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Abstract.

Ocean deoxygenation, driven by climate change, poses significant challenges to marine ecosystems and can profoundly alter

nutrient and carbon cycling. Quantifying the rate and regional patterns of deoxygenation relies on spatio-temporal interpolation

tools to fill gaps in observational coverage of dissolved oxygen. However, this task is challenging due to the sparsity of

observations, and classical interpolation methods often lead to high uncertainty and biases, typically underestimating long-5

term deoxygenation trends. In this work, we develop a novel gridded dissolved oxygen product by integrating direct oxygen

observations with machine-learning-based emulated oxygen estimates derived from temperature and salinity profiles. The

gridded product is then generated through optimal interpolation of both the observed and emulated data. The resulting product

shows strong agreement with baseline climatology and captures well-known patterns of seasonal variability and long-term

deoxygenation trends. It also outperforms current state-of-the-art products by more accurately capturing dissolved oxygen10

variability at synoptic and decadal scales, and by reducing uncertainty around long-term changes. This study highlights the

potential of combining machine learning with classical interpolation methods to generate improved gridded biogeochemical

products, enhancing our ability to study and understand ocean biogeochemical processes and their variability under a changing

climate.

1 Introduction15

The global oxygen content of the ocean has been declining over recent decades Ito et al. (2017); Schmidtko et al. (2017) and

is projected to continue decreasing throughout the current century Bopp et al. (2013); Kwiatkowski et al. (2020), leading to

detrimental consequences for marine organisms Rabalais et al. (2002); Vaquer-Sunyer and Duarte (2008); Laffoley and Baxter

(2019) and profound changes in biogeochemical cycles Codispoti et al. (2001). These changes can affect the ocean’s emissions

and uptake of greenhouse gases, thereby influencing Earth’s climate Gruber (2008); Keeling et al. (2010); Lachkar et al. (2024).20

Recent estimates of the global decline in oceanic oxygen range from 0.5% to 3.3 % relative to the climatology for the period

1970–2010 Schmidtko et al. (2017). However, these estimates are subject to significant uncertainty, particularly in data-sparse
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regions. A major source of uncertainty in assessing and understanding ocean deoxygenation is the limited spatial and temporal

coverage of dissolved oxygen observations.

Despite advances in autonomous profiling floats, underwater vehicles, and large-scale ocean sensing programs such as25

ARGO, dissolved oxygen observations remain insufficient to accurately estimate deoxygenation rates at both global and re-

gional scales Gruber et al. (2010); Claustre et al. (2020). Large regions, particularly in the South Pacific and Indian Ocean,

remain undersampled Hermes et al. (2019); Grégoire et al. (2021). In this context, assessing global and regional trends in

ocean oxygen content requires developing interpolation methods that map available data onto a regular space-time grid. Grid-

ded oxygen products also play a crucial role in validating ocean models, including both global models used in Earth System30

Models (ESMs) and regional models necessary for projecting the impact of climate change on oxygen at regional scales. How-

ever, as highlighted in Ito et al. (2024b), standard interpolation techniques commonly used to generate these products tend to

underestimate oxygen trends in data-sparse regions, leading to a potential underestimation of global ocean deoxygenation.

Recently, various studies have demonstrated that machine learning (ML) techniques can outperform classical state-of-the-

art methods in geosciences for applications such as forecasting Lam et al. (2023); Bi et al. (2023), simulation Nguyen et al.35

(2023); Dheeshjith et al. (2024); Ouala et al. (2023), and data assimilation Cheng et al. (2023). From a modeling perspective,

ML techniques have been successfully used to emulate ocean models at both short Wang et al. (2024); Aouni et al. (2024) and

long timescales Dheeshjith et al. (2024). Additionally, ML models show promise in developing data-driven, automated tuning

methods for ESMs Ouala et al. (2024); Kochkov et al. (2024), where gridded oxygen products serve as valuable references

for model calibration Sharp et al. (2022); Ito et al. (2024a). ML has also been applied to produce gridded products of ocean40

variables from partial and noisy ocean observations Martin et al. (2023, 2024). In this context, recent studies Sharp et al.

(2022); Ito et al. (2024a) have begun exploring ML-based approaches for generating gridded ocean oxygen products. While

these studies highlight the potential of ML-based emulators in generating gridded oxygen products, they typically rely on

existing gridded temperature and salinity datasets. For instance, Sharp et al. (2022) derived oxygen fields from the (Roemmich

and Gilson, 2009) (RG09) Argo Climatology, which inherently restricts its applicability to the ARGO era, limiting its use for45

long-term climate trend analysis. Similarly, Ito et al. (2024a) emulated oxygen using monthly gridded temperature and salinity

datasets, obtained from the Hadley Center EN version 4 Good et al. (2013), extending the temporal coverage at the cost of

excluding marginal seas. Moreover, interpolation errors inherent to these products can bias ML-based emulators and degrade

the quality of the data they are trained on, particularly in data-sparse regions.

Here, we propose a novel method to generate a gridded oxygen concentration product covering the period from 1965 to 2022,50

using observed ocean oxygen data and emulated profiles derived from temperature and salinity measurements. Specifically,

we expand the available oxygen observations by training a neural network emulator to predict oxygen concentrations from

temperature and salinity profiles. After a quality control process for the emulated profiles, we apply optimal interpolation (OI)

to combine the real and emulated data into a unified gridded product. This approach offers several advantages over traditional

interpolation methods and recent ML-based techniques, including: (i) an increased density of observations, (ii) a stand-alone55

data product that is independent of existing interpolated products, and (iii) a flexible temporal and spatial resolution that can be

adjusted based on the density of available observations. The resulting product Ouala et al. (2025) demonstrates good agreement
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with expected spatial and temporal variability of dissolved oxygen, particulalry regarding global deoxygenation rates. It also

exhibits improved performance over current state-of-the-art products in better resolving dissolved oxygen variability at synoptic

scales of the order of O(103)km and in reproducing the climatological seasonal cycle near the ocean surface. Interestingly,60

when compared to classical optimal interpolation of direct dissolved oxygen measurements, our product better resolves decadal

variability and significantly reduces the uncertainty of the reconstructed field, particularly in data-sparse regions, where direct

measurements of dissolved oxygen are lacking.

