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Abstract

The authors would like to thank the anonymous reviewer for their valuable com-
ments and suggestions. In this document, we address the issues raised to the best of our
ability. The modifications made in response to the reviewer’s comments are highlighted
in blue in the tracked-changes version of the manuscript. The modifications in green
relate to comments that were raised by both reviewers. Please note that, as we have re-
vised the manuscript, the numbering of figures and sections referenced in our answers
refers to the revised version and may differ from that of the original submission.

1 Reviewer’s comments

Reviewer Comment 1

I would like to thank the authors for the interesting and timely work. The paper
presents a novel approach to generating a gridded dissolved oxygen product by in-
tegrating direct observations with ML-based emulations derived from temperature
and salinity profiles, followed by optimal interpolation. The methodology is simple
to follow and technically sound, the results are compelling, and the product demon-
strates clear improvements over existing datasets, especially in capturing long-term
trends and reducing uncertainties. I recommend acceptance with minor revisions, but
I would like to note that my review is primarily focused on the ML aspect.

Response

The authors appreciate the feedback on our work. Every comment is addressed carefully
below, and the modifications can be found in blue in the tracked-changes version of the
manuscript.
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said.ouala@imt-atlantique.fr


2 ESSD– Response to reviewers

Reviewer Comment 2

The training/test split was done randomly, how the authors ensure there is no data
leakage? It would have been more interesting if the trains was done in a temporal
way.

Response

We thank the reviewer for raising this important point. We agree that data leakage and the
nature of the training/test split are crucial to evaluating the robustness of machine learning
models.

To clarify, we used three separate subsets, training, validation, and test datasets, to design
and assess our neural network model. The training and validation sets were obtained via a
random split: 80% of the data was used for training and 20% for validation. This random
split applies only to the training/validation phase.

The test set is completely independent of both the training and validation sets. It consists
of 23 spatially distinct regions across major ocean basins, as introduced in Figures 1 and 2.
These regions were excluded from the training/validation data and were used exclusively
for testing, ensuring no data leakage.

We acknowledge that our original manuscript may not have made this distinction clear. To
clarify, we have revised the paragraph around line 85 as follows:

"The dataset used to train the ML model consists of collocated pairs of T, S and (DO) data
from 1965 to 2022. The dataset was divided into training, validation, and test subsets. The
test set comprises 23 independent 1 × 1 regions, distributed across all major ocean basins.
The locations of these test regions, along with the performance of the machine learning-
based emulator, are shown in Figure 2. The remaining data were allocated to training and
validation, with 80% used for training and the remaining 20% for validation."

Regarding the reviewer’s suggestion to adopt a temporal split, we chose a spatial test split
instead of a temporal one for two reasons. First, we aim for the model to learn long-term
deoxygenation trends related to climate change; excluding certain years from training could
limit the model’s ability to capture these patterns. Second, our goal was to evaluate how well
the model generalizes across different oceanographic regimes, such as oxygen minimum
zones or well-oxygenated regions, which motivated the use of geographically distinct test
regions.

Reviewer Comment 3

It would have been also more robust to use a validation dataset, instead of only
train/test.

Response

We apologize for any confusion caused by our wording. As explained in the previous re-
sponse, we use separate training, validation, and test sets. The test set is fully independent
from the training and validation sets, as it consists of data from locations that do not overlap
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with those used for training and validation.

Reviewer Comment 4

Any reason why the test locations do not include any points near Europe?

Response We thank the reviewer for this relevant observation. There is no specific reason
why the test locations do not include points near Europe. Our test regions were designed
to cover all major ocean basins, including the North Equatorial and South Pacific, North
and South Atlantic, and the Indian Ocean. Within each basin, we selected test locations
that capture a diversity of oxygen dynamics, including both oxygen minimum zones (e.g.,
Regions F, G and H in the Indian Ocean, Region D in the Atlantic, and Regions A, B, C in the
Pacific) and highly oxygenated regions (e.g., Regions P, Q and R). The European seas were
not explicitly included because the oxygen dynamics in those areas are not different from
the ones already sampled in our selected test regions.

Reviewer Comment 5

Any reason why using Month of the year + Day of the month in the MLP inputs
instead of just using Day of the year?

Response

We thank the reviewer for this insightful comment. Our initial choice to use the month
of the year as an input feature follows common practice in the literature (e.g., [1]), where
it is shown to help capture seasonal patterns in MLP-based models. We added the day
of the month to allow for finer resolution of intra-month variability, which led to a slight
improvement in performance. However, our explainability analysis (XAI) confirms that this
variable has relatively low importance compared to other predictors. We acknowledge that
using the day of the year is a valid alternative and appreciate the suggestion.

Reviewer Comment 6

Can the authors describe the hyper parameter search procedure to tune the MLP?

Response We thank the reviewer for this important question. Our approach to tuning the
MLP architecture was as follows. We began by testing the model on simulated data (a cou-
pled ROMS and BGC model in the Indian Ocean) to assess whether an ML model could
effectively predict oxygen concentrations from temperature, salinity, spatiotemporal coordi-
nates, and surface chlorophyll-a. Initial experiments indicated that temperature and salinity
alone were sufficient to achieve strong predictive performance.

We then transitioned to real data, using MODIS satellite-derived CHLA-II as an additional
input. Similarly to the experiment on simulated data, we observed that including satellite
CHLA-II did not improve the model’s performance, so we opted to keep the architecture
simple and relied only on in-situ observations to design the model.

Regarding the architecture, we performed a stepwise increase in complexity: starting with
2 hidden layers, we incrementally added more layers (up to 4) and increased the number of



4 ESSD– Response to reviewers

Figure 1: Measured profiles and emulator prediction in test region J.

neurons per layer. We selected the final architecture based on the point at which additional
complexity no longer yielded performance improvements on the validation set.

Reviewer Comment 7

Figure 1 would have been more informative if the plots where done per test region.

Response We thank the reviewer for raising this point. We agree with the reviewer that
a per-region breakdown provides more insight. We have updated Figure 1 accordingly to
show the scatter plots for each individual test region. This revised figure shows that the
model performs consistently across different test regions.

