted that 65 

Serrano-Notivoli and Tejedor (2021) analyzing the performance of 48 gridded products proposed a general workflow to 

transform observations into grid estimates, which includes four steps: i) quality control, ii) data series reconstruction, ii) 

gridding and iv) assessment of the uncertainty.As for the second category, which is the focus of this study, the remarkable 

advances in computing power and software have led to the development and creation of gridded observational datasets at 

both global and regional/national levels. In a recent study, Varotsos et al. (2023a) compiled a list of available observational 70 

gridded datasets for Europe, with E-OBS (Cornes et al., 2018) being the state-of-art gridded observational dataset for the 

entire European domain. However, it is crucial for users of gridded observational datasets to recognize that these products 

are model-generated rather than direct observations, and as such have a number of limitations (Hofstra et al., 2010). In 

particular, the quality of the gridded datasets depends on the quality of the station data and its spatial coverage (density of the 

meteorological station network), as interpolation methods degrade in performance in areas with sparse station data and/or in 75 

areas with complex topography (Hofstra et al., 2010; Begueria et al., 2016; Herrera et al., 2019). 

Various gridding techniques for creating daily gridded datasets have been discussed in the existing literature. For instance, in 

the earlier versions of E-OBS (prior to v16, Haylock et al., 2008) and Iberia01 (Herrera et al., 2019), daily gridded datasets 

for temperatures (daily maximum, minimum and mean) and precipitation, were constructed using a trivariate thin-plate 

spline (using elevation as a covariate, Hutchinson et al., 2009) to construct monthly background field values (mean for 80 

temperatures and sums for precipitation), while the daily anomalies or proportions for temperatures and precipitation, 

respectively were interpolated using ordinary Kriging. To obtain the final daily gridded datasets the aforementioned fields 

were superimposed by addition and multiplication for temperatures and precipitation, respectively. In the latter versions of 

E-OBS (Cornes et al., 2018) the daily gridded datasets for temperatures and precipitation were constructed using Generalized 

Additive Models (GAMs, Wood, 2017) to estimate the long-range spatial trend in the data, while Gaussian Random Field 85 

simulation was used to interpolate the GAMs residuals. Other approaches include multiple linear regression, Delaunay 

triangulation and optimal interpolation (Nordic gridded temperature and precipitation data, NDCG, Tveito et al., 2000; 

Tveito et al., 2005; Lussana et al., 2018a, b). Furthermore, while machine learning (ML) has been successfully used to 

statistically downscale ERA5 (Qin et al., 2022; Hu et al., 2023) and climate change projections (Hernanz et al., 2024 and 

references therein), few studies, to our knowledge, have explored or evaluated the use of machine learning algorithms for 90 

generating observational gridded datasets. In particular, MeteoSerbia1km is a 1km horizontal daily gridded dataset for 

temperatures, mean sea-level pressure, and total precipitation for the years 2000–2019, which was produced using the RFSI 

method, a spatial interpolation method based on the random forest ML algorithm (Sekulic et al., 2021). Moreover, Bonsoms 

and Ninyerola (2024) evaluated five ML techniques for the spatial interpolation of annual precipitation, minimum and 

maximum temperatures in the Pyrenees. The accuracy and performance of K-Nearest Neighbors, Supported Vector 95 

Machines, Neural Networks, Stochastic Gradient Boosting, and Random Forest were compared with those of multiple linear 

regressions and generalized additive models. According to the authors regardless of the elevation range, the geographical 

sector under analysis, or the predictor variables used, the ML algorithms outperformed multiple linear regressions and 
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generalized additive models. Nevertheless, the authors did not proceed to the construction of a gridded dataset based on ML 

techniques. This is most likely due to the nature of ML techniques, which were designed for feature space qualities that 100 

cover almost all types of data and are therefore not commonly employed for spatial modeling (Nwaila et al., 2024). 

In this study, we introduce CLIMADAT-GRid: a high-resolution (1 km x 1 km) daily gridded dataset for air temperatures 

(daily maximum, minimum and mean) and precipitation for Greece, covering the period 1981–2019 (Varotsos et al. 2025). 

To the best of our knowledge, this is the first publicly available dataset for Greece that offers daily gridded temperatures and 

precipitation in Greece at such fine spatial resolution. Previous studies known to the authors have primarily focused on 105 

monthly values of these variables for the 1971–2000 period (Mamara et al., 2017; Gofa et al., 2019). 

2 Data 

In this section, the datasets utilized in the analysis are presented. Subsection 2.1 summarizes the daily observational data, 

including maximum (TX), minimum (TN), and average (TG) temperatures, as well as daily precipitation (PR). Subsection 2.2 

outlines the procedures applied for quality control, gap filling, and homogenization of the datasets. Subsection 2.3 describes 110 

the Weather Research and Forecasting (WRF) model simulation, whose output is blended with the available temperature 

observational data using gridding techniques, as detailed in Sect. 3. This approach was preferred over relying solely on 

observational data due to the sparse spatial coverage of in situ measurements, especially at higher altitudes (above 1000 m) 

as presented in Subsect. 2.1. 

2.1 Daily observational data for maximum (TX), minimum (TN), mean (TG) temperatures and daily precipitation 115 

sums (PR) 

This study utilizes daily air temperature observations from two main sources. The first is the National Observatory of Athens 

Automatic Network (NOAAN, Lagouvardos et al., 2017), which provides records from 48 stations for the period 2010–

2019, and the second source is Hellenic National Meteorological Service (HNMS), which provides temperature records from 

73 stations spanning 1981–2019. In addition, we incorporate daily observations from the historical weather station of the 120 

National Observatory of Athens in Thissio (NOA, Founda et al., 2022) for the same period. In total, daily data from 122 

meteorological stations across Greece were collected (Fig. 1a), with station altitude ranging from 1 to 960 m above sea level 

(a.s.l.). Temperature data were aggregated over a 24-hour period from 00:00 to 24:00 UTC. 

In addition to the data from the stations mentioned above, we also collected daily precipitation data for 190 stations provided 

by the General Secretariat for Natural Environment and Water of the Ministry of Environment and Energy for the period 125 

1981–2019. In total, daily precipitation sums fromof 312 stations are obtained (Fig. 1b), with altitudes from sea level to 1130 

m a.s.l. Only stations with less than 10% missing data annually were considered. According to the data providers, daily 

precipitation data were collected over a 24-period from 08:00 to 08:00 UTC for the HNMS, NOA and the stations provided 

by the General Secretariat for Natural Environment and Water of the Ministry of Environment and Energy. Regarding the 
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NOAAN stations, daily precipitation data were collected over a 24-period from 00:00 to 24:00 UTC.The selected stations 130 

were included based on the criterion of having less than 10 % missing data on an annual basis. 

 

 

 

 135 

 

 

Figure 1. Locations of meteorological stations used for (a) temperatures and (b) precipitation measurements, including both the 

stations used in the interpolation and the withheld stations used for evaluation. The. bBackground shows elevation data as from 140 
the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). 

2.2 Quality control, gap filling and homogenization 

An initial quality control for all variables was conducted using the R package climatol (version 4.1.1, Guijarro, 2023), which 

automatically identifies and discards all extreme anomalies and removes prolonged sequences of identical values from data. 

As for daily precipitation, which has a significantly skewed frequency distribution, the deletion of high isolated data is not 145 
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permitted because heavy rain can occur between two days with little or no precipitation. In addition, zero values of daily 

precipitation are automatically excluded so that days with no precipitation are not included in the analysis of sequences with 

identical data. 

For temperatures, the gap filling and homogenization were carried out following the methodology of Varotsos et al. (2023b). 

This method reconstructs missing daily temperatures values (TX, TG and TN) over an extended period of time, using climatol 150 

R package, station data and the ERA5-Land reanalysis dataset (Muñoz-Sabater et al., 2021). Since this method is capable of 

reconstructing temperatures both forward and backward in time, it was selected to provide consistent and homogenized data 

for the period 1981–2019 across all 122 available stations. For further details on the methodology, the reader is referred to 

the work of Varotsos et al. (2023b). 