2 Materials and Methods

We construct a gridded dissolved oxygen concentration product by combining dissolved oxygen observations with emulated65

estimates derived from temperature and salinity profiles. The process involves:

– Building quality-controlled datasets: The quality control (QC) is based on both World Ocean Database (WOD) flags

and additional relevant QC criteria inspired by the work of Schmidtko et al. (2017).

– Neural Network Emulation: A neural network is trained to emulate oxygen profiles from temperature and salinity

measurements.70

– Optimal Interpolation: Observed and emulated data are combined using OI to produce the final gridded product.

Each of these steps is detailed in the following sections.

2.1 Data

The data used in this study was obtained from WOD, the largest publicly available collection of uniformly formatted, quality-

controlled ocean profile data. We use dissolved oxygen (DO), temperature (T), and salinity (S) data sourced from various75

platforms and institutions (refer to Tables B1 and B2 in the SI Appendix B for a detailed description of data sources).

Standard QC from WOD is applied to the T, S, and DO profiles, retaining only observations flagged as accepted values with

flag 0. Furthermore, additional QC is implemented for the oxygen data following the methodology outlined in Schmidtko et al.

(2017). Specifically, oxygen profiles with a maximum-minimum difference of less than 5 µmol/kg and those with differences

of less than 0.5 µmol/kg across 18 depth levels were excluded. Furthermore, profiles with surface oxygen concentrations80

below 100 µmol/kg were removed. Additional quality control steps targeted supersaturation anomalies. Specifically, profiles

exhibiting supersaturation at depths exceeding 200 m with supersaturation levels above 115% were discarded. Additionally,

profiles with surface oxygen concentrations below 90% of the expected saturation level were excluded.

We constructed two distinct datasets: one for training the ML model and another for generating the gridded DO product.

The dataset used to train the ML model consists of collocated pairs of T, S and (DO) data from 1965 to 2022. The dataset was85

split into training and validation datasets. The training dataset consists of 80 % of the total data, while the validation dataset

accounts for the remaining 20%. The validation dataset consists of 23 independent 1◦× 1◦ test regions distributed across all
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major ocean basins. The location of these test regions, along with the evaluation of the ML-based emulator, are provided in

Figure 2. The dataset used to generate the gridded DO product consists of DO data from the preprocessed WOD profiles and

emulated DO samples generated by the neural network. To ensure that the emulated DO samples used in the interpolation of90

the final gridded product fall within the observed range of ocean oxygen variability, the emulated DO data undergo a final QC

check, as described in Section 2.3.

2.2 Machine learning algorithm training and validation

2.2.1 Model architecture

The machine learning model used to emulate DO data is a Multilayer Perception (MLP) model. This model was used in95

various studies to predict ocean biogeochemical variables, including nutrient concentrations and carbonate system parameters

both globally Sauzède et al. (2017) and in regional configurations Fourrier et al. (2020). It was also applied to construct gridded

oxygen datasets based on interpolated temperature and salinity products Sharp et al. (2022); Ito et al. (2024a).

Following the approach of Sauzède et al. (2017), the input of the neural network consists of water temperature (T), salinity

(S), Dissolved oxygen saturation (DOS), latitude (LAT), longitude (LON) and month of the year (MOY). The periodicity of100

LON and MOY were accounted using a sinusoidal encoding of these variables. For additional details on the hyperparameters

of the model, the training algorithm and the evaluation metrics, please refer to the SI appendix A.

2.2.2 Performance of the ML model

We use independent test regions to evaluate the ability of the trained neural network model to emulate dissolved oxygen

concentrations. The scatter plot of the predicted vs true oxygen values highlighted in Fig. 1 shows that the trained model is105

able to accurately predict dissolved oxygen concentration with a root mean squared error RMSE = 12.13µmol/kg and a

correlation coefficient R2 = 0.98.

An analysis of the average vertical profiles based on observations and as emulated by the ML model indicates that the model

aligns well with the observed profile distribution and successfully captures dissolved oxygen variability in all independent test

regions (Figure 2). In particular, the model accurately predicts low oxygen concentrations associated with Oxygen Minimum110

Zones (OMZs), as well as the vertical and spatial variability of oxygen in test regions located far from OMZs.

To identify potential trends and biases in the neural network model, we further evaluate the distribution of the difference

between the emulated oxygen values and the observations in the independent test regions, as shown in Figure 3. Overall, the

boxplots indicate that the model accurately captures the variability of ocean oxygen across both space and time. Notably, larger

errors are observed in the upper ocean layers, which correspond to higher oxygen concentrations. Additionally, higher errors115

are seen in the earlier years, likely due to the limited number of observations during this period.
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Figure 1. Scatter plot of the emulated oxygen data with respect to the ground truth measurements. The plot includes emulated oxygen

values across all depths and within all independent test regions.

2.3 Validation of oxygen data emulated by machine learning

The trained ML model can generate outliers, particularly when emulating oxygen data based on temperature and salinity

measurements at locations that were not represented in the training data. This phenomenon, known as out-of-distribution

sampling in the ML community, can result in biases in the final interpolated product, especially in regions with a high density120

of emulated data but few or no actual ocean oxygen observations.