Reviewer Comment 8

Any explanation of what’s happening at depth 500 in test region J (Figure 2)?

Response This is a very interesting point raised by the reviewer. We analyzed the profiles
at depth 500 in test region J and found that several measured profiles in this region show
abrupt variations around 500 m depth, leading to an inflated standard deviation at that
depth level. These anomalies are likely due to sensor errors rather than physical processes.
Figure 1 illustrates these outliers by comparing measured and predicted profiles. Notably,
the emulator outputs remain smooth and do not reproduce these irregular patterns.

Reviewer Comment 9

It would be interesting to use any XAI method to study feature importance for the
MLP.
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Response

We appreciate the comment from the reviewer. We have added a new section in the appendix
presenting an analysis of feature importance using Integrated Gradients. The results con-
firm that the most influential features for predicting dissolved oxygen are the geographical
location of the profiles (latitude and longitude) along with physical variables, namely tem-
perature and salinity. These features reflect the importance of the regional context through
dominant physical ventilation regimes, biogeochemical dynamics, and oxygen solubility in
explaining oxygen variability in the ocean.

Reviewer Comment 10

Any plans to share the code used and not only the dataset?

Response

We thank the reviewer for raising this point. We do plan to share the code. Currently, the
code consists of several modules developed and hosted by different contributors, cover-
ing data extraction and preprocessing, model training, emulation, quality control of emu-
lated profiles, and interpolation. Due to this "distributed" development, publicly releasing
the code in its current form is not feasible. However, we are happy to provide it upon re-
quest.

However, we are in the process of cleaning and organizing the code to make it publicly
available as a single package. We appreciate the reviewer’s interest and are committed to
ensuring the code is shared as soon as it reaches an appropriate level of clarity and docu-
mentation.

Reviewer Comment 11

Typos:
* Line 35: "weather forecasting" instead of "forecasting"
* Many citations are badly formatted, /citet vs /citep

Response We thank the reviewer for spotting these typos. They have been corrected in the
new version of the manuscript. Regarding the citations, all references are cited in the text
using the /citet.

References

[1] Takamitsu Ito, Ahron Cervania, Kaylin Cross, Sanika Ainchwar, and Sara Delawalla,
“Mapping dissolved oxygen concentrations by combining shipboard and argo observa-
tions using machine learning algorithms,” Journal of Geophysical Research: Machine Learn-
ing and Computation, vol. 1, no. 3, pp. e2024JH000272, 2024.
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Abstract

The authors would like to thank the anonymous reviewer for their valuable com-
ments and suggestions. In this document, we address the issues raised to the best of our
ability. The modifications made in response to the reviewer’s comments are highlighted
in red in the tracked-changes version of the manuscript. The modifications in green re-
late to comments that were raised by both reviewers. Please note that, as we have revised
the manuscript, the numbering of figures and sections referenced in our answers refers
to the revised version and may differ from that of the original submission.

1 Reviewer’s comments

Reviewer Comment 1

I thank the authors for this interesting work. I think adding the emulated data in
combination with Optimal Interpolation is a useful approach of further developing
and improving observation based 4D reconstructions of oxygen. Making these recon-
structions and using them to identify and explain variability on different scales is a
very important goal and the link with PDO looks promising.

Response

The authors appreciate the feedback on our work. Every comment is addressed carefully
below, and the modifications can be found in red in the tracked-changes version of the
manuscript. Comments in green refer to modifications suggested by both reviewers.

1
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Reviewer Comment 2

The Optimal Interpolation method seems sound, even though the manuscript would
benefit from additional details on why these parameters were chosen, especially re-
garding the differences of the two separate products.

Response We thank the reviewer for this comment. The choice of OI parameters is mainly
based on the data availability in the periods before and after the ARGO era. Specifically:

• The yearly product uses a 5-year aggregation window and a 1000 km correlation length
scale due to the relatively sparse historical record. These parameters are based on the
work of Ito [2022] who uses these values in the same period.

• The monthly product, which covers the ARGO era is based on a 3-month aggregation
and 300 km correlation length scale. These parameters are based on temperature and
salinity interpolated ARGO product [Gaillard et al., 2016].

Both products are based on a 1-degree grid, which is the standard choice for most of the
objectively analyzed products that are based on in-situ data [Cheng et al., 2017, Ito, 2022],
including the ML-based products [Sharp et al., 2022, Ito et al., 2024a]. The vertical range was
limited to 0-2000 m since 2000m is the maximum depth of most of the ARGO data profiles
[Roemmich et al., 2009] and it corresponds to the extent that covers most of the relevant
oxygen variation phenomena, including oxygen minimum zones.

We agree with the reviewer regarding the lack of discussion on these parameters. We added
the following paragraph to justify the choice of these parameters in the OI section:

" We perform an interpolation of both observed and emulated dissolved oxygen data using
a standard Optimal Interpolation (OI) method. Following the substantial increase in tem-
perature and salinity data coverage in the ARGO era (after 2002), which also corresponds
to an increase in emulated oxygen profiles, we construct two gridded products with dif-
ferent temporal resolutions. The first product, with yearly resolution from 1965 to 2022, is
designed to study decadal and climate-change-related variability. The second product, with
monthly resolution, focuses on the ARGO era (2003-2022) to capture seasonal and interan-
nual variability. Both products use a 1◦ horizontal resolution, which is standard among most
objectively analyzed products based on in-situ data [Cheng et al., 2017, Ito, 2022], including
ML-based reconstructions [Sharp et al., 2022, Ito et al., 2024a]. The vertical grid comprises
65 standard WOD depth levels ranging from 0 m to 2000 m, matching the typical vertical
extent of most ARGO flaots [Roemmich et al., 2009]. "

We also further motivate the choice of the e-foolding length scale Lref in lines 190:

" where σ2
b is the total variance of the background field, and Lm,n is the distance between

two grid points m and n. Lh is the e-folding horizontal length scale. In this work, we follow
the approach of Ito [2022] and set Lh to 1000 km for the interpolation of the yearly product
between 1965 and 2022. For the monthly product, a larger number of observations are avail-
able, allowing us to reduce Lh to 300 km, which is consistent with ARGO-based products of
temperature and salinity fields [Gaillard et al., 2016]. "
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Reviewer Comment 3

The machine learning part and therefore the quality of the emulated data is not tested
robustly enough. There is only the comparison with "test regions" taken from the
validation dataset. There needs to be more detail on how these were chosen and how
independent they actually are. The world map in figure 8 shows a good coverage of
ocean data, but in figure C3 and C4 you still have gaps and have not analysed any
seasonal bias. The validation data could also have been partly seen by the machine,
since it is often used to control learning and prevent overfitting. There are also no
other measures of machine learning performance. It would’ve been good to have an
n-fold machine learning ensemble - is there a large spread in the predictions? Do
values for some areas differ substantially from one ensemble member to another?

Response

We thank the reviewer for raising this important comment. Please find below our detailed
responses to each of the points raised:

• Regarding the comparison with "test regions" taken from the validation dataset: To
clarify, we used three separate subsets, training, validation, and test datasets, to design
and assess our neural network model. The training and validation sets were obtained
via a random split: 80% of the data was used for training and 20% for validation. This
random split applies only to the training/validation phase.

The test set is completely independent and is neither seen nor partly seen by the train-
ing or validation sets. It consists of 23 spatially distinct regions across major ocean
basins, as introduced in Figures 1 and 2. These regions were excluded from the train-
ing/validation data and were used exclusively for testing, ensuring no data leakage.

We acknowledge that our original manuscript may not have made this distinction
clear. To clarify, we have revised the paragraph around line 90 as follows:

"The dataset used to train the ML model consists of collocated pairs of T, S and (DO)
data from 1965 to 2022. The dataset was divided into training, validation, and test
subsets."

• Regarding the choice of the test regions: Our test regions were designed to cover
all major ocean basins, including the North Equatorial and South Pacific, North and
South Atlantic, and the Indian Ocean. Within each basin, we selected test locations that
capture a diversity of oxygen dynamics, including both oxygen minimum zones (e.g.,
Regions F, G and H in the Indian Ocean, Region D in the Atlantic, and Regions A, B, C
in the Pacific) and highly oxygenated regions (e.g., Regions P, Q and R). To emphasize
this point, we clarified in the paper why we choose these locations as follows:

" The dataset was divided into training, validation, and test subsets. The test set com-
prises 23 independent 1◦×1◦ regions, distributed across all major ocean basins, includ-
ing the North Equatorial and South Pacific, North and South Atlantic, and the Indian
Ocean. Within each basin, we selected test locations that capture a diversity of oxygen
dynamics, including both oxygen minimum zones (e.g., Regions F, G, and H in the
Indian Ocean, Region D in the Atlantic, and Regions A, B, and C in the Pacific) and
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highly oxygenated regions (e.g., Regions P, Q, and R). The locations of these test re-
gions, along with the performance of the machine learning-based emulator, are shown
in Figure 3. The remaining data were allocated to training and validation, with 80%
used for training and the remaining 20% for validation. "

• Regarding the seasonal bias: We thank the reviewer for this comment and we agree
that it’s an important aspect of in-situ data, particularly the data based on cruises. We
added a figure (D3) in the appendix D that analyses the seasonal bias in the sampling
of the real and emulated oxygen data. Overall, we observe the presence of a seasonal
bias, especially at high latitudes and in the southern ocean. However, this bias is sub-
stantially reduced during the Argo era. This analysis further supports our idea of us-
ing emulated profiles derived from Argo temperature and salinity data, which signifi-
cantly improve the data coverage of oxygen data and reduce seasonal bias, particularly
in the ARGO era.

We have also made the caption of Figure 9 more precise as the panel a of this figure
represents the total number of real/emulated DO2 data that was gridded in the 1° grid.

• on the fact that validation data could also have been partly seen by the machine,
since it is often used to control learning and prevent overfitting: We recall here that,
as discussed above, the test set is completely independent and is not used in the train-
ing process of the model.

• There are also no other measures of machine learning performance. It would’ve
been good to have an n-fold machine learning ensemble - is there a large spread in
the predictions? Do values for some areas differ substantially from one ensemble
member to another? We agree with the reviewer regarding the measure of the uncer-
tainty of the ML model. Initially, we actually built an ensemble of ML models based
on an n-fold training where we aimed at using the discrepancy of the models as a mea-
sure of the uncertainty of the emulated profiles. Overall, the spread within the machine
learning (ML) ensemble is relatively small, with no specific regions exhibiting notably
high standard deviations. For instance, Figure 1 shows the distribution of the standard
deviation of the n-fold ML ensemble predictions across water layers from the surface
down to 2000 m. The ensemble standard deviations are generally low, with median
uncertainties within each depth being around 5 µmol kg−1. This emphasizes that the
training of the ML model is stable and that the n-fold training methodology is able to
recover some of the epistemic uncertainty [Valdenegro-Toro and Mori, 2022] related
to limitations in the data coverage and/or model parameterization. Importantly, we
do not use these uncertainties as measurement errors in the optimal interpolation (OI)
as it leads to the interpolation being overconfident in the emulated profiles. Specifi-
cally, these n-fold estimates of the model uncertainty are missing the aleatoric uncer-
tainty that is inherent to the training data-itself, resulting in standard deviations that
are sometimes smaller than the measurements errors of the true oxygen data (typically
on the order of ∼ 3% of the oxygen value) used in the OI. Instead, we assign an uncer-
tainty equal to 4% of the emulated oxygen value when performing OI, which ensures
that more weight is given towards real observations.

