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Abstract. Climate change and extreme weather events pose challenges to food security, emphasizing the need for reliable

and timely monitoring of crop and rangeland conditions. For this purpose, long-term consistent Earth Observation datasets on

vegetation conditions are typically used in early warning and crop yield forecast systems. However, the near-real-time (NRT)

production of high quality datasets and the need to guarantee long-term records present various challenges. To address these,

we present a NRT global dataset of Fraction of Photosynthetically Active Radiation (FPAR) at 500 m resolution, optimized5

for agricultural applications. Our dataset combines MODIS-FPAR (Collection 6.1) and VIIRS-FPAR (Collection 2) data, en-

suring continuity from 2000 to well beyond 2030. We applied a robust filtering approach based on the Whittaker smoother

to produce reliable FPAR estimates in NRT, accounting for sparse and irregular spaced observations due to cloud cover. The

dataset is composed of two 10-day filtered timeseries: 1) MODIS-FPAR for 2000 to 2023, being the reference dataset, and

2) intercalibrated VIIRS-FPAR for 2018 onward. While several methods can effectively smooth and gap-fill FPAR data (i.e.,10

using observations before and after the estimation date), our method is designed for optimal filtering in NRT (i.e., using only

prior observations). Our approach yields six successive estimates of the same FPAR data point with increasing quality: an inital

estimate immediately after the 10-day reference period, four subsequent estimates every 10 days using new observations, and

a final consolidated estimate 90 days later. The implemented filtering ingests the available FPAR observations and their orig-

inal quality assessment (QA) layers. To avoid unrealistic extrapolation when observations are sparse, we impose constraints,15

season and location specific, to FPAR estimates. We then intercalibrated the VIIRS-FPAR with the MODIS-FPAR filtered

timeseries, using a mean difference correction approach, to ensure consistency between both series. This paper describes the

filtering and intercalibration method used, the quality assessment of resulting timeseries, and details the obtained products and

the corresponding QA layers. The NRT FPAR dataset is publicly available through the Joint Research Centre Data Catalogue,

https://data.jrc.ec.europa.eu/dataset/1aac79d8-0d68-4f1c-a40f-b6e362264e50 (Seguini et al., 2025).20
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1 Introduction

Climate variability and frequent extreme weather events result in reduced agricultural productivity, thus contributing to food

price volatility, food insecurity, malnutrition, and global hunger (FAO and IFAD, 2020; Programme, 2022). Early warning

systems (EWS) and crop yield forecasting systems (CYFS) use meteorological and Earth Observation (EO) data (Fritz et al.,

2019; Nakalembe et al., 2021) to provide information on ongoing or potential issues in crop and rangeland production, to assess25

market implications and food security concerns. EO technologies are crucial for monitoring crop and rangeland conditions,

providing biophysical data on vegetation over large areas with high revisit frequency (Atzberger et al., 2015).

Despite the increasing availability of free data from high-resolution optical sensors (e.g., from Landsat and Sentinel-2 mis-

sions), low-resolution sensors (250-1000m) remain valuable for their frequent revisits (and thus larger availability of cloud-free

observations) and longer timeseries. The latter is of utmost importance for anomaly computation and crop yield forecasting.30

Anomalies compare the current crop conditions to long-term climatological statistics, while data-driven crop yield forecasting

uses multi-year EO-based timeseries as predictors against crop yield statistics (Basso and Liu, 2019; Schauberger et al., 2020;

Atzberger et al., 2015).

Currently operating low-resolution optical sensors offer a timeseries length close to 30 years, the reference length for long-

term statistics according to the World Meteorological Organization (WMO, 2017). The longest and most-used timeseries for35

vegetation monitoring include MODIS (Moderate-resolution Imaging Spectroradiometer) with 24 years of data; the combined

dataset VGT-PV-S3 offering 26 years (VGT stands for Satellite Pour l’Observation de la Terre, SPOT-VEGETATION; PV

for the VGT instrument onboard its successor mission Proba-V; and S3 for the Ocean and Land Colour Instrument onboard

Sentinel-3); and 42 years from AVHRR (Advanced Very High Resolution Radiometer) that was flown on multiple satellite

platforms. Lastly, VIIRS (Visible Infrared Imaging Radiometer Suite) timeseries provides 12 years of data and is specifically40

designed to ensure continuity with the MODIS timeseries (Román et al., 2024) over an extended period. Indeed, the JPSS

(Joint Polar Satellite System) program includes three operational VIIRS sensors, i.e., Suomi-NPP (Suomi National Polar-

orbiting Partnership), NOAA-20 and NOAA-21 (National Oceanic and Atmospheric Administration), and the two upcoming

ones (JPSS-3 and 4) planned to operate through the late 2030s.