To address this issue, we design a QC framework to validate the emulated oxygen data before incorporation into the global

interpolation. The primary goal of this framework is to exclude anomalous emulated oxygen data while minimizing the re-

jection of valid data. The QC framework begins by computing validity thresholds, derived from historical dissolved oxygen

measurements. These thresholds represent the minimum (min) and maximum (max) observed values, calculated for each loca-125

tion and depth of the interpolation grid. They reflect the natural variability of oxygen in the ocean and serve as a baseline for

identifying potential outliers (please refer to Figure C1 in the SI Appendix C for an illustration of these min/max filters.)

The computation of these min-max fields is based on a dynamic binning of the observations in the interpolation grid, where

the measurements used to compute the min-max statistics of each grid cell can include neighboring grid cells until a sufficient

number of 15 observations is collected. The observations are also aggregated within a ±5-year window around the target year.130

This temporal aggregation helps increasing the number of observation points in data-poor regions and reduces the impact of

short-term anomalies while capturing broader trends in oxygen variability.

Emulated oxygen values are validated by comparing them with the established thresholds for their specific location, depth,

and time. Values falling outside the range defined by the min and max thresholds are flagged as outliers and excluded from the

interpolation.135
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Figure 2. Mean emulated oxygen profiles compared to the empirical distribution of observed oxygen profiles in the independent test

regions. The mean emulated profile (orange) against the empirical distribution of observed dissolved oxygen profiles (blue line and shading)

in the independent 1◦× 1◦ test regions. The longitude and latitude of each of the 23 test regions are indicated in the corresponding panels.

The locations of the test regions are also shown in the bottom-right corner of the figure.

2.4 Optimal Interpolation

2.4.1 General description

Quality-controlled dissolved oxygen data and emulated data are binned into a global 1◦× 1◦ horizontal grid with 65 standard

WOD depth levels ranging from 0 m to 2000 m. These binned data are interpolated using standard Optimal Interpolation (OI)

to produce an analysis field of dissolved ocean oxygen and its corresponding uncertainty.140
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Figure 3. Box plots of the differences between emulated and observed oxygen concentrations in the independent test regions. The box

plots are binned based on depth, year, longitude and latitude. The intensity of the shading in each box refers to the number of data points. For

each box, the negative and positive whiskers represent the Q1–1.5*IQR and Q3 + 1.5*IQR, respectively, where Q1 is the 0.25 quantile, Q3

the 0.75 quantile, and IQR the inter-quantile range. The width of each box represents the IQR and the middle line the median of the values.

The OI method combines a background information with observations to derive the analysis state as follows:

xa = xb +K(y−Hxb) (1a)

Σa = Σb −KHΣb (1b)

where xa is the analyzed field, Σa is the covariance of the analysis, xb is the background field, Σb is the covariance of the

background field, y are the binned observations, and H is the observation operator. The Kalman gain K is computed as:145

K = ΣbH⊤(
HΣbH⊤+Σo

)−1
, (2)

where Σo are the background and observation error covariance matrices, respectively.

2.4.2 Background and observation error covariances

For convenience, we drop the dependence of the Kalman Gain matrix on the observation model by introducing the data-grid

and the data-data covariance matrices Σxy and Σyy respectively which are defined as follows:150

Σxy = ΣbH⊤ (3a)

Σyy = HΣbH⊤ (3b)
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In this work, the covariance matrices Σxy and Σyy are built using the same isotropic Gaussian prior as follows:

Σx· = σ2
bexp(−Lm,n

2Lh
) (4)

where σ2
b is the total variance of the background field and Lm,n is the distance between two grid points m and n. Lh is the155

e-folding horizontal length scale. In this work, we set Lh to 1000 km for the interpolation of the yearly product between 1965

and 2022, and we set Lh to 300 km for the interpolation of the monthly product between 2005 and 2022.

The background covariance matrix is assumed to be diagonal and is computed from the variance of the binned observations.

2.4.3 Observation Error Covariance Matrix

The observation error covariance matrix Σo is assumed to be diagonal. Each diagonal element (Σo)n,n represents the variance160

of the binned observations at grid point n. This variance is derived from the following sources of uncertainty:

Gridding Uncertainty (σ2
g): This component arises from approximating the oxygen distribution at each grid cell using the

empirical distribution based on the observed and emulated samples.

Measurement Uncertainty (σ2
m): This source of uncertainty is attributed to each dissolved oxygen measurement. It is

estimated, following the methodology described in Sharp et al. (2022), as 3% of the gridded oxygen measurements.165

Emulation Uncertainty (σ2
e ): This uncertainty arises from the emulated oxygen data. As discussed in section 2.2.2, the

gridded emulated oxygen measurements align with gridded oxygen data. In this context, the uncertainty estimate of the em-

ulated oxygen data is computed similarly to the dissolved oxygen measurements, with a slight increase to 4% of the gridded

emulated oxygen measurements.

The total variance at grid point n is computed, assuming independence, as:170

(Σo)n,n = σ2
g,n + σ2

m,n + σ2
e,n, (5)

2.4.4 Data aggregation

The observed and emulated oxygen data are aggregated over a time window based on the product’s resolution. For the yearly

(respectively, monthly) product, each grid cell at year (respectively, month) t includes data from t±2 years (respectively, t±2

months).175

3 Results

We analyze the variability of dissolved oxygen in our gridded oxygen product and compare it with that based on the World

Ocean Atlas 23 (WOA 23) and other existing ML-based products Sharp et al. (2022); Ito et al. (2024a). Specifically, we

examine the annual-mean climatology, as well as the seasonal and long-term variability, and contrast our findings with those

from these reference datasets.180
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Figure 4. Spatial distribution of dissolved oxygen concentration in our product compared to WOA23. The first row shows the climatolog-

ical annual-mean dissolved oxygen concentration at 200 m depth. Dashed black lines represent the locations of the meridional cross sections

from the surface to 1500 m. The remaining three rows display oxygen along meridional cross-sections in the Pacific (-179 ◦E), Indian (65
◦E), and Atlantic (-25 ◦E) basins in WOA23 (left) and our product (right).

