
Reviewer 1

The manuscript  presents  observational  gridded datasets  over Greece,  covering daily  total 
precipitation  and  daily  mean,  maximum,  and  minimum  temperatures.  The  authors  have 
applied quality control and homogenization procedures to the input data. They also examined 
the use of different statistical methods for spatial interpolation. In addition, they incorporated 
numerical model output to address gaps in the observational network, which is relevant given 
the  complex  topography  of  the  region.  The  datasets  have  been  evaluated  through  cross-
validation  using  independent  observations  and  compared  with  existing  gridded  products 
available for the same area. The figures included in the paper are informative and clearly 
presented. The results support the conclusions drawn by the authors.

There are a few points that may require clarification or expansion. First, the manuscript does 
not include a sensitivity analysis regarding the use of WRF model output for a year other than 
1999. While this analysis may not be essential, the authors could expand the discussion around 
lines 139–141. For example, they might consider whether a regional reanalysis product, such 
as CERRA, could have been used, or if WRF simulations were tested for other years. Second, 
certain  methodological  choices  could  be  described  in  more  detail.  This  is  outlined  in  the 
comments below.

Overall recommendation: The study provides a useful dataset and analysis for the region. I 
recommend publication after the authors have addressed the comments that follow.

Answer:

We sincerely appreciate the reviewer’s thoughtful comments and valuable suggestions. We have 
carefully considered all the points raised and have addressed each of them thoroughly in the revised 
manuscript.  We believe  that  these  revisions  have  significantly  improved  the  clarity,  rigor,  and 
overall quality of the work. A detailed point-by-point response is provided below, highlighting how 
each comment was incorporated or clarified.

Regarding the selection of the year for the WRF simulation. The specific selection of the simulation 
year is not of primary importance in this study, as the WRF model is used primarily as a physically 
based spatial  interpolator.  The model output is adjusted using observational data to account for 
seasonal and interannual variability. Therefore, the key requirement is that the WRF model provides 
a continuous and physically consistent representation of the temperature field across the region’s 
complex terrain,  a  capability  supported by the studies  referenced in  Section 2.3 of  the revised 
manuscript. Thus the following lines have been added in section 2.3.

In particular, the following lines include studies that have implemented WRF in Greece as well as 
areas with similar topographic and climatic characteristics.

“WRF is widely used in both operational forecasting (Sofia et al., 2024; Patlakas et al., 2023) and  
scientific research (Pantillon et al., 2024; Patlakas et al., 2024; Politi et al., 2021; Stathopoulos et  
al., 2023; Otero-Casal et al., 2019). These studies provide comprehensive evaluations of the model’s 
performance not only over the present study area but also in regions with similar topographic and 
climatic characteristics, demonstrating its reliability in representing climatological fields.”



Moreover, the following lines have been added at the end of section 2.3.

“It should be noted here that the selection of the year of the WRF simulation is not of primary 
importance in this study, since it is used as a physically based spatial interpolator, as described in  
Section 3.2.  Therefore,  the key requirement is  that  the WRF model  provides a  continuous and 
physically consistent representation of the temperature field across the region’s complex terrain, a 
capability supported by the aforementioned studies.”

Regarding the comment on whether a regional reanalysis product such as CERRA could have been 
used, the methodology presented in this study indeed allows for that possibility, in several ways and 
for different purposes. For instance, if the goal is to develop a gridded dataset with a resolution  
similar  to  that  of  CERRA (5.5  km × 5.5  km),  the  WRF output  could  be  directly  replaced by  
CERRA. Alternatively,  CERRA could be combined with WRF output  to produce a statistically 
downscaled CERRA dataset, which can subsequently be bias-adjusted using observational data.

Specifically, in Step 1 of the methodology, the observations could be replaced by CERRA values at 
the closest grid points to the station locations. These values could then be used to perturb the WRF 
output, followed by applying the final step of the methodology to a 1 km regridded version of the 
CERRA dataset. Finally, the resulting dataset could be bias-adjusted by adding the interpolated 
mean monthly differences between the observations and the 1 km CERRA dataset (again, based on 
the closest grid points to the stations’ locations).

To highlight the flexibility of the methodology the following lines have been added in the end of 
section 3.2 Spatiotemporal modeling for temperatures

“The methodology presented in this study regarding the gridding of temperature data is flexible and  
allows for the integration of other regional datasets (e.g. the Copernicus regional reanalysis for 
Europe,  CERRA) in multiple  ways,  depending on the objective.  For  example,  if  the  aim is  to 
develop a gridded dataset at a resolution similar to that of CERRA (5.5 km × 5.5 km), the WRF 
output could be replaced entirely with CERRA data. Alternatively, a combined approach could be 
employed,  whereby CERRA is  used in conjunction with WRF output  to produce a statistically 
downscaled CERRA dataset, which can then be bias-adjusted using observational data.
More specifically, in the first step of the methodology, observational data could be substituted with 
CERRA values at the nearest grid points to the stations locations. These values would be used to 
perturb the WRF output, followed by application of the final step of the methodology to a 1 km 
regridded version of the CERRA dataset. The resulting high-resolution dataset could then be bias-
adjusted by adding the interpolated mean monthly differences between the station observations and 
the corresponding values from the 1 km CERRA dataset.”

Comments:

1) Regarding the gridding of temperature data: It is likely that the station locations, your grid, 
and the CHELSA grid differ in elevation for the same geographic points. This is expected, but  
it is unclear how these differences were handled during the spatial analysis and subsequent 
comparisons. Did you interpolate all datasets onto a common grid before comparison? This 
point could be clarified in Sections 3.3 and 3.4. Also, discussing elevation differences may help  



with  the  interpretation  of  results  in  Section  4.2.1.  Please  consider  revising  that  section 
accordingly.

Answer:

Both  our  gridded  dataset  (CLIMADAT-GRid)  and  the  CHELSA dataset  use  the  same 
underlying Digital Elevation Model (DEM), GMTED2010, as described in section 3.4. This ensures 
that elevation values in corresponding grid points are constant throughout the two gridded datasets. 
As a result, any systematic elevation differences exist exclusively between the station data and the 
gridded datasets, as station elevations may differ from the DEM-derived heights at the nearest grid 
points.  As a result,  we choose not  to correct  for  elevation variations using a typical  lapse-rate 
method. Nevertheless to further clarify that both gridded datasets are on the same grid the relative 
lines in section 3.4 have been modified from:

“  CHELSA is  a  1  km  daily  global  land  dataset  for  air  temperatures,  precipitation  rates,  and 
downwelling  shortwave  solar  radiation  for  the  period  1979–2016  and  has  been  produced  by 
spatially downscaling the 0.5o W5E5 dataset on an identical resolution grid as the one used in this 
study (GMTED2010).”

to :

“ CHELSA is a global land dataset providing daily air temperature, precipitation, and downwelling 
shortwave solar radiation at a 1 km resolution for the period 1979–2016. It is produced by spatially 
downscaling the 0.5° W5E5 dataset onto a grid based on the GMTED2010 Digital Elevation Model, 
which is also used in this study. Notably, both the CLIMADAT-GRid and CHELSA are constructed 
using the same digital elevation model thus sharing the same grid while the shared elevation model 
ensures consistency in elevation values across corresponding grid points in the two datasets.”

2) The choice of FRK as the final spatial analysis method is only briefly mentioned in lines  
289–291. This decision is important and could be stated earlier and more clearly. For example, 
it could be introduced in the abstract (e.g., after “against withheld observational data,” add a 
sentence  about  the  method  used).  Additionally,  you  could  move  the  relevant  lines  to  the 
beginning of Section 4.1, rather than introducing FRK in the section discussing temperature 
results.  Consider also whether the conclusion should briefly mention that FRK performed 
best among the methods evaluated. It  may also be useful to explain why a single method 
(FRK)  was  chosen  for  both  temperature  and  precipitation,  despite  indications  that  SVM 
performed well  for precipitation.  A short  explanation of  the  reasoning behind this  choice 
could be helpful.

Answer:

Following the reviewer’s suggestion, the abstract has been modified to include the method selected.

In particular, the abstract has been modified from:

“Abstract. We introduce the development of CLIMADAT-GRid, the first publicly available daily 
air temperature and precipitation gridded climate dataset for Greece at a high resolution of 1 km x 1  
km,  covering  the  period  1981–2019.  The  dataset  is  derived  from  quality-controlled  and 
homogenized daily measurements from an extensive network of meteorological stations: 122 for 
temperature and 312 for precipitation. Several approaches are evaluated for generating the daily 
gridded datasets, and their accuracy is assessed against withheld observational data. To address the 



lack of observations in high-elevation areas, high-resolution simulations from the WRF model are 
blended with the observational data to provide the gridded temperature data. CLIMADAT-GRid is 
benchmarked against the CHELSA-W5E5, a global climate product with a similar resolution, for 
the overlapping period 1981–2016. While both datasets show comparable results for temperature, 
CLIMADAT-GRid  demonstrates  superior  spatial  variability  and  closer  agreement  with 
observational  data  for  both  the  mean  and  for  the  extreme  values.  Regarding  precipitation, 
CLIMADAT-GRid consistency indicates higher values than CHELSA, especially during the rainy 
season, but exhibits better agreement with observations. In terms of the number of wet days, both 
datasets  overestimate spatial  means relative to observations,  with CLIMADAT-GRid showing a 
more pronounced orographic  pattern than CHELSA. Both datasets  show similar  results  for  the 
number of days with precipitation amounts equal to or higher than 10 mm, with CLIMADAT-GRid 
indicating better overall agreement with the observations. The CLIMADAT-GRid dataset is publicly 
available at https://doi.org/10.5281/zenodo.14637536 and can be cited as Varotsos et al. (2025).”

to :