For precipitation, gap filling and homogenisation were carried out in two phases. In the first phase, stations covering the 155 

period 1981–2019 (including HNMS stations, the Ministry of Environment and Energy network, and the historical Thissio 

NOA station) were post-processed using climatol package, with data from the nearest station serving as the reference. In the 

second phase, the homogenised data series for the period 2010–2019 were used to fill gaps and homogenise the daily 

precipitation data of the NOAAN network. Following these procedures, the total number of precipitation data series is 264 

for 1981–2010 and 312 for 2010–2019. 160 

2.3 WRF simulations 

For the atmospheric simulations, the Advanced Weather Research and Forecasting Model (WRF-ARW) version 4.1.3 

(Powers et al., 2017; Skamarock et al., 2008; Skamarock et al., 2019) was employed. WRF-ARW is a limited-area 

atmospheric model based on a fully compressible, non-hydrostatic dynamic core. Vertically, it utilizes terrain-following, 

mass-based hybrid sigma-pressure coordinates based on dry hydrostatic pressure, with support for vertical grid stretching. 165 

Horizontally, the model applies an Arakawa C-grid staggering. 

WRF is widely used in both operational forecasting (Sofia et al., 2024; Patlakas et al., 2023) and scientific research 

(Pantillon et al., 2024; Patlakas et al., 2024; Politi et al., 2021; Stathopoulos et al., 2023; Otero-Casal et al., 2019). These 

studies include comprehensive evaluations of the model’s performance not only over the present study area but also in 

regions with similar topographic and climatic characteristics, demonstrating its reliability in representing climatological 170 

fields. In this analysis, the WRF model was configured with three two-way nested grids to adequately capture both regional 

and local-scale processes. The coarser one has a resolution of 9 km, covering a large area that includes parts of North Africa 

and Central Europe. The inner grids are focused on the Eastern Mediterranean and Greece, with spatial resolutions of 3 km 

and 1 km, respectively (Fig. 2). Vertically, the model consists of 48 layers. 

 175 
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Figure 2: WRF-ARW model domains. 

WRF-ARW serves as a limited-area atmospheric model, utilized for both operational forecasting (Sofia et al., 2024; Patlakas 

et al., 2023) and scientific research (Stathopoulos et al., 2023; Otero-Casal et al., 2019). It is based on a fully compressible, 

non-hydrostatic dynamic core. On the vertical plane it has terrain-following, mass-based, hybrid sigma-pressure vertical 180 

coordinates based on dry hydrostatic pressure, with vertical grid stretching permitted while for the horizontal grid, the 

Arakawa C-grid staggering is employed. 

In this analysis, the WRF model was configured to run with three two-way nested grids. The coarser one has a resolution of 

9 km, covering a large area that includes parts of North Africa and Central Europe. The inner grids are focused on the 

Eastern Mediterranean and Greece, with spatial resolutions of 3 km and 1 km, respectively. Vertically, the model consists of 185 

48 layers. 

The main physics options and parameterizations used are summarized in the next table (Table 1). 

 

Table 1: WRF model physical schemes and properties. 

Microphysics Thompson scheme (Thompson et al., 2004) 

Cumulus Parameterization Kain–Fritsch scheme (Kain, 2004) 

Long wave radiation physics RRTMG scheme (Iacono et al., 2008) 

Short wave radiation physics RRTMG scheme 

Planet boundary layer Yonsei University (YSU) PBL scheme (Hong et al., 2006) 

Surface layer option Monin–Obukhov similarity scheme 
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Land-surface physics Thermal Diffusion scheme 

 190 

For the initial and the boundary conditions, the ERA-5 (Hersbach et al., 2020) hourly data has been incorporated. This is the 

latest global atmospheric reanalysis product produced by the European Centre for Medium-Range Weather Forecasts 

(ECMWF), covering the period from 1940 to the present with continuous real time updates and a spatial resolution of 

approximately 0.25 degrees. Terrain elevation data is obtained from the ASTER Global Digital Elevation Map (GDEM) 

from USGS (United States Geological Survey) (USGS, Slater et al., 2011) with a resolution of 30 m, and land use 195 

information from the Corine (Coordination of Information on the Environment (CORINE, CLMS, 2018)) database (2010) at 

a 250 m resolution. 

Following the approach of Varotsos et al. (2023a), the year selected for the WRF simulation was chosen based on its mean 

monthly annual cycle, the lowest deviations from its long-term mean for the period 1981–2019. The analysis revealed that 

the year 1999 had the lowest temperature and precipitation deviations, from the long-term mean. It should be noted here that 200 

the selection of the year of the WRF simulation is not of primary importance in this study, since it is used as a physically 

based spatial interpolator, as described in Sect. 3.2. Therefore, the key requirement is that the WRF model provides a 

continuous and physically consistent representation of the temperature field across the region’s complex terrain, a capability 

supported by the aforementioned studies. 

3 Methodology 205 

The methodology applied in this study to produce the daily gridded observational precipitation dataset for Greece for the 

years 1981–2019, aligns to that used in the early versions of E-OBS (Haylock et al., 2008) and IBERIA01 (Herrera et al., 

2019). For temperature variables we adopted and extended the methodology described by Varotsos et al. (2023a), where the 

available observed data were blended with WRF output through gridding techniques. While Varotsos et al. (2023a) focused 

on Attica region, we expanded their methodology to cover the entire Greek territory. This blending approach was selected 210 

over using only the observational data to better account for temperature gradients driven by topography, particularly since 

our observational dataset lacks stations located above 1000 m a.s.l. 

3.1 Spatiotemporal modeling for precipitation 

The steps to obtain the daily grids for precipitation are as follows: 

• interpolation of monthly totals (12 values x 39 years) using altitude as a covariate to account for altitude 215 

dependencies (station altitude for modeling and the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010), 

30 arcsec version, altitude for interpolation). 

The following approaches were examined to calculate the monthly precipitation fields:  
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(i) a “Fixed Rank Kriging approach” (FRK). FRK is a geostatistical interpolation technique that approximates a spatial field 

using a low-rank representation of the underlying spatial process. It models the spatial covariance structure through a set of 220 

basis functions, allowing efficient estimation even with large datasets (Nychka et al., 2015a). In this study, FRK is 

implemented using the LatticeKrig package (Nychka et al., 2019) in R (R Core Team, 2024), where the model parameters, 

including variance components and spatial range parameters, are estimated using maximum likelihood estimation. 

(ii) Generalized Additive Models (GAM) are a semi-parametric extension of Generalized Linear Models that assume the 

underlying relationships are additive and smooth. Their primary strength lies in their ability to capture highly non-linear and 225 

non-monotonic relationships between the response variable and explanatory variables (Wood, 2017). In this study, monthly 

precipitation sums are modeled as smooth functions of longitude, latitude and elevation using thin plate regression splines, 

with smoothing parameters estimated using restricted maximum likelihood (mgcv R package, Wood and Wood, 2015). 

(iii) two ML algorithms namely K-Nearest Neighbors (KNN) and Support Vector Machines (based on an exponential radial 

basis function, SVM). KNN estimates the value of an unknown data point by identifying its k closest neighbors in the spatial 230 

dataset, where k is a user-defined hyperparameter (Nwaila et al., 2024). The predicted value is computed as a weighted 

average of these neighbors' values, with the weights typically based on the distance to the target point, i.e. closer neighbors 

have greater influence. In this study, k ranges from 2 to 30 in increments of 1. SVM is a ML algorithm, effective in capturing 

non-linear spatial trends, which seeks a function that predicts the value of an unknown data point, while balancing accuracy 

and model complexity (Bonsoms and Ninyerola, 2024). The complexity is regulated by the cost parameter C (tested values: 235 

0.1, 1, 5, 10), while the smoothness of the kernel is governed by sigma (tested values: 0.01, 0.025, 0.05, 0.075, 0.1). For both 

algorithms, optimal hyperparameters (k for KNN, and C and sigma for SVM) are selected using tenfold cross-validation 

combined with grid search, using the caret package in R (Kuhn, 2008; R Core Team, 2024).The following approaches were 

examined to calculate the monthly precipitation fields: (i) a “fixed rank Kriging approach” (hereafter FRK, Nychka et al., 

2015), (ii) generalized additive models (hereafter GAM, Wood, 2017) and (iii) two ML algorithms namely k-nearest 240 

neighbors (hereafter KNN) and support vector machines (hereafter, SVM). The analysis is performed using the R Language 

and Environment for Statistical Computing (R core team 2024) and the packages LatticeKrig (Nychka et al., 2019) for FRK, 

mgcv (Wood and Wood, 2015) for GAM, while the two ML algorithms are tuned using the caret R package (Kuhn, 2008). 