3.1 Annual mean climatology

We first compare the spatial distribution of dissolved oxygen in our product to the WOA23 baseline (Figure 4). The horizontal

variability of oxygen at a depth of 200 m closely matches the spatial distribution of oxygen concentrations in the WOA23

product, showing strong agreement in the location and intensity of oxygen minimum zones, as well as the high oxygen con-

centrations at higher latitudes. Similarly, the vertical distribution in the Atlantic, Indian, and Pacific basins aligns well with185

WOA23, accurately capturing vertical oxygen gradients and the depth and intensity of oxygen minimum zones.

Beyond the climatological spatial distribution, we assess the spatial resolution of the proposed DO product relative to state-

of-the-art machine learning-based gridded datasets. Figure 5 presents an example of the DO anomaly field in the equatorial

Pacific (-179◦E to -100◦E, 30◦S to 30◦N) alongside the vertically and monthly averaged Radially Averaged Power Spectral

Density (RAPSD) of our product, compared with GOBAI-O2 and Ito et al. (2024). This region is characterized by energetic190

synoptic-scale variability Chelton et al. (2007), and we evaluate whether our product better captures these processes. The
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RAPSD indicates 100-200% higher energy levels at wavelengths around O(103) km, compared to the ML baselines, suggesting

an improved representation of small-scale variability. This is further illustrated through the visual analysis of the anomaly field

in Figure 5, where our product better resolves finer synoptic-scale structures on the order of O(103) km, revealing more

energetic small-scale eddies than the other ML-based products.195

Figure 5. Snapshot of oxygen monthly anomalies in the equatorial Pacific. Snapshot of the anomaly of the gridded product in the equatorial

Pacific region (-179◦E to -100◦E, 30◦S to 30◦N) in July 2015 compared to the GOBAI-O2 and Ito et al. (2024a)’s ML baselines. The upper

row displays a horizontal section at 200 m depth. The bottom panel shows the distribution of the vertically and monthly averaged RAPSD

computed in the equatorial Pacific region.

3.2 Seasonal variability

We also compare the climatological seasonal cycle of oxygen in our product across both hemispheres with that from WOA23

and previous ML-based products, including the GOBAI-O2 product Sharp et al. (2022) and the Ito et al. (2024) product Ito

et al. (2024a) (Figure 6). Overall, the seasonal oxygen cycle in our product closely aligns with WOA23 and previous ML-based

estimates. As expected, oxygen seasonality is more pronounced in the upper ocean, reflecting the strong seasonal variability in200

temperature (Figure 6 and Table 1). Indeed, when compared to other state-of-the-art ML-based models, namely GOBAI-O2 and

Ito et al. (2024), our product shows a stronger correlation between upper-ocean oxygen seasonality and temperature variability,

particularly in the Southern Hemisphere. This relationship is more pronounced relative to previous ML-based products (Table

1).
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Region Dataset Correlation Coefficient

Northern hemisphere

Our Product -0.842

WOA23 -0.778

Ito et al., 2024 -0.476

GOBAI-O2 -0.852

Southern hemisphere

Our Product -0.935

WOA23 -0.756

Ito et al., 2024 -0.835

GOBAI-O2 -0.890
Table 1. Correlation coefficients between the seasonal anomalies of oxygen and temperature in the upper ocean. Correlation coefficients

are computed for the upper 100m with respect to seasonal anomalies in temperature and oxygen in both the Northern and Southern hemi-

spheres.

(100-600m)

WOA23

(0-100m)

(100-600m)

(0-100m)

Figure 6. Climatological seasonal cycle in dissolved oxygen in our product compared to WOA23 and previous ML-based models. The

seasonal cycle of dissolved oxygen in our product is shown for the upper 100 m (dark blue) and the 100–600 m subsurface layer (light

blue) in the Southern (left) and Northern (right) Hemispheres. Shaded envelopes represent the uncertainty range around the seasonal means.

For comparison, the seasonal oxygen cycles from WOA23 (orange) and previously published ML-based reconstructions by Ito et al. (2024)

(green) and GOBAI-O2 (purple) are also displayed. Additionally, the seasonal cycle of temperature in the upper 100 m from WOA23 is

shown in red.

3.3 Long-term oxygen changes and comparison with previous estimates205

We analyze long-term changes in ocean oxygen levels using our product and compare them to estimates from ML-based

reconstructions by GOBAI-O2 and Ito et al. (2024) (Figure 7). To ensure a consistent comparison, we use a common ocean

volume across all three products, excluding regions absent in previously published ML datasets. These include marginal seas
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(not included in Ito et al., 2024) and the Arctic (>80°N) and Antarctic (<80°S) oceans (not included in GOBAI-O2). Oxygen

content computed based on the entire ocean volume of the proposed product (including marginal seas and polar regions) are210

depicted in Figure C5 in SI Appendix C.

Our analysis reveals a deoxygenation rate of approximately −438.37± 52.19 Tmol/decade in the upper 1000 m over the

period 1965–2022, which closely aligns with the −452.79 Tmol/decade reported by Ito et al. (2024) for the same layer and a

similar time span. When extending the analysis to the upper 2000 m, the deoxygenation rate increases to −685.53± 113.25

Tmol/decade.215

Over the past two decades (2004–2022), our product suggests a slower deoxygenation rate, estimated at −296.54± 111.37

Tmol/decade in the upper 1000 m and−403.73±193.85 Tmol/decade in the upper 2000 m. These values are more conservative

than those from GOBAI-O2, which reports −384.48 Tmol/decade and −720.99 Tmol/decade for the same depth ranges and

time period. When including marginal seas and polar regions, our estimated deoxygenation rates for the full 1965–2022 period

increase to−582.40±80.63 Tmol/decade in the upper 1200 m and−803.36±147.20 Tmol/decade in the upper 2000 m (Figure220

C5 in SI Appendix C).