As indicator of biomass condition, vegetation indexes (e.g., the Normalized Difference Vegetation Index, NDVI; the En-45

hanced Vegetation Index, EVI) or biophysical variables (e.g., the Fraction of Photosynthetically Active Radiation, FPAR) are

typically used in operational crop and rangeland monitoring (Cammalleri et al., 2021; Rojas, 2021; Rembold et al., 2023; Wu

et al., 2015) and yield forecasting systems (Meroni et al., 2021; Paudel et al., 2021; Mateo-Sanchis et al., 2023). In particular,

FPAR is more closely linked to canopy processes, and it is a key biophysical variable for estimating vegetation productivity

and monitoring terrestrial carbon (Monteith, 1972; Xiao et al., 2019). FPAR is defined as the fraction of incident photosyn-50

thetically active radiation (PAR, radiation in the 400-700 nm spectral region used by plants in photosynthesis) absorbed by the

green elements of the vegetation canopy, and it is recognized by the global climate observing system (WMO et al., 2006) as

an essential climate variable (ECV). Unlike vegetation indexes, which depend on spectral responses of sensor-specific bands,
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illumination and observation angle and canopy background, FPAR is an inherent canopy property and can be retrieved on

observations provided by sensors with different spectral characteristics, ensuring data continuity across satellite missions.55

MODIS-FPAR and VIIRS-FPAR products (Myneni, 2020; Park et al., 2018a) are retrieved with the same approach and

specifically produced to guarantee the continuity of the MODIS mission (Román et al., 2024). The FPAR algorithm used for

MODIS-FPAR was adjusted to the VIIRS spectral characteristics (Park et al., 2018a). The most recent VIIRS-FPAR products

of Collection 2 are derived from the data of two satellites (Suomi-NPP from 2012 and NOAA-20 from 2018), deploying a cross-

calibration of selected reflective solar bands using MODIS Aqua as a reference to reduce the bias between the reflectances of60

the two satellites (NASA, 2022). These efforts ensure the continuous provision of a consistent global FPAR data set compatible

with the MODIS-FPAR, as the MODIS instruments will soon be phased out. The end of the production of the science products,

initially planned for August 2023, was extended up to May-April 2027 (Terra) and August 2026 (Aqua) at maximum (LAADS-

DAAC, 2024). In 2022, problems had already been encountered: Aqua in April (LP-DAAC, 2022a) and Terra in October (LP-

DAAC, 2022b) stopped data delivery due to technical problems and orbital shift, respectively. In 2023, non-recoverable data65

loss events for Aqua MODIS were reported for July (LP-DAAC, 2023a). LP DAAC (The NASA Land Processes Distributed

Active Archive Center) announced on 17 August 2023 that the Flight Operation Team for Terra and Aqua MODIS transitioned

to Light-Out-Operations, which can result in additional data losses and larger data gaps (LP-DAAC, 2023b).

An intercalibration of the VIIRS-FPAR timeseries with that of MODIS is feasible with relatively limited efforts thanks to

the similarity of the sensors in terms of spatial and spectral resolution, and algorithms for FPAR retrieval. A longer timeseries70

with near-real-time (NRT) data would have been possible using additional sensors (i.e. VGT, PV, S3, AVHRR). However, this

would require the harmonization of FPAR data produced by different algorithms and different spatial resolutions (e.g., VGT

with spatial resolution of 1000 m, PV and S3 with 300 m). The AVHRR timeseries presents even greater challenges, with

more than 15 sensors to consider and no FPAR product, but only NDVI at a coarse 8 km resolution (Pinzon and Tucker, 2014;

Pedelty et al., 2007). The above options present strong intercalibration challenges, which make results likely less reliable as75

compared to the intercalibration of MODIS and VIIRS FPAR products.

Besides the need for consistent, long-term timeseries, EWS and CYFS require high quality, continuous and updated infor-

mation for effective and timely decision-making by stakeholders. For this reason, noise and cloud contamination removal is

required both for the historical archive and in NRT production. For historical observations, temporal smoothing can effectively

reduce noise and cloud contamination while filling gaps in the timeseries (Goward and Huemmrich, 1992; Chen et al., 2004;80

Weiss et al., 2014), as data points are available before and after each observation to be smoothed. For NRT data, specific fil-

tering methods need to be developed, to handle unbalanced data availability around recent data points (Klisch and Atzberger,

2016; Meroni et al., 2019).