The choice of these two ML algorithms was based on literature (e.g., Bonsoms and Ninyerola, 2024), as well as on 

preliminary tests that included other algorithms, such as random forests, gradient boosting machines and neural networks. 245 

However, the latter algorithms were excluded as they produced unrealistic cross-hatched patterns in the precipitation 

background fields. 

• interpolation of the daily anomalies (quotient from the monthly total values, 365 values/year × 39 years) of the 

observational data.  

The final step of precipitation interpolation was implemented using an exponential covariance with the covariance 250 

parameters estimated through maximum likelihood. For more information, the reader is referred to the fields R package 
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spatialProcess function (Nychka et al., 2015b). To obtain the final daily gridded dataset for precipitation, the two 

interpolated precipitation products obtained are superimposed by multiplication. 

3.2 Spatiotemporal modeling for temperatures 

As outlined earlier in Sect. 3, the methodology of Varotsos et al. (2023a) was applied to generate the daily gridded 255 

temperature datasets with the key steps as implemented in this work briefly summarized below. 

The approach is implemented in four steps. The first two steps involve the WRF perturbation to align with observed long-

term climate temporal characteristics while preserving its spatial variability. This is achieved by adding the interpolated 

monthly biases, calculated as the difference between the mean monthly annual cycles over the period 1981–2019 and the 

monthly means calculated over the year 1999 at the closest WRF grid point to each station location, to the mean monthly 260 

values at each grid point. The third step involves the construction of the gridded dataset following the first two steps 

mentioned for the precipitation dataset by adding the interpolated mean monthly values, derived by the different methods 

(FRK, GAM, KNN, SVM) with the interpolated daily anomalies calculated as the difference between the daily observation 

and the monthly mean. The last step involves the transfer of perturbed WRF output to the daily gridded dataset of the 

previous step using the unbiasing bias adjustment method (Déqué, 2007). 265 

The methodology presented in this study regarding the gridding of temperature data is flexible and allows for the integration 

of other regional datasets (e.g. the Copernicus regional reanalysis for Europe, CERRA) in multiple ways, depending on the 

objective. For example, if the aim is to develop a gridded dataset at a resolution similar to that of CERRA (5.5 km × 5.5 km), 

the WRF output could be replaced entirely with CERRA data. Alternatively, a combined approach could be employed, 

whereby CERRA is used in conjunction with WRF output to produce a statistically downscaled CERRA dataset, which can 270 

then be bias-adjusted using observational data. More specifically, in the first step of the methodology, observational data 

could be substituted with CERRA values at the nearest grid points to the stations locations. These values would be used to 

perturb the WRF output, followed by application of the final step of the methodology to a 1 km regridded version of the 

CERRA dataset. The resulting high-resolution dataset could then be bias-adjusted by adding the interpolated mean monthly 

differences between the station observations and the corresponding values from the 1 km CERRA dataset. 275 

3.3 Evaluation analysis against withheld station data 

An evaluation of the different approaches for constructing the daily grids was conducted for the test period (2010–2019). 

The aim of this evaluation was to identify the most effective method for generating daily datasets for all variables over the 

period 1981–2019. To achieve this, approximately 10 % of the stations were excluded from the dataset, and the interpolated 

values were compared with the observed values at those locations. For both temperatures and precipitation station data, the 280 

withheld stations were selected using the minimax distance design (Johnson et al., 1990; Cornes et al., 2018), which 

minimizes the maximum distance from each withheld station to any of the other stations (Fig. 12a and 12b).  
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The accuracy of the various approaches is assessed using Bias (BIAS), Root Mean Square Error (RMSE), Mean Absolute 

Error (MAE), and Kling-Gupta Efficiency (KGE) measures. The KGE metric is a measure of goodness of fit that has been 

routinely used to evaluate climate datasets (Beck et al., 2019; Bhuiyan et al., 2019; Avila-Diaz et al., 2021). KGE can obtain 285 

values ranging from -Inf to +1, with values of +1.0 and −1.0 to indicate perfect positive and negative linear correlation 

between the reference and the assessed timeseries, respectively, while a value of 0 implies no correlation. In this study, 

gridding techniques are more accurate when KGE values are close to one. When calculating the KGE, three key factors are 

considered: (i) the Pearson product-moment correlation coefficient (R), (ii) the ratio of the mean of the reconstructed values 

to the mean of the observed values (beta), and (iii) the variability ratio based on the standard deviations of the reconstructed 290 

values to the observed values (alpha). 

3.4 Comparison against CHELSA-W5E5 

The final produced daily gridded datasets for temperatures and precipitation were compared against the corresponding 

variables from CHELSA-W5E5 v1 (hereafter CHELSA, Karger et al., 2023). CHELSA is a global land dataset providing 

daily air temperature, precipitation, and downwelling shortwave solar radiation at a 1 km resolution for the period 1979–295 

2016. It is produced by spatially downscaling the 0.5° W5E5 dataset onto a grid based on the GMTED2010 Digital Elevation 

Model, which is also used in this study. Notably, both the CLIMADAT-GRid and CHELSA are constructed using the same 

digital elevation model thus sharing the same grid while the shared elevation model ensures consistency in elevation values 

across corresponding grid points in the two datasets.CHELSA is a 1 km daily global land dataset for air temperatures, 

precipitation rates, and downwelling shortwave solar radiation for the period 1979–2016 and has been produced by spatially 300 

downscaling the 0.5o W5E5 dataset on an identical resolution grid as the one used in this study (GMTED2010). Moreover, 

Papa and Koutroulis (2025,) found that CHELSA is one of the two more reliable gridded datasets for describing the 

precipitation dynamics in Greece. The comparison was performed by examining average annual and seasonal means for all 

temperature variables (sums for precipitation), as well as selected indices from the Expert Team on Climate Change 

Detection and Indices (ETCCDI, ) (Zhang et al., 2011). These are the number of days with daily TX > 25 °C (SU) and 305 

TX > 35 °C (SU35) for TX, the number of days with daily TN > 20 °C (TR) for TN and the number of days with PR > 1 mm 

(RR1) as well as the number of days with PR ≥ 10 mm (RR10mm) for PR. These indices were selected considering the 

primary climatic characteristics of the studied area, which exhibits Mediterranean-type climate conditions with moderate 

winters and warm to hot summers. 

 310 
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Figure 2. Stations used in the interpolation as well as withheld station data during the evaluation analysis for (a) temperatures 

and (b) precipitation. In the background the elevation as provided by GMTED2010. 

4 Results 

4.1 Evaluation against withheld station data for the test period (2010–2019) 315 

4.1.1 Precipitation results 

The values of BIAS, RMSE, MAE and KGE are presented in Table 2 for the precipitation grids produced using the different 

approaches described in Sect. 3.1. These results are evaluated against withheld observations on both an annual and seasonal 

scale over the test period. From Table 2, it is evident that on the annual scale, all four approaches exhibit strong and 

relatively consistent performance across all evaluation metrics. BIAS values are minimal, indicating that none of the models 320 

significantly overestimate or underestimate precipitation. FRK shows the smallest annual BIAS (−0.01 mm), closely 

followed by GAM (−0.02 mm) and SVM (−0.05 mm), while KNN shows a negative BIAS of −0.08 mm. Regarding RMSE 

and MAE, it is shown that the different approaches yield similar values across both statistical measures with annual RMSE 

(MAE mm) being lower than 1.45 (0.65 mm), while KGE values are higher than 0.85 for all approaches, with SVM and 

