
MAJOR COMMENTS

The manuscript  presents  a  comprehensive  dataset  derived from regional  climate  downscaling 
addressed  to  the  Greek  territory  using  advanced  machine  learning  techniques.  The  primary 
objectives  are  to  enhance  the  spatial  resolution  over  a  39-year  period  and  to  improve  the 
representation of  daily  temperature  and precipitation fields  across  the  complex geography of 
continental  Greece  and  its  islands.  The  authors  employ  a  hybrid  approach  combining 
geostatistical  interpolation  and  statistical  downscaling  methods  with  atmospheric  modelling, 
validated  against  observational  datasets.  Four methods  (FRK,  GAM,  KNN,  and  SVM)  were 
evaluated, with FRK ultimately chosen. Evaluation against CHELSA-W5E5 and withheld station 
data supports the improved spatial accuracy and bias reduction of CLIMADAT-GRid, especially 
in mountainous regions. The validation strategy, multiple error metrics, and comparison with an 
established product (CHELSA-W5E5) strengthen the study’s robustness. The outcomes suggest 
improved accuracy in temperature and precipitation at regional scales, supported by the analysis 
of  suitable  climate  indicators.  However,  while  the  objectives  are  met  mainly,  certain  aspects 
require further clarification to substantiate the claims thoroughly.

Answer:

We  sincerely  appreciate  the  reviewer’s  thoughtful  comments  and  valuable  suggestions.  We  have 
carefully considered all the points raised and have addressed each of them thoroughly in the revised 
manuscript. We believe that these revisions have significantly improved the clarity, rigor, and overall 
quality  of  the  work.  A detailed  point-by-point  response  is  provided  below,  highlighting  how each 
comment was incorporated or clarified.

1) The introduction chapter might discuss similar datasets produced for the same purpose. This 
would help clarify the expectations surrounding this exercise, including its benefits, drawbacks, 
and potential challenges. The datasets E-OBS and IBERIA01 referenced by the authors in 
Chapter 3 could serve as a starting point. 

Answer:

Following the reviewer’s suggestion, the specific section in the introduction has been modified in the 
revised manuscript from:

“As for the second category, which is the focus of this study, the remarkable advances in computing 
power and software have led to the development and creation of gridded observational datasets at both  
global and regional/national levels. In a recent study, Varotsos et al. (2023a) compiled a list of available  
observational  gridded datasets  for  Europe,  with  E-OBS (Cornes  et  al.,  2018)  being the  state-of-art 
gridded observational dataset for the entire European domain. However, it is crucial for users of gridded  
observational  datasets  to  recognize  that  these  products  are  model-generated  rather  than  direct 
observations, and as such have a number of limitations (Hofstra et al., 2010). In particular, the quality of 
the gridded datasets depends on the quality of the station data and its spatial coverage (density of the 



meteorological station network), as interpolation methods degrade in performance in areas with sparse 
station data  and/or  in  areas  with  complex topography (Hofstra  et  al.,  2010;  Begueria  et  al.,  2016; 
Herrera et al., 2019).”

to :

“As for the second category, which is the focus of this study, the remarkable advances in computing 
power and software have led to the development and creation of gridded observational datasets at both  
global, regional/national and sub-national levels. These datasets include E-OBS (Cornes et al., 2018) 
which is  the state-of-art  daily gridded observational dataset  for the entire European domain with a 
resolution of 0.1°,  while on the regional/national and sub-national scale a number of datasets have 
recently emerged in Europe. These include Iberia01 (Herrera et al.,  2019) for the Iberian Peninsula 
(daily gridded dataset for temperatures and precipitation at 0.1o grid), SPREAD (Serrano-Notivoli et al., 
2017)  and  STEAD  (Serrano-Notivoli  et.al.,  2019)  for  Spain  (daily  datasets  for  precipitation  and 
temperatures at 5km x 5km, respectively), SiCLIMA (Serrano-Notivoli et al., 2024) for Aragon, Spain 
(daily dataset for precipitation and temperatures at 500m x 500m), PTHRES (Fonseca and Santos 2018) 
for Portugal (daily dataset for temperatures at 1km x 1km), HYRAS (Krähenmann et al.,  2018) for 
Germany (hourly dataset for a number of variables at 1km x1km), HadUK‐Grid (Hollis et al. 2019) for 
the United Kingdom (daily dataset for a number of variables at 1km x 1km), seNorge2 (Lussana et al., 
2018a,b) for Norway (daily dataset for precipitation and temperatures at 1km x 1km, respectively), 
SLOCLIM (Škrk et al., 2021) for Slovenia (daily dataset for precipitation and temperatures at 1km x 
1km), MeteoSerbia1km (Sekulić et al. 2021) for Serbia (daily dataset for a number of variables at 1km x 
1km) and  GAA.HRES (Varotsos et al., 2023a) for Attica, Greece (daily dataset for precipitation and 
temperatures at 1km x 1km). It  is important for users to recognize that these gridded observational 
products are geostatistically generated, rather than direct observations. Consequently, they are subject to 
several limitations and the accuracy of these datasets largely depends on the quality and spatial density 
of the underlying meteorological station network. In particular, interpolation methods tend to perform 
poorly in regions with sparse station coverage or complex topography (Hofstra et al., 2010; Beguería et 
al., 2016; Herrera et al., 2019). While most of these datasets are built upon dense networks of ground-
based  observations,  in  areas  with  limited  station  density  or  insufficient  representation  of  elevation 
gradients it is often required enhancement through the integration of satellite data, reanalysis products,  
and atmospheric models to improve spatial coverage and reliability (Doblas-Reyes et al., 2021; Varotsos 
et al., 2023a). It should be noted that Serrano-Notivoli and Tejedor (2021) analyzing the performance of 
48 gridded products proposed a general workflow to transform observations into grid estimates, which 
includes four steps: i) quality control, ii) data series reconstruction, ii) gridding and iv) assessment of  
the uncertainty.”



2) In the subsequent chapter, the datasets are delineated without any preceding explanation or 
introduction  regarding  their  presentation,  which  may  lead  to  confusion  for  the  readers.  For 
example, WRF parachutes in Section 2.3 without any justification or preangle (abstract is not part 
of the manuscript), leading readers to assume that the model will be employed for temperature 
and precipitation analysis. I recommend incorporating an introductory paragraph between items 
2 and 2.1 to bridge this gap, as was implemented in Chapter 3.

Answer:

Following the reviewer’s suggestion, the following lines have been added between 2 and 2.1 in the 
revised manuscript.

“In this section, the datasets utilized in the analysis are presented. Subsection 2.1 summarizes the daily 
observational data, including maximum (TX), minimum (TN), and average (TG) temperatures, as well 
as  daily  precipitation (PR).  Subsection 2.2  outlines  the  procedures  applied for  quality  control,  gap 
filling,  and  homogenization  of  the  datasets.  Subsection  2.3  describes  the  Weather  Research  and 
Forecasting  (WRF)  model  simulation,  whose  output  is  blended  with  the  available  temperature 
observational data using gridding techniques, as detailed in Section 3. This approach was preferred over 
relying  solely  on  observational  data  due  to  the  sparse  spatial  coverage  of  in  situ  measurements, 
especially at higher altitudes (above 1000 m) as presented in Subsection 2.1.”