“Abstract. We introduce the development of CLIMADAT-GRid, the first publicly available daily 
air temperature and precipitation gridded climate dataset for Greece at a high resolution of 1 km x 1  
km,  covering  the  period  1981–2019.  The  dataset  is  derived  from  quality-controlled  and 
homogenized daily measurements from an extensive network of meteorological stations: 122 for 
temperature  and  312  for  precipitation.  Several  approaches  are  evaluated  for  generating  daily 
gridded  datasets,  including  Fixed  Random  Kriging,  Generalized  Additive  Models,  K-Nearest 
Neighbors,  and  Support  Vector  Machines.  Based  on  the  evaluation  analysis  against  withheld 
observational data,  Fixed Random Kriging is selected as the method for the CLIMADAT-GRid 
construction. To address the lack of a dense temperature observational network, high-resolution 
simulations  from the  WRF model  are  blended  with  observational  data  to  produce  the  gridded 
temperature  datasets.  CLIMADAT-GRid  is  benchmarked  against  the  CHELSA-W5E5,  a  global 
climate  product  with  a  similar  resolution,  for  the  overlapping  period  1981–2016.  While  both 
datasets  show  comparable  results  for  temperature,  CLIMADAT-GRid  demonstrates  enhanced 
spatial performance and closer agreement with observational data for both the mean and for the 
extreme values.  Regarding precipitation,  CLIMADAT-GRid consistency indicates  higher  values 
than  CHELSA-W5E5,  especially  during  the  rainy  season,  but  exhibits  better  agreement  with 
observations. In terms of the number of wet days, both datasets overestimate spatial means relative 
to  observations,  with  CLIMADAT-GRid  showing  a  more  pronounced  orographic  pattern  than 
CHELSA-W5E5.  Both datasets  show similar  results  for  the  number  of  days  with  precipitation 
amounts equal to or higher than 10 mm, with CLIMADAT-GRid indicating better overall agreement 
with  the  observations.  The  CLIMADAT-GRid  dataset  is  publicly  available  at 
https://doi.org/10.5281/zenodo.14637536 and can be cited as Varotsos et al. (2025).”

In addition, the following lines have been added in the conclusions section:

“To produce  the  gridded  fields,  we  evaluated  four  interpolation  methods,  Fixed  Rank  Kriging 
(FRK),  Generalized Additive Models (GAM),  Support  Vector Machines (SVM), and K-Nearest 
Neighbors (KNN), using independent station data for validation. FRK emerged as the most reliable 
method, demonstrating consistent performance across variables and time scales,  particularly for 
precipitation. It also best captured spatial patterns, especially over the complex terrain of Greece.  

https://doi.org/10.5281/zenodo.14637536
https://doi.org/10.5281/zenodo.14637536


For temperatures, SVM and KNN performed well for maximum temperatures, while FRK was more 
consistent for mean and minimum temperatures.  FRK was ultimately chosen as the method for 
constructing the CLIMADAT-GRid.”

We also  moved  the  lines  regarding  the  selected  method  from the  end  of  section  4.1.2  to  the 
beginning  of  section  4.2.  In  particular  the  following  lines  have  been  added  in  the  revised 
manuscript:

“4.2 Results of the comparison between CLIMADAT-GRid against CHELSA-W5E5 for the 
period 1981–2016

This section presents the results of the comparison between CLIMADAT-GRid and CHELSA for 
both temperatures and precipitation. It is important to note that, based on the findings in Section 4.1, 
FRK was selected as the method used to construct the CLIMADAT-GRid for both variables.”

3. Lines 42–44: The phrase “model-generated” could be clarified by adding that these were 
generated using statistical methods, to distinguish them from output from dynamical models.

Answer:

Following the reviewer’s suggestion, the sentence has been rephrased from:

“However, it is crucial for users of gridded observational datasets to recognize that these products 
are model-generated rather than direct observations, and as such have a number of limitations 
(Hofstra et al., 2010).”

to: 

“It is important for users to recognize that these gridded observational products are geostatistically 
generated, rather than direct observations. Consequently, they are subject to several limitations and 
the accuracy of these datasets largely depends on the quality and spatial density of the underlying 
meteorological  station  network.  In  particular,  interpolation  methods  tend  to  perform poorly  in 
regions with sparse station coverage or complex topography (Hofstra et al., 2010; Beguería et al., 
2016; Herrera et al., 2019).”

4. Section 2.1: Please specify the definition of a “day” for each variable (e.g., whether it spans 
from 00 UTC to 24 UTC). Even if this follows a standard convention, it should be stated 
explicitly.

Answer:

Following the reviewer’s suggestion Section 2.1 has been modified from:

“This study utilizes daily air  temperature observations from two main sources.  The first  is  the 
National Observatory of Athens Automatic Network (NOAAN, Lagouvardos et al., 2017), which 
provides records from 48 stations for the period 2010–2019, and the second source is Hellenic 
National Meteorological Service (HNMS), which provides temperature records from 73 stations 
spanning 1981–2019. In addition, we incorporate daily observations from the historical weather 
station of the National Observatory of Athens in Thissio (NOA) for the same period. In total, daily 



data from 122 meteorological stations across Greece were collected (Fig. 1a), with station altitude 
ranging from 1 to 960 m above sea level (a.s.l.).
In addition to the data from the stations mentioned above, we also collected daily precipitation data 
for 190 stations provided by the General Secretariat  for Natural Environment and Water of the 
Ministry of Environment and Energy for the period 1981–2019. In total, daily precipitation from 
312 stations are obtained (Fig.  1b),  with altitudes from sea level to 1130 m a.s.l.  The selected 
stations were included based on the criterion of having less than 10 % missing data on an annual 
basis.”

to:

“This study utilizes daily air  temperature observations from two main sources.  The first  is  the 
National Observatory of Athens Automatic Network (NOAAN, Lagouvardos et al., 2017), which 
provides records from 48 stations for the period 2010–2019. The second source is the Hellenic  
National Meteorological Service (HNMS), providing temperature records from 73 stations spanning 
1981–2019. Additionally, we incorporate daily observations from the historical weather station of 
the National Observatory of Athens in Thissio (NOA, Founda et al., 2022) for the same period. In 
total,  daily  data  from 122 meteorological  stations across  Greece were collected (Fig.  1a),  with 
station altitudes ranging from 1 to 960 m above sea level (a.s.l.). Temperature data were aggregated 
over a 24-hour period from 00:00 to 24:00 UTC.
In addition to the above temperature data, daily precipitation observations were collected from 190 
stations operated by the General Secretariat for Natural Environment and Water of the Ministry of 
Environment and Energy,  covering the period 1981–2019.  Combined with precipitation records 
from HNMS and NOAAN, this results in a total of 312 stations (Fig. 1b), with station altitudes  
ranging from sea level to 1130 m a.s.l. Only stations with less than 10% missing data annually were  
considered. According to the data providers, daily precipitation data were collected over a 24-period 
from 08:00 to 08:00 UTC for the HNMS, NOA and the stations provided by the General Secretariat  
for Natural Environment and Water of the Ministry of Environment and Energy. Regarding the 
NOAAN stations, daily precipitation data were collected over a 24-period from 00:00 to 24:00 
UTC.”

5. Line 165: Consider whether this line should be part of the previous paragraph, as the new 
line may not be necessary.

Answer:

The reviewer’s suggestion has been implemented.

New references included in the revised version of the manuscript and in the response letter.

Founda, D., Katavoutas, G., Pierros, F., and Mihalopoulos, N.: Centennial changes in heat waves 
characteristics  in  Athens  (Greece)  from multiple  definitions  based  on  climatic  and  bioclimatic 
indices,  Global  and  Planetary  Change,  212,  103807, 
https://doi.org/10.1016/j.gloplacha.2022.103807, 2022.

Pantillon, F.,  Davolio, S.,  Avolio, E., Calvo-Sancho, C., Carrió, D. S.,  Dafis, S.,  Gentile, E. S.,  
Gonzalez-Aleman, J. J., Gray, S., Miglietta, M. M., Patlakas, P., Pytharoulis, I., Ricard, D., Ricchi, 
A.,  Sanchez,  C.,  and  Flaounas,  E.:  The  crucial  representation  of  deep  convection  for  the 



cyclogenesis  of  Medicane  Ianos,  Weather  and  Climate  Dynamics,  5,  1187–1205, 
https://doi.org/10.5194/wcd-5-1187-2024, 2024.

Patlakas,  P.,  Chaniotis,  I.,  Hatzaki,  M.,  Kouroutzoglou,  J.,  and  Flocas,  H.  A.:  The  eastern 
Mediterranean  extreme  snowfall  of  January  2022:  synoptic  analysis  and  impact  of  sea-surface 
temperature, Weather, 79, 25–33, https://doi.org/10.1002/wea.4397, 2024.

Politi, N., Vlachogiannis, D., Sfetsos, A., and Nastos, P. T.: High-resolution dynamical downscaling 
of ERA-Interim temperature and precipitation using WRF model for Greece, Climate Dynamics, 
57, 799–825, https://doi.org/10.1007/s00382-021-05741-9, 2021.

Reviewer 2

MAJOR COMMENTS

The manuscript presents a comprehensive dataset derived from regional climate downscaling 
addressed to the Greek territory using advanced machine learning techniques. The primary 
objectives are to enhance the spatial  resolution over a 39-year period and to improve the 
representation of daily temperature and precipitation fields across the complex geography of 
continental  Greece  and  its  islands.  The  authors  employ  a  hybrid  approach  combining 
geostatistical interpolation and statistical downscaling methods with atmospheric modelling, 
validated against observational datasets. Four methods (FRK, GAM, KNN, and SVM) were 
evaluated,  with FRK ultimately  chosen.  Evaluation against  CHELSA-W5E5 and withheld 
station data supports the improved spatial accuracy and bias reduction of CLIMADAT-GRid, 
especially  in  mountainous  regions.  The  validation  strategy,  multiple  error  metrics,  and 
comparison with an established product (CHELSA-W5E5) strengthen the study’s robustness. 
The outcomes suggest improved accuracy in temperature and precipitation at regional scales, 
supported by the analysis of suitable climate indicators. However, while the objectives are met 
mainly, certain aspects require further clarification to substantiate the claims thoroughly.