We also compare our deoxygenation estimates with previous results based on traditional mapping techniques. In the upper

2000 m, our estimated deoxygenation rate is comparable to the −960.4± 409.1 Tmol/decade reported by Schmidtko et al.

(2017) Schmidtko et al. (2017) for the period 1965–2010. However, when considering only the upper 1200 m, our estimate

suggests a significantly faster deoxygenation rate than Schmidtko et al.’s estimate of −257.5± 185.1 Tmol/decade over the225

same period.

Nonetheless, our results exhibit better agreement with Schmidtko et al. (2017) when analyzed over the same time span

(1965–2010), yielding a deoxygenation rate of −478.06± 125.51 Tmol/decade in the upper 1200 m and −644.12± 227.64

Tmol/decade in the upper 2000 m.

Additionally, we compare our results with estimates from Ito (2022), which were derived using optimal interpolation. Our230

findings indicate a substantially faster deoxygenation trend. Specifically, we estimate a rate of −340.84±151.27 Tmol/decade

in the upper 700 m and −763.11± 184.74 Tmol/decade in the upper 2000 m, whereas Ito et al. (2022) reported significantly

lower rates of−100 Tmol/decade in the upper 700 m and−327±45.99 Tmol/decade in the upper 2000 m. It is well established

that the estimates from Ito et al. (2022) tend to be lower compared to other state-of-the-art studies Ito (2022). Recent research

has shown that optimal interpolation methods can introduce biases, particularly underestimating deoxygenation in regions with235

sparse observational data Ito et al. (2024b). In this context, our methodology mitigates such biases by increasing the density of

dissolved oxygen data through the incorporation of ML-emulated oxygen estimates.

Finally, it is worth noting that our product reveals much stronger decadal and inter-decadal variability in the rate of deoxy-

genation compared to previous ML-based reconstructions (Figure 7). The influence of decadal climate variability in modulating

regional and global deoxygenation is well established Oschlies et al. (2018). For instance, the rate of deoxygenation in our prod-240

uct from 1980 to the early 2000s was substantially higher than during the 1960s and 1970s, as well as over the past two decades.

These variations—largely absent in earlier ML-based reconstructions—are consistent with model-based studies suggesting that

major climate variability modes, such as the Pacific Decadal Oscillation (PDO), strongly influence global oxygen content. For
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example, Poupon et al. (2023) show that deoxygenation is favored during positive phases of the PDO (such as in the 1980s and

1990s), whereas negative PDO phases—dominant in the 1960s, 1970s, and over the past two decades—enhance oxygenation245

in the tropical Pacific, thereby weakening climate change–driven deoxygenation.

Our Product
GOBAI-O2

Trend line 

Trend line 

Our Product
GOBAI-O2
Ito et al., 2024

0-2000m0-1000m

Figure 7. Long-term changes in globally integrated oxygen inventory in our product and other ML-based products. The left panel shows

the inventory for the upper 1000 m, while the right panel displays the inventory for the upper 2000 m. The histograms in each panel represent

the empirical distribution of the deoxygenation rate, computed from a Monte Carlo simulation with 10,000 realizations. For comparison,

changes in oxygen inventories based on previously published ML-based reconstructions by Ito et al. (2024) (green) and GOBAI-O2 (purple)

are also displayed.

3.4 Uncertainty estimates

We analyze the uncertainty fields associated with the proposed gridded product. The uncertainty is quantified by the covariance

matrix Σa of the reconstructed field. As described in Section 2.4, Σa is a diagonal matrix, representing the variance at each

grid point. This covariance is sensitive to the density of observational coverage and it decreases as data availability increases.250

Our methodology substantially expands the effective observational network by emulating dissolved oxygen (DO) profiles

from measured temperature and salinity data (Figure 8a). This enhanced data coverage leads to a significant reduction in the un-

certainty of the reconstructed field relative to an optimal interpolation based solely on direct DO observations (Figure 8a). The

improvement is particularly evident after 2000, which corresponds to the deployment of the Argo program, which significantly

improved the global coverage of T/S measurements used here to emulate oxygen data.255

This improvement is further evidenced by comparing the optimal interpolation standard deviation when using only the

direct observations versus when including the emulated profiles as well (Figure 8b). The baseline product, based solely on
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direct observations, exhibits high uncertainty, particularly in data-sparse regions. In contrast, the proposed product—which

incorporates both direct and emulated profiles—demonstrates significantly reduced uncertainty due to the enhanced spatial

coverage.260

Emulated DataWOD Data

a)

b)

Figure 8. Analysis of uncertainty of the gridded oxygen product. Panel (a, left) shows the number of direct DO observations in the

preprocessed WOD database and the number of emulated profiles at 200 m depth. Panel (a, right) compares the global DO inventory derived

from two OI fields: The proposed product (in blue), which takes into account both direct and emulated data, and a baseline field (in orange)

that relies exclusively on direct measurements. Panel (b) presents the standard deviation of the OI fields at 200 m depth. The left map

corresponds to the OI using only direct observations, while the right includes both direct and emulated profiles. The spatial distribution of

direct (green) and emulated (red) observations is displayed, with a subsampling factor of 15 applied to improve visibility.

4 Conclusion and outlook

In this study, we developed a novel gridded dissolved oxygen concentration product by integrating observational oxygen

data with emulated estimates derived from temperature and salinity profiles. The proposed methodology offers several key

advantages, including:

– Increased Density of Observations: The methodology significantly increases the density of the observational coverage,265

which in turn reduces the uncertainty and biases of the gridded product. The improvement is particularly strong in

data-poor regions.
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– Independent Interpolation of Oxygen Data: Unlike recent state-of-the-art ML approaches Sharp et al. (2022); Ito

et al. (2024a) that derive gridded oxygen products from interpolated temperature and salinity fields, our method directly

interpolates observed and emulated oxygen data using optimal interpolation (OI). This approach ensures a more accurate270

representation of uncertainty in the gridded product and avoids additional sources of error that may arise from relying

on pre-interpolated temperature and salinity datasets.