3) Continuing with the discussion on WRF, only during Section 3.2 (the second section before the 
results),  the readers are informed that the atmospheric model was utilised exclusively for the 
temperature field, which may reduce the audience rejection regarding precipitation. The decision 
to employ solely one year to represent the overall  study period is somewhat contentious, as a 
significant amount of variability is forfeited. Nevertheless, this approach is permissible, given that 
the model ultimately functions as a spatial interpolator driven by physical laws, subsequently 
manipulated  to  incorporate  the  seasonal  and  interannual  variations  delineated  by  the 
observational  data.  It  may  be  beneficial  for  the  authors  to  include  a  map  illustrating  the 
participation of  the observational  data at  each grid point,  as  it  could mitigate the discussion 
concerning  the  employment  of  the  atmospheric  model  to  cover  regions  lacking  a  station. 
Furthermore, this addition would facilitate the analysis of the specific areas to which the results 
can be attributed through the model. It would be essential to formally present the domain's limits,  
since  they  may  circumstantially  restrict  the  representation  of  some  large-scale  atmospheric 
phenomena transiting from the boundary condition. Furthermore, the authors reference several 
studies  on  WRF applications  in  Greece  but  do  not  elaborate  on  their  findings  or the  model 
calibration expressed by the selected set of physical parameterisations. This potentially makes the 
WRF application quite questionable for these purposes.

Answer:

We appreciate the reviewer’s constructive suggestions. Given the 1 km resolution of the WRF model, it  
is indeed the case that the vast majority of 1 km × 1 km grid cells lack direct in situ observations. This  



spatial sparsity is a primary reason for our reliance on model-derived output, which offers a continuous 
and physically consistent representation of the temperature field. The absence of observational stations, 
particularly in areas above 1000 meters, further justifies our methodological choice, as the model helps 
fill observational gaps in complex terrain. Please see our response in the previous comment.

Regarding the reviewer’s comment on the model extent, we agree that this clarification enhances the 
transparency of our modeling framework. Accordingly, we have included the following figure (Figure 2, 
new) in the revised manuscript that clearly depicts the model domain and its geographical boundaries. 
This addition enables the reader to assess the potential influence of boundary conditions on the study 
area and better understand the spatial context of the simulations.

Figure 2: WRF-ARW model domains

Finally, in response to the comment on model performance, we have added references to studies where 
similar  WRF  setups  have  been  used  and  evaluated.  These  studies  report  robust  performance  in 
comparable climatic and topographic settings. A clarifying sentence has also been included to highlight 
the prior validation of the model configuration used in our study.

Therefore, section 2.3 has been modified from:

“For  the  atmospheric  simulations,  the  Advanced  Weather  Research  and  Forecasting  Model  (WRF-
ARW)  version  4.1.3  (Powers  et  al.,  2017;  Skamarock  et  al.,  2008;  Skamarock  et  al.,  2019)  was 
employed.  WRF-ARW  serves  as  a  limited-area  atmospheric  model,  utilized  for  both  operational 



forecasting (Sofia et al., 2024; Patlakas et al., 2023) and scientific research (Stathopoulos et al., 2023; 
Otero-Casal et al., 2019). It is based on a fully compressible, non-hydrostatic dynamic core. On the 
vertical plane it has terrain-following, mass-based, hybrid sigma-pressure vertical coordinates based on 
dry  hydrostatic  pressure,  with  vertical  grid  stretching  permitted  while  for  the  horizontal  grid,  the 
Arakawa C-grid staggering is employed.
In this analysis, the WRF model was configured to run with three two-way nested grids. The coarser one 
has a resolution of 9 km, covering a large area that includes parts of North Africa and Central Europe. 
The inner grids are focused on the Eastern Mediterranean and Greece, with spatial resolutions of 3 km 
and 1 km, respectively. Vertically, the model consists of 48 layers.”

to :
“For  the  atmospheric  simulations,  the  Advanced  Weather  Research  and  Forecasting  Model  (WRF-
ARW), version 4.1.3 (Skamarock et al., 2019), was employed. WRF-ARW is a limited-area atmospheric 
model  based  on  a  fully  compressible,  non-hydrostatic  dynamic  core.  Vertically,  it  utilizes  terrain-
following,  mass-based  hybrid  sigma-pressure  coordinates  based  on  dry  hydrostatic  pressure,  with 
support for vertical grid stretching. Horizontally, the model applies an Arakawa C-grid staggering.
WRF is  widely used in  both operational  forecasting (Sofia  et  al.,  2024;  Patlakas  et  al.,  2023)  and 
scientific research (Pantillon et al., 2024; Patlakas et al., 2024; Politi et al., 2021; Stathopoulos et al.,  
2023;  Otero-Casal  et  al.,  2019).  These  studies  include  comprehensive  evaluations  of  the  model’s 
performance not only over the present study area but also in regions with similar topographic and 
climatic  characteristics,  demonstrating  its  reliability  in  representing  climatological  fields.  In  this 
analysis, the WRF model was configured with three two-way nested grids to adequately capture both 
regional  and  local-scale  processes.  The  inner  grids  are  focused  on  the  Eastern  Mediterranean  and 
Greece, with spatial resolutions of 3 km and 1 km, respectively (Figure 2). Vertically, the model consists 
of 48 layers.”

4)  The  description  of  geostatistical  interpolation  and ML methods,  lacking  detail  and  overly 
restricted to their respective R packages citation, is both awkward and limiting (Sect. 3.1 and 3.2).  
This narrow focus obscures the wide variety of options and parameters defined in each method 
and, as a result, hinders and prevents the proper reproducibility of the study. Thus, presenting 
these details in the manuscript is crucial. 

Answer:

Following the  reviewer’s  suggestion,  the  following lines  have been modified in  section 3.1  of  the 
revised manuscript from:

“The following approaches were examined to calculate the monthly precipitation fields: (i) a “fixed 
rank Kriging approach” (hereafter FRK, Nychka et al., 2015), (ii) generalized additive models (hereafter 
GAM, Wood, 2017) and (iii)  two ML algorithms namely k-nearest  neighbors (hereafter  KNN) and 



support  vector  machines  (hereafter,  SVM).  The  analysis  is  performed  using  the  R  Language  and 
Environment for Statistical Computing (R core team 2024) and the packages LatticeKrig (Nychka et al.,  
2019) for FRK, mgcv (Wood and Wood, 2015) for GAM, while the two ML algorithms are tuned using 
the caret R package (Kuhn, 2008).”

to :

“The following approaches were examined to calculate the monthly precipitation fields: 
(i)  a  “Fixed  Rank  Kriging  approach”  (FRK).  FRK  is  a  geostatistical  interpolation  technique  that 
approximates a spatial field using a low-rank representation of the underlying spatial process. It models 
the spatial covariance structure through a set of basis functions, allowing efficient estimation even with 
large datasets (Nychka et al., 2015). In this study, FRK is implemented using the LatticeKrig package 
(Nychka et  al.,  2019) in R (R Core Team, 2024),  where the model  parameters,  including variance 
components and spatial range parameters, are estimated using maximum likelihood estimation.
(ii)  Generalized Additive  Models  (hereafter  GAM) are  a  semi-parametric  extension of  Generalized 
Linear Models that assume the underlying relationships are additive and smooth. Their primary strength 
lies in their ability to capture highly non-linear and non-monotonic relationships between the response  
variable and explanatory variables (Wood, 2017). In this study, monthly precipitation sums are modeled 
as  smooth  functions  of  longitude,  latitude  and  elevation  using  thin  plate  regression  splines,  with 
smoothing parameters estimated using restricted maximum likelihood (mgcv R package,  Wood and 
Wood, 2015).
(iii) two ML algorithms namely K-Nearest Neighbors (KNN) and Support Vector Machines (based on 
an exponential radial basis function, SVM). KNN estimates the value of an unknown data point by 
identifying its  k  closest  neighbors  in  the spatial  dataset,  where k is  a  user-defined hyperparameter 
(Nwaila et al., 2024). The predicted value is computed as a weighted average of these neighbors' values,  
with the weights typically based on the distance to the target point, i.e. closer neighbors have greater  
influence. In this study, k ranges from 2 to 30 in increments of 1. SVM is a ML algorithm, effective in 
capturing non-linear spatial trends, which seeks a function that predicts the value of an unknown data 
point, while balancing accuracy and model complexity (Bonsoms and Ninyerola, 2024). The complexity 
is regulated by the cost parameter C (tested values: 0.1, 1, 5, 10), while the smoothness of the kernel is 
governed  by  sigma (tested  values:  0.01,  0.025,  0.05,  0.075,  0.1).  For  both  algorithms,  optimal 
hyperparameters (k for KNN, and C and sigma for SVM) are selected using tenfold cross-validation 
combined with grid search, using the caret package in R (Kuhn, 2008; R Core Team, 2024).”