Answer:

We sincerely appreciate the reviewer’s thoughtful comments and valuable suggestions. We have 
carefully considered all the points raised and have addressed each of them thoroughly in the revised 
manuscript.  We believe  that  these  revisions  have  significantly  improved  the  clarity,  rigor,  and 
overall quality of the work. A detailed point-by-point response is provided below, highlighting how 
each comment was incorporated or clarified.

1) The introduction chapter might discuss similar datasets produced for the same purpose. 
This would help clarify the expectations surrounding this exercise, including its benefits, 
drawbacks, and potential challenges. The datasets E-OBS and IBERIA01 referenced by the 
authors in Chapter 3 could serve as a starting point. 

Answer:

Following the reviewer’s suggestion, the specific section in the introduction has been modified in 
the revised manuscript from:

“As for the second category, which is the focus of this study, the remarkable advances in computing  
power and software have led to the development and creation of gridded observational datasets at 
both global and regional/national levels. In a recent study, Varotsos et al. (2023a) compiled a list of 



available observational gridded datasets for Europe, with E-OBS (Cornes et al., 2018) being the 
state-of-art gridded observational dataset for the entire European domain. However, it is crucial for 
users of gridded observational datasets to recognize that these products are model-generated rather 
than  direct  observations,  and  as  such  have  a  number  of  limitations  (Hofstra  et  al.,  2010).  In 
particular, the quality of the gridded datasets depends on the quality of the station data and its  
spatial coverage (density of the meteorological station network), as interpolation methods degrade 
in performance in areas with sparse station data and/or in areas with complex topography (Hofstra 
et al., 2010; Begueria et al., 2016; Herrera et al., 2019).”

to :

“As for the second category, which is the focus of this study, the remarkable advances in computing  
power and software have led to the development and creation of gridded observational datasets at 
both global, regional/national and sub-national levels. These datasets include E-OBS (Cornes et al., 
2018) which is the state-of-art daily gridded observational dataset for the entire European domain 
with a resolution of 0.1°, while on the regional/national and sub-national scale a number of datasets  
have recently emerged in Europe.  These include Iberia01 (Herrera et  al.,  2019) for  the Iberian 
Peninsula (daily gridded dataset for temperatures and precipitation at 0.1o grid), SPREAD (Serrano-
Notivoli  et  al.,  2017)  and STEAD (Serrano-Notivoli  et.al.,  2019)  for  Spain  (daily  datasets  for 
precipitation and temperatures  at  5km x 5km, respectively),  SiCLIMA (Serrano-Notivoli  et  al., 
2024)  for  Aragon,  Spain  (daily  dataset  for  precipitation  and  temperatures  at  500m  x  500m), 
PTHRES (Fonseca and Santos 2018) for Portugal (daily dataset for temperatures at 1km x 1km), 
HYRAS (Krähenmann et al., 2018) for Germany (hourly dataset for a number of variables at 1km 
x1km), HadUK‐Grid (Hollis et al. 2019) for the United Kingdom (daily dataset for a number of 
variables  at  1km  x  1km),  seNorge2 (Lussana  et  al.,  2018a,b)  for  Norway (daily  dataset  for 
precipitation and temperatures  at  1km x 1km,  respectively),  SLOCLIM (Škrk et  al.,  2021)  for  
Slovenia (daily dataset for precipitation and temperatures at 1km x 1km), MeteoSerbia1km (Sekulić 
et al. 2021) for Serbia (daily dataset for a number of variables at 1km x 1km) and  GAA.HRES 
(Varotsos et al., 2023a) for Attica, Greece (daily dataset for precipitation and temperatures at 1km x 
1km).  It  is  important  for  users  to  recognize  that  these  gridded  observational  products  are 
geostatistically generated, rather than direct observations. Consequently, they are subject to several 
limitations and the accuracy of these datasets largely depends on the quality and spatial density of  
the underlying meteorological station network. In particular, interpolation methods tend to perform 
poorly  in  regions  with  sparse  station  coverage  or  complex  topography  (Hofstra  et  al.,  2010; 
Beguería et  al.,  2016; Herrera et  al.,  2019).  While most of these datasets are built  upon dense 
networks  of  ground-based  observations,  in  areas  with  limited  station  density  or  insufficient 
representation of elevation gradients it is often required enhancement through the integration of 
satellite  data,  reanalysis  products,  and  atmospheric  models  to  improve  spatial  coverage  and 
reliability  (Doblas-Reyes et  al.,  2021;  Varotsos et  al.,  2023a).  It  should be noted that  Serrano-
Notivoli and Tejedor (2021) analyzing the performance of 48 gridded products proposed a general 
workflow  to  transform  observations  into  grid  estimates,  which  includes  four  steps:  i)  quality 
control, ii) data series reconstruction, ii) gridding and iv) assessment of the uncertainty.”

2) In the subsequent chapter, the datasets are delineated without any preceding explanation or 
introduction regarding their presentation, which may lead to confusion for the readers. For 
example, WRF parachutes in Section 2.3 without any justification or preangle (abstract is not 



part  of  the  manuscript),  leading  readers  to  assume that  the  model  will  be  employed  for 
temperature  and  precipitation  analysis.  I  recommend  incorporating  an  introductory 
paragraph between items 2 and 2.1 to bridge this gap, as was implemented in Chapter 3.

Answer:

Following the reviewer’s suggestion, the following lines have been added between 2 and 2.1 in the 
revised manuscript.

“In this section, the datasets utilized in the analysis are presented. Subsection 2.1 summarizes the 
daily  observational  data,  including  maximum  (TX),  minimum  (TN),  and  average  (TG) 
temperatures, as well as daily precipitation (PR). Subsection 2.2 outlines the procedures applied for 
quality  control,  gap  filling,  and  homogenization  of  the  datasets.  Subsection  2.3  describes  the 
Weather Research and Forecasting (WRF) model  simulation,  whose output  is  blended with the 
available temperature observational data using gridding techniques, as detailed in Section 3. This 
approach was preferred over relying solely on observational data due to the sparse spatial coverage 
of in situ measurements, especially at higher altitudes (above 1000 m) as presented in Subsection 
2.1.”

3) Continuing with the discussion on WRF, only during Section 3.2 (the second section before 
the results), the readers are informed that the atmospheric model was utilised exclusively for 
the temperature field, which may reduce the audience rejection regarding precipitation. The 
decision  to  employ  solely  one  year  to  represent  the  overall  study  period  is  somewhat 
contentious, as a significant amount of variability is forfeited. Nevertheless, this approach is 
permissible,  given that  the  model  ultimately  functions as  a  spatial  interpolator driven by 
physical  laws,  subsequently  manipulated  to  incorporate  the  seasonal  and  interannual 
variations delineated by the observational data. It may be beneficial for the authors to include 
a map illustrating the participation of the observational data at each grid point, as it could 
mitigate the discussion concerning the employment of the atmospheric model to cover regions 
lacking a station. Furthermore, this addition would facilitate the analysis of the specific areas 
to which the results can be attributed through the model. It would be essential to formally 
present the domain's  limits,  since they may circumstantially  restrict  the representation of 
some  large-scale  atmospheric  phenomena  transiting  from  the  boundary  condition. 
Furthermore, the authors reference several studies on WRF applications in Greece but do not 
elaborate on their findings or the model calibration expressed by the selected set of physical  
parameterisations. This potentially makes the WRF application quite questionable for these 
purposes.

Answer:

We appreciate  the reviewer’s  constructive suggestions.  Given the 1 km resolution of  the WRF 
model, it is indeed the case that the vast majority of 1 km × 1 km grid cells lack direct in situ  
observations. This spatial sparsity is a primary reason for our reliance on model-derived output,  
which offers a continuous and physically consistent representation of the temperature field. The 
absence of  observational  stations,  particularly  in  areas  above 1000 meters,  further  justifies  our 
methodological choice, as the model helps fill observational gaps in complex terrain. Please see our  
response in the previous comment.

Regarding the reviewer’s comment on the model extent, we agree that this clarification enhances 
the transparency of our modeling framework. Accordingly, we have included the following figure 



(Figure 2, new) in the revised manuscript that clearly depicts the model domain and its geographical 
boundaries. This addition enables the reader to assess the potential influence of boundary conditions 
on the study area and better understand the spatial context of the simulations.

Figure 2: WRF-ARW model domains

Finally, in response to the comment on model performance, we have added references to studies 
where similar WRF setups have been used and evaluated. These studies report robust performance 
in comparable climatic and topographic settings. A clarifying sentence has also been included to  
highlight the prior validation of the model configuration used in our study.