– Flexible Space-Time Resolution: The approach provides flexibility in the spatial and temporal resolution of the gridded

product, which can be adjusted based on the density of available observations. Specifically, we generate two gridded

products: one with a yearly resolution covering the entire study period (1965–2022) and another with a monthly resolu-275

tion from 2005 to 2022, capitalizing on the denser data coverage during the Argo period. Both products are constructed

with a 1◦resolution. However, the effective resolution of the monthly product is enhanced by using a smaller e-folding

length scale in the OI process.

The resulting product generally agrees with the reference climatology and recent ML-based products in terms of reproducing

the spatial variability of dissolved oxygen, and it also aligns with previously published estimates of long-term global deoxy-280

genation, albeit with reduced uncertainty around those estimates. Additionally, the product outperforms current state-of-the-art

products by more effectively resolving dissolved oxygen variability at synoptic scales on the order of O(103) km and by better

capturing temporal variability from seasonal to interdecadal scales.

The proposed methodology can be extended to other biogeochemical variables, including, for example, nutrients, pH, phyto-

plankton pigments, and particle backscatter. Previous studies Sauzède et al. (2017) have shown that neural network models can285

predict such variables based on dissolved oxygen measurements. In this context, our study highlights the potential to extend

these works by developing biogeochemical emulators based on physical measurements and emulated oxygen data. This would

enable the construction of gridded products for these variables with improved spatial and temporal resolutions.

While our results confirm global deoxygenation trends that are consistent with previous studies, further research is needed

to investigate regional-scale deoxygenation, particularly in areas where major OMZs are present. In this context, the increased290

observational density provided by our ML-emulated oxygen data can enhance our ability to monitor and document ongoing

changes in major OMZs, while also reducing uncertainties in these estimates.

5 Data availability

The gridded products developed in this study are available as NetCDF files Ouala et al. (2025). The corresponding DOI

(10.5281/zenodo.15478088) will be made public upon acceptance of the manuscript.295

Author contributions. SO and ZL designed and structured the study. SO and OH developed the model code and generated the gridded

product. SO and ZL analyzed the data and prepared the manuscript.

15

https://doi.org/10.5194/essd-2025-288
Preprint. Discussion started: 16 June 2025
c© Author(s) 2025. CC BY 4.0 License.



Competing interests. The authors declare that they have no competing interests.

Acknowledgements. SO acknowledges the support of the AI4Extremes Chair and the Horizon project AI4PEX (grant agreement 101137682).

ZL was supported by funding provided by Tamkeen through grant CG009 to the Mubadala ACCESS Center and funding support from300

Mubadala Philanthropies under XR016; their support is greatly appreciated. Data processing and machine learning model training was

performed at the High Performance Computing (HPC) cluster of NYUAD, Jubail.

16

https://doi.org/10.5194/essd-2025-288
Preprint. Discussion started: 16 June 2025
c© Author(s) 2025. CC BY 4.0 License.



References

Aouni, A. E., Gaudel, Q., Regnier, C., Van Gennip, S., Drevillon, M., Drillet, Y., and Lellouche, J.-M.: GLONET: Mercator’s End-to-End

Neural Forecasting System, arXiv preprint arXiv:2412.05454, 2024.305

Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian, Q.: Accurate medium-range global weather forecasting with 3D neural networks,

Nature, 619, 533–538, 2023.

Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Seferian, R., et al.: Multiple

stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245, 2013.

Chelton, D. B., Schlax, M. G., Samelson, R. M., and de Szoeke, R. A.: Global observations of large oceanic eddies, Geophysical Research310

Letters, 34, 2007.

Cheng, S., Quilodrán-Casas, C., Ouala, S., Farchi, A., Liu, C., Tandeo, P., Fablet, R., Lucor, D., Iooss, B., Brajard, J., et al.: Machine learning

with data assimilation and uncertainty quantification for dynamical systems: a review, IEEE/CAA Journal of Automatica Sinica, 10,

1361–1387, 2023.

Claustre, H., Johnson, K. S., and Takeshita, Y.: Observing the global ocean with biogeochemical-Argo, Annual review of marine science, 12,315

23–48, 2020.

Codispoti, L., Brandes, J. A., Christensen, J., Devol, A., Naqvi, S., Paerl, H. W., and Yoshinari, T.: The oceanic fixed nitrogen and nitrous

oxide budgets: Moving targets as we enter the anthropocene?, Scientia Marina, 65, 85–105, 2001.

Dheeshjith, S., Subel, A., Adcroft, A., Busecke, J., Fernandez-Granda, C., Gupta, S., and Zanna, L.: Samudra: An AI Global Ocean Emulator

for Climate, arXiv preprint arXiv:2412.03795, 2024.320

Fourrier, M., Coppola, L., Claustre, H., D’Ortenzio, F., Sauzède, R., and Gattuso, J.-P.: A regional neural network approach to estimate

water-column nutrient concentrations and carbonate system variables in the Mediterranean Sea: CANYON-MED, Frontiers in Marine

Science, 7, 620, 2020.

Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses

with uncertainty estimates, Journal of Geophysical Research: Oceans, 118, 6704–6716, 2013.325

Grégoire, M., Garçon, V., Garcia, H., Breitburg, D., Isensee, K., Oschlies, A., Telszewski, M., Barth, A., Bittig, H. C., Carstensen, J., et al.:

A global ocean oxygen database and atlas for assessing and predicting deoxygenation and ocean health in the open and coastal ocean,

Frontiers in Marine Science, 8, 724 913, 2021.