5) Concerning the metrics employed in the evaluation, specifically RMSE, MAE, and KGE, it is  
noteworthy that the most fundamental among them, Bias, was not considered. Relying solely on 
RMSE and MAE does not allow assessing whether the method underestimates or overestimates 
the observed values.  This significantly impacts the analysis of temperature fields,  particularly 
precipitation fields. Therefore, including this metric is also mandatory.



Answer:

Following the reviewer’s suggestion BIAS values are also reported in Tables 2 and 3 of the revised 
manuscript. Moreover, the discussion in sections 4.1.1 and 4.1.2 have been modified to include the 
BIAS values. In particular, for precipitation in section 4.1.1 the following lines have been modified  
from:

“The values of the root mean square error (RMSE), the mean absolute error (MAE) and the KGEs are  
presented in Table 2 for the precipitation grids produced using the different approaches described in 
Sect. 3.1. These results are compared against the withheld observations on an annual and seasonal basis 
for the test period. From Table 2 it is clear that the methods yield similar values across all statistical  
measures with annual RMSE (MAE) being lower than 1.45 (0.65) for all methods. On a seasonal basis, 
the  highest  RMSE and MAE are  observed during the DJF (December-January-February)  and SON 
(September-October-November) periods. Overall, SVM and FRK methods exhibit the lowest values for 
both metrics on an annual and seasonal basis. Regarding the KGEs, with the exception of GAMs that  
exhibit a KGE value of 0.7 in JJA (June-July-August), for the rest of the seasons and on an annual basis  
the reported KGEs are higher than 0.8. Similar to RMSEs and MAEs, the highest KGE values are found 
for the SVM and FRK methods indicating that  these two methods capture quite well  the temporal  
distributions of the daily precipitation.”

to:

“ The values of BIAS, RMSE, MAE and KGE are presented in Table 2 for the precipitation grids 
produced using the different  approaches described in Sect.  3.1.  These results  are evaluated against  
withheld observations on both an annual and seasonal scale over the test period. From Table 2, it is 
evident that on the annual scale, all four approaches exhibit strong and relatively consistent performance 
across all evaluation metrics. BIAS values are minimal, indicating that none of the models significantly 
overestimate or underestimate precipitation. FRK shows the smallest annual BIAS (-0.01 mm), closely 
followed by GAM (-0.02 mm) and SVM (-0.05 mm), while KNN shows a negative BIAS of −0.08 mm. 
Regarding RMSE and MAE, it is shown that the different approaches yield similar values across both  
statistical  measures with annual  RMSE (MAE mm) being lower than 1.45 (0.65 mm),  while  KGE 
values are higher than 0.85 for all approaches, with SVM and FRK reaching the highest values 0.93 and 
0.92, respectively. At the  seasonal scale, greater variability is shown. During winter (DJF, December-
January-February),  SVM  and  GAM  tend  to  significantly  underestimate  precipitation,  with  SVM 
showing the most negative BIAS (−0.16 mm) and a KGE of 0.91, while GAM also underperforms with 
a lower  KGE of 0.81 and relatively high  MAE (1.01 mm). In contrast,  KNN tends to overestimate 
during this period (BIAS = 0.12 mm), but still maintains a moderate KGE of 0.84.  FRK, once again, 
shows stability with low BIAS (−0.02 mm), competitive RMSE (1.51 mm), and a strong KGE of 0.88. 
During  spring (MAM, March-April-May) and  summer (JJA, June-July-August), all approaches show 



better agreement with observations. FRK continues to perform robustly with the lowest RMSE (MAE) 
values (0.94 mm (0.50 mm) for MAM and 0.65 mm (0.29 mm) for JJA), and high KGE values (0.90 
and 0.82, respectively). The rest of the approaches perform reasonably, though GAM's MAE remains 
higher in MAM, and SVM and KNN show slight deviations in JJA. In  autumn (SON, September-
October-November), all approaches tend to overestimate precipitation, with KNN showing the highest 
BIAS (0.16 mm). SVM shows the lowest BIAS (0.02 mm) and maintains a KGE of 0.94, the highest 
among the methods for this season. Nevertheless,  FRK demonstrates consistent performance with a 
balanced BIAS (0.05 mm), relatively low RMSE and MAE of 1.27 mm and 0.66 mm, respectively, and 
a  strong  KGE of  0.93.  Overall,  the  results  indicate  FRK as  the  most  stable  and  reliable  method, 
delivering consistently low BIAS and error across both annual and seasonal scales while maintaining 
high KGE values throughout the year.”

Table 2: Precipitation annual and seasonal BIAS, RMSE, MAE and KGE statistics based on daily values between the 30 reference 
station and the interpolated ones as derived from the different interpolation approaches.

FRK GAM KNN SVM

PR BIAS RMSE MAE KGE BIAS RMSE MAE KGE BIAS RMSE MAE KGE BIAS RMSE MAE KGE

Annual -0.01 1.13 0.60 0.92 -0.02 1.45 0.63 0.87 -0.08 1.18 0.62 0.87 -0.05 1.09 0.59 0.93

DJF -0.02 1.51 0.95 0.88 -0.06 1.46 1.01 0.81 0.12 1.56 0.97 0.84 -0.16 1.43 0.91 0.91

MAM 0.03 0.94 0.50 0.90 -0.03 1.47 0.93 0.88 -0.11 0.99 0.54 0.86 -0.04 0.92 0.51 0.92

JJA -0.09 0.65 0.29 0.82 -0.16 1.47 0.3 0.70 -0.06 0.63 0.29 0.86 -0.08 0.67 0.31 0.82

SON 0.05 1.27 0.66 0.93 0.07 1.43 0.71 0.87 0.16 1.34 0.69 0.85 0.02 1.22 0.66 0.94

For temperatures (subsection 4.1.2) the following lines have been modified from:

“From Table 3 and Fig.  5-7,  it  is  evident  that  all  methods perform well  in capturing the temporal 
temperature characteristics for  TX,  TG and  TN. For  TX the methods yielding the best performance in 
terms of RMSE, MAE and KGE are KNN and SVM. KNN shows better performance during the colder 
seasons (DJF and SON), while SVM in the warmer ones (March-April-May (MAM) and JJA). FRK is 
the third best performing method, while GAM exhibits the highest RMSEs at all periods examined. 
Considering the annual biases (Fig. 5) a different perspective emerges. GAM shows the lowest absolute 
biases (below 0.2 °C), while FRK displays the highest biases (up to 0.6 °C), highlighting variations in 
the strengths of the methods depending on the evaluation metric.”