We added the following section on the main paper to discuss the uncertainty of the
MLP model:
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To evaluate the epistemic uncertainty [Valdenegro-Toro and Mori, 2022] of training a
machine learning model to predict ocean oxygen concentration, we start by training
a k-fold ensemble of MLP models (with k = 5), each one based on different training
and validation datasets. The trained models are then used to predict oxygen data in
the test set. Figure 1 shows the distribution of the standard deviation of the k-fold ML
ensemble predictions across water layers from the surface down to 2000 m. Overall,
the ensemble standard deviations are generally low, with median uncertainties within
each depth layer around 5 µmol kg−1. This emphasizes that the training of the ML
model is stable and that the k-fold training methodology is able to recover some of
the epistemic uncertainty [Valdenegro-Toro and Mori, 2022] related to limitations in
the data coverage and/or model parameterization. However, using this uncertainty
as the error estimate for the emulated profiles in the optimal interpolation would have
made the interpolation overconfident in the emulated profiles relative to the real ob-
servations. Therefore, we use only a single MLP model (the best-performing one) for
emulating the profiles used in the interpolation. This model is further evaluated in the
subsequent analyses. The associated error estimate of this model, described in Section
2.4.3, is set higher than that of the real observations.

Reviewer Comment 4

I am also not fully convinced that the decadal and synoptic variability you’ve seen or
any additional features you observed is definitely real. That said, I do not exclude the
possibility that it is real. I think it is important to explain further why you think it is
real - because that’s the main issue faced by anyone using interpolation techniques.
Currently, it is not clear to the reader why these results couldn’t still be a product of
the sparsity of ocean observations. After all, even if you added many datapoints based
and temperature and salinity, this new dataset is still sparse given how vast the ocean
is. In some parts of the text it sounds like by simply observing decadal variability
it can be declared an improvement. It could indeed represent an improvement, but
the manuscript needs to provide stronger justification. One way of doing this could
be a model validation, for example. You could also look at which basins are driving
this decadal variation and discuss the processes in these basins that could drive the
decadal variability. You do this partly in the text with PDO, but the manuscript could
benefit from a more detailed analysis.

Response

We thank the reviewer for raising this important point. We agree with the reviewer, and
we think it is important to provide some evidence on why we think the decadal or synop-
tic variability we see in our product are real and are not the result of some interpolation
bias.

Since we are using optimal interpolation, the two main interpolation biases we can have
that can significantly influence both the qualitative and statistical variability of the resulting
product are due to i) regions with a significantly small number of data or ii) artifacts due to
bad data. We explain below why think that these biases, while being present in our inter-
polation due to measurements errors and lack of data in some regions despite the emulated
profiles, are not likely to be the drivers of the decadal and synoptic variability we see.
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• On the realism of the decadal variability: While a detailed analysis of the role of dif-
ferent modes of decadal and interannual variability on oxygen content is beyond the
scope of the present study—which we would like to keep focused on presenting the O2

reconstruction product, its methodology, and its comparison with previous ML-based
and observation-only reconstructions—this topic will be the subject of a separate study
that we are currently preparing, dedicated to interannual and decadal oxygen variabil-
ity. Nevertheless, the decadal variability highlighted in the present paper is consistent
with previous modeling studies that reported significant oxygen variability on decadal
timescales [Oschlies et al., 2018, Deutsch et al., 2011]. Moreover, the variability in the
deoxygenation rate revealed by our product agrees with recent studies linking decadal
modulation of deoxygenation in the tropical Pacific Ocean to changes in PDO phases
[Duteil et al., 2018, Poupon et al., 2023]. We do not believe this variability arises from
interpolation biases due to limited data availability, as a lack of data in an optimal in-
terpolation method typically results in a gridded field with near-zero anomalies (i.e.,
a field close to climatology). This type of bias was studied in the context of estimat-
ing ocean deoxygenation [Ito et al., 2024b], and its impact is known to result in an
underestimation of ocean deoxygenation. Therefore, such biases would have tended
to produce weaker deoxygenation rates during the pre-ARGO period of limited ob-
servations compared to the ARGO period, when observation density increased nearly
tenfold. However, in our product, the deoxygenation rate is actually weaker during
the ARGO period (2003–2022) than in the pre-ARGO period (1980–2000).

Regarding a bias due to data with bad quality, as we discussed in the paper, we actually
observe this correlation between deoxygenation and the PDO in numerical models,
which makes the possibility of an artificial correlation in our product unlikely.

To emphasize these points, we have 1) strengthened the discussion of the link between
decadal variability in oxygen content and major climate variability modes, such as the
PDO, by adding references to three additional studies that have explored this rela-
tionship using model simulations, and 2) explicitly clarified that the variations in the
rate of deoxygenation in our product are unlikely to result from interpolation biases
associated with the scarcity of observations. The revised discussion now reads:

Finally, it is worth noting that our product reveals a much stronger decadal and inter-
decadal variability in the rate of deoxygenation compared to previous ML-based re-
constructions (Figure 8). The influence of decadal climate variability on regional and
global deoxygenation is well established [Oschlies et al., 2018]. For instance, the rate
of deoxygenation in our product from 1980 to the early 2000s was substantially higher
than during the 1960s and 1970s, as well as over the past decade. These variations,
largely absent in earlier ML-based reconstructions, are consistent with model-based
studies suggesting that major climate variability modes, such as the Pacific Decadal
Oscillation (PDO), strongly influence ocean oxygen content [Deutsch et al., 2011, Duteil
et al., 2018, Ito et al., 2019]. For example, Deutsch et al. [2011] showed that PDO ex-
plains about 24% of the variability in the volume of suboxic waters in the Pacific based
on a model simulation, attributing this relationship to PDO-driven modulation of trade
winds, thermocline depth, and respiration rates in the eastern tropical Pacific. Duteil
et al. [2018] demonstrated that the sluggish equatorial circulation during positive PDO
phases (such as in the 1980s and 1990s) results in a pronounced deoxygenation in the
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eastern equatorial Pacific and an intensification of its OMZ. Ito et al. [2019] further
emphasized the importance of PDO-driven vertical displacements of isopycnals in
modulating tropical Pacific ocean oxygen content. More recently, Poupon et al. [2023]
showed that deoxygenation is favored during positive phases of the PDO, whereas
negative PDO phases, dominant in the 1960s, 1970s, and over the past two decades,
enhance oxygenation in the tropical Pacific, thereby partly offsetting anthropogenic or
climate change–driven deoxygenation. Importantly, these decadal oxygen variations
are unlikely to arise from interpolation biases related to data scarcity. According to
previous work by Ito et al. [2024b], such biases would have tended to produce weaker
deoxygenation rates during the pre-ARGO period of limited observations compared
to the ARGO period, when observation density increased nearly tenfold. However,
in our product, the deoxygenation rate is actually weaker during the ARGO period
(2003–2022) than in the pre-ARGO period (1980–2000).