Gruber, N.: The marine nitrogen cycle: overview and challenges, Nitrogen in the marine environment, 2, 1–50, 2008.

Gruber, N., Doney, S. C., Emerson, S. R., Gilbert, D., Kobayashi, T., Körtzinger, A., Johnson, G. C., Johnson, K. S., Riser, S. C., and Ulloa,330

O.: Adding Oxygen to Argo: Developing a Global In Situ Observatory for Ocean Deoxygenation and Biogeochemistry., 2010.

Hermes, J., Masumoto, Y., Beal, L., Roxy, M. K., Vialard, J., Andres, M., Annamalai, H., Behera, S., d’Adamo, N., Doi, T., et al.: A sustained

ocean observing system in the Indian Ocean for climate related scientific knowledge and societal needs, Frontiers in Marine Science, 6,

355, 2019.

Ito, T.: Optimal interpolation of global dissolved oxygen: 1965–2015, 2022.335

Ito, T., Minobe, S., Long, M. C., and Deutsch, C.: Upper ocean O2 trends: 1958–2015, Geophysical Research Letters, 44, 4214–4223, 2017.

Ito, T., Cervania, A., Cross, K., Ainchwar, S., and Delawalla, S.: Mapping dissolved oxygen concentrations by combining shipboard

and Argo observations using machine learning algorithms, Journal of Geophysical Research: Machine Learning and Computation, 1,

e2024JH000 272, 2024a.

17

https://doi.org/10.5194/essd-2025-288
Preprint. Discussion started: 16 June 2025
c© Author(s) 2025. CC BY 4.0 License.



Ito, T., Garcia, H. E., Wang, Z., Minobe, S., Long, M. C., Cebrian, J., Reagan, J., Boyer, T., Paver, C., Bouchard, C., et al.: Underestimation340

of multi-decadal global O 2 loss due to an optimal interpolation method, Biogeosciences, 21, 747–759, 2024b.

Keeling, R. F., Körtzinger, A., Gruber, N., et al.: Ocean deoxygenation in a warming world, Annu. Rev. Mar. Sci, 2, 199–229, 2010.

Kingma, D. P. and Ba, J.: Adam: A Method for Stochastic Optimization, arXiv:1412.6980 [cs], http://arxiv.org/abs/1412.6980, arXiv:

1412.6980, 2014.

Kochkov, D., Yuval, J., Langmore, I., Norgaard, P., Smith, J., Mooers, G., Klöwer, M., Lottes, J., Rasp, S., Düben, P., et al.: Neural general345

circulation models for weather and climate, Nature, pp. 1–7, 2024.

Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian, J. R., Dunne, J. P., Gehlen, M., Ilyina, T., John, J. G., et al.:

Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6

model projections, Biogeosciences, 17, 3439–3470, 2020.

Lachkar, Z., Cornejo-D’Ottone, M., Singh, A., Arístegui, J., Dewitte, B., Fawcett, S., Garçon, V., Lovecchio, E., Molina, V., and Vinay-350

achandran, P.: Biogeochemistry of greenhouse gases in coastal upwelling systems: Processes and sensitivity to global change, Elementa:

Science of the Anthropocene, 12, 2024.

Laffoley, D. D. and Baxter, J.: Ocean Deoxygenation: Everyone’s Problem-Causes, Impacts, Consequences and Solutions, IUCN, 2019.

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Alet, F., Ravuri, S., Ewalds, T., Eaton-Rosen, Z., Hu, W., et al.:

Learning skillful medium-range global weather forecasting, Science, 382, 1416–1421, 2023.355

Martin, S. A., Manucharyan, G. E., and Klein, P.: Synthesizing sea surface temperature and satellite altimetry observations using deep

learning improves the accuracy and resolution of gridded sea surface height anomalies, Journal of Advances in Modeling Earth Systems,

15, e2022MS003 589, 2023.

Martin, S. A., Manucharyan, G. E., and Klein, P.: Deep learning improves global satellite observations of ocean eddy dynamics, Geophysical

Research Letters, 51, e2024GL110 059, 2024.360

Nguyen, T., Brandstetter, J., Kapoor, A., Gupta, J. K., and Grover, A.: ClimaX: A foundation model for weather and climate, arXiv preprint

arXiv:2301.10343, 2023.

Oschlies, A., Brandt, P., Stramma, L., and Schmidtko, S.: Drivers and mechanisms of ocean deoxygenation, Nature geoscience, 11, 467–473,

2018.

Ouala, S., Brunton, S. L., Chapron, B., Pascual, A., Collard, F., Gaultier, L., and Fablet, R.: Bounded nonlinear forecasts of partially observed365

geophysical systems with physics-constrained deep learning, Physica D: Nonlinear Phenomena, 446, 133 630, 2023.

Ouala, S., Chapron, B., Collard, F., Gaultier, L., and Fablet, R.: Online calibration of deep learning sub-models for hybrid numerical modeling

systems, Communications Physics, 7, 402, 2024.

Ouala, S., Hidaoui, O., and Lachkar, Z.: A Novel Global Gridded Ocean Oxygen Product Derived from a Neural Network Emulator and

In-situ Observations, https://doi.org/10.5281/zenodo.15478088, to be made public upon manuscript acceptance, 2025.370

Poupon, M. A., Resplandy, L., Lévy, M., and Bopp, L.: Pacific decadal oscillation influences tropical oxygen minimum zone extent and

obscures anthropogenic changes, Geophysical Research Letters, 50, e2022GL102 123, 2023.

Rabalais, N. N., Turner, R. E., and Wiseman Jr, W. J.: Gulf of Mexico hypoxia, aka “The dead zone”, Annual Review of ecology and

Systematics, 33, 235–263, 2002.

Roemmich, D. and Gilson, J.: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the375

Argo Program, Progress in oceanography, 82, 81–100, 2009.