to :

“From Table 3 and Fig.  5-7,  it  is  evident  that  all  methods perform well  in capturing the temporal 
temperature characteristics for TX, TG and TN. Table 3 presents the values of the metrics as calculated 
from daily values, which offer insight into the different methods systematic errors at the finer temporal 
scale. For TX,  KNN and  SVM exhibit the best overall performance across RMSE, MAE, and KGE, 



with seasonal RMSE values consistently below 0.67 °C and high KGE values (≥ 0.93). KNN performs 
particularly well in colder seasons (DJF and SON), while SVM shows better results in warmer periods 
(MAM and JJA). FRK ranks third, showing competitive RMSE and MAE values, though it consistently 
underestimates TX with a negative bias across all seasons, most notably in SON (-0.47 °C).  GAM, 
while displaying the highest RMSE and MAE values in every season, has the lowest annual BIAS 
(0.00 °C) and relatively low seasonal BIAS values (e.g., -0.04 °C in DJF, -0.27 °C in MAM), indicating 
alignment with the observed annual mean but poor performance in capturing daily variability. When 
examining the  annual differences between the observations and the various methods (Fig. 5), GAM 
demonstrates  the  lowest  absolute  annual  deviations,  remaining  below  0.2 °C,  indicating  strong 
agreement with long-term averages. In contrast,  FRK, exhibits the highest annual deviations, reaching 
up to 0.6 °C. 
For TG and TN, FRK emerges as the most robust method, outperforming others across all metrics on 
both annual and seasonal scales. It consistently delivers the lowest RMSE, MAE, and KGE values. 
Importantly,  FRK also exhibits the  lowest annual BIAS values for TG (0.08 °C) and TN (0.10 °C), 
underscoring its minimal systematic deviation from observations. In comparison, other methods present 
substantially  higher  BIAS  values,  particularly  KNN  (0.57 °C  for  TG;  0.74 °C  for  TN)  and  SVM 
(0.71 °C for TG; 0.56 °C for TN). Furthermore, FRK’s mean absolute annual deviations remain lower 
than 0.3 °C for both TG and TN (Fig. 6-7), whereas other methods show deviations reaching up to 
0.8 °C, depending on the variable and method.”



Table 3: Daily maximum (TX), mean (TG) and minimum (TN) temperatures annual and seasonal RMSE, MAE and KGE statistics 
between the 13 reference station values and the interpolated ones as derived from the different interpolation approaches.

FRK GAM KNN SVM

BIAS RMSE MAE KGE BIAS RMSE MAE KGE BIAS RMSE MAE KGE BIAS RMSE MAE KGE

TX

Annual -0.33 0.69 0.55 0.98 0.00 1.63 0.48 0.98 0.11 0.60 0.50 0.98 -0.12 0.60 0.49 0.98

DJF -0.41 0.68 0.55 0.91 -0.04 1.6 0.41 0.93 -0.30 0.60 0.49 0.93 -0.38 0.64 0.53 0.94

MAM -0.06 0.60 0.47 0.97 -0.27 1.53 0.53 0.97 -0.33 0.67 0.56 0.98 -0.21 0.62 0.51 0.98

JJA -0.40 0.72 0.58 0.97 -0.14 1.35 0.49 0.98 -0.18 0.60 0.50 0.98 -0.12 0.56 0.46 0.98

SON -0.47 0.76 0.61 0.96 -0.15 1.48 0.47 0.98 -0.02 0.55 0.45 0.99 0.03 0.57 0.46 0.98

TG

Annual 0.08 0.45 0.36 0.98 0.41 2.81 0.48 0.97 0.57 0.69 0.59 0.97 0.71 0.82 0.73 0.96

DJF -0.18 0.45 0.36 0.98 0.24 2.56 0.38 0.97 0.53 0.67 0.56 0.93 0.64 0.77 0.66 0.92

MAM 0.23 0.45 0.36 0.97 0.53 2.43 0.57 0.96 0.66 0.75 0.67 0.95 0.70 0.80 0.71 0.95

JJA 0.23 0.48 0.37 0.97 0.51 2.32 0.55 0.97 0.53 0.66 0.57 0.97 0.78 0.88 0.79 0.96

SON 0.23 0.42 0.35 0.96 0.51 2.53 0.43 0.97 0.53 0.67 0.58 0.97 0.78 0.83 0.74 0.96

TN

Annual 0.10 0.52 0.41 0.99 0.51 3.85 0.59 0.96 0.74 0.88 0.77 0.94 0.56 0.77 0.64 0.95

DJF -0.04 0.63 0.52 0.92 0.39 3.85 0.58 0.88 0.75 0.97 0.80 0.80 0.66 0.93 0.75 0.82

MAM 0.22 0.52 0.43 0.98 0.66 3.85 0.70 0.93 0.75 0.88 0.78 0.92 0.49 0.72 0.60 0.95

JJA 0.17 0.42 0.34 0.98 0.55 3.79 0.57 0.97 0.73 0.83 0.73 0.96 0.49 0.65 0.54 0.95

SON 0.06 0.48 0.38 0.99 0.45 3.85 0.54 0.96 0.74 0.88 0.77 0.94 0.62 0.79 0.68 0.95

6)  The  results  chapter is  well-structured,  and  its  figures  and  tables  are  clear,  readable,  and 
sufficient to justify the main findings. Nevertheless, it is also true that omitting some information 
and  making  certain  choices  in  preparing  the  outputs  reduces  their  respective  impacts.  For 
example, why was Figure 4 presented only for 2016 and not for the 10 years of validation (2010-
2019)? Besides lacking a direct relation to Table 3, this leads readers to believe that the differences 
pointed out by the authors are limited and specific to that year and may not be as pronounced in  
an overall analysis. Furthermore, including a fifth panel (e) with the map that highlights only the 
station locations using colours representing the observed values on the same scale as precipitation 
would significantly enhance this analysis and assist in determining which method was definitively 
superior. Keep in mind that spatial variability does not imply a better result.

Answer:

Following the reviewer’s suggestion, a new Figure 4 has been added in the revised manuscript replacing 
Figure 4 from the first version of the manuscript. In addition, the text in section 4.1.1 has been modified  
from:



“In terms of spatial distribution, the west to east gradient of precipitation in Greece, which exhibits the  
largest and lowest amounts of yearly precipitation (Gofa et al., 2019), is captured by all approaches. 
However, as Fig. 4 for the year 2016 illustrates, GAM, KNN and SVM demonstrate reduced spatial 
variability in regions with significant altitude differences in both the northeastern and southern regions 
of Greece (e.g. Crete). This spatial variability is also evident in other years examined within the 2010–
2019 period (not shown).”

to:

“ When all available stations are used for the interpolation for the period 2010-2019 (Fig. 4), the results 
indicate that the west to east gradient of precipitation in Greece, which exhibits the largest and lowest 
amounts of yearly precipitation (Gofa et al.,  2019) is captured by all approaches. However, as it is  
evident from Fig. 4, FRK maintains strong predictive skill when applied to the full set of available 
stations, with only a modest increase in error, reflecting its ability to handle spatial heterogeneity and 
non-stationarity  common in  precipitation fields.  GAM error  metrics  increase  somewhat  on the  full  
dataset, however, retaining a reasonable predictive skill,  indicating its capacity to capture important 
spatial patterns. For KNN, an opposite sign BIAS is evident when compared to the results of Table 2  
indicating that the method is strongly dependent on the proximity to known data. As a result, the method 
exhibits poorer extrapolation ability than FRK and GAM. In contrast, SVM shows a significant decline 
in  performance  when  applied  to  the  full  station  network,  as  it  lacks  explicit  modeling  of  spatial 
structures  despite  its  capability  to  capture  complex  nonlinear  relationships  (Heinke  et  al.  2023), 
resulting in higher errors and biases across diverse climatic and geographic regions. This behavior is 
highlighted in the mountainous area in Crete where total annual precipitation is much lower than the 
other methods. 
Overall, this comparison highlights that FRK is better suited for robust precipitation interpolation across  
regions with complex topography.”