Therefore, section 2.3 has been modified from:

“For the atmospheric simulations, the Advanced Weather Research and Forecasting Model (WRF-
ARW) version 4.1.3 (Powers et al., 2017; Skamarock et al., 2008; Skamarock et al., 2019) was  
employed. WRF-ARW serves as a limited-area atmospheric model, utilized for both operational 
forecasting (Sofia et al., 2024; Patlakas et al., 2023) and scientific research (Stathopoulos et al., 
2023; Otero-Casal et al., 2019). It is based on a fully compressible, non-hydrostatic dynamic core.  
On  the  vertical  plane  it  has  terrain-following,  mass-based,  hybrid  sigma-pressure  vertical 
coordinates based on dry hydrostatic pressure, with vertical grid stretching permitted while for the 
horizontal grid, the Arakawa C-grid staggering is employed.
In this analysis, the WRF model was configured to run with three two-way nested grids. The coarser 
one has a resolution of 9 km, covering a large area that includes parts of North Africa and Central  
Europe.  The  inner  grids  are  focused  on  the  Eastern  Mediterranean  and  Greece,  with  spatial  
resolutions of 3 km and 1 km, respectively. Vertically, the model consists of 48 layers.”

to :
“For the atmospheric simulations, the Advanced Weather Research and Forecasting Model (WRF-
ARW),  version  4.1.3  (Skamarock  et  al.,  2019),  was  employed.  WRF-ARW  is  a  limited-area 
atmospheric  model  based  on  a  fully  compressible,  non-hydrostatic  dynamic  core.  Vertically,  it 



utilizes terrain-following, mass-based hybrid sigma-pressure coordinates based on dry hydrostatic 
pressure, with support for vertical grid stretching. Horizontally, the model applies an Arakawa C-
grid staggering.
WRF is widely used in both operational forecasting (Sofia et al., 2024; Patlakas et al., 2023) and 
scientific research (Pantillon et al., 2024; Patlakas et al., 2024; Politi et al., 2021; Stathopoulos et  
al., 2023; Otero-Casal et al., 2019). These studies include comprehensive evaluations of the model’s 
performance not only over the present study area but also in regions with similar topographic and 
climatic characteristics, demonstrating its reliability in representing climatological fields. In this 
analysis, the WRF model was configured with three two-way nested grids to adequately capture 
both regional and local-scale processes. The inner grids are focused on the Eastern Mediterranean 
and Greece, with spatial resolutions of 3 km and 1 km, respectively (Figure 2). Vertically, the model 
consists of 48 layers.”

4) The description of geostatistical interpolation and ML methods, lacking detail and overly 
restricted to their respective R packages citation, is both awkward and limiting (Sect. 3.1 and 
3.2). This narrow focus obscures the wide variety of options and parameters defined in each 
method and, as a result, hinders and prevents the proper reproducibility of the study. Thus, 
presenting these details in the manuscript is crucial. 

Answer:

Following the reviewer’s suggestion, the following lines have been modified in section 3.1 of the 
revised manuscript from:

“The following approaches were examined to calculate the monthly precipitation fields: (i) a “fixed 
rank Kriging approach” (hereafter  FRK, Nychka et  al.,  2015),  (ii)  generalized additive  models 
(hereafter GAM, Wood, 2017) and (iii) two ML algorithms namely k-nearest neighbors (hereafter 
KNN)  and  support  vector  machines  (hereafter,  SVM).  The  analysis  is  performed  using  the  R 
Language  and  Environment  for  Statistical  Computing  (R  core  team  2024)  and  the  packages 
LatticeKrig (Nychka et al., 2019) for FRK, mgcv (Wood and Wood, 2015) for GAM, while the two 
ML algorithms are tuned using the caret R package (Kuhn, 2008).”

to :

“The following approaches were examined to calculate the monthly precipitation fields: 
(i) a “Fixed Rank Kriging approach” (FRK). FRK is a geostatistical interpolation technique that  
approximates a spatial field using a low-rank representation of the underlying spatial process. It 
models  the  spatial  covariance  structure  through  a  set  of  basis  functions,  allowing  efficient 
estimation even with large datasets (Nychka et al., 2015). In this study, FRK is implemented using 
the  LatticeKrig  package  (Nychka  et  al.,  2019)  in  R  (R  Core  Team,  2024),  where  the  model 
parameters,  including  variance  components  and  spatial  range  parameters,  are  estimated  using 
maximum likelihood estimation.
(ii) Generalized Additive Models (hereafter GAM) are a semi-parametric extension of Generalized 
Linear Models that assume the underlying relationships are additive and smooth. Their primary 
strength lies in their ability to capture highly non-linear and non-monotonic relationships between 
the response variable and explanatory variables (Wood, 2017). In this study, monthly precipitation 
sums  are  modeled  as  smooth  functions  of  longitude,  latitude  and  elevation  using  thin  plate  



regression  splines,  with  smoothing  parameters  estimated  using  restricted  maximum  likelihood 
(mgcv R package, Wood and Wood, 2015).
(iii) two ML algorithms namely K-Nearest Neighbors (KNN) and Support Vector Machines (based 
on an exponential radial basis function, SVM). KNN estimates the value of an unknown data point 
by  identifying  its  k  closest  neighbors  in  the  spatial  dataset,  where  k  is  a  user-defined 
hyperparameter (Nwaila et al., 2024). The predicted value is computed as a weighted average of 
these neighbors' values, with the weights typically based on the distance to the target point, i.e. 
closer neighbors have greater influence. In this study, k ranges from 2 to 30 in increments of 1.  
SVM is a ML algorithm, effective in capturing non-linear spatial trends, which seeks a function that 
predicts  the  value  of  an unknown data  point,  while  balancing accuracy and model  complexity 
(Bonsoms and  Ninyerola,  2024).  The  complexity  is  regulated  by  the  cost  parameter  C (tested 
values: 0.1, 1, 5, 10), while the smoothness of the kernel is governed by sigma (tested values: 0.01, 
0.025, 0.05, 0.075, 0.1). For both algorithms, optimal hyperparameters (k for KNN, and C and 
sigma for SVM) are selected using tenfold cross-validation combined with grid search, using the 
caret package in R (Kuhn, 2008; R Core Team, 2024).”

5) Concerning the metrics employed in the evaluation, specifically RMSE, MAE, and KGE, it 
is  noteworthy that  the  most  fundamental  among them, Bias,  was not  considered.  Relying 
solely on RMSE and MAE does not allow assessing whether the method underestimates or 
overestimates  the  observed  values.  This  significantly  impacts  the  analysis  of  temperature 
fields, particularly precipitation fields. Therefore, including this metric is also mandatory.

Answer:

Following the reviewer’s suggestion BIAS values are also reported in Tables 2 and 3 of the revised 
manuscript. Moreover, the discussion in sections 4.1.1 and 4.1.2 have been modified to include the 
BIAS values. In particular, for precipitation in section 4.1.1 the following lines have been modified 
from:

“The values of the root mean square error (RMSE), the mean absolute error (MAE) and the KGEs 
are  presented  in  Table  2  for  the  precipitation  grids  produced  using  the  different  approaches 
described in Sect. 3.1. These results are compared against the withheld observations on an annual  
and seasonal basis for the test period. From Table 2 it is clear that the methods yield similar values  
across  all  statistical  measures  with  annual  RMSE (MAE) being lower  than  1.45  (0.65)  for  all  
methods.  On  a  seasonal  basis,  the  highest  RMSE  and  MAE  are  observed  during  the  DJF 
(December-January-February)  and  SON (September-October-November)  periods.  Overall,  SVM 
and FRK methods exhibit  the lowest  values for  both metrics on an annual  and seasonal  basis. 
Regarding the KGEs, with the exception of GAMs that exhibit a KGE value of 0.7 in JJA (June-
July-August), for the rest of the seasons and on an annual basis the reported KGEs are higher than 
0.8.  Similar  to  RMSEs and MAEs,  the highest  KGE values are  found for  the SVM and FRK 
methods indicating that these two methods capture quite well the temporal distributions of the daily 
precipitation.”

to:

“ The values of BIAS, RMSE, MAE and KGE are presented in Table 2 for the precipitation grids 
produced using the different approaches described in Sect. 3.1. These results are evaluated against 



withheld observations on both an annual and seasonal scale over the test period. From Table 2, it is  
evident  that  on  the  annual  scale,  all  four  approaches  exhibit  strong  and  relatively  consistent 
performance across all evaluation metrics. BIAS values are minimal, indicating that none of the 
models significantly overestimate or underestimate precipitation. FRK shows the smallest annual 
BIAS (-0.01 mm), closely followed by GAM (-0.02 mm) and SVM (-0.05 mm), while KNN shows 
a  negative  BIAS  of  −0.08  mm.  Regarding  RMSE  and  MAE,  it  is  shown  that  the  different 
approaches yield similar values across both statistical measures with annual RMSE (MAE mm) 
being lower than 1.45 (0.65 mm), while KGE values are higher than 0.85 for all approaches, with 
SVM and FRK reaching the  highest  values  0.93 and 0.92,  respectively.  At  the  seasonal  scale, 
greater variability is shown. During  winter (DJF, December-January-February),  SVM and GAM 
tend  to  significantly  underestimate  precipitation,  with  SVM showing  the  most  negative  BIAS 
(−0.16 mm) and a  KGE of 0.91, while GAM also underperforms with a lower  KGE of 0.81 and 
relatively high MAE (1.01 mm). In contrast, KNN tends to overestimate during this period (BIAS = 
0.12 mm), but still maintains a moderate KGE of 0.84. FRK, once again, shows stability with low 
BIAS (−0.02  mm),  competitive  RMSE (1.51  mm),  and  a  strong  KGE of  0.88.  During  spring 
(MAM,  March-April-May) and  summer  (JJA,  June-July-August),  all  approaches  show  better 
agreement with observations. FRK continues to perform robustly with the lowest RMSE (MAE) 
values (0.94 mm (0.50 mm) for MAM and  0.65 mm (0.29 mm) for JJA), and  high KGE values 
(0.90 and 0.82, respectively). The rest of the approaches perform reasonably, though GAM's MAE 
remains higher in MAM, and SVM and KNN show slight deviations in JJA. In  autumn (SON, 
September-October-November),  all  approaches  tend  to  overestimate  precipitation,  with  KNN 
showing the highest BIAS (0.16 mm).  SVM shows the lowest BIAS (0.02 mm) and maintains a 
KGE of 0.94,  the highest  among the methods for this season. Nevertheless,  FRK demonstrates 
consistent performance with a balanced BIAS (0.05 mm), relatively low RMSE and MAE of 1.27 
mm and 0.66 mm, respectively, and a strong KGE of 0.93. Overall, the results indicate FRK as the 
most stable and reliable method, delivering consistently low BIAS and error across both annual and 
seasonal scales while maintaining high KGE values throughout the year.”