• On the realism of the synoptic variability: The synoptic variability highlighted in
Fig. 6 cannot be attributed to a lack of data, as such an interpolation bias would have
instead resulted in near-zero anomalies. In contrast, we observe eddy-like coherent
oxygen structures with both positive and negative anomalies, indicating that observa-
tions were effectively used to reconstruct these features.

Regarding the quality of the data used to retrieve these structures, we also consider
it unlikely that the observed synoptic variability arises from erroneous profiles. The
variability patterns are remarkably consistent across the three compared products, the
main difference, as shown in Fig. 6, is that the synoptic-scale eddies appear more ener-
getic in our reconstruction. A visual inspection of the other ML-based products further
confirms that similar structures are present, making the hypothesis of artifacts from
poor-quality data highly improbable.

We motivated the realism of the synoptic scale variability in the paper as follows:

Beyond the climatological spatial distribution, we assess the spatial resolution of the
proposed monthly DO product relative to state-of-the-art machine learning-based grid-
ded datasets. Figure 6 presents an example of the DO anomaly field in the equato-
rial Pacific (−179◦ E to −100◦ E, 30◦ S to 30◦ N) alongside the vertically and monthly
averaged Radially Averaged Power Spectral Density (RAPSD) of our product, com-
pared with GOBAI-O2 and Ito et al. (2024). This region is characterized by energetic
synoptic-scale variability [Chelton et al., 2007], and we evaluate whether our product
better captures these processes. The RAPSD indicates 100-200% higher energy levels
at wavelengths around O(103) km, compared to the ML baselines, suggesting an im-
proved representation of small-scale variability. This is further illustrated through the
visual analysis of the anomaly field in Figure 6, where our product better represents
finer synoptic-scale structures on the order of O(103) km, revealing more energetic
mesoscale eddies than the other ML-based products. These variations are unlikely
to result from interpolation biases associated with data scarcity, which would instead
tend to produce near-zero anomalies. Likewise, the possibility that they arise from
spurious or low-quality profiles is also unlikely, as similar patterns are consistently
observed across the other ML-based products.
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Reviewer Comment 5

The citing commands need to be checked, especially the difference between cite and
citeA if you’re writing in Latex. Author et al. (2025) vs (Author et al., 2025).

Response We thank the reviewer for spotting the problem with our citations. They have
been corrected in the new version of the manuscript. All references are cited using /cite
when they are discussed in the text and using /citep otherwise.

Reviewer Comment 6

L27: You should also mention the seasonal bias. Especially for Polar regions there are
still few datapoints in the winter. There is also different data availability in different
decades - and different quality of data.

Response We thank the reviewer for this comment. We added the following text:

Despite advances in autonomous profiling floats, underwater vehicles, and large-scale ocean
sensing programs such as ARGO, dissolved oxygen observations remain insufficient to ac-
curately estimate deoxygenation rates at both global and regional scales [Gruber et al., 2010,
Claustre et al., 2020]. Large regions, particularly during the pre-ARGO era, in the South
Pacific, the Indian Ocean, and the polar regions remain undersampled [Hermes et al., 2019,
Grégoire et al., 2021] and the presence of seasonal biases and irregular sampling, especially
before the ARGO era, significantly limits the ability to directly analyze fine-scale spatio-
temporal variability from observations.

Reviewer Comment 7

L39: They are not just a reference for model calibration, they provide important ob-
servation based estimates of the oxygen budget.

Response

We agree with the reviewer on this point and modified the paragraph which now mentions
oxygen budget as well.

In this context, assessing global and regional changes in ocean oxygen content and budget
requires developing interpolation methods that map available data onto a regular space-time
grid. Gridded oxygen products also play a crucial role in validating ocean models, including
both global models used in Earth System Models (ESMs) and regional models necessary for
projecting the impact of climate change on oxygen at regional scales.

Reviewer Comment 8

L48: Regarding marginal seas not present in other studies: That’s true, but your vali-
dation dataset in figure 2 looks like you are also not focusing on them.

Response We thank the reviewer for this comment. It is true that our test regions do not
include marginal seas. However, our statement in that section referred to the comparison
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between gridded products, not to the ML-based emulation specifically within marginal seas.
A rigorous analysis of the interpolated fields in marginal seas would require a dedicated re-
gional study, which we consider beyond the scope of the present paper, as it would consider-
ably extend its length. Instead, we focused on evaluating the global patterns and variability
of ocean oxygen and on comparing our results with existing baseline products.

Reviewer Comment 9

L48: Good point, I think it is important to address that.

Response

We thank the reviewer for their positive comment. While state-of-the-art ML-based map-
pings of dissolved oxygen typically rely on interpolated products to generate gridded fields,
our approach operates at the profile level. Specifically, our ML model predicts individual
profiles, which are then jointly interpolated with real observations using Optimal Interpola-
tion (OI). This framework provides better control over the interpolation process, particularly
by allowing us to assign lower weights to the emulated data compared to real observations.
In practice, this is achieved in OI by prescribing larger measurement uncertainties for the
emulated profiles than for the actual observations.

Reviewer Comment 10

L50: Perhaps this will be a subject later - but why did you choose to start from 1965?
Isn’t that optimistic given we have very few datapoints during that time? What about
data/measurement quality?