Figure 4.  Spatial distribution of total annual precipitation for the period 2010–2019, as estimated by the different interpolation 
methods (panels a–d) and observed data (panel e). Each panel includes the spatial average (M) calculated over all grid points (or 
over all stations in panel e). For panels a–d, the relative BIAS, MAE (in mm), RMSE (in mm), and KGE are provided, based on  
comparisons between the interpolated values at the nearest grid points and the corresponding station observations.

In addition, the following lines 285-289 in subsection 4.1.2 have been modified from:



“In terms of spatial distribution, similar patterns to those observed for precipitation are identified. In 
particular GAM, KNN and SVM demonstrate reduced spatial variability between the mountainous areas 
of Greece and the lower altitude surrounding areas indicating limited ability to accurately represent 
temperature gradients influenced by topography (not shown).”

to:

“ In terms of spatial distribution, similar patterns to those observed for precipitation are identified. In 
particular  GAM,  KNN  and  SVM  demonstrate  limited  ability  to  accurately  represent  temperature 
gradients influenced by topography (not shown).”

7)  Another  relevant  point  regards  the  sentence  “Despite  this,  CHELSA underestimates  the 
observed number of SU by about 10 days/yr,  while CLIMADAT-GRid closely aligns with the 
observed values.” (L319-320). Which results substantiate this conclusion? It may be pertinent to 
present and discuss the evaluation metrics (Bias, RMSE, MAE, KGE) for both CLIMADAT-GRid 
and CHELSA throughout the entire study period. Only a brief and vague text in L350-354 may 
not be sufficient. 

Answer:

In the first  version of the manuscript  in each panel of the Figures 8-12 the following values were 
reported within the panels: M which denoted the spatial average over the grid points covering the area, 
M.o which denoted the station mean values and M.c which denoted the mean values for the closest grid  
points to the stations locations. Therefore, the difference between the interpolated values at the nearest  
grid points (M.c) and the corresponding station observations (M.o) could be calculated. Nevertheless, in 
the revised version of the manuscript  all  the evaluation metrics are presented within each panel in  
addition  to  TG (the  new  figures  can  be  found  at  the  end  of  this  response  letter).  Moreover,  the 
differences between CLIMADAT-GRid and CHELSA can be found in the supplementary material (the 
new figures can be found at the end of this response letter). Consequently, the discussion in section 4.2 
has been modified to incorporate all the changes. In particular, the following lines have been modified 
from:

“4.2.1 Daily maximum and minimum temperature results

In  Fig.  8  and  9  the  average  annual  and  seasonal  temperature  results  for  TX and  TN are  shown, 
respectively.  For  TX,  both  datasets  show comparable  temperature  values  averaged  over  the  whole 
domain of interest (denoted as M in the figures), with the maximum difference between the two datasets 
not exceeding 0.5 oC (DJF). When compared to the station data (M.o in the figures) CLIMADAT-GRid 
exhibits  values  of  similar  magnitude for  the closest  grid point  to  the station locations (M.c in  the 



figures), while CHELSA systematically underestimates the observations on both the annual and the 
seasonal timescales, with average discrepancies between 0.5 oC to 0.7 oC. In terms of spatial variability, 
CLIMADAT-GRid with WRF blended in the gridded dataset better captures the orographical gradient of 
temperatures,  indicating  lower  temperatures  than  CHELSA in  mountainous  areas  ranging from the 
northwest of Greece to the central Peloponnese and west of Crete. Furthermore, CHELSA appears to be  
cooler than CLIMADAT-GRid in the Ionian Sea islands of Zakynthos and Kefallonia, as well as the 
Aegean sea islands of Cyclades, but warmer in Rhodes and Samos.
For  TN (Fig.  9),  both datasets  show nearly identical  temperature values averaged across the entire 
domain of interest, with the highest difference between them not exceeding 0.2 oC (MAM and SON). 
CLIMADAT-GRid produces values of the same magnitude as the station data for the grid points nearest 
to the station locations, whereas CHELSA slightly overestimates the observations annually, DJF and 
MAM. Nonetheless, the maximum overestimation in daily minimum temperatures is less than 0.3 oC. In 
contrast, JJA and SON produce temperatures that are similar to those observed. The highest discrepancy 
between the  two datasets  is  obvious  while  examining the  maps  in  Fig.  8.  In  particular,  CHELSA 
indicates notably higher temperatures compared to CLIMADAT-GRid, from west to east, in the Ionian 
Sea's Zakynthos and Kefallonia, as well as Crete, and the majority of the Aegean Sea islands. The 
higher  temperatures  in  CHELSA can  be  attributed  to  the  implementation  of  a  basic  statistical  
downscaling approach that employs atmospheric temperature lapse rates, B-spline interpolations, and 
high-resolution  orography  rather  than  a  full  physical  scheme  (Karger  et  al.,  2023).  Furthermore, 
according to the authors, constant lapse rates were utilized for all air temperature variables impacting 
minimum temperatures to a greater extent, as minimum temperatures in high altitudes are frequently the 
result of nighttime inversions. 
Figure 10 illustrates the results for the number of days with daily  TX > 25 °C (SU) and  TX > 35 °C 
(SU35) and the number of days with daily  TN > 20 °C (TR). From the figure it is evident that both 
datasets yield similar domain averaged values for SU and SU35. However, for TR, CHELSA estimates  
a higher number of days/yr compared to CLIMADAT-GRid (23 and 18 days/yr, respectively). Despite 
this, CHELSA underestimates the observed number of SU by about 10 days/yr, while CLIMADAT-
GRid closely aligns with the observed values. Differences are most noticeable in the spatial variability 
of the results, which are most evident in the Ionian Sea Zakynthos and Kefallonia islands, as well as the  
Aegean Sea Cyclades for SU and in the Ionian Sea Zakynthos and Kefallonia islands, as well as Crete  
and the majority of the Aegean Sea's islands for TR. Furthermore, CLIMADAT-GRid catches pretty 
well the spatial variability of SU35, pinpointing well-known warm hot spots in the Greek territory, as  
well as the urban heat island effect in the Athens urban area, which is also evident in CHELSA, but to a  
lesser extent.”

to :