Table 2: Precipitation annual and seasonal BIAS, RMSE, MAE and KGE statistics based on daily values between the 30  
reference station and the interpolated ones as derived from the different interpolation approaches.

FRK GAM KNN SVM

PR BIAS RMSE MAE KGE BIAS RMSE MAE KGE BIAS RMSE MAE KGE BIAS RMSE MAE KGE

Annual -0.01 1.13 0.60 0.92 -0.02 1.45 0.63 0.87 -0.08 1.18 0.62 0.87 -0.05 1.09 0.59 0.93

DJF -0.02 1.51 0.95 0.88 -0.06 1.46 1.01 0.81 0.12 1.56 0.97 0.84 -0.16 1.43 0.91 0.91

MAM 0.03 0.94 0.50 0.90 -0.03 1.47 0.93 0.88 -0.11 0.99 0.54 0.86 -0.04 0.92 0.51 0.92

JJA -0.09 0.65 0.29 0.82 -0.16 1.47 0.3 0.70 -0.06 0.63 0.29 0.86 -0.08 0.67 0.31 0.82

SON 0.05 1.27 0.66 0.93 0.07 1.43 0.71 0.87 0.16 1.34 0.69 0.85 0.02 1.22 0.66 0.94

For temperatures (subsection 4.1.2) the following lines have been modified from:

“From Table 3 and Fig. 5-7, it is evident that all methods perform well in capturing the temporal  
temperature characteristics for TX, TG and TN. For TX the methods yielding the best performance in 
terms of RMSE, MAE and KGE are KNN and SVM. KNN shows better performance during the 
colder seasons (DJF and SON), while SVM in the warmer ones (March-April-May (MAM) and 
JJA). FRK is the third best performing method, while GAM exhibits the highest RMSEs at all 
periods examined. Considering the annual biases (Fig. 5) a different perspective emerges. GAM 



shows the lowest absolute biases (below 0.2 °C), while FRK displays the highest biases (up to 0.6 
°C), highlighting variations in the strengths of the methods depending on the evaluation metric.”

to :

“From Table 3 and Fig. 5-7, it is evident that all methods perform well in capturing the temporal  
temperature  characteristics  for  TX,  TG and  TN.  Table  3  presents  the  values  of  the  metrics  as 
calculated from daily values, which offer insight into the different methods systematic errors at the 
finer temporal scale. For TX, KNN and SVM exhibit the best overall performance across RMSE, 
MAE, and KGE, with seasonal RMSE values consistently below 0.67 °C and high KGE values 
(≥ 0.93). KNN performs particularly well in colder seasons (DJF and SON), while SVM shows 
better results in warmer periods (MAM and JJA). FRK ranks third, showing competitive RMSE and 
MAE values, though it consistently underestimates TX with a negative bias across all seasons, most 
notably in SON (-0.47 °C).  GAM, while displaying the highest RMSE and MAE values in every 
season, has the lowest annual BIAS (0.00 °C) and relatively low seasonal BIAS values (e.g.,  -
0.04 °C in DJF, -0.27 °C in MAM), indicating alignment with the observed annual mean but poor 
performance in capturing daily variability.  When examining the  annual differences between the 
observations  and the  various  methods (Fig.  5), GAM demonstrates  the  lowest  absolute  annual 
deviations,  remaining  below  0.2 °C,  indicating  strong  agreement  with  long-term  averages.  In 
contrast, FRK, exhibits the highest annual deviations, reaching up to 0.6 °C. 
For TG and TN, FRK emerges as the most robust method, outperforming others across all metrics 
on both annual and seasonal scales. It  consistently delivers the lowest RMSE, MAE, and KGE 
values. Importantly, FRK also exhibits the  lowest annual BIAS values for TG (0.08 °C) and TN 
(0.10 °C), underscoring its minimal systematic deviation from observations. In comparison, other 
methods present substantially higher BIAS values, particularly KNN (0.57 °C for TG; 0.74 °C for 
TN)  and  SVM  (0.71 °C  for  TG;  0.56 °C  for  TN).  Furthermore,  FRK’s  mean  absolute  annual 
deviations remain lower than 0.3 °C for both TG and TN (Fig. 6-7), whereas other methods show 
deviations reaching up to 0.8 °C, depending on the variable and method.”



Table 3: Daily maximum (TX), mean (TG) and minimum (TN) temperatures annual and seasonal RMSE, MAE and KGE 
statistics based on daily values between the 13 reference station values and the interpolated ones as derived from the different 
interpolation approaches.

FRK GAM KNN SVM

BIAS RMSE MAE KGE BIAS RMSE MAE KGE BIAS RMSE MAE KGE BIAS RMSE MAE KGE

TX

Annual -0.33 0.69 0.55 0.98 0.00 1.63 0.48 0.98 0.11 0.60 0.50 0.98 -0.12 0.60 0.49 0.98

DJF -0.41 0.68 0.55 0.91 -0.04 1.6 0.41 0.93 -0.30 0.60 0.49 0.93 -0.38 0.64 0.53 0.94

MAM -0.06 0.60 0.47 0.97 -0.27 1.53 0.53 0.97 -0.33 0.67 0.56 0.98 -0.21 0.62 0.51 0.98

JJA -0.40 0.72 0.58 0.97 -0.14 1.35 0.49 0.98 -0.18 0.60 0.50 0.98 -0.12 0.56 0.46 0.98

SON -0.47 0.76 0.61 0.96 -0.15 1.48 0.47 0.98 -0.02 0.55 0.45 0.99 0.03 0.57 0.46 0.98

TG

Annual 0.08 0.45 0.36 0.98 0.41 2.81 0.48 0.97 0.57 0.69 0.59 0.97 0.71 0.82 0.73 0.96

DJF -0.18 0.45 0.36 0.98 0.24 2.56 0.38 0.97 0.53 0.67 0.56 0.93 0.64 0.77 0.66 0.92

MAM 0.23 0.45 0.36 0.97 0.53 2.43 0.57 0.96 0.66 0.75 0.67 0.95 0.70 0.80 0.71 0.95

JJA 0.23 0.48 0.37 0.97 0.51 2.32 0.55 0.97 0.53 0.66 0.57 0.97 0.78 0.88 0.79 0.96

SON 0.23 0.42 0.35 0.96 0.51 2.53 0.43 0.97 0.53 0.67 0.58 0.97 0.78 0.83 0.74 0.96

TN

Annual 0.10 0.52 0.41 0.99 0.51 3.85 0.59 0.96 0.74 0.88 0.77 0.94 0.56 0.77 0.64 0.95

DJF -0.04 0.63 0.52 0.92 0.39 3.85 0.58 0.88 0.75 0.97 0.80 0.80 0.66 0.93 0.75 0.82

MAM 0.22 0.52 0.43 0.98 0.66 3.85 0.70 0.93 0.75 0.88 0.78 0.92 0.49 0.72 0.60 0.95

JJA 0.17 0.42 0.34 0.98 0.55 3.79 0.57 0.97 0.73 0.83 0.73 0.96 0.49 0.65 0.54 0.95

SON 0.06 0.48 0.38 0.99 0.45 3.85 0.54 0.96 0.74 0.88 0.77 0.94 0.62 0.79 0.68 0.95

6) The results chapter is well-structured, and its figures and tables are clear, readable, and 
sufficient  to  justify  the  main  findings.  Nevertheless,  it  is  also  true  that  omitting  some 
information and making certain choices  in preparing the outputs  reduces their respective 
impacts. For example, why was Figure 4 presented only for 2016 and not for the 10 years of  
validation (2010-2019)?  Besides  lacking a  direct  relation to  Table  3,  this  leads  readers  to 
believe that the differences pointed out by the authors are limited and specific to that year and 
may not be as pronounced in an overall analysis. Furthermore, including a fifth panel (e) with 
the map that highlights only the station locations using colours representing the observed 
values on the same scale as precipitation would significantly enhance this analysis and assist in 
determining which method was definitively superior. Keep in mind that spatial variability 
does not imply a better result.

Answer:

Following the reviewer’s suggestion, a new Figure 4 has been added in the revised manuscript  
replacing Figure 4 from the first version of the manuscript. In addition, the text in section 4.1.1 has 
been modified from:

“In terms of spatial distribution, the west to east gradient of precipitation in Greece, which exhibits 
the  largest  and  lowest  amounts  of  yearly  precipitation  (Gofa  et  al.,  2019),  is  captured  by  all  
approaches. However, as Fig. 4 for the year 2016 illustrates, GAM, KNN and SVM demonstrate  
reduced spatial variability in regions with significant altitude differences in both the northeastern 



and southern regions of Greece (e.g. Crete). This spatial variability is also evident in other years 
examined within the 2010–2019 period (not shown).”

to:

“ When all available stations are used for the interpolation for the period 2010-2019 (Fig. 4), the 
results indicate that the west to east gradient of precipitation in Greece, which exhibits the largest 
and  lowest  amounts  of  yearly  precipitation  (Gofa  et  al.,  2019)  is  captured  by  all  approaches.  
However, as it is evident from Fig. 4, FRK maintains strong predictive skill when applied to the full  
set of available stations, with only a modest increase in error, reflecting its ability to handle spatial  
heterogeneity  and non-stationarity  common in  precipitation fields.  GAM error  metrics  increase 
somewhat on the full dataset, however, retaining a reasonable predictive skill, indicating its capacity 
to capture important spatial patterns. For KNN, an opposite sign BIAS is evident when compared to 
the results of Table 2 indicating that the method is strongly dependent on the proximity to known 
data. As a result, the method exhibits poorer extrapolation ability than FRK and GAM. In contrast, 
SVM shows a significant decline in performance when applied to the full station network, as it  
lacks explicit  modeling of spatial  structures despite  its  capability to capture complex nonlinear 
relationships (Heinke et al. 2023), resulting in higher errors and biases across diverse climatic and 
geographic  regions.  This  behavior  is  highlighted in  the  mountainous  area  in  Crete  where  total  
annual precipitation is much lower than the other methods. 
Overall, this comparison highlights that FRK is better suited for robust precipitation interpolation 
across regions with complex topography.”