FRK reaching the highest values 0.93 and 0.92, respectively. At the seasonal scale, greater variability is shown. During 325 

winter (DJF, December-January-February), SVM and GAM tend to significantly underestimate precipitation, with SVM 

showing the most negative BIAS (−0.16 mm) and a KGE of 0.91, while GAM also underperforms with a lower KGE of 0.81 

and relatively high MAE (1.01 mm). In contrast, KNN tends to overestimate during this period (BIAS = 0.12 mm), but still 

maintains a moderate KGE of 0.84. FRK, once again, shows stability with low BIAS (−0.02 mm), competitive RMSE (1.51 

mm), and a strong KGE of 0.88. During spring (MAM, March-April-May) and summer (JJA, June-July-August), all 330 

approaches show better agreement with observations. FRK continues to perform robustly with the lowest RMSE (MAE) 

values (0.94 mm (0.50 mm) for MAM and 0.65 mm (0.29 mm) for JJA), and high KGE values (0.90 and 0.82, respectively). 
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The rest of the approaches perform reasonably, though GAM's MAE remains higher in MAM, and SVM and KNN show 

slight deviations in JJA. In autumn (SON, September-October-November), all approaches tend to overestimate precipitation, 

with KNN showing the highest BIAS (0.16 mm). SVM shows the lowest BIAS (0.02 mm) and maintains a KGE of 0.94, the 335 

highest among the methods for this season. Nevertheless, FRK demonstrates consistent performance with a balanced BIAS 

(0.05 mm), relatively low RMSE and MAE of 1.27 mm and 0.66 mm, respectively, and a strong KGE of 0.93. Overall, the 

results indicate FRK as the most stable and reliable method, delivering consistently low BIAS and error across both annual 

and seasonal scales while maintaining high KGE values throughout the year.The values of the root mean square error 

(RMSE), the mean absolute error (MAE) and the KGEs are presented in Table 2 for the precipitation grids produced using 340 

the different approaches described in Sect. 3.1. These results are compared against the withheld observations on an annual 

and seasonal basis for the test period. From Table 2 it is clear that the methods yield similar values across all statistical 

measures with annual RMSE (MAE) being lower than 1.45 (0.65) for all methods. On a seasonal basis, the highest RMSE 

and MAE are observed during the DJF (December-January-February) and SON (September-October-November) periods. 

Overall, SVM and FRK methods exhibit the lowest values for both metrics on an annual and seasonal basis. Regarding the 345 

KGEs, with the exception of GAMs that exhibit a KGE value of 0.7 in JJA (June-July-August), for the rest of the seasons 

and on an annual basis the reported KGEs are higher than 0.8. Similar to RMSEs and MAEs, the highest KGE values are 

found for the SVM and FRK methods indicating that these two methods capture quite well the temporal distributions of the 

daily precipitation. 

In Fig. 3 the average annual daily distributions for precipitation are shown for the 10 years test period. The results indicate 350 

that the methods can capture the annual total precipitation, with the maximum relative absolute biases of 8 % or less across 

all methods. 

 

Table 2: Precipitation annual and seasonal BIAS, RMSE, MAE and KGE statistics based on daily values between the 30 reference 

station values and the interpolated ones as derived from the different interpolation approaches. 355 

 FRK GAM KNN SVM 

PR RMSE MAE KGE RMSE MAE KGE RMSE MAE KGE RMSE MAE KGE 

Annual 1.13 0.60 0.92 1.45 0.63 0.87 1.18 0.62 0.87 1.09 0.59 0.93 

DJF 1.51 0.95 0.88 1.46 1.01 0.81 1.56 0.97 0.84 1.43 0.91 0.91 

MAM 0.94 0.50 0.90 1.47 0.93 0.88 0.99 0.54 0.86 0.92 0.51 0.92 

JJA 0.65 0.29 0.82 1.47 0.3 0.70 0.63 0.29 0.86 0.67 0.31 0.82 

SON 1.27 0.66 0.93 1.43 0.71 0.87 1.34 0.69 0.85 1.22 0.66 0.94 
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 FRK GAM KNN SVM 

PR BIAS RMSE MAE KGE BIAS RMSE MAE KGE BIAS RMSE MAE KGE BIAS RMSE MAE KGE 

Annual -0.01 1.13 0.60 0.92 -0.02 1.45 0.63 0.87 -0.08 1.18 0.62 0.87 -0.05 1.09 0.59 0.93 

DJF -0.02 1.51 0.95 0.88 -0.06 1.46 1.01 0.81 0.12 1.56 0.97 0.84 -0.16 1.43 0.91 0.91 

MAM 0.03 0.94 0.50 0.90 -0.03 1.47 0.93 0.88 -0.11 0.99 0.54 0.86 -0.04 0.92 0.51 0.92 

JJA -0.09 0.65 0.29 0.82 -0.16 1.47 0.3 0.70 -0.06 0.63 0.29 0.86 -0.08 0.67 0.31 0.82 

SON 0.05 1.27 0.66 0.93 0.07 1.43 0.71 0.87 0.16 1.34 0.69 0.85 0.02 1.22 0.66 0.94 
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Figure 3. Density distributions of daily precipitation values over the withheld station data for the observations (OBS) and the 360 
different methods used for interpolation for the years 2010–2019. The values shown in the plots are the total annual precipitation 

values whereas the relative biases between the different methods and the observations are shown in parenthesis. 

In tWhen all available stations are used for the interpolation for the period 2010–2019 (Fig. 4), the results indicate that the 

west to east gradient of precipitation in Greece, which exhibits the largest and lowest amounts of yearly precipitation (Gofa 

et al., 2019) is captured by all approaches. However, as it is evident from Fig. 4, FRK maintains strong predictive skill when 365 
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applied to the full set of available stations, with only a modest increase in error, reflecting its ability to handle spatial 

heterogeneity and non-stationarity common in precipitation fields. GAM error metrics increase somewhat on the full dataset, 

however, retaining a reasonable predictive skill, indicating its capacity to capture important spatial patterns. For KNN, an 

opposite sign BIAS is evident when compared to the results of Table 2 indicating that the method is strongly dependent on 

the proximity to known data. As a result, the method exhibits poorer extrapolation ability than FRK and GAM. In contrast, 370 

SVM shows a significant decline in performance when applied to the full station network, as it lacks explicit modeling of 

spatial structures despite its capability to capture complex nonlinear relationships (Heinke et al. 2023), resulting in higher 

errors and biases across diverse climatic and geographic regions. This behavior is highlighted in the mountainous area in 

Crete where total annual precipitation is much lower than the other methods. 

Overall, this comparison highlights that FRK is better suited for robust precipitation interpolation across regions with 375 

complex topography.erms of spatial distribution, the west to east gradient of precipitation in Greece, which exhibits the 

largest and lowest amounts of yearly precipitation (Gofa et al., 2019), is captured by all approaches. However, as Fig. 4 for 

the year 2016 illustrates, GAM, KNN and SVM demonstrate reduced spatial variability in regions with significant altitude 

differences in both the northeastern and southern regions of Greece (e.g. Crete). This spatial variability is also evident in 

other years examined within the 2010–2019 period (not shown). 380 
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Figure 4. Spatial distribution of total annual precipitation for the period 2010–2019, as estimated by the different interpolation 

methods (panels a–d) and observed data (panel e). Each panel includes the spatial average (M) calculated over all grid points (or 385 
over all stations in panel e). For panels a–d, the relative BIAS, MAE (in mm), RMSE (in mm), and KGE are provided, based on 

comparisons between the interpolated values at the nearest grid points and the corresponding station observations.year 2016 as 

obtained from the different methods used for interpolation. In each panel, M denotes the spatial average over all grid points. 



19 

 

4.1.2 Temperature results 

This section is dedicated to the evaluation of the effectiveness of the proposed approaches in reproducing observed 390 

temperatures, specifically addressing the third phase of the temperature methodology described in Sect. 3.2. 

From Table 3 and Fig. 5-7, it is evident that all methods perform well in capturing the temporal temperature characteristics 

for TX, TG and TN. Table 3 presents the values of the metrics as calculated from daily values, which offer insight into the 

different methods systematic errors at the finer temporal scale. For TX, KNN and SVM exhibit the best overall performance 

across RMSE, MAE, and KGE, with seasonal RMSE values consistently below 0.67 °C and high KGE values (≥ 0.93). KNN 395 

performs particularly well in colder seasons (DJF and SON), while SVM shows better results in warmer periods (MAM and 

JJA). FRK ranks third, showing competitive RMSE and MAE values, though it consistently underestimates TX with a 

negative bias across all seasons, most notably in SON (−0.47 °C). GAM, while displaying the highest RMSE and MAE 

values in every season, has the lowest annual BIAS (0.00 °C) and relatively low seasonal BIAS values (e.g., −0.04 °C in 

DJF, −0.27 °C in MAM), indicating alignment with the observed annual mean but poor performance in capturing daily 400 

variability. When examining the annual differences between the observations and the various methods (Fig. 5), GAM 

demonstrates the lowest absolute annual deviations, remaining below 0.2 °C, indicating strong agreement with long-term 

averages. In contrast, FRK, exhibits the highest annual deviations, reaching up to 0.6 °C. 