“4.2.1 Daily maximum, mean and minimum temperature results



Figures 8, 9 and 10 present the annual and seasonal average temperature results for TX, TG, and TN for 
the CLIMADAT-GRid and CHELSA datasets, respectively, while their differences are shown in Fig. S1 
of  the  Supplementary  Material.  For  TX,  both  datasets  show  broadly  comparable  spatial  average 
temperatures  over  the  entire  domain  (denoted  as  M  in  the  figures) (Fig.  8).  CLIMADAT-GRid 
consistently matches station observations  well, as indicated by zero BIAS and minimal error metrics 
across all seasons. MAE and RMSE values remain at or below 0.02 °C, and KGE values are close to  
0.99 throughout. In contrast, CHELSA systematically  underestimates TX, with biases ranging from -
0.49 °C in MAM to -0.69 °C in DJF, and RMSE values up to 0.72 °C. CHELSA’s lower KGE values 
(e.g., 0.86 in DJF) further suggest reduced agreement with observations. CLIMADAT-GRid, blended 
with  WRF  in  the  gridded  dataset,  captures  the  orographic  temperature  gradients  more  effectively 
exhibiting  lower  temperatures  in  elevated  regions  such  as  the  northwest  of  Greece,  the  central 
Peloponnese, and western Crete (Fig. S1). Conversely, CHELSA tends to show cooler conditions in the 
Ionian and Cycladic islands but warmer conditions in Rhodes and Samos.
For TG, the pattern is similar but slightly more pronounced in favor of CLIMADAT-Grid (Fig. 9). The 
mean  annual  TG  is  14.3 °C  in  CLIMADAT-GRid  and  14 °C  in  CHELSA.  CLIMADAT-GRid 
demonstrates extremely low errors and near-zero bias across all seasons, with RMSE values consistently 
at 0.01–0.02 °C and KGE values at or near 0.99. In contrast, CHELSA underestimates TG with average 
annual and seasonal biases between -0.29 °C (DJF) and -0.79 °C (JJA), and RMSE values reaching up 
to 0.81 °C. The KGE for CHELSA is lower, particularly in DJF (0.90) and SON (0.92), indicating less 
accurate temperature modeling compared to CLIMADAT-GRid. The spatial differences also reflect the 
better performance of CLIMADAT-GRid, especially in mountainous regions where it more accurately 
captures lower mean temperatures (Fig. S1). 
For TN, both datasets report nearly identical domain-averaged values, with the largest difference being 
only 0.2 °C in MAM and SON (Fig. 10). CLIMADAT-GRid slightly  underestimates TN (bias from -
0.01 °C to -0.03 °C), whereas CHELSA slightly  overestimates it  during DJF and MAM (bias up to 
0.27 °C), though both datasets perform well in JJA and SON. Despite the small average differences,  
error metrics again favor CLIMADAT-GRid, which shows low MAE and RMSE (0.01–0.03 °C) and 
perfect or near-perfect KGE values (≥ 0.99). CHELSA, by contrast, displays larger errors (RMSE up to 
0.34 °C in MAM) and lower KGE, particularly annually (0.85) and in JJA (0.85), indicating a modest 
degradation  in  its  representation  of  minimum  temperatures.  Regionally,  the  most  significant  TN 
discrepancies appear in coastal and island areas (Fig. S1). CHELSA shows notably higher TN values 
than CLIMADAT-GRid across Zakynthos,  Kefallonia,  Crete,  and many of the Aegean islands.  The 
higher  temperatures  in  CHELSA can  be  attributed  to  the  implementation  of  a  basic  statistical  
downscaling approach that employs atmospheric temperature lapse rates, B-spline interpolations, and 
high-resolution  orography  rather  than  a  full  physical  scheme  (Karger  et  al.,  2023).  Furthermore, 
according to the authors, constant lapse rates were utilized for all air temperature variables impacting 
minimum temperatures to a greater extent, as minimum temperatures in high altitudes are frequently the 
result of nighttime inversions. 



Figure 11 presents a comparative analysis of the number of days exceeding key temperature thresholds,  
TX > 25°C (SU),  TX > 35°C (SU35),  and  TN > 20°C (TR)  based on the  CLIMADAT-GRid and 
CHELSA datasets. While both datasets show close agreement in domain-averaged values for SU and 
SU35, notable discrepancies emerge for TR, where CHELSA reports a higher frequency (23 days/year) 
compared to CLIMADAT-Grid (18 days/year).
When  benchmarked  against  observations,  CLIMADAT-GRid  demonstrates  stronger  agreement, 
particularly for SU. CHELSA underestimates SU by approximately 10 days/year, whereas CLIMADAT-
Grid closely tracks observed values, reflecting its higher reliability for this metric. Statistical evaluation 
supports this, since for SU, CLIMADAT-Grid achieves a low BIAS (1 °C), MAE (1.11 °C), RMSE (1.4 
°C), and a high KGE (0.97), outperforming CHELSA, which shows a significant negative BIAS (-9.34 
°C), higher MAE (9.34 °C), RMSE (9.69 °C), and a slightly lower KGE (0.91).
For  TR,  the  results  are  more  nuanced.  CLIMADAT-GRid  shows  a  greater  negative  BIAS  (-4.02 
days/year), but CHELSA, despite the smaller BIAS (-1.28 days/year), presents higher MAE and RMSE 
values (3.09 days/year and 3.72 days/years, respectively), suggesting differences in how each dataset 
captures nighttime temperature extremes. Both datasets perform comparably in terms of KGE, with 
values of 0.84 (CLIMADAT-GRid) and 0.82 (CHELSA).
Spatial differences further reveal key distinctions between the two datasets (Fig. S2). Discrepancies in 
SU are concentrated over the Ionian Sea islands (Zakynthos and Kefallonia) and the Cyclades, while 
differences in TR are more widespread,  notably affecting  Crete,  the Aegean islands,  and again the 
Ionian Sea region. In addition CLIMADAT-GRid captures the spatial distribution of TR capturing the 
urban heat island effect in Athens. In contrast, this urban signature is less pronounced in the CHELSA 
data,  suggesting  limitations  in  its  resolution  or  calibration  over  complex  urban  terrains.  Similarly, 
CLIMADAT-Grid effectively captures the spatial distribution of SU35, accurately identifying  thermal 
hotspots across Greece.
Together, these findings highlight the  greater consistency and spatial sensitivity of the CLIMADAT-
GRid dataset, particularly in reflecting observed heat extremes and local variability across the Greek 
region.”

Moreover, the following lines of subsection 4.2.2 Precipitation results have been modified from:

“Figure 11 presents the total annual and seasonal precipitation results averaged over the period 1981–
2016 for both datasets. In general, CLIMADAT-GRid indicates higher precipitation values compared to 
CHELSA on  both  the  annual  and  the  seasonal  timescales.  Both  datasets  capture  the  west-to-east  
precipitation gradient in Greece, with wetter conditions prevailing in the west and drier conditions in the 
east. However, the differences are more pronounced in CLIMADAT-GRid, particularly during Greece's 
rainy  seasons  (SON  and  DJF).  When  compared  to  the  observations  CLIMADAT-GRid  indicates 
negligible biases, while for CHELSA the relative biases are about 18 % for the annual total precipitation 
and for the seasonal precipitation the biases range from about 15 % in SON to about 24 % in JJA with  
the rest of the seasons indicating intermediate biases.