Response We chose to start from 1965 since, as shown in figure D3 in the appendix, there
are still a good amount of points in this period that make possible starting the interpolation
from 1965. It was also considered in earlier state-of-the-art studies [Ito, 2022]. We added the
following footnote to explain our choice:

We chose to start from 1965, as this year was used in previous state-of-the-art reconstruc-
tions [Ito, 2022], and it corresponds to a period with sufficient data coverage, as shown in
Figure D4 in the Appendix.

Reviewer Comment 11

L62: How do you test that your product really fares better in regions where there is
no data?

Response Our comment around L62 was referring to Figure 8, where we show that the
gridded product with emulated profiles significantly reduces the uncertainty with respect to
optimal interpolation of only dissolved oxygen data. This is mainly due to having a better
sampling of the observations due to adding the emulated profiles.
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Reviewer Comment 12

L86: Do you only train once? Or do you use a machine learning ensemble, where the
20% are different for each ensemble member, meaning that eventually you’ve every
datapoint at least once in training before calculating an ensemble mean.

Response We thank the reviewer for this comment. The results we show are based on a sin-
gle MLP model trained once on a specific train/validation split. We actually also conducted
a n-fold ML ensemble (with n = 5), but we found that the spread in the ML predictions is
small and would lead to an OI that is more confident in the emulated profiles than the real
profiles. For this reason we focused our analysis on a single MLP as its the one used in the
interpolation.

However, and as discussed in our answer to comment 3, we added a figure that evaluates
the uncertainty of the MLP model computed from a n-fold MLP ensemble.

Reviewer Comment 13

L88: How did you choose the test regions? Did you use an algorithm like the SOM
method by Landschützer et al. 2016?

Response We thank the reviewer for this comment. We already answered this comment in
our answer to comment 3.

Reviewer Comment 14

L95: Do you mean Multilayer Perceptron? Perhaps you should also mention that this
is a feedforward neural network, which may be more familiar for many readers. Also,
there are many different architectures of neural networks.

Response We agree with the reviewer on this comment, we added the reference to a feedfor-
ward NN in the text as follows:

The machine learning model used to emulate DO data is a Multilayer Perception (MLP)
model (also referred to as a feedforward or fully connected neural network).

Reviewer Comment 15

L101: Perhaps it would be good to give a general summary in the text. You don’t need
to provide numbers of layers here but at least tell the reader how hyperparameters
were chosen. It would be good to provide detail on why you chose this architecture.

Response

We thank the reviewer for this comment. We added the following sentence in the appendix
to explain why we came up with this architecture. The MLP architecture and hyperparam-
eters were selected through incremental testing, starting from a simple configuration and
gradually increasing model complexity until no further improvement was observed on the
training of the model.
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Reviewer Comment 16

L115: Regarding errors in earlier years: this is actually one of the main issues we face
- perhaps a few words more need to be added in the introduction instead of doing this
here (in addition to the sparse regions and seasonal bias I mentioned).

Response We agree with the reviewer on this comment and we added the following text
in the introduction: Large regions, particularly during the pre-ARGO period, in the South
Pacific, the Indian Ocean, and the polar regions remain undersampled [Hermes et al., 2019,
Grégoire et al., 2021] and the presence of seasonal biases and irregular sampling, especially
before the ARGO era, significantly limits the ability to directly analyze fine-scale spatio-
temporal variability from observations.

Reviewer Comment 17

Figure 1: This looks like a good match between predicted and true values, but the
scatter markers mask each other when it gets more crowded. It would be clearer to
make a density plot (where colours indicate the number of datapoints at that location
in the plot), similar to figure 3. That way you can also see where most of the datapoints
are and where the outliers are.

Response We agree with the reviewer regarding the density of the observations in the scat-
terplot. We modified this figure to highlight the model fit per test region. This revised figure
is visually less crowded since we use different colors for each region and shows that the
model performs consistently across different test regions.

Reviewer Comment 18

L124-126: Perhaps I’m misunderstanding something, but it is not clear how you deal
with data in sparse regions (i.e. regions where you don’t have any or much historical
data). I know this is not easy to do, but it is important to address.

Response We actually explain in the following paragraphs how we deal with regions with
a small amount of data. For each 1◦ grid cell, the min-max values are computed based on a
neighborhood of grid cells. The size of the neighborhood of cells increases until a sufficient
number of 15 observations is collected.

Reviewer Comment 19

L139: 0 m to 2000 m: It would be good to say why you chose these limits.

Response We thank the reviewer for this comment, we addressed this comment in our re-
sponse to the reviewer comment 2.
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Reviewer Comment 20

Figure 3: Instead of longitude and latitude I think it would be more informative to use
ocean basins. Depth and Year look good - although I would also be interested in data
shallower than 300 m. Minor point: perhaps reverse the y-axis here, so that deeper
levels are down, like in the real ocean.

Response We agree with the reviewer and thank them for this comment. We revised Fig. 3
as suggested by the reviewer as follows:

• We used the identifiers of the test regions instead of longitude-latitude

• We refined the depth boxplot analysis in the upper layers.

• We inverted the y-axis of the depth boxplot.

Reviewer Comment 21

L156: It wasn’t clear before that you planned to do two separate products: one yearly
product and one monthly product each with different time ranges. Why did you chose
these years and parameters?

Response

We agree with the reviewer that the motivation behind having two separate products is
lacking in the text. We motivated this choice in our response to the reviewer’s comment
2.

Reviewer Comment 22

L166: Regarding emulation uncertainty: On other machine learning work this is done
via the standard deviation of the machine learning ensemble (e.g. MOBO-DIC in Kep-
pler et al. 2023). Perhaps I’m misunderstanding this, but I’m not sure how you justify
the slight increase to 4%. Perhaps it would be good to make that clearer.

Response We thank the reviewer for this comment. We addressed this comment in our
answers to the reviewer comments 3 and 12.

Reviewer Comment 23

L194: You say your product better resolves synoptic scale structures. Why could this
be? And how confident are you that this is real? Also, if you use "resolve" it sounds
like you could be referring to resolution, but both GOBAI-O2 and Ito et al. 2024 use
the same resolution of 1 degree.