Figure  4.  Spatial  distribution  of  total  annual  precipitation  for  the  period  2010–2019,  as  estimated  by  the  different 
interpolation methods (panels a–d) and observed data (panel e). Each panel includes the spatial average (M) calculated over  
all grid points (or over all stations in panel e). For panels a–d, the relative BIAS, MAE (in mm), RMSE (in mm), and KGE  
are provided, based on comparisons between the interpolated values at the nearest grid points and the corresponding station 
observations.

In addition, the following lines 285-289 in subsection 4.1.2 have been modified from:

“In terms of spatial distribution, similar patterns to those observed for precipitation are identified. In 
particular GAM, KNN and SVM demonstrate reduced spatial variability between the mountainous 
areas of Greece and the lower altitude surrounding areas indicating limited ability to accurately 
represent temperature gradients influenced by topography (not shown).”

to:



“ In terms of spatial distribution, similar patterns to those observed for precipitation are identified. 
In particular GAM, KNN and SVM demonstrate limited ability to accurately represent temperature 
gradients influenced by topography (not shown).”

7) Another relevant point regards the sentence “Despite this, CHELSA underestimates the 
observed number of SU by about 10 days/yr, while CLIMADAT-GRid closely aligns with the 
observed values.” (L319-320). Which results substantiate this conclusion? It may be pertinent 
to  present  and  discuss  the  evaluation  metrics  (Bias,  RMSE,  MAE,  KGE)  for  both 
CLIMADAT-GRid and CHELSA throughout the entire study period. Only a brief and vague 
text in L350-354 may not be sufficient. 

Answer:

In the first version of the manuscript in each panel of the Figures 8-12 the following values were 
reported within the panels: M which denoted the spatial average over the grid points covering the 
area, M.o which denoted the station mean values and M.c which denoted the mean values for the 
closest  grid  points  to  the  stations  locations.  Therefore,  the  difference  between  the  interpolated 
values at the nearest grid points (M.c) and the corresponding station observations (M.o) could be 
calculated. Nevertheless,  in the revised version of the manuscript all  the evaluation metrics are 
presented within each panel in addition to TG (the new figures can be found at the end of this 
response letter). Moreover, the differences between CLIMADAT-GRid and CHELSA can be found 
in the supplementary material (the new figures can be found at the end of this response letter). 
Consequently, the discussion in section 4.2 has been modified to incorporate all the changes. In 
particular, the following lines have been modified from:

“4.2.1 Daily maximum and minimum temperature results

In Fig. 8 and 9 the average annual and seasonal temperature results for  TX and  TN are shown, 
respectively. For  TX, both datasets show comparable temperature values averaged over the whole 
domain of interest (denoted as M in the figures), with the maximum difference between the two 
datasets  not  exceeding  0.5  oC (DJF).  When compared  to  the  station  data  (M.o  in  the  figures) 
CLIMADAT-GRid exhibits values of similar magnitude for the closest grid point to the station 
locations (M.c in the figures), while CHELSA systematically underestimates the observations on 
both the annual and the seasonal timescales, with average discrepancies between 0.5 oC to 0.7 oC. In 
terms of  spatial  variability,  CLIMADAT-GRid with WRF blended in the gridded dataset  better 
captures the orographical gradient of temperatures, indicating lower temperatures than CHELSA in 
mountainous areas ranging from the northwest of Greece to the central Peloponnese and west of 
Crete. Furthermore, CHELSA appears to be cooler than CLIMADAT-GRid in the Ionian Sea islands 
of Zakynthos and Kefallonia, as well as the Aegean sea islands of Cyclades, but warmer in Rhodes 
and Samos.
For TN (Fig. 9), both datasets show nearly identical temperature values averaged across the entire 
domain of interest,  with the highest  difference between them not exceeding 0.2  oC (MAM and 
SON). CLIMADAT-GRid produces values of the same magnitude as the station data for the grid 
points nearest to the station locations, whereas CHELSA slightly overestimates the observations 
annually,  DJF  and  MAM.  Nonetheless,  the  maximum  overestimation  in  daily  minimum 
temperatures is less than 0.3 oC. In contrast, JJA and SON produce temperatures that are similar to 



those observed. The highest discrepancy between the two datasets is obvious while examining the 
maps  in  Fig.  8.  In  particular,  CHELSA indicates  notably  higher  temperatures  compared  to 
CLIMADAT-GRid, from west to east,  in the Ionian Sea's Zakynthos and Kefallonia, as well as  
Crete, and the majority of the Aegean Sea islands. The higher temperatures in CHELSA can be 
attributed  to  the  implementation  of  a  basic  statistical  downscaling  approach  that  employs 
atmospheric temperature lapse rates, B-spline interpolations, and high-resolution orography rather 
than a full physical scheme (Karger et al., 2023). Furthermore, according to the authors, constant  
lapse rates were utilized for all air temperature variables impacting minimum temperatures to a  
greater extent, as minimum temperatures in high altitudes are frequently the result of nighttime 
inversions. 
Figure 10 illustrates the results for the number of days with daily TX > 25 °C (SU) and TX > 35 °C 
(SU35) and the number of days with daily TN > 20 °C (TR). From the figure it is evident that both 
datasets  yield  similar  domain  averaged  values  for  SU and  SU35.  However,  for  TR,  CHELSA 
estimates  a  higher  number  of  days/yr  compared  to  CLIMADAT-GRid  (23  and  18  days/yr,  
respectively).  Despite  this,  CHELSA underestimates  the  observed  number  of  SU by  about  10 
days/yr,  while CLIMADAT-GRid closely aligns with the observed values.  Differences are most 
noticeable  in  the  spatial  variability  of  the  results,  which  are  most  evident  in  the  Ionian  Sea  
Zakynthos and Kefallonia islands, as well as the Aegean Sea Cyclades for SU and in the Ionian Sea 
Zakynthos and Kefallonia islands, as well as Crete and the majority of the Aegean Sea's islands for 
TR. Furthermore, CLIMADAT-GRid catches pretty well the spatial variability of SU35, pinpointing 
well-known warm hot spots in the Greek territory, as well as the urban heat island effect in the 
Athens urban area, which is also evident in CHELSA, but to a lesser extent.”

to :

“4.2.1 Daily maximum, mean and minimum temperature results

Figures 8, 9 and 10 present the annual and seasonal average temperature results for TX, TG, and TN 
for the CLIMADAT-GRid and CHELSA datasets, respectively, while their differences are shown in 
Fig. S1 of the Supplementary Material.  For TX, both datasets show broadly comparable spatial 
average temperatures over the entire domain (denoted as M in the figures) (Fig. 8). CLIMADAT-
GRid consistently matches station observations  well, as indicated by zero BIAS and minimal error 
metrics across all seasons. MAE and RMSE values remain at or below 0.02 °C, and KGE values are 
close  to  0.99  throughout.  In  contrast,  CHELSA systematically  underestimates TX,  with  biases 
ranging from -0.49 °C in MAM to -0.69 °C in DJF, and RMSE values up to 0.72 °C. CHELSA’s 
lower  KGE  values  (e.g.,  0.86  in  DJF)  further  suggest  reduced  agreement  with  observations. 
CLIMADAT-GRid, blended with WRF in the gridded dataset, captures the orographic temperature 
gradients more effectively exhibiting lower temperatures in elevated regions such as the northwest 
of Greece, the central Peloponnese, and western Crete (Fig. S1). Conversely, CHELSA tends to 
show cooler conditions in the Ionian and Cycladic islands but warmer conditions in Rhodes and 
Samos.
For TG, the pattern is similar but slightly more pronounced in favor of CLIMADAT-Grid (Fig. 9). 
The mean annual TG is 14.3 °C in CLIMADAT-GRid and 14 °C in CHELSA. CLIMADAT-GRid 
demonstrates  extremely  low  errors  and  near-zero  bias  across  all  seasons,  with  RMSE  values 
consistently at 0.01–0.02 °C and KGE values at or near 0.99. In contrast, CHELSA underestimates 
TG with average annual and seasonal biases between -0.29 °C (DJF) and -0.79 °C (JJA), and RMSE 