Several products exist that offer high-quality timeseries of biophysical variables, such as HiQ-LAI (Yan et al., 2025) or

GIMMS FPAR4g (Zhao et al., 2024), but they usually lack some of the mandatory features needed by operational agricul-85

tural monitoring systems (i.e., long-term record and NRT availability). Typically, there is no guaranteed NRT data deliv-

ery into the future, nor are datasets filtered to reduce atmospheric influences. An exception is the Copernicus Land Mon-

itoring Service that provides continuous, NRT, and filtered timeseries of biophysical variables from Proba-V and Sentinel-
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3 satellites (https://land.copernicus.eu/en/products/vegetation/fraction-of-absorbed-photosynthetically-active-radiation-v1-0-

300m). Nevertheless, the timeseries length offered is too short (around 12 years) for robust statistical analysis needed for90

anomaly computation or crop yield forecasting. In this study we fill this gap by proposing a new dataset meeting the require-

ments of continuous, NRT, and filtered biophysical timeseries for more than 20 years.

This paper describes a new 500 m dataset composed of two filtered and intercalibrated FPAR timeseries, one from MODIS

and one from VIIRS. This dataset was produced to support the operational crop monitoring and yield forecasting activi-

ties of the Joint Research Centre of the European Commission. These include the European Mars-Crop Yield Forecast-95

ing System (M-CYFS) and the global Anomaly hotspot of Agricultural Production (ASAP, https://agricultural-production-

hotspots.ec.europa.eu/) early warning system. The FPAR dataset is accompanied by associated quality layers and has a tem-

poral resolution of 10-day, a time step often used in operational agricultural monitoring. The dataset is open and freely avail-

able in NRT through the Joint Research Centre Data Catalogue (https://data.jrc.ec.europa.eu/dataset/1aac79d8-0d68-4f1c-a40f-

b6e362264e50) and on the ASAP website (https://agricultural-production-hotspots.ec.europa.eu/data/MO6_FPAR). This paper100

has the following specific objectives: i) to introduce the method used to produce a long-term archive of NRT filtered FPAR data;

ii) to present the intercalibration performed between the filtered MODIS-FPAR and the filtered VIIRS-FPAR; iii) to evaluate

the robustness of the FPAR filtering; and iv) to describe the open and free dataset and discuss its sustainability. The quality of

the input FPAR products relative to ground observation is not within the scope of this study and is described elsewhere (Yan

et al., 2025).105

2 Input data

We used the MODIS-FPAR timeseries from Collection 6.1 (2000-2023) and the VIIRS-FPAR timeseries from Collection 2

(available at the time of analysis from 2018 to 2023), both with 500 m spatial resolution.

2.1 MODIS FPAR

The MODIS FPAR products are retrieved from a main algorithm that considers the vegetation structural type, the sun-sensor ge-110

ometry, the Bidirectional Reflectance Factors (BRFs) at red and near-infrared spectral bands and their uncertainties (Knyazikhin

et al., 1999; Myneni, 2020). A back-up algorithm is applied only for cases where no suitable solution is obtained from the main

algorithm, and relies on the empirical relationship between NDVI and canopy FPAR (Myneni, 2020). MODIS-FPAR products

were collected from the most recent Collection 6.1 through the Data Pool at the LP DAAC. From 18-02-2000 to 26-06-2002

the timeseries consists of MODIS-FPAR from Terra (MOD15A2H, 8-day composite, Myneni et al. (2021b). Since 04-07-115

2002, a MODIS Terra and Aqua combined product is available (MCD15A3H, 4-day composite, Myneni et al. (2021c). In

case of missing MCD15A3H, we used MOD15A2H (Terra) or MYD15A2H (Aqua, Myneni et al. (2021a), if available. This

occurred in 2022, when MCD15A3H data production was interrupted in April (LP-DAAC, 2022a), and in October (LP-DAAC,

2022b), while the MYD15A2H or MOD15A2H products were available (Terra in April 2022, Aqua in October 2022). For each

time composite, we collected the global terrestrial coverage, composed by 286 tiles of the MODIS sinusoidal tile grid. Each120
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MODIS tile is provided in Hierarchical Data Format (HDF), from which we extracted three layers: Fpar_500m, FparLai_QC

and FparExtra_QC. Fpar_500m layer contains for, each pixel, the maximum FPAR value among daily retrievals within the

composite period (8-day for MOD15A2H and MYD15A2H or 4-day for MCD15A3H). The FparLAi_QC and FparExtra_QC

layers are defined as the quality assessment (QA) products, meant for selection of reliable FPAR values. The QA products

contain information about data source, detector problems, cloud and cloud shadow presence, the algorithm used to retrieve125

FPAR, the presence of snow or ice, the presence of aerosols, and the presence of cirrus (see Table A1 for a detiled description).