18

https://doi.org/10.5194/essd-2025-288
Preprint. Discussion started: 16 June 2025
c© Author(s) 2025. CC BY 4.0 License.



Sauzède, R., Bittig, H. C., Claustre, H., Pasqueron de Fommervault, O., Gattuso, J.-P., Legendre, L., and Johnson, K. S.: Estimates of

water-column nutrient concentrations and carbonate system parameters in the global ocean: A novel approach based on neural networks,

Frontiers in Marine Science, 4, 128, 2017.

Schmidtko, S., Stramma, L., and Visbeck, M.: Decline in global oceanic oxygen content during the past five decades, Nature, 542, 335–339,380

2017.

Sharp, J. D., Fassbender, A. J., Carter, B. R., Johnson, G. C., Schultz, C., and Dunne, J. P.: GOBAI-O 2: temporally and spatially resolved

fields of ocean interior dissolved oxygen over nearly two decades, Earth System Science Data Discussions, 2022, 1–46, 2022.

Vaquer-Sunyer, R. and Duarte, C. M.: Thresholds of hypoxia for marine biodiversity, Proceedings of the National Academy of Sciences, 105,

15 452–15 457, 2008.385

Wang, X., Wang, R., Hu, N., Wang, P., Huo, P., Wang, G., Wang, H., Wang, S., Zhu, J., Xu, J., et al.: Xihe: A data-driven model for global

ocean eddy-resolving forecasting, arXiv preprint arXiv:2402.02995, 2024.

19

https://doi.org/10.5194/essd-2025-288
Preprint. Discussion started: 16 June 2025
c© Author(s) 2025. CC BY 4.0 License.



Appendix A: Parameterization and training of the ML model

The machine learning model used to emulate dissolved oxygen concentrations is a fully connected neural network with six

layers. Its architecture includes an input layer with 10 features (detailed hereafter), four hidden layers with 256, 128, 128, 64,390

and 32 neurons, respectively, and an output layer with a single neuron.

The input features include water temperature (T), salinity (S), latitude (LAT), longitude (LON), month of the year (MOY),

day of the month (DOY), and calendar year (Y). To capture the periodicity of LON and MOY, a sinusoidal encoding is applied:

MOYs =


cos

(
MOY×π

6

)

sin
(

MOY×π
6

)


 ; Lons =


cos

(
LON×π

180

)

sin
(

LON×π
180

)


 (A1)395

where the subscript s refers to the sinusoidal encoding.

The hidden layers utilize the rectified linear unit activation function (relu). The model is trained using the mean squared

error (MSE) loss function and is optimized with the Adam optimizer Kingma and Ba (2014).

Appendix B: Data sources

This section outlines the data sources used in this study. The data are organized into two distinct databases. The first database,400

presented in Table B1, includes data sources and instruments that provide collocated measurements of temperature, salinity,

and dissolved oxygen. This dataset is utilized for training, validation, and testing of the neural network emulator. Oxygen data

from this dataset are also used in the optimal interpolation.

WOD dataset Instrument Type

OSD Bottle, low-resolution CTD, low-resolution XCTD, plankton data

CTD High-resolution CTD and high-resolution XCTD data

PFL Profiling float data, mainly from the Argo program

DRB Drifting buoy data from surface drifting buoys with thermistor chains and ice-tethered profilers

UOR Undulating Oceanographic Recorder data from a CTD probe on a towed vehicle

GLD Glider data

MRB Moored buoy data, mainly from the Equatorial buoy arrays (TAO)

Table B1. Data sources used to construct the training, validation and testing dataset of the ML-based emulator. Data access: 6/12/2023.

The second database, presented in Table B2, consists of only temperature and salinity data. This dataset is used to generate

emulated oxygen data using the trained ML emulator.405

Appendix C: Additional figures
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WOD dataset Instrument Type

OSD Bottle, low-resolution CTD, low-resolution XCTD, plankton data

CTD High-resolution CTD and high-resolution XCTD data

PFL Profiling float data, mainly from the Argo program

DRB Drifting buoy data from surface drifting buoys with thermistor chains and ice-tethered profilers

UOR Undulating Oceanographic Recorder data from a CTD probe on a towed vehicle

GLD Glider data

MRB Moored buoy data, mainly from the Equatorial buoy arrays (TAO)

SUR Surface-only data (bucket, thermosalinograph)

APB Autonomous Pinniped Bathythermograph - TT-D recorders and CTDs attached to elephant seals

Table B2. Data sources used to construct the temperature and salinity dataset used to generate the emulated oxygen data. Data access:

15/5/2024.

Figure C1. Minimum and Maximum fields used in the QC of the emulated profiles. First row, Minimum and Maximum fields at 200m

depth, computed as described in section 2.3 for the year 1990. Second row, Same fields for the year 2010.
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Figure C2. Spatial distribution of dissolved oxygen concentration of the proposed gridded product. The upper right figure shows the

long-term mean of dissolved oxygen concentration at 200m. Dashed black lines represent the locations of the Meridional cross sections from

the surface to 2000m.
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Figure C3. Oxygen data coverage since 1965 at 200m depth. Dark blue indicates 1◦× 1◦grid locations with oxygen measurements at

5-year data intervals.
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Figure C4. Emulated oxygen data coverage since 1965 at 200m depth. Dark blue indicates 1◦× 1◦grid locations with emulated oxygen

measurements at 5-year intervals. These locations essentially correspond to the coverage of temperature and salinity measurements, excluding

the emulated profiles flagged as unrealistic by the QC procedure described in Section 2.3.
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Figure C5. Long-term changes in globally integrated oxygen inventory. The left panel shows the inventory for the upper 1200 m, while the

right panel displays the inventory for the upper 2000 m. The histograms in each panel represent the empirical distribution of the deoxygenation

rate, computed from a Monte Carlo simulation with 10,000 realizations.
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