values reaching up to 0.81 °C. The KGE for CHELSA is lower, particularly in DJF (0.90) and SON 
(0.92), indicating less accurate temperature modeling compared to CLIMADAT-GRid. The spatial 
differences also reflect  the better  performance of  CLIMADAT-GRid,  especially in mountainous 
regions where it more accurately captures lower mean temperatures (Fig. S1). 
For TN, both datasets report nearly identical domain-averaged values, with the largest difference 
being only 0.2 °C in MAM and SON (Fig. 10). CLIMADAT-GRid slightly underestimates TN (bias 
from -0.01 °C to -0.03 °C), whereas CHELSA slightly overestimates it during DJF and MAM (bias 
up to 0.27 °C),  though both datasets  perform well  in JJA and SON. Despite  the small  average 
differences, error metrics again favor CLIMADAT-GRid, which shows low MAE and RMSE (0.01–
0.03 °C) and perfect or near-perfect KGE values (≥ 0.99). CHELSA, by contrast, displays larger 
errors (RMSE up to 0.34 °C in MAM) and lower KGE, particularly annually (0.85) and in JJA 
(0.85), indicating a modest degradation in its representation of minimum temperatures. Regionally, 
the most significant TN discrepancies appear in coastal and island areas (Fig. S1). CHELSA shows 
notably higher TN values than CLIMADAT-GRid across Zakynthos, Kefallonia, Crete, and many of 
the Aegean islands. The higher temperatures in CHELSA can be attributed to the implementation of  
a basic statistical downscaling approach that employs atmospheric temperature lapse rates, B-spline 
interpolations,  and high-resolution orography rather  than a  full  physical  scheme (Karger  et  al., 
2023).  Furthermore,  according  to  the  authors,  constant  lapse  rates  were  utilized  for  all  air 
temperature  variables  impacting  minimum  temperatures  to  a  greater  extent,  as  minimum 
temperatures in high altitudes are frequently the result of nighttime inversions. 
Figure  11 presents  a  comparative  analysis  of  the  number  of  days  exceeding  key  temperature 
thresholds, TX > 25°C (SU), TX > 35°C (SU35), and TN > 20°C (TR) based on the CLIMADAT-
GRid and CHELSA datasets. While both datasets show close agreement in domain-averaged values 
for SU and SU35, notable discrepancies emerge for TR, where CHELSA reports a higher frequency 
(23 days/year) compared to CLIMADAT-Grid (18 days/year).
When  benchmarked  against  observations,  CLIMADAT-GRid  demonstrates  stronger  agreement, 
particularly  for  SU.  CHELSA  underestimates  SU  by  approximately  10  days/year,  whereas 
CLIMADAT-Grid closely tracks observed values, reflecting its higher reliability for this metric. 
Statistical evaluation supports this, since for SU,  CLIMADAT-Grid achieves a low BIAS (1 °C), 
MAE (1.11 °C), RMSE (1.4 °C), and a high KGE (0.97), outperforming CHELSA, which shows a 
significant negative BIAS (-9.34 °C), higher MAE (9.34 °C), RMSE (9.69 °C), and a slightly lower 
KGE (0.91).
For TR, the results are more nuanced.  CLIMADAT-GRid shows a greater negative BIAS (-4.02 
days/year), but  CHELSA, despite the smaller BIAS (-1.28 days/year), presents higher MAE and 
RMSE values (3.09 days/year and 3.72 days/years,  respectively),  suggesting differences in how 
each dataset captures nighttime temperature extremes. Both datasets perform comparably in terms 
of KGE, with values of 0.84 (CLIMADAT-GRid) and 0.82 (CHELSA).
Spatial differences further reveal key distinctions between the two datasets (Fig. S2). Discrepancies 
in SU are concentrated over the Ionian Sea islands (Zakynthos and Kefallonia) and the Cyclades, 
while differences in TR are more widespread, notably affecting Crete, the Aegean islands, and again 
the  Ionian  Sea  region.  In  addition  CLIMADAT-GRid  captures  the  spatial  distribution  of  TR 
capturing the urban heat island effect in Athens. In contrast, this urban signature is less pronounced 
in the CHELSA data,  suggesting limitations in its resolution or calibration over complex urban 
terrains.  Similarly,  CLIMADAT-Grid  effectively  captures  the  spatial  distribution  of  SU35, 
accurately identifying thermal hotspots across Greece.



Together, these findings highlight the greater consistency and spatial sensitivity of the CLIMADAT-
GRid dataset,  particularly  in  reflecting  observed heat  extremes  and local  variability  across  the 
Greek region.”

Moreover, the following lines of subsection 4.2.2 Precipitation results have been modified from:

“Figure 11 presents the total annual and seasonal precipitation results averaged over the period 
1981–2016 for both datasets. In general, CLIMADAT-GRid indicates higher precipitation values 
compared to CHELSA on both the annual and the seasonal timescales. Both datasets capture the 
west-to-east precipitation gradient in Greece, with wetter conditions prevailing in the west and drier 
conditions  in  the  east.  However,  the  differences  are  more  pronounced  in  CLIMADAT-GRid, 
particularly during Greece's rainy seasons (SON and DJF). When compared to the observations 
CLIMADAT-GRid indicates negligible biases, while for CHELSA the relative biases are about 18 
% for the annual total precipitation and for the seasonal precipitation the biases range from about 15 
% in SON to about 24 % in JJA with the rest of the seasons indicating intermediate biases.
Regarding the number of  wet  days (RR1,  Fig.  12)  the results  are  different  since both datasets  
indicate a clear overestimation compared to the observed spatial means, with CLIMADAT-GRid 
indicating a more pronounced orographic pattern than CHELSA. This highly positive bias in the 
number of wet days has also been found in other gridded products (e.g., IBERIA01) and it is a 
byproduct of the selected interpolation methods. One way to reduce the inflated number of wet days  
is to introduce a third term in the interpolation scheme of precipitation by interpolating the daily 
occurrence of rainfall (0 or 1 depending on whether PR > 0.1 mm) considering a threshold between 
0.1 and 0.9 for assigning a wet day to a grid point (Cornes et. al., 2018; Varotsos et al., 2023a). For 
instance, if we assign a value of 0.2 for the wet days and multiply the interpolated fields with the 
daily precipitation product the average number of wet days is reduced to 90 days/year with however 
increased underestimation in the annual and seasonal precipitation sums (not shown). For future 
studies utilizing the CLIMADAT-GRid precipitation dataset,  a threshold of 2 mm/day could be 
considered when analyzing the number of wet days.
Finally, for the number of days with precipitation amounts higher or equal than 10 mm (R10mm, 
Fig.  12)  both  datasets  exhibit  similar  results  as  it  is  shown  form  the  spatial  means  with  
CLIMADAT-GRid indicating higher values for the specific index than CHELSA and closer to the 
observed spatial means. The highest values are shown for both datasets in western Greece, while the 
lowest in the eastern areas of the Greek domain.” 

to :

“Figure 12 presents the total annual and seasonal precipitation results averaged over the period 
1981–2016 for both datasets. In general, CLIMADAT-GRid indicates higher precipitation values 
compared to CHELSA on both the annual and seasonal timescales (their relative differences are  
shown  in  Fig.  S3  of  the  Supplementary  Material).  Both  datasets  capture  the  west-to-east 
precipitation gradient in Greece, with wetter conditions prevailing in the west and drier conditions 
in the east. 
When evaluated against observations, CLIMADAT-GRid shows minimal biases. Specifically, the 
annual  BIAS  is  -1.56%,  with  seasonal  biases  ranging  from  -1%  in  DJF  to  -9.27%  in  JJA. 
CLIMADAT-GRid also maintains low MAE and RMSE values across all seasons, for example,  



annual MAE is 11.5 mm and RMSE is 15.17 mm, with high KGE values near 0.98, indicating 
strong agreement with observations.
In contrast, CHELSA demonstrates significant underestimations. The annual precipitation BIAS is -
19%, and seasonal BIAS ranges from -11.97% in SON to -38.27% in JJA. The errors are also 
substantially larger,  with annual MAE and RMSE at 142.51 mm and 147.02 mm, respectively. 
Seasonal  MAE  and  RMSE  values  are  consistently  higher  than  those  of  CLIMADAT-GRid, 
particularly during DJF, MAM and SON . Additionally, CHELSA's KGE values are lower across all  
seasons, with a peak of 0.82 in SON and a low of 0.65 in JJA, indicating comparatively reduced 
reliability in capturing observed precipitation patterns.
Regarding the number of wet days (RR1, Fig. 13 and Figure S4 of the Supplementary Material),  
both datasets demonstrate a systematic overestimation relative to the observed spatial means. For 
CLIMADAT-GRid a positive BIAS of about 49 days/year is shown, while for CHELSA the bias 
reaches about 31 days/year. MAE and RMSE for CLIMADAT-GRid are about 49 and 50 days/year, 
respectively, with a negative KGE of -0.51, indicating poor agreement with observations despite its 
more pronounced orographic pattern. CHELSA performs somewhat better in this respect, with a 
lower MAE (31 days/year), RMSE (31 days/year), and a positive KGE of 0.31. This highly positive 
bias in the number of wet days has also been found in other gridded products (e.g., IBERIA01), and 
it is a byproduct of the selected interpolation methods. One way to reduce the inflated number of 
wet days is to introduce a third term in the interpolation scheme of precipitation by interpolating the  
daily occurrence of rainfall (0 or 1 depending on whether  PR > 0.1 mm) considering a threshold 
between 0.1 and 0.9 for assigning a wet day to a grid point (Cornes et. al., 2018; Varotsos et al.,  
2023a). For instance, if we assign a value of 0.2 for the wet days and multiply the interpolated fields 
with the daily precipitation product the average number of wet days is reduced to 90 days/year with 
however increased underestimation in the annual and seasonal precipitation sums (not shown). For 
future studies utilizing the CLIMADAT-GRid precipitation dataset, a threshold of 2 mm/day could 
be considered when analyzing the number of wet days.

In terms of the number of days with daily precipitation equal to or greater than 10 mm (RR10, Fig.  
13, Fig. S4 of the Supplementary Material), the two datasets display similar spatial distributions, 
with both indicating the highest frequencies in western Greece and the lowest in the east. However, 
CLIMADAT-GRid performs better quantitatively, with a mean annual R10mm of 23 days and a bias 
of about -3 days/year, compared to CHELSA’s 19 days/year and a larger negative bias of about -7 
days/year. Additionally, CLIMADAT-GRid exhibits lower MAE and RMSE (3 days/year for both 
metrics,  respectively),  along  with  a  higher  KGE  of  0.86,  indicating  close  agreement  with 
observations. CHELSA, in contrast, yields a higher MAE, RMSE (7 days/year for both metrics,  
respectively), and a lower KGE of 0.73, reinforcing the overall tendency of CLIMADAT-GRid to 
more accurately represent moderate-to-heavy precipitation events.”