Because no reference date is provided for the MODIS 4-day or 8-day FPAR products, we set their nominal date to the last day

of the compositing period.

2.2 VIIRS FPAR

For VIIRS, we used the Collection 2 which includes VNP15A2H (Suomi-NPP satellite, Myneni (2023b) and VJ115A2H130

(NOAA-20 satellite, Myneni (2023a) FPAR products available at the time of analysis (30-06-2023). Collection 2, available

at the time of analysis from 2018, has the same spatial (500 m) and temporal (8-day composite) resolution as the MODIS-

FPAR products (MOD15A2H and MYD15A2H). The VIIRS-FPAR Collection 2 aimed at improving consistency with MODIS

products by implementing a cross-calibration to limit the bias to maximum 1% for selected reflective solar bands, using MODIS

Aqua as a reference (NASA, 2022; Román et al., 2024). We downloaded VIIRS-FPAR Collection 2 in HDF format from135

NASA’s Earthdata cloud. VIIRS-FPAR products have a data structure similar to MODIS-FPAR products with three layers

provided: Fpar_500m, FparLai_QC and FparExtra_QC. However, some differences are present in the QA products. Most

notably, the logic of the cloud coverage information was changed: for VIIRS four levels of cloud probability are provided

instead of the Internal cloud mask and the Cloud state provided by the MODIS QA products. Similarly, the aerosol presence is

classified in four levels instead of the single flag provided for MODIS. TableA2 describes in more detail the VIIRS QA layer140

contents. Because no reference date is provided for the VIIRS products, we set this date to the last and before-last day of the

compositing period (the 8th day for VNP15A2H and the 7th day for VJ115A2H). Different dates are assigned because our

smoothing implementation accepts one value per day.

3 Study area and ancillary data

Our dataset targets the global extent covered by the MODIS and VIIRS original products, approximately from 75° North to145

56° South and from 180° West to 180° East. It uses a temporal step of 10-day (i.e. dekad), typically employed in agronomic

analysis. A dekad is a nearly 10-day period covering each month with 3 dekads (day 1–10, 11–20, and 21–last day of the

month) and the calendar year with 36 dakads. To focus the analysis of the dataset on the vegetation growing cycle, statistics

were extracted on the average growing season period defined per pixel using the phenology layer of the ASAP system. ASAP

defines start and end of a fixed growing season at pixel level based on thresholds on the green-up and decay phases (Rembold150

et al., 2015). Because FPAR is produced also for pixels with a presence of permanent or seasonal water, we masked such pixels

out. To mask water pixel, we used a land/water mask derived from the MOD44W Collection 6, a global map of surface water
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at 250 m spatial resolution in the standard MODIS sinusoidal grid (Carroll et al., 2017). This mask was aggregated to 500m

spatial resolution by labelling a pixel as land only if no 250m water-pixel was included. From the remaining, non-watered

pixels, we selected all vegetated pixels accordingly to MCD12Q1 biome map (Friedl and Sulla-Menashe, 2019) which cover155

crops, shrubs, savanna, and forests. Since the main scope of our dataset is agricultural monitoring, we used two further masks

(cropland and rangeland) from the JRC-ASAP system (Fritz et al., 2024) to analyse our results.

4 Methods

The main steps to produce our combined filtered FPAR dataset are shown in Fig.1. In this paper, we adopt the definitions

according to Sedano et al. (2014): smoothing refers to the interpolation over a time span when observations are available before160

and after each data point, while filtering refers to the estimation of near-real-time (NRT) data using only past observations. The

processing steps regarding smoothing are described in Sections 4.1.1 and 4.1.2, while filtering in Section 4.1.3. Methods used

to assess the quality of the filtering are described in Section 4.2, while the comparison and alignment between VIIRS-FPAR

filtered data and MODIS-FPAR filtered data is described in Section 4.3.