For TG and TN, FRK emerges as the most robust method, outperforming others across all metrics on both annual and 

seasonal scales. It consistently delivers the lowest RMSE, MAE, and KGE values. Importantly, FRK also exhibits the lowest 405 

annual BIAS values for TG (0.08 °C) and TN (0.10 °C), underscoring its minimal systematic deviation from observations. In 

comparison, other methods present substantially higher BIAS values, particularly KNN (0.57 °C for TG; 0.74 °C for TN) and 

SVM (0.71 °C for TG; 0.56 °C for TN). Furthermore, FRK’s mean absolute annual deviations remain lower than 0.3 °C for 

both TG and TN (Fig. 6-7), whereas other methods show deviations reaching up to 0.8 °C, depending on the variable and 

method.From Table 3 and Fig. 5-7, it is evident that all methods perform well in capturing the temporal temperature 410 

characteristics for TX, TG and TN. For TX the methods yielding the best performance in terms of RMSE, MAE and KGE are 

KNN and SVM. KNN shows better performance during the colder seasons (DJF and SON), while SVM in the warmer ones 

(March-April-May (MAM) and JJA). FRK is the third best performing method, while GAM exhibits the highest RMSEs at 

all periods examined. Considering the annual biases (Fig. 5) a different perspective emerges. GAM shows the lowest 

absolute biases (below 0.2 °C), while FRK displays the highest biases (up to 0.6 °C), highlighting variations in the strengths 415 

of the methods depending on the evaluation metric. 

For TG and TN, FRK emerges as the best-performing method across all metrics on both an annual and seasonal basis, 

consistently exhibiting the lowest RMSE, MAE and KGE values with the rest of the methods having comparable 

performance, with the exception of the higher RMSE values obtained by GAM. In addition, FRK values exhibit the lowest 

mean absolute annual deviations from the observed values, lower than 0.3 oC, for both TG and TN, while for the rest of the 420 

methods these deviations may reach 0.8 oC depending on the method and variable (Fig. 6 and 7, respectively). 
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Table 3: Daily maximum (TX), mean (TG) and minimum (TN) temperatures annual and seasonal BIAS, RMSE, MAE and KGE 

statistics based on daily values between the 13 reference station values and the interpolated ones as derived from the different 

interpolation approaches. 425 

 FRK GAM KNN SVM 

 RMSE MAE KGE RMSE MAE KGE RMSE MAE KGE RMSE MAE KGE 

TX             

Annual 0.69 0.55 0.98 1.63 0.48 0.98 0.60 0.50 0.98 0.60 0.49 0.98 

DJF 0.68 0.55 0.91 1.6 0.41 0.93 0.60 0.49 0.93 0.64 0.53 0.94 

MAM 0.60 0.47 0.97 1.53 0.53 0.97 0.67 0.56 0.98 0.62 0.51 0.98 

JJA 0.72 0.58 0.97 1.35 0.49 0.98 0.60 0.50 0.98 0.56 0.46 0.98 

SON 0.76 0.61 0.96 1.48 0.47 0.98 0.55 0.45 0.99 0.57 0.46 0.98 

TG  

Annual 0.45 0.36 0.98 2.81 0.48 0.97 0.69 0.59 0.97 0.82 0.73 0.96 

DJF 0.45 0.36 0.98 2.56 0.38 0.97 0.67 0.56 0.93 0.77 0.66 0.92 

MAM 0.45 0.36 0.97 2.43 0.57 0.96 0.75 0.67 0.95 0.80 0.71 0.95 

JJA 0.48 0.37 0.97 2.32 0.55 0.97 0.66 0.57 0.97 0.88 0.79 0.96 

SON 0.42 0.35 0.96 2.53 0.43 0.97 0.67 0.58 0.97 0.83 0.74 0.96 

TN  

Annual 0.52 0.41 0.99 3.85 0.59 0.96 0.88 0.77 0.94 0.77 0.64 0.95 

DJF 0.63 0.52 0.92 3.85 0.58 0.88 0.97 0.80 0.80 0.93 0.75 0.82 

MAM 0.52 0.43 0.98 3.85 0.70 0.93 0.88 0.78 0.92 0.72 0.60 0.95 

JJA 0.42 0.34 0.98 3.79 0.57 0.97 0.83 0.73 0.96 0.65 0.54 0.95 

SON 0.48 0.38 0.99 3.85 0.54 0.96 0.88 0.77 0.94 0.79 0.68 0.95 

 

 FRK GAM KNN SVM 

 BIAS RMSE MAE KGE BIAS RMSE MAE KGE BIAS RMSE MAE KGE BIAS RMSE MAE KGE 



21 

 

TX  

Annual -0.33 0.69 0.55 0.98 0.00 1.63 0.48 0.98 0.11 0.60 0.50 0.98 -0.12 0.60 0.49 0.98 

DJF -0.41 0.68 0.55 0.91 -0.04 1.6 0.41 0.93 -0.30 0.60 0.49 0.93 -0.38 0.64 0.53 0.94 

MAM -0.06 0.60 0.47 0.97 -0.27 1.53 0.53 0.97 -0.33 0.67 0.56 0.98 -0.21 0.62 0.51 0.98 

JJA -0.40 0.72 0.58 0.97 -0.14 1.35 0.49 0.98 -0.18 0.60 0.50 0.98 -0.12 0.56 0.46 0.98 

SON -0.47 0.76 0.61 0.96 -0.15 1.48 0.47 0.98 -0.02 0.55 0.45 0.99 0.03 0.57 0.46 0.98 

TG  

Annual 0.08 0.45 0.36 0.98 0.41 2.81 0.48 0.97 0.57 0.69 0.59 0.97 0.71 0.82 0.73 0.96 

DJF -0.18 0.45 0.36 0.98 0.24 2.56 0.38 0.97 0.53 0.67 0.56 0.93 0.64 0.77 0.66 0.92 

MAM 0.23 0.45 0.36 0.97 0.53 2.43 0.57 0.96 0.66 0.75 0.67 0.95 0.70 0.80 0.71 0.95 

JJA 0.23 0.48 0.37 0.97 0.51 2.32 0.55 0.97 0.53 0.66 0.57 0.97 0.78 0.88 0.79 0.96 

SON 0.23 0.42 0.35 0.96 0.51 2.53 0.43 0.97 0.53 0.67 0.58 0.97 0.78 0.83 0.74 0.96 

TN  

Annual 0.10 0.52 0.41 0.99 0.51 3.85 0.59 0.96 0.74 0.88 0.77 0.94 0.56 0.77 0.64 0.95 

DJF -0.04 0.63 0.52 0.92 0.39 3.85 0.58 0.88 0.75 0.97 0.80 0.80 0.66 0.93 0.75 0.82 

MAM 0.22 0.52 0.43 0.98 0.66 3.85 0.70 0.93 0.75 0.88 0.78 0.92 0.49 0.72 0.60 0.95 

JJA 0.17 0.42 0.34 0.98 0.55 3.79 0.57 0.97 0.73 0.83 0.73 0.96 0.49 0.65 0.54 0.95 

SON 0.06 0.48 0.38 0.99 0.45 3.85 0.54 0.96 0.74 0.88 0.77 0.94 0.62 0.79 0.68 0.95 
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Figure 5. Density distributions of daily maximum temperature (TX) values over the withheld station data for the observations 

(OBS) and the different methods used for interpolation for the years 2010–2019 The values shown in the plots are the average 430 
annual values whereas the biases between the different methods and the observations are shown in parenthesis. 
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Figure 6. Density distributions of daily mean temperature (TG) over the withheld station data for the observations (OBS) and the 

different methods used for interpolation for the years 2010–2019 The values shown in the plots are the average annual values 435 
whereas the biases between the different methods and the observations are shown in parenthesis. 
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Figure 7. Density distributions of daily minimum temperature (TN) values over the withheld station data for the observations 

(OBS) and the different methods used for interpolation for the years 2010–2019. The values shown in the plots are the average 

annual values whereas the biases between the different methods and the observations are shown in parenthesis. 