8) Finally, the conclusions chapter effectively fulfills its intended role, although it does not 
provide commentary on an essential aspect of the work regarding the various geostatistical 
and machine learning techniques employed in developing the temperature and precipitation 
datasets. This oversight may be attributed to the insufficient detail in the preceding chapters. 
Incorporating  these  elements,  whether  in  the  methodology  or  the  conclusions,  would 
substantially enhance the manuscript's value. Nonetheless, it is essential to underscore that 
the  analyses  provided  are  devoid  of  any  fallacies  or  significant  flaws  and,  in  any  case, 
compromise the integrity of the study. It is simply a matter of refinement.



Answer:

Following  the  reviewer’s  suggestion  the  following  lines  have  been  added  in  the  Conclusions 
section:

“To produce  the  gridded  fields,  we  evaluated  four  interpolation  methods,  Fixed  Rank  Kriging 
(FRK),  Generalized Additive Models (GAM),  Support  Vector Machines (SVM), and K-Nearest 
Neighbors (KNN), using independent station data for validation. FRK emerged as the most reliable 
method, demonstrating consistent performance across variables and time scales,  particularly for 
precipitation. It also best captured spatial patterns, especially over the complex terrain of Greece.  
For temperatures, SVM and KNN performed well for maximum temperatures, while FRK was more 
consistent for mean and minimum temperatures.  FRK was ultimately chosen as the method for 
constructing the CLIMADAT-Grid.”

Given  the  innovative  approach  and  the  potential  contributions  to  regional  climate,  I 
recommend acceptance upon a comprehensive review of major comments. The paper presents 
a high-quality, methodologically sound dataset likely to be of great use in regional climate 
research,  impact  modelling,  and  policy  work  in  Greece.  The  authors  must  tackle  the 
previously mentioned concerns to enhance their transparency, reproducibility, and broader 
significance. Addressing these issues will fortify the manuscript and increase its contribution 
to the scientific community.

Answer:

We thank the reviewer for their positive evaluation and constructive feedback. We have carefully 
addressed all issues raised, improving the manuscript’s transparency, reproducibility, and overall 
clarity. 

MINOR COMMENTS
L23, L26  CHELSA still CHELSA-W5E5 up to this point.

Corrected

L31  The phrase “… are becoming…” requires modification.  This citation originates from 
2012. Currently, it represents a prevailing reality.

Modified

L32-33 Add a comma in “(Herrera et al. 2012)”.

Corrected

L55 Remove the E-OBS citation that was previously introduced in L41.

Corrected

L63 Citation missing for “MeteoSerbia1km”.

Corrected

L73 The acronym "CLIMADAT-GRid" is used without prior definition. Please define it upon 
first use.



CLIMADAT-GRid is a designated name and not an acronym

Fig  1  Figures  1 and  2 are  redundant;  only  Figure  2 is  sufficient  if  it  replaces  Figure  1. 
Furthermore, the blue colouration on terrain elevation maps is typically attributed to regions 
situated below the mean sea level (h<0). Consequently, it is advisable to redefine the scale to 
initiate with green tones.

Following the reviewer’s suggestion, the following figure has been added in the revised manuscript 
which replaces Figures 1 and 2 of the first version of the manuscript. 

Figure 1. Locations of meteorological stations used for (a) temperature and (b) precipitation measurements, including 
both the stations used in the interpolation and the withheld stations used for evaluation. The background shows 
elevation data from the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010).

L120 Citing Skamarock et al. (2019) may be sufficient.

The reviewer’s suggestion has been implemented.

L136  Remove the term “approximately” once ERA5 has a precise horizontal  resolution of 
0.25º. In this case, the approximation regards the resolution in km, which varies from 25 to 31 
km, roughly estimated at 28 km.

The reviewer’s suggestion has been implemented.

L137  Following  the  standard  presented  in  the  manuscript,  replace  “USGS (United  States 
Geological Survey) (Slater et al., 2011)” with “United States Geological Survey (USGS, Slater et 
al., 2011)”.

The reviewer’s suggestion has been implemented.

L137 Following the standard presented in the manuscript, replace “CORINE (Coordination of 
Information on the Environment) database (2010)” with “Coordination of Information on the 
Environment  (CORINE,  CLMS  2018)”  if  the  authors  have  used  the  latest  version 
(https://doi.org/10.2909/960998c1-1870-4e82-8051-6485205ebbac).  Additionally,  this  citation 
may be included in the references.

The reviewer’s suggestion has been implemented.



L153 The acronym "GMTED2010" is used without prior definition. Please define it upon first 
use (Figure’s caption doesn’t count).

The reviewers’ suggestion has been implemented.

L202 Remove the comma in “Papa and Koutroulis (2025,)”.

The reviewers’ suggestion has been implemented.

L205 Replace “Climate Change Detection and Indices (ETCCDI) (Zhang et al.  2011).” with 
“Climate Change Detection and Indices (ETCCDI, Zhang et al., 2011).”.

The reviewers’ suggestion has been implemented.

Fig  2  In  addition  to  the  aforementioned comments  regarding  Figure  1,  it  is  advisable  to 
change the colour used for the markers on the evaluation stations, as they tend to blend with 
the background.

The reviewers’ suggestion has been implemented.

L217 Replace “The values of the root mean square error (RMSE), the mean absolute error 
(MAE) and the KGEs…” with “The values of RMSE, MAE and the KGEs…”, once they were 
defined previously.

The reviewers’ suggestion has been implemented.

Fig 8,9,11 Since the objective of these figures is to compare the temperature and precipitation 
fields of two different datasets, wouldn't it be better to present the difference between them 
instead of the entire fields? This way, the differences pointed out by the authors would be 
clearer. Furthermore, it would enable the presentation of TN, TG, and TX in the same figure 
without losing quality. That is, Figures 8 and  9 would be merged, with the addition of TG, 
which was omitted without explanation.

We have retained the original structure for presenting the comparison between the two datasets in 
the revised manuscript. This approach not only facilitates the comparison itself but also serves to 
illustrate  how temperature and precipitation fields are distributed across the complex terrain of 
Greece, which is a key objective of the study. However, to address the reviewer’s concern, we have 
included the differences between the two datasets for the annual and seasonal means, as well as for 
the climate indices, in the Supplementary Material. Additionally, a new figure related to TG (new 
Figure 9) has been incorporated and discussed in the revised manuscript. Please also refer to our  
response to Comment 7 in the list of major comments for further clarification.

General The recursive use of “hereafter” is inappropriate in most instances. Typically, this 
expression is employed to redefine a name or acronym. Only in  L199 does it appear to be 
correctly utilised to redefine the acronym CHELSA-W5E5 as CHELSA.

The reviewers’ suggestion has been implemented.

General In the scientific literature on climate and meteorology, the prevailing terminology for 
the temporal aggregation of precipitation over a day is “daily accumulated precipitation” or 
simply “daily precipitation”. Although the procedure is referred to as the precipitation sum, its 
use can lead to different interpretations.



The reviewers’ suggestion has been implemented. Daily precipitation is used in the revised 
manuscript.



Figure 8. Average annual and seasonal TX (winter (DJF), spring (MAM), summer (JJA) and autumn (SON)) for the 
period 1981–2016 for CLIMADAT-GRid (left  column) and CHELSA (right column).  In each panel,  M denotes the 
spatial average over the grid points covering the area. In addition, the evaluation metrics between the stations and the 
data for the closest grid points to the stations locations are shown within each panel.



Figure 9. Average annual and seasonal TG (winter (DJF), spring (MAM), summer (JJA) and autumn (SON)) for the  
period 1981–2016 for CLIMADAT-GRid (left  column) and CHELSA (right column).  In each panel,  M denotes the 
spatial average over the grid points covering the area. In addition, the evaluation metrics between the stations and the 
data for the closest grid points to the stations locations are shown within each panel.



Figure 10. Average annual and seasonal TN (winter (DJF), spring (MAM), summer (JJA) and autumn (SON)) for the 
period 1981–2016 for CLIMADAT-GRid (left  column) and CHELSA (right column).  In each panel,  M denotes the 
spatial average over the grid points covering the area. In addition, the evaluation metrics between the stations and the 
data for the closest grid points to the stations locations are shown within each panel.



Figure 11. Average annual number of days TX > 25°C (SU), number of days TX > 35°C (SU35) and number of days TN 
> 20°C (TR) for the period 1981–2016 for CLIMADAT-GRid (left column) and CHELSA (right column). In each panel, 
M denotes the spatial average over the grid points covering the area. In addition, the evaluation metrics between the 
stations and the data for the closest grid points to the stations locations are shown within each panel.



Figure 12. Total annual and seasonal PR (winter (DJF), spring (MAM), summer (JJA) and autumn (SON)) for the 
period 1981–2016 for CLIMADAT-GRid (left  column) and CHELSA (right column).  In each panel,  M denotes the 
spatial average over the grid points covering the area. In addition, the evaluation metrics between the stations and the 
data for the closest grid points to the stations locations are shown within each panel.



Figure 13. Average annual number of days PR > 1 mm (RR1) and number of days PR >= 10mm (R10mm) for the period 
1981–2016 for CLIMADAT-GRid (left column) and CHELSA (right column).  In each panel, M denotes the spatial  
average over the grid points covering the area. In addition, the evaluation metrics between the stations and the data for  
the closest grid points to the stations locations are shown within each panel.

Supplementary material figures



Fig S1. Average annual and Seasonal differences for TX, TG and TN between CLIMADATGRid and CHELSA for the 
period 1981-2016.



Fig S2. Average annual differences for SU, SU35 and TR between CLIMADATGRid and CHELSA for the period 1981-
2016.



Fig S3. Average annual and seasonal relative differences in precipitation between CLIMADAT-Grid and CHELSA for 
the period 1981–2016.



Fig S4. Average annual differences for RR1 and RR10 between CLIMADATGRid and CHELSA for the period 1981-
2016.
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