Regarding the number of wet days (RR1, Fig. 12) the results are different since both datasets indicate a 
clear overestimation compared to the observed spatial means, with CLIMADAT-GRid indicating a more 
pronounced orographic pattern than CHELSA. This highly positive bias in the number of wet days has 
also  been found in  other  gridded products  (e.g.,  IBERIA01)  and it  is  a  byproduct  of  the  selected  
interpolation methods. One way to reduce the inflated number of wet days is to introduce a third term in  
the  interpolation  scheme  of  precipitation  by  interpolating  the  daily  occurrence  of  rainfall  (0  or  1 
depending on whether PR > 0.1 mm) considering a threshold between 0.1 and 0.9 for assigning a wet 
day to a grid point (Cornes et. al., 2018; Varotsos et al., 2023a). For instance, if we assign a value of 0.2  
for the wet days and multiply the interpolated fields with the daily precipitation product the average 
number of wet days is reduced to 90 days/year with however increased underestimation in the annual  
and  seasonal  precipitation  sums  (not  shown).  For  future  studies  utilizing  the  CLIMADAT-GRid 
precipitation dataset, a threshold of 2 mm/day could be considered when analyzing the number of wet  
days.
Finally, for the number of days with precipitation amounts higher or equal than 10 mm (R10mm, Fig.  
12) both datasets exhibit similar results as it is shown form the spatial means with CLIMADAT-GRid 
indicating higher values for the specific index than CHELSA and closer to the observed spatial means. 
The highest values are shown for both datasets in western Greece, while the lowest in the eastern areas 
of the Greek domain.” 

to :

“Figure 12 presents the total annual and seasonal precipitation results averaged over the period 1981–
2016 for both datasets. In general, CLIMADAT-GRid indicates higher precipitation values compared to 
CHELSA on both the annual and seasonal timescales (their relative differences are shown in Fig. S3 of  
the Supplementary Material). Both datasets capture the west-to-east precipitation gradient in Greece, 
with wetter conditions prevailing in the west and drier conditions in the east. 
When evaluated against observations, CLIMADAT-GRid shows minimal biases. Specifically, the annual 
BIAS is -1.56%, with seasonal biases ranging from -1% in DJF to -9.27% in JJA. CLIMADAT-GRid 
also maintains low MAE and RMSE values across all seasons, for example, annual MAE is 11.5 mm 
and  RMSE  is  15.17  mm,  with  high  KGE  values  near  0.98,  indicating  strong  agreement  with 
observations.
In contrast,  CHELSA demonstrates significant underestimations. The annual precipitation BIAS is -
19%,  and  seasonal  BIAS  ranges  from  -11.97%  in  SON  to  -38.27%  in  JJA.  The  errors  are  also 
substantially larger, with annual MAE and RMSE at 142.51 mm and 147.02 mm, respectively. Seasonal 
MAE and RMSE values are consistently higher than those of CLIMADAT-GRid, particularly during 
DJF, MAM and SON . Additionally, CHELSA's KGE values are lower across all seasons, with a peak of 
0.82  in  SON and  a  low of  0.65  in  JJA,  indicating  comparatively  reduced  reliability  in  capturing 
observed precipitation patterns.



Regarding the number of wet days (RR1, Fig. 13 and Figure S4 of the Supplementary Material), both 
datasets  demonstrate  a  systematic  overestimation  relative  to  the  observed  spatial  means.  For 
CLIMADAT-GRid a positive BIAS of about 49 days/year is shown, while for CHELSA the bias reaches 
about  31  days/year.  MAE  and  RMSE  for  CLIMADAT-GRid  are  about  49  and  50  days/year, 
respectively, with a negative KGE of -0.51, indicating poor agreement with observations despite its 
more pronounced orographic pattern. CHELSA performs somewhat better in this respect, with a lower  
MAE (31 days/year), RMSE (31 days/year), and a positive KGE of 0.31. This highly positive bias in the 
number  of  wet  days  has  also  been  found  in  other  gridded  products  (e.g.,  IBERIA01),  and  it  is  a 
byproduct of the selected interpolation methods. One way to reduce the inflated number of wet days is  
to  introduce  a  third  term  in  the  interpolation  scheme  of  precipitation  by  interpolating  the  daily 
occurrence of rainfall (0 or 1 depending on whether PR > 0.1 mm) considering a threshold between 0.1 
and 0.9 for assigning a wet day to a grid point (Cornes et. al., 2018; Varotsos et al., 2023a). For instance, 
if  we  assign  a  value  of  0.2  for  the  wet  days  and  multiply  the  interpolated  fields  with  the  daily  
precipitation product the average number of wet days is reduced to 90 days/year with however increased 
underestimation in the annual and seasonal precipitation sums (not shown). For future studies utilizing 
the  CLIMADAT-GRid  precipitation  dataset,  a  threshold  of  2  mm/day  could  be  considered  when 
analyzing the number of wet days.

In terms of the number of days with daily precipitation equal to or greater than 10 mm (RR10, Fig. 13,  
Fig. S4 of the Supplementary Material), the two datasets display similar spatial distributions, with both  
indicating the highest frequencies in western Greece and the lowest in the east. However, CLIMADAT-
GRid performs better quantitatively, with a mean annual R10mm of 23 days and a bias of about -3 
days/year,  compared  to  CHELSA’s  19  days/year  and  a  larger  negative  bias  of  about  -7  days/year. 
Additionally,  CLIMADAT-GRid  exhibits  lower  MAE  and  RMSE  (3  days/year  for  both  metrics, 
respectively),  along  with  a  higher  KGE  of  0.86,  indicating  close  agreement  with  observations. 
CHELSA, in contrast, yields a higher MAE, RMSE (7 days/year for both metrics, respectively), and a  
lower KGE of 0.73, reinforcing the overall tendency of CLIMADAT-GRid to more accurately represent 
moderate-to-heavy precipitation events.”

8) Finally, the conclusions chapter effectively fulfills its intended role, although it does not provide 
commentary on an essential aspect of the work regarding the various geostatistical and machine 
learning  techniques  employed  in  developing  the  temperature  and precipitation  datasets.  This 
oversight may be attributed to the insufficient detail in the preceding chapters. Incorporating 
these elements, whether in the methodology or the conclusions, would substantially enhance the 
manuscript's value. Nonetheless, it is essential to underscore that the analyses provided are devoid 
of any fallacies or significant flaws and, in any case, compromise the integrity of the study. It is 
simply a matter of refinement.

Answer:



Following the reviewer’s suggestion the following lines have been added in the Conclusions section:

“To produce the gridded fields, we evaluated four interpolation methods,  Fixed Rank Kriging (FRK), 
Generalized  Additive  Models  (GAM),  Support  Vector  Machines  (SVM),  and  K-Nearest  Neighbors 
(KNN),  using  independent  station  data  for  validation.  FRK emerged  as  the  most  reliable  method, 
demonstrating consistent performance across variables and time scales, particularly for precipitation. It 
also best captured spatial patterns, especially over the complex terrain of Greece. For temperatures, 
SVM and KNN performed well for maximum temperatures, while FRK was more consistent for mean 
and  minimum  temperatures.  FRK  was  ultimately  chosen  as  the  method  for  constructing  the 
CLIMADAT-Grid.”

Given the innovative approach and the potential contributions to regional climate, I recommend 
acceptance upon a comprehensive review of major comments. The paper presents a high-quality, 
methodologically  sound dataset  likely  to  be  of  great  use  in  regional  climate  research,  impact 
modelling, and policy work in Greece. The authors must tackle the previously mentioned concerns 
to enhance their transparency, reproducibility, and broader significance. Addressing these issues 
will fortify the manuscript and increase its contribution to the scientific community.

Answer:

We thank  the  reviewer  for  their  positive  evaluation  and  constructive  feedback.  We have  carefully 
addressed all issues raised, improving the manuscript’s transparency, reproducibility, and overall clarity. 

MINOR COMMENTS
L23, L26  CHELSA still CHELSA-W5E5 up to this point.

Corrected

L31 The phrase “… are becoming…” requires modification. This citation originates from 2012. 
Currently, it represents a prevailing reality.

Modified

L32-33 Add a comma in “(Herrera et al. 2012)”.

Corrected

L55 Remove the E-OBS citation that was previously introduced in L41.

Corrected

L63 Citation missing for “MeteoSerbia1km”.