 445 
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In terms of spatial distribution, similar patterns to those observed for precipitation are identified. In particular, GAM, KNN 

and SVM demonstrate reduced spatial variability between the mountainous areas of Greece and the lower altitude 

surrounding areas indicating limited ability to accurately represent temperature gradients influenced by topography (not 

shown). 

Based on the above analysis performed for precipitation and temperature variables, we opt to proceed with the development 450 

of the daily grids using the FRK method for gridding the mean and total monthly values for temperatures and precipitation, 

respectively with the final dataset CLIMADAT-GRid covering the period 1981–2019. 

4.2 Results of the comparison between CLIMADAT-GRid against CHELSA-W5E5 for the period 1981–2016 

This section presents the results of the comparison between CLIMADAT-GRid and CHELSA for both temperatures and 

precipitation. It is important to note that, based on the findings in Sect. 4.1, FRK was selected as the method used to 455 

construct the CLIMADAT-GRid for both variables. 

4.2.1 Daily maximum, mean and minimum temperature results 

In Figures 8, 9 and 10 present the annual and seasonal average temperature results for TX, TG, and TN for the CLIMADAT-

GRid and CHELSA datasets, respectively, while their differences are shown in Fig. S1 of the Supplementary Material. For 

TX, both datasets show broadly comparable spatial average temperatures over the entire domain (denoted as M in the 460 

figures) (Fig. 8). CLIMADAT-GRid consistently matches station observations well, as indicated by zero BIAS and minimal 

error metrics across all seasons. MAE and RMSE values remain at or below 0.02 °C, and KGE values are close to 0.99 

throughout. In contrast, CHELSA systematically underestimates TX, with biases ranging from −0.49 °C in MAM to −0.69 °C 

in DJF, and RMSE values up to 0.72 °C. CHELSA’s lower KGE values (e.g., 0.86 in DJF) further suggest reduced 

agreement with observations. CLIMADAT-GRid, blended with WRF in the gridded dataset, captures the orographic 465 

temperature gradients more effectively exhibiting lower temperatures in elevated regions such as the northwest of Greece, 

the central Peloponnese, and western Crete (Fig. S1). Conversely, CHELSA tends to show cooler conditions in the Ionian 

and Cycladic islands but warmer conditions in Rhodes and Samos. 

For TG, the pattern is similar but slightly more pronounced in favor of CLIMADAT-Grid (Fig. 9). The mean annual TG is 

14.3 °C in CLIMADAT-GRid and 14 °C in CHELSA. CLIMADAT-GRid demonstrates extremely low errors and near-zero 470 

bias across all seasons, with RMSE values consistently at 0.01–0.02 °C and KGE values at or near 0.99. In contrast, 

CHELSA underestimates TG with average annual and seasonal biases between −0.29 °C (DJF) and −0.79 °C (JJA), and 

RMSE values reaching up to 0.81 °C. The KGE for CHELSA is lower, particularly in DJF (0.90) and SON (0.92), indicating 

less accurate temperature modeling compared to CLIMADAT-GRid. The spatial differences also reflect the better 

performance of CLIMADAT-GRid, especially in mountainous regions where it more accurately captures lower mean 475 

temperatures (Fig. S1). 
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For TN, both datasets report nearly identical domain-averaged values, with the largest difference being only 0.2 °C in MAM 

and SON (Fig. 10). CLIMADAT-GRid slightly underestimates TN (bias from −0.01 °C to −0.03 °C), whereas CHELSA 

slightly overestimates it during DJF and MAM (bias up to 0.27 °C), though both datasets perform well in JJA and SON. 

Despite the small average differences, error metrics again favor CLIMADAT-GRid, which shows low MAE and RMSE 480 

(0.01–0.03 °C) and perfect or near-perfect KGE values (≥ 0.99). CHELSA, by contrast, displays larger errors (RMSE up to 

0.34 °C in MAM) and lower KGE, particularly annually (0.85) and in JJA (0.85), indicating a modest degradation in its 

representation of minimum temperatures. Regionally, the most significant TN discrepancies appear in coastal and island 

areas (Fig. S1). CHELSA shows notably higher TN values than CLIMADAT-GRid across Zakynthos, Kefallonia, Crete, and 

many of the Aegean islands. The higher temperatures in CHELSA can be attributed to the implementation of a basic 485 

statistical downscaling approach that employs atmospheric temperature lapse rates, B-spline interpolations, and high-

resolution orography rather than a full physical scheme (Karger et al., 2023). Furthermore, according to the authors, constant 

lapse rates were utilized for all air temperature variables impacting minimum temperatures to a greater extent, as minimum 

temperatures in high altitudes are frequently the result of nighttime inversions. 

Figure 11 presents a comparative analysis of the number of days exceeding key temperature thresholds, TX > 25°C (SU), TX 490 

> 35°C (SU35), and TN > 20°C (TR) based on the CLIMADAT-GRid and CHELSA datasets. While both datasets show 

close agreement in domain-averaged values for SU and SU35, notable discrepancies emerge for TR, where CHELSA reports 

a higher frequency (23 days/year) compared to CLIMADAT-Grid (18 days/year). 

When benchmarked against observations, CLIMADAT-GRid demonstrates stronger agreement, particularly for SU. 

CHELSA underestimates SU by approximately 10 days/year, whereas CLIMADAT-Grid closely tracks observed values, 495 

reflecting its higher reliability for this metric. Statistical evaluation supports this, since for SU, CLIMADAT-Grid achieves a 

low BIAS (1 °C), MAE (1.11 °C), RMSE (1.4 °C), and a high KGE (0.97), outperforming CHELSA, which shows a 

significant negative BIAS (−9.34 °C), higher MAE (9.34 °C), RMSE (9.69 °C), and a slightly lower KGE (0.91). 

For TR, the results are more nuanced. CLIMADAT-GRid shows a greater negative BIAS (−4.02 days/year), but CHELSA, 

despite the smaller BIAS (−1.28 days/year), presents higher MAE and RMSE values (3.09 days/year and 3.72 days/years, 500 

respectively), suggesting differences in how each dataset captures nighttime temperature extremes. Both datasets perform 

comparably in terms of KGE, with values of 0.84 (CLIMADAT-GRid) and 0.82 (CHELSA). 

Spatial differences further reveal key distinctions between the two datasets (Fig. S2). Discrepancies in SU are concentrated 

over the Ionian Sea islands (Zakynthos and Kefallonia) and the Cyclades, while differences in TR are more widespread, 

notably affecting Crete, the Aegean islands, and again the Ionian Sea region. In addition, CLIMADAT-GRid captures the 505 

spatial distribution of TR capturing the urban heat island effect in Athens. In contrast, this urban signature is less pronounced 

in the CHELSA data, suggesting limitations in its resolution or calibration over complex urban terrains. Similarly, 

CLIMADAT-Grid effectively captures the spatial distribution of SU35, accurately identifying thermal hotspots across 

Greece. 
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Together, these findings highlight the greater consistency and spatial sensitivity of the CLIMADAT-GRid dataset, 510 

particularly in reflecting observed heat extremes and local variability across the Greek region.Fig. 8 and 9 the average annual 

and seasonal temperature results for TX and TN are shown, respectively. For TX, both datasets show comparable temperature 

values averaged over the whole domain of interest (denoted as M in the figures), with the maximum difference between the 

two datasets not exceeding 0.5 oC (DJF). When compared to the station data (M.o in the figures) CLIMADAT-GRid exhibits 

values of similar magnitude for the closest grid point to the station locations (M.c in the figures), while CHELSA 515 

systematically underestimates the observations on both the annual and the seasonal timescales, with average discrepancies 

between 0.5 oC to 0.7 oC. In terms of spatial variability, CLIMADAT-GRid with WRF blended in the gridded dataset better 

captures the orographical gradient of temperatures, indicating lower temperatures than CHELSA in mountainous areas 

ranging from the northwest of Greece to the central Peloponnese and west of Crete. Furthermore, CHELSA appears to be 

cooler than CLIMADAT-GRid in the Ionian Sea islands of Zakynthos and Kefallonia, as well as the Aegean sea islands of 520 

Cyclades, but warmer in Rhodes and Samos. 