Response We thank the reviewer for this comment. We already addressed the reviewer’s
concern on the realism of the synoptic scale variability in our response to the comment
4.

When we use the term "better resolve" we are referring to the fact that the spectral analysis
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of our product exhibits higher energy levels at these scales compared to other ML-based
products. These higher energy levels reflect that our product better represents (or resolves)
these structures.

We agree with the reviewer on the fact that using the term "resolve" here can lead to confu-
sion, so we replaced it with "represents" as follows:

This is further illustrated through the visual analysis of the anomaly field in Figure 6, where
our product better represents finer synoptic-scale structures on the order of O(103) km, re-
vealing more energetic small-scale eddies than the other ML-based products.

Reviewer Comment 24

Figure 5: I like that you examined the wavelength in such a way. Could you perhaps
add one more wavelength label on the x-axis, so that it’s clear at what wavelengths
the other differences are?

Response We thank the reviewer for their positive comment on our figure. We updated the
figure with more labels on the x-axis.

Reviewer Comment 25

L196: It is not clear that you are now talking about your monthly product.

Response We agree with the reviewer on this comment. We added in the paper explicit
references to which product we are using.

Example of the climatological spatial distribution:

We first compare the climatological spatial distribution of dissolved oxygen in our product,
derived from the yearly dataset because of its longer temporal coverage, to the WOA23
baseline (Figure 5).

Example of the spatial resolution analysis:

Beyond the climatological spatial distribution, we assess the spatial resolution of the pro-
posed monthly DO product relative to state-of-the-art machine learning-based gridded datasets.

Reviewer Comment 26

L197: Minor point: You can just say "compare with GOBAI-O2 and Ito et al. 2024"
instead of "previous ML-based products, including GOBAI-O2 and Ito et al. 2024".
Otherwise, it sounds like you have more products to compare with.

Response We agree with the reviewer on this point, we corrected the sentence as follows:

We also compare the climatological seasonal cycle of oxygen in our product across both
hemispheres with that from WOA23, as well as with the GOBAI-O2 product [Sharp et al.,
2022] and the Ito et al. (2024) product [Ito et al., 2024a].
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Reviewer Comment 27

L201: Same here, fewer words might be easier on the reader. Just say GOBAI-O2 and
Ito et al. 2024.

Response

We also agree with the reviewer here. We simplified our sentence as suggested by the re-
viewer.

Reviewer Comment 28

Table 1: To a reader not familiar with this correlation it would be good to explain why
this is desired and important.

Response We thank the reviewer for this comment. Near the surface, oxygen concentrations
are close to saturation levels, the variability of which is primarily driven by temperature.
Therefore, we expect the strong coupling between oxygen and temperature seasonality to be
accurately captured in the oxygen reconstruction product.

We added the following text to the revised paper to explain why we are looking into the
correlation coefficient.

As expected, Figure 7 shows that oxygen seasonality is more pronounced in the upper ocean,
reflecting the strong seasonal variability in oxygen saturation, which is primarly driven by
temperature variations. This relationship is further quantified by the Pearson correlation
coefficients between dissolved oxygen and temperature anomalies reported in Table 1.

Reviewer Comment 29

L209: Is there any ocean further south than -80 degrees?

Response We thank the reviewer for his comment. In our comparison to the ML based
baselines, we excluded the polar regions in the Arctic (>80°N) and Southern (<80°S) oceans
since they were not included in GOBAI-O2. We agree that most of the Southern Ocean lies
north of 80°S.

Reviewer Comment 30

L217: Minor point: there are a varying number of blank spaces around the plus-minus
signs.

Response We thank the reviewer for noticing this. It is not a typo on our side, as all the
plus-minus signs are written consistently in math mode. The variation in spacing is likely
due to LaTeX rendering.
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Reviewer Comment 31

L219: The reference to the "full 1965-2022 period" again highlights that the manuscript
does not clearly distinguish between the different uses of the yearly and monthly
products across their respective time ranges. In particular, the monthly product cov-
ering 2005-2022 has so far been rarely discussed, and its role relative to the yearly
product remains unclear.

Response

We agree that the first version of the manuscript does not distinguish enough between the
monthly and yearly products. We believe that now, we have added enough motivation for
why we are having two separate products (please refer to our response to comment 2). We
are also specifying which product is used in each analysis (please refer to our response to
comment 25).

Reviewer Comment 32

L233: Language like "it is well established" sounds a bit too grand here, especially if
both citations in that sentence are from Ito et al.

Response We thank the reviewer for noticing this. We agree that language like "it is well
established" is not really appropriate in this context. Besides, there was a typo in the citation,
and the second one is from Schmidtko et al. We corrected the sentence following the reviewer
suggestions as follows:

It is known that the estimates from Ito et al. (2022) tend to be lower compared to other
state-of-the-art studies [Schmidtko et al., 2017].

Reviewer Comment 33

L236: You’re right that your data density is higher - but it is still a sparse dataset, even
with emulated data added. It would be good to acknowledge that there may still be
some bias (or argue why you think there isn’t).

Response

We agree with the reviewer on this point. We think that even with the emulated profiles,
there is still a bias due to a lack of data, particularly in the earlier years of the product. We
corrected the paragraph as follows:

In this context, our methodology mitigates some of these biases by increasing the density of
dissolved oxygen data through the incorporation of ML-emulated oxygen estimates.
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Reviewer Comment 34

L245: You should refer again to figure 7 here again, as it matches what you say about
PDO phases. Also, based on that and analysis of the figure by eye a reader could
agree. To make it clearer you could also compare your results with the PDO Index,
for example. If there is a strong correlation this would improve confidence in these
results, as there is always the possibly that part of it is noise (or part of it comes from
other processes).

Response

We thank the reviewer for this comment. as discussed in our response to comment 4, we
have further developed the link between ocean oxygen variability and the PDO. Further-
more, and following the reviewer’s suggestion, we also modified Figure 8 by adding an
inset showing the smoothed PDO index over the same period. This highlights the alterna-
tion between positive- and negative-dominated PDO phases and their correspondence with
the variability in O2 content.