Corrected

L73 The acronym "CLIMADAT-GRid" is used without prior definition. Please define it upon first 
use.

CLIMADAT-GRid is a designated name and not an acronym

Fig  1  Figures  1 and  2 are  redundant;  only  Figure  2 is  sufficient  if  it  replaces  Figure  1. 
Furthermore, the blue colouration on terrain elevation maps is typically attributed to regions 
situated below the mean sea level (h<0).  Consequently,  it  is  advisable to redefine the scale to 
initiate with green tones.

Following the reviewer’s suggestion, the following figure has been added in the revised manuscript 
which replaces Figures 1 and 2 of the first version of the manuscript. 

Figure 1. Locations of meteorological stations used for (a) temperature and (b) precipitation measurements, including both 
the stations used in the interpolation and the withheld stations used for evaluation. The background shows elevation data 
from the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010).

L120 Citing Skamarock et al. (2019) may be sufficient.

The reviewer’s suggestion has been implemented.

L136 Remove the term “approximately” once ERA5 has a precise horizontal resolution of 0.25º. In 
this case, the approximation regards the resolution in km, which varies from 25 to 31 km, roughly 
estimated at 28 km.

The reviewer’s suggestion has been implemented.



L137  Following  the  standard  presented  in  the  manuscript,  replace  “USGS  (United  States 
Geological Survey) (Slater et al., 2011)” with “United States Geological Survey (USGS, Slater et al., 
2011)”.

The reviewer’s suggestion has been implemented.

L137 Following the standard presented in the manuscript,  replace “CORINE (Coordination of 
Information  on  the  Environment)  database  (2010)”  with  “Coordination  of  Information  on  the 
Environment  (CORINE,  CLMS  2018)”  if  the  authors  have  used  the  latest  version 
(https://doi.org/10.2909/960998c1-1870-4e82-8051-6485205ebbac).  Additionally, this citation may 
be included in the references.

The reviewer’s suggestion has been implemented.

L153 The acronym "GMTED2010" is used without prior definition. Please define it upon first use 
(Figure’s caption doesn’t count).

The reviewers’ suggestion has been implemented.

L202 Remove the comma in “Papa and Koutroulis (2025,)”.

The reviewers’ suggestion has been implemented.

L205 Replace  “Climate  Change  Detection  and  Indices  (ETCCDI)  (Zhang  et  al.  2011).”  with 
“Climate Change Detection and Indices (ETCCDI, Zhang et al., 2011).”.

The reviewers’ suggestion has been implemented.

Fig 2 In addition to the aforementioned comments regarding Figure 1, it is advisable to change the 
colour used for the markers on the evaluation stations, as they tend to blend with the background.

The reviewers’ suggestion has been implemented.

L217 Replace “The values of the root mean square error (RMSE), the mean absolute error (MAE) 
and the KGEs…” with “The values of RMSE, MAE and the KGEs…”, once they were defined 
previously.

The reviewers’ suggestion has been implemented.

Fig 8,9,11  Since the objective of these figures is to compare the temperature and precipitation 
fields  of  two different  datasets,  wouldn't  it  be  better to  present  the  difference  between them 
instead of the entire fields? This way, the differences pointed out by the authors would be clearer. 
Furthermore, it would enable the presentation of TN, TG, and TX in the same figure without 
losing quality. That is, Figures 8 and  9 would be merged, with the addition of TG, which was 
omitted without explanation.



We have retained the original structure for presenting the comparison between the two datasets in the 
revised manuscript. This approach not only facilitates the comparison itself but also serves to illustrate 
how temperature and precipitation fields are distributed across the complex terrain of Greece, which is a  
key  objective  of  the  study.  However,  to  address  the  reviewer’s  concern,  we  have  included  the 
differences between the two datasets for the annual and seasonal means, as well as for the climate 
indices, in the  Supplementary Material. Additionally, a new figure related to TG (new Figure 9) has 
been  incorporated  and  discussed  in  the  revised  manuscript.  Please  also  refer  to  our  response  to 
Comment 7 in the list of major comments for further clarification.

General The  recursive  use  of  “hereafter”  is  inappropriate  in  most  instances.  Typically,  this 
expression  is  employed  to  redefine  a  name  or  acronym.  Only  in  L199 does  it  appear to  be 
correctly utilised to redefine the acronym CHELSA-W5E5 as CHELSA.

The reviewers’ suggestion has been implemented.

General In the scientific literature on climate and meteorology, the prevailing terminology for the 
temporal aggregation of precipitation over a day is “daily accumulated precipitation” or simply 
“daily precipitation”. Although the procedure is referred to as the precipitation sum, its use can 
lead to different interpretations.

The reviewers’ suggestion has been implemented. Daily precipitation is used in the revised manuscript.



Figure 8. Average annual and seasonal TX (winter (DJF), spring (MAM), summer (JJA) and autumn (SON)) for the period 
1981–2016 for CLIMADAT-GRid (left column) and CHELSA (right column). In each panel, M denotes the spatial average 



over the grid points covering the area. In addition, the evaluation metrics between the stations and the data for the closest  
grid points to the stations locations are shown within each panel.

Figure 9. Average annual and seasonal TG (winter (DJF), spring (MAM), summer (JJA) and autumn (SON)) for the period  
1981–2016 for CLIMADAT-GRid (left column) and CHELSA (right column). In each panel, M denotes the spatial average 



over the grid points covering the area. In addition, the evaluation metrics between the stations and the data for the closest  
grid points to the stations locations are shown within each panel.

Figure 10. Average annual and seasonal TN (winter (DJF), spring (MAM), summer (JJA) and autumn (SON)) for the period  
1981–2016 for CLIMADAT-GRid (left column) and CHELSA (right column). In each panel, M denotes the spatial average 



over the grid points covering the area. In addition, the evaluation metrics between the stations and the data for the closest  
grid points to the stations locations are shown within each panel.

Figure 11. Average annual number of days TX > 25°C (SU), number of days TX > 35°C (SU35) and number of days TN > 
20°C (TR) for the period 1981–2016 for CLIMADAT-GRid (left column) and CHELSA (right column). In each panel, M  
denotes the spatial average over the grid points covering the area. In addition, the evaluation metrics between the stations 
and the data for the closest grid points to the stations locations are shown within each panel.



Figure 12. Total annual and seasonal PR (winter (DJF), spring (MAM), summer (JJA) and autumn (SON)) for the period  
1981–2016 for CLIMADAT-GRid (left column) and CHELSA (right column). In each panel, M denotes the spatial average 



over the grid points covering the area. In addition, the evaluation metrics between the stations and the data for the closest  
grid points to the stations locations are shown within each panel.

Figure 13. Average annual number of days PR > 1 mm (RR1) and number of days PR >= 10mm (R10mm) for the period 
1981–2016 for CLIMADAT-GRid (left column) and CHELSA (right column).  In each panel, M denotes the spatial average 
over the grid points covering the area. In addition, the evaluation metrics between the stations and the data for the closest  
grid points to the stations locations are shown within each panel.



Supplementary material figures

Fig S1. Average annual and Seasonal differences for TX, TG and TN between CLIMADATGRid and CHELSA for the period 
1981-2016.



Fig S2. Average annual differences for SU, SU35 and TR between CLIMADATGRid and CHELSA for the period 1981-2016.



Fig S3. Average annual and seasonal relative differences in precipitation between CLIMADAT-Grid and CHELSA for the 
period 1981–2016.



Fig S4. Average annual differences for RR1 and RR10 between CLIMADATGRid and CHELSA for the period 1981-2016.
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