For TN (Fig. 9), both datasets show nearly identical temperature values averaged across the entire domain of interest, with 

the highest difference between them not exceeding 0.2 oC (MAM and SON). CLIMADAT-GRid produces values of the 

same magnitude as the station data for the grid points nearest to the station locations, whereas CHELSA slightly 

overestimates the observations annually, DJF and MAM. Nonetheless, the maximum overestimation in daily minimum 525 

temperatures is less than 0.3 oC. In contrast, JJA and SON produce temperatures that are similar to those observed. The 

highest discrepancy between the two datasets is obvious while examining the maps in Fig. 8. In particular, CHELSA 

indicates notably higher temperatures compared to CLIMADAT-GRid, from west to east, in the Ionian Sea's Zakynthos and 

Kefallonia, as well as Crete, and the majority of the Aegean Sea islands. The higher temperatures in CHELSA can be 

attributed to the implementation of a basic statistical downscaling approach that employs atmospheric temperature lapse 530 

rates, B-spline interpolations, and high-resolution orography rather than a full physical scheme (Karger et al., 2023). 

Furthermore, according to the authors, constant lapse rates were utilized for all air temperature variables impacting minimum 

temperatures to a greater extent, as minimum temperatures in high altitudes are frequently the result of nighttime inversions. 

Figure 10 illustrates the results for the number of days with daily TX > 25 °C (SU) and TX > 35 °C (SU35) and the number of 

days with daily TN > 20 °C (TR). From the figure it is evident that both datasets yield similar domain averaged values for SU 535 

and SU35. However, for TR, CHELSA estimates a higher number of days/yr compared to CLIMADAT-GRid (23 and 18 

days/yr, respectively). Despite this, CHELSA underestimates the observed number of SU by about 10 days/yr, while 

CLIMADAT-GRid closely aligns with the observed values. Differences are most noticeable in the spatial variability of the 

results, which are most evident in the Ionian Sea Zakynthos and Kefallonia islands, as well as the Aegean Sea Cyclades for 

SU and in the Ionian Sea Zakynthos and Kefallonia islands, as well as Crete and the majority of the Aegean Sea's islands for 540 

TR. Furthermore, CLIMADAT-GRid catches pretty well the spatial variability of SU35, pinpointing well-known warm hot 

spots in the Greek territory, as well as the urban heat island effect in the Athens urban area, which is also evident in 

CHELSA, but to a lesser extent. 
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Figure 8. Average annual and seasonal TX (winter (DJF), spring (MAM), summer (JJA) and autumn (SON)) for the period 1981–

2016 for CLIMADAT-GRid (left column) and CHELSA (right column). In each panel, M denotes the spatial average over the grid 550 
points covering the area. In addition, the evaluation metrics between the stations and the data for the closest grid points to the 
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stations locations are shown within each panel. whereas M.o denotes the station mean values while M.c the mean values for the 

closest grid points to the stations locations. Units are the same as in the colorbar. 
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Figure 9. Average annual and seasonal TG (winter (DJF), spring (MAM), summer (JJA) and autumn (SON)) for the period 1981–555 
2016 for CLIMADAT-GRid (left column) and CHELSA (right column). In each panel, M denotes the spatial average over the grid 

points covering the area. In addition, the evaluation metrics between the stations and the data for the closest grid points to the 

stations locations are shown within each panel. 
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 560 

Figure 109. Average annual and seasonal TN (winter (DJF), spring (MAM), summer (JJA) and autumn (SON)) for the period 

1981–2016 for CLIMADAT-GRid (left column) and CHELSA (right column). In each panel, M denotes the spatial average over 

the grid points covering the area. In addition, the evaluation metrics between the stations and the data for the closest grid points to 
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the stations locations are shown within each panel. whereas M.o denotes the station mean values while M.c the mean values for the 

closest grid points to the stations locations. Units are the same as in the colorbar. 565 
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Figure 110. Average annual number of days TX > 25°C (SU), number of days TX > 35°C (SU35) and number of days TN > 20°C 

(TR) for the period 1981–2016 for CLIMADAT-GRid (left column) and CHELSA (right column). In each panel, M denotes the 570 
spatial average over the grid points covering the area. In addition, the evaluation metrics between the stations and the data for the 

closest grid points to the stations locations are shown within each panel. whereas M.o denotes the station mean values while M.c 

the mean values for the closest grid points to the stations locations. Units are the same as in the colorbar. 
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4.2.2 Precipitation results 

Figure 11 Figure 12 presents the total annual and seasonal precipitation results averaged over the period 1981–2016 for both 575 

datasets. In general, CLIMADAT-GRid indicates higher precipitation values compared to CHELSA on both the annual and 

seasonal timescales (their relative differences are shown in Fig. S3 of the Supplementary Material). Both datasets capture the 

west-to-east precipitation gradient in Greece, with wetter conditions prevailing in the west and drier conditions in the east. 

When evaluated against observations, CLIMADAT-GRid shows minimal biases. Specifically, the annual BIAS is −1.56%, 

with seasonal biases ranging from −1% in DJF to −9.27% in JJA. CLIMADAT-GRid also maintains low MAE and RMSE 580 

values across all seasons, for example, annual MAE is 11.5 mm and RMSE is 15.17 mm, with high KGE values near 0.98, 

indicating strong agreement with observations. 

In contrast, CHELSA demonstrates significant underestimations. The annual precipitation BIAS is −19%, and seasonal 

BIAS ranges from −11.97% in SON to −38.27% in JJA. The errors are also substantially larger, with annual MAE and 

RMSE at 142.51 mm and 147.02 mm, respectively. Seasonal MAE and RMSE values are consistently higher than those of 585 

CLIMADAT-GRid, particularly during DJF, MAM and SON. Additionally, CHELSA's KGE values are lower across all 

seasons, with a peak of 0.82 in SON and a low of 0.65 in JJA, indicating comparatively reduced reliability in capturing 

observed precipitation patterns. 

Regarding the number of wet days (RR1, Fig. 13 and Figure S4 of the Supplementary Material), both datasets demonstrate a 

systematic overestimation relative to the observed spatial means. For CLIMADAT-GRid a positive BIAS of about 49 590 

days/year is shown, while for CHELSA the bias reaches about 31 days/year. MAE and RMSE for CLIMADAT-GRid are 

about 49 and 50 days/year, respectively, with a negative KGE of −0.51, indicating poor agreement with observations despite 

its more pronounced orographic pattern. CHELSA performs somewhat better in this respect, with a lower MAE (31 

days/year), RMSE (31 days/year), and a positive KGE of 0.31. This highly positive bias in the number of wet days has also 

been found in other gridded products (e.g., IBERIA01), and it is a byproduct of the selected interpolation methods. One way 595 

to reduce the inflated number of wet days is to introduce a third term in the interpolation scheme of precipitation by 

interpolating the daily occurrence of rainfall (0 or 1 depending on whether PR > 0.1 mm) considering a threshold between 

0.1 and 0.9 for assigning a wet day to a grid point (Cornes et. al., 2018; Varotsos et al., 2023a). For instance, if we assign a 

value of 0.2 for the wet days and multiply the interpolated fields with the daily precipitation product the average number of 

wet days is reduced to 90 days/year with however increased underestimation in the annual and seasonal precipitation sums 600 

(not shown). For future studies utilizing the CLIMADAT-GRid precipitation dataset, a threshold of 2 mm/day could be 

considered when analyzing the number of wet days. 

In terms of the number of days with daily precipitation equal to or greater than 10 mm (RR10, Fig. 13, Fig. S4 of the 

Supplementary Material), the two datasets display similar spatial distributions, with both indicating the highest frequencies 

in western Greece and the lowest in the east. However, CLIMADAT-GRid performs better quantitatively, with a mean 605 

annual RR10 of 23 days and a bias of about -3 days/year, compared to CHELSA’s 19 days/year and a larger negative bias of 
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about −7 days/year. Additionally, CLIMADAT-GRid exhibits lower MAE and RMSE (3 days/year for both metrics, 

respectively), along with a higher KGE of 0.86, indicating close agreement with observations. CHELSA, in contrast, yields a 

higher MAE, RMSE (7 days/year for both metrics, respectively), and a lower KGE of 0.73, reinforcing the overall tendency 

of CLIMADAT-GRid to more accurately represent moderate-to-heavy precipitation events.presents the total annual and 610 

seasonal precipitation results averaged over the period 1981–2016 for both datasets. In general, CLIMADAT-GRid indicates 

higher precipitation values compared to CHELSA on both the annual and the seasonal timescales. Both datasets capture the 

west-to-east precipitation gradient in Greece, with wetter conditions prevailing in the west and drier conditions in the east. 