Reviewer Comment 35

L251: I know you already talked about some of this in section 2.4 with the covariance
matrix, but a dedicated section on uncertainty estimates should also explicitly address
the prediction/emulation error of the machine learning model, measurement uncer-
tainty, and other relevant components. At present, these elements are just contained
in the covariance matrix. At minimum, it would be helpful to restate which uncer-
tainty components are included when you write, "As described in Section 2.4, Σa is a
diagonal matrix, representing the variance at each grid point."

Response

We thank the reviewer for this comment regarding the description of the covariance matrix
in the uncertainty quantification section. We have revised the first paragraph of the section
to explicitly recall the definition of the analysis covariance matrix and to clarify the main
factors that influence its computation.

We analyze the uncertainty fields associated with the proposed gridded product. Uncer-
tainty is quantified using the covariance matrix Σa of the reconstructed field. As described
in Section 2.4, Σa is diagonal, with each entry representing the variance of the estimated
value at a specific grid point after assimilating the data. This variance reflects the remaining
uncertainty at that location, accounting for both the background (prior) variance and the in-
formation provided by the observations. The variance at a given grid point decreases as the
number of nearby observations increases and as the quality of those observations improves.
In our framework, the quality of the gridded observations is defined through the observa-
tion error covariance matrix, which assigns lower uncertainty to real dissolved oxygen data
than to emulated data. Additionally, the gridding variance accounts for the natural variabil-
ity of the ocean within a grid cell and for potential disagreement between real and emulated
profiles, further reflecting the overall uncertainty at each location.
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Reviewer Comment 36

Figure 8: These maps along with figures C3 and C4 are useful, but it would be good to
see time and space together, i.e. is there a seasonal bias in some regions? You should
also address that even with the emulated data added, there are spatial gaps in certain
decades (figure C3 and C4)

Response

We thank the reviewer for this comment. Indeed, some regions are likely affected by sea-
sonal bias. As discussed in our response to Comment 3, we have added a new figure (Fig.
D3) in Appendix D that analyzes the seasonal bias across the major ocean basins. As ex-
pected, the results confirm the presence of a bias, most notably in the higher latitudes and
in the Southern Ocean. However, we find that the inclusion of the emulated data substan-
tially mitigates this bias, especially during the Argo era. This supports the ability of our
reconstruction to reduce the impact of seasonal sampling bias—particularly in the monthly
product, which explicitly resolves seasonal variability.

Reviewer Comment 37

L270: I’m not convinced if you are actually avoiding these additional sources of errors.
You are still interpolating; it’s just in a different order. Don’t get me wrong, I think
this approach is useful, but I wouldn’t go so far as suggested here. I think there is
not enough testing of remaining biases, as it seems like even with the emulated data
added the dataset is still sparse. If you think there has been enough testing, it would
be good to make that clearer.

Response

We agree with the reviewer that we do not necessary reduce uncertainity w.r.t. state of the art
ML based products. However, we do have a better control over the different sources of errors
and the way we blend them into the optimal interpolation, which results in uncertainty
estimates that are more interpretable in terms of standard OI. We modified the paragraph
pointed by the reviewer in this sens, as follows:

Independent Interpolation of Oxygen Data: Unlike recent state-of-the-art ML approaches
[Sharp et al., 2022, Ito et al., 2024a] that derive gridded oxygen products from interpolated
temperature and salinity fields, our method directly interpolates observed and emulated
oxygen data using optimal interpolation (OI). This approach ensures better control over the
sources of errors present in data, leading to more interpretable uncertainty estimates of the
final gridded product.
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Reviewer Comment 38

L273: Regarding the two products: You talked very little about the differences be-
tween the two. It is a bit unclear to the reader what the purpose of creating two
different ones is. Are there any things one is not representing as well as the other - for
example, is the only purpose of the monthly product to look at the seasonality? Or are
there any other advantages? Did the smaller e-folding length scale make a difference?
It would be great if you could provide more detail regarding your choices and why
these had to be separate products. It would also be good to think about why 1 degree
was appropriate.

Response We thank the reviewer for this comment. We already answered in our answer to
comment 2.

Reviewer Comment 39

L281: I can see from the plots why you are excited and use the words "outperforms
current state-of-the-art products" but I think you haven’t shown enough why you are
confident in your results.

Response

We thank the reviewer for raising this comment. We have reformulated the paragraph to
emphasize that it reveals different type of variability.

The resulting product generally agrees with the reference climatology and recent ML-based
products in terms of reproducing the spatial variability of dissolved oxygen, and it also
aligns with previously published estimates of long-term global deoxygenation, albeit with
reduced uncertainty around those estimates. Moreover, the product reveals interdecadal
variability that is absent from existing ML-based reconstructions but consistent with numer-
ical model simulations, suggesting that it better captures the underlying physical processes
at these scales.

Reviewer Comment 40

Figure C2: The upper left figure, not right.

Response We thank the reviewer for noticing this typo. It was corrected.

Reviewer Comment 41

Figures C3 and C4: I think these are important figures that further show how you
add emulated data over different 5-year windows. However, they don’t seem to be
referenced in the text.

Response We thank the reviewer for raising this point. We agree that these figures are im-
portant, as they show the improvement in the sampling of ocean dissolved oxygen concen-
tration due to the emulated data. We have added a section that refers to these figures in the
data section as follows:
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To highlight the impact of adding these emulated profiles on the sampling of dissolved oxy-
gen concentration, we present in Appendix D the spatial coverage of the observed dissolved
oxygen data (Figure D4) and that of the emulated oxygen data derived from temperature
and salinity profiles (Figure D5), along with an analysis of the sampling bias before and af-
ter including the emulated profiles (Figure D3). Overall, we observe a substantial increase
in data coverage resulting from the inclusion of the emulated profiles, particularly after the
year 2000, which coincides with the deployment of the Argo program.
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