Figure 1. Workflow for generating the NRT FPAR dataset from the input FPAR data and the main comparison analysis provided in this

paper. The reference to section of the paper describing the associated building block is reported in brackets. The blocks associated to MODIS

data are in yellow, those associated to VIIRS data in blue, and those to the outputs in green.
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4.1 FPAR smoothing and NRT filtering165

Our approach builds on the previous method for developing a NRT operational MODIS NDVI product (Klisch and Atzberger,

2016; Meroni et al., 2019) based on the Whittaker smoother (WS (Eilers, 2003; Atzberger and Eilers, 2011a, b). In our imple-

mentation of the WS, the FPAR observations are weighted according to the QA products (Section 4.1.1), while all the available

observations are used. Compared to the previous implementations, we revised the weights assigned to MODIS data and intro-

duced new weights for VIIRS data. The WS achieves a balance between the fidelity to the original data and the roughness of the170

smoothed curve (i.e., the second-order differences) by tuning its smoother parameter λ: a larger λ results in smoother results

that align less with original data. In Section 4.1.2 we describe the tuning of the parameter λ and the smoothing of the whole

timeseries (i.e., off-line smoothing) for the computation of the long term statistics. Compared to the previous implementations,

we revised the parameter λ and introduced an iterative upper envelope fit approach to minimize noise from undetected cloudy

observations (Chen et al., 2004). The operational NRT filtering is described in Section 4.1.3 while its adaptation in presence of175

sparse observations is presented in Section 4.1.4. Finally, in Section 4.1.5 we describe the quality products associated with the

NRT filtering. Compared to the previous implementation, this study modified the adaptation strategy and perfected the system

of the quality layers.

4.1.1 Weighting observations

FPAR data are weighted according to the MODIS and VIIRS QA products. The attribution of weights to specific combinations180

of quality indicators was based on the visual inspection of a large amount of observations, aimed to understand the relationship

between specific quality indicators and data quality. This process led to the definition of three different weights associated

to specific quality indicators (Table 1). The weighting scheme was developed by visually inspecting 117 pixel-based FPAR

timeseries between 2000 and 2021. Those 117 samples were obtained from a stratified random sampling over the MCD12Q1

biome map. We considered 70 samples from the biomes cropland-grasslands, broadleaf cropland, and savanna, comprising 35 in185

Europe and 35 in Africa. The other 47 samples were selected from all eight available biomes for the whole globe (Fig. B1, Table

B1). The reliability and consistency of each timeseries was visually assessed and, with focus on short timescale consistency,

assuming that no negative spikes (i.e. rapid drop and rise of FPAR value) should occur. In assigning the weights, we followed

the recommendations of Myneni (2020) suggesting that the reliability of an observation is primarily driven by the algorithm

used. We assigned the highest weight (100%) to high quality -HQ- observations (i.e., cloud- and snow-free observations) from190

the main algorithm. We observed that in various cases HQ observations were too few, leading to poor WS performance; however

backup algorithm provided consistent value. Therefore we retained the values from the backup algorithm, assigning them a

weight of 50%. In addition, we found that cloud or snow contaminated observations frequently had plausible FPAR values. In

the attempt to increase the number of usable observations, we assigned a small weight of 20% to pixels flagged as contaminated

by either the main or the back-up algorithm. Possible drawbacks of retaining cloudy observations are mitigated by the upper-195

envelope adaptation (described in Section 4.1.2) that is designed to downweight cloudy and negatively biased observations.

The visual inspection of the timeseries also revealed that aerosol flags occurred very frequently and, in most cases, without
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detectable impact on FPAR observations. Therefore, we decided to downweight to 20% only those observations flagged as

aerosol when MODIS-FPAR data is retrieved with the backup algorithm, while for VIIRS-FPAR data downweighting to 20%

occurred when both Climatology and High flags were marked in the QA products, as suggested by Lyapustin et al. (2021).200

Finally, we observed a number of cases with exceptional (and unrealistic as compared to values immediately before and after)

FPAR values of 100%, negatively impacting the smoothing results. In principle, both the main and backup algorithm can result

in values large as 100% (FPAR NASA Science Team, personal communication), but in the majority of cases we observed those

values when the backup algorithm was used. As consequence, we weighted these erroneously high values as 0%, together with

those flagged with Fill value (no realistic observation) and Dead detector (physical error at sensor) in the QA products.