However, the differences are more pronounced in CLIMADAT-GRid, particularly during Greece's rainy seasons (SON and 

DJF). When compared to the observations CLIMADAT-GRid indicates negligible biases, while for CHELSA the relative 615 

biases are about 18 % for the annual total precipitation and for the seasonal precipitation the biases range from about 15 % in 

SON to about 24 % in JJA with the rest of the seasons indicating intermediate biases. 

Regarding the number of wet days (RR1, Fig. 12) the results are different since both datasets indicate a clear overestimation 

compared to the observed spatial means, with CLIMADAT-GRid indicating a more pronounced orographic pattern than 

CHELSA. This highly positive bias in the number of wet days has also been found in other gridded products (e.g., 620 

IBERIA01) and it is a byproduct of the selected interpolation methods. One way to reduce the inflated number of wet days is 

to introduce a third term in the interpolation scheme of precipitation by interpolating the daily occurrence of rainfall (0 or 1 

depending on whether PR > 0.1 mm) considering a threshold between 0.1 and 0.9 for assigning a wet day to a grid point 

(Cornes et. al., 2018; Varotsos et al., 2023a). For instance, if we assign a value of 0.2 for the wet days and multiply the 

interpolated fields with the daily precipitation product the average number of wet days is reduced to 90 days/year with 625 

however increased underestimation in the annual and seasonal precipitation sums (not shown). For future studies utilizing 

the CLIMADAT-GRid precipitation dataset, a threshold of 2 mm/day could be considered when analyzing the number of 

wet days. 

Finally, for the number of days with precipitation amounts higher or equal than 10 mm (R10mm, Fig. 12) both datasets 

exhibit similar results as it is shown form the spatial means with CLIMADAT-GRid indicating higher values for the specific 630 

index than CHELSA and closer to the observed spatial means. The highest values are shown for both datasets in western 

Greece, while the lowest in the eastern areas of the Greek domain. 
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Figure 121. Total annual and seasonal PR (winter (DJF), spring (MAM), summer (JJA) and autumn (SON)) for the period 1981–

2016 for CLIMADAT-GRid (left column) and CHELSA (right column). In each panel, M denotes the spatial average over the grid 

points covering the area. In addition, the evaluation metrics between the stations and the data for the closest grid points to the 
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stations locations are shown within each panel. whereas M.o denotes the station mean values while M.c the mean values for the 645 
closest grid points to the stations locations. Units are the same as in the colorbar. 
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Figure 132. Average annual number of days PR > 1 mm (RR1) and number of days PR >= 10mm (RR10mm) for the period 1981–650 
2016 for CLIMADAT-GRid (left column) and CHELSA (right column). In each panel, M denotes the spatial average over the grid 

points covering the area. In addition, the evaluation metrics between the stations and the data for the closest grid points to the 

stations locations are shown within each panel. whereas M.o denotes the station mean values while M.c the mean values for the 

closest grid points to the stations locations. Units are the same as in the colorbar. 

5 Data availability 655 

The CLIMADAT-GRid dataset is freely available in the web repository Zenodo (https://doi.org/10.5281/zenodo.14637536) 

and cited as Varotsos et al. (2025). Moreover the dataset is available through 

http://ostria.meteo.noa.gr/repo/CLIMADAT_Grid/ (last access 19-12-2024). The NOAAN network measurements  and the 

historical weather station data from the National Observatory of Athens in Thissio are available via the CLIMPACT data 

repository https://data.climpact.gr/en/dataset/497dc26d-45e0-4ad5-b8f3-5f8890f65129 and 660 

https://data.climpact.gr/en/dataset/2f5bbe2a-7e27-40e7-9ff6-1dcc08c507fa, respectively (last access 20-3-2024). ERA5-land 

were obtained from the Copernicus Climate Data Store (last access 17-4-2024) while CHELSA-W5 were obtained from 

https://data.isimip.org/10.48364/ISIMIP.836809.2 (last access 17-07-2024).  

https://doi.org/10.5281/zenodo.14637536
http://ostria.meteo.noa.gr/repo/CLIMADAT_Grid/
https://data.climpact.gr/en/dataset/497dc26d-45e0-4ad5-b8f3-5f8890f65129
https://data.climpact.gr/en/dataset/2f5bbe2a-7e27-40e7-9ff6-1dcc08c507fa
https://data.isimip.org/10.48364/ISIMIP.836809.2
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6 Conclusions 665 

In this paper, we described the construction of CLIMADAT-GRid, a new publicly available 1 km x 1 km daily gridded 

climate dataset for Greece that focuses on temperatures and precipitation from 1981 to 2019. CLIMADAT-GRid is based on 

quality-controlled and homogenized daily temperature and precipitation data gathered from 122 and 312 stations, 

respectively. To produce the gridded fields, we evaluated four interpolation methods, Fixed Rank Kriging (FRK), 

Generalized Additive Models (GAM), Support Vector Machines (SVM), and K-Nearest Neighbors (KNN), using 670 

independent station data for validation. FRK emerged as the most reliable method, demonstrating consistent performance 

across variables and time scales, particularly for precipitation. It also best captured spatial patterns, especially over the 

complex terrain of Greece. For temperatures, SVM and KNN performed well for maximum temperatures, while FRK was 

more consistent for mean and minimum temperatures. FRK was ultimately chosen as the method for constructing the 

CLIMADAT-GRid.For the construction of the daily gridded datasets, various methods were examined whose accuracy was 675 

assessed against withheld data. In addition, to obtain the gridded temperature data the observations were blended with a high 

resolution WRF simulation over Greece for the year 1999. 

The comparison with the CHELSA-W5E5 dataset for the period 1981–2016 showed that CLIMADAT-GRid generally 

produced similar results for temperatures but captured spatial variability better with a closer agreement to observations on 

both the mean values and the extremes. For TX, both datasets showed similar temperatures, with CLIMADAT-GRid closely 680 

matching station data, while CHELSA consistently underestimating the observations by 0.5 to 0.7 °C. CLIMADAT-GRid 

also better captured the temperature gradients in mountainous areas compared to CHELSA. Conversely, for TN, both 

datasets showed identical spatial means overall, with a tendency in CHELSA to overestimate observations. The differences 

between the datasets were most noticeable in the Ionian Sea islands, Crete, and the Aegean Sea islands, with CHELSA 

showing higher temperatures in these regions. Regarding the extremes, both datasets produced similar spatial means for the 685 

number of days with maximum temperatures above 25 °C and 35 °C, with CLIMADAT-GRid indicating the lowest biases 

compared to the observations. However, CHELSA indicated a higher number of days with minimum temperatures above 20 

°C compared to CLIMADAT-GRid. The spatial variability of these results is most noticeable in the Ionian and Aegean 

islands, with CLIMADAT-GRid effectively capturing hotspots. Overall, the study highlights the differences between 

CLIMADAT-GRid and CHELSA in capturing temperature variations in different regions, with CHELSA often 690 

underestimating or overestimating observations compared to CLIMADAT-GRid. 

For precipitation, the comparison between CLIMADAT-GRid and CHELSA datasets for the annual and seasonal 

precipitation in Greece during the period 1981–2016 revealed that CLIMADAT-GRid generally indicated higher 

precipitation values compared to CHELSA. Both datasets capture the west-to-east gradient of precipitation in Greece, with 

the differences being more pronounced in CLIMADAT-GRid, especially during the rainy season. When compared to 695 



46 

 

observations, CLIMADAT-GRid had negligible biases, while CHELSA indicated relatively high biases ranging from 15-24 

% depending on the season. Concerning the number of wet days, both datasets overestimate compared to observed spatial 

means, with CLIMADAT-GRid showing a more pronounced orographic pattern than CHELSA. Moreover, both datasets 

show similar results in the number of days with precipitation amounts equal to or higher than 10 mm, with CLIMADAT-

GRid indicating higher values for this specific index in western Greece and better agreement with the observations. 700 

In conclusion, CLIMADAT-GRid serves as a valuable resource for climate research in Greece, providing high-resolution 

daily gridded datasets for temperatures and precipitation. Future work involves the construction of gridded datasets for other 

variables, such as relative humidity and wind speed, as well as extending the dataset to include more recent years. 
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