Table 1. Weights proposed for different observation conditions. For the Gap-filling procedure applied refers to Section 4.1.4

Weight in % Description

100 Main algorithm, no clouds and no snow present

50 Backup algorithm, no clouds, snow, or aerosol present

30 Gap-filling procedure applied

20 Clouds or snow present

20 Aerosol present and backup algorithm

0 FPAR = 100 and backup algorithm

0 Dead detector

0 Fill value

205

4.1.2 Off-line smoothing

Off-line smoothing refers here to a smoothing that is performed retrospectively on the full historical timeseries and not in NRT.

This smoothing is performed once and only to extract the pixel-based statistics that serve the NRT filtering. We performed

the off-line smoothing on MODIS data over the period 01-01-2003 to 31-12-2021 that can be considered representative for

normal MODIS operations, when both Terra and Aqua satellites were available and fully operational (no sensor issues). Only210

MODIS data were considered as they offer a significantly longer timeseries compared to the VIIRS timeseries, and as such,

are better suited for statistical analysis. Only pixels with at least 80 HQ observations in the entire timeseries were retained

(flagged as no data otherwise). We set the WS smoother parameter λ value to 3000 following previous analysis (Klisch and

Atzberger, 2016; Atzberger et al., 2015) and the visual inspection of fitted curves produced with different λ values. The data

used for the smoothing were weighted as described in Section 4.1.1. In addition, the possible residual presence of cloudy215

observations (downweighted or fully undetected by the quality flags) was suppressed by iteratively applying the smoothing to

fit the upper envelope of the FPAR temporal trajectory (Chen et al., 2004; Beck et al., 2006). This approach was chosen for its

flexibility in capturing vegetation signal changes and its successful validation in previous studies (Meroni et al., 2014). From

WS’s daily output, FPAR rasters are stored for one moment within the 10-day (dekad) period. This moment was fixed to the
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5th day of the dekad corresponding to 5th, 15th, 25th of each month. From the complete timeseries of smoothed 10-day rasters,220

two classes of long term statistics are computed per pixel: long-term per-dekad average (LTA) and dekad-to-dekad variations

(i.e., minimum, average and maximum difference between every two consecutive dekads of the year, computed over the full

historical timeseries).

4.1.3 NRT filtering

The NRT filtering method consists of a modified version of the WS applied at the end of every 10-day period from 01-07-225

2023 onwards. Prior to that date, FPAR data were filtered with NRT method in hindcasting (i.e., by simulating the lack of

data later in time than the dekad to be filtered). Indeed, while the off-line smoothing consider all the dekad at once, with

hindacasting we simulated the operational constraints to obtain a consistent dataset computed in NRT mode. Hindcasts were

done for MODIS from 21-05-2000 onwards, and for VIIRS since the start of Collection 2, at time of analysis (01-01-2018).

The NRT filtering principle is the same as described in Section 4.1.2, while its application is slightly different. In NRT, we use230

the FPAR observations within a time window of 190 days before the day of the filtering (TWL, Temporal Window Length),

and constrain the output filtered values under certain conditions (4.1.4). Our filtering estimates the FPAR value for the latest

10-day period, C0, and the four previous 10-day periods. In this way, as time passes, the same FPAR value is first produced

(consolidation stage 0, C0) and then updated four times (consolidation stages 1 to 4: C1, C2, C3 and C4), before reaching a

final consolidation stage CF, 90 days after its first C0 estimation. The filtered values between C4 and CF (e.g., C5-C8) are not235

stored, as the impact of the update is minimal.

4.1.4 NRT filtering with sparse observations

When HQ observations in the latest 40 days of the TWL are sparse, WS estimates for earlier stages, and notably those close

to C0, are prone to provide unrealistic FPAR values because of extrapolation effects, as only past observations are available.

To limit this effect Klisch and Atzberger (2016) introduced a constraint to the filtered FPAR values. Here, this is implemented240

separately for two different cases: i) at least one HQ observation in the last 40 days from the date of smoothing, ii) no HQ

observations in that period. In case i) an anchor point is defined as the latest estimated stage which is followed by at least one

HQ observation (e.g., C3 in Fig.2 - panel b)). For the subsequent stage (e.g., C2), we accept filtered FPAR value if its variation

from the anchor point remains within the minimum-maximum range, derived from dekad-to-dekad variation obtained from

the off-line smoothing procedure (Section 4.1.2). If the filtered value exceeds this range, it is truncated to the correspondent245

boundary value. The new filtered (and potentially constrained) stage (e.g., C2) then becomes the anchor point for the next

iteration until the C0 value is calculated. In case ii), an initial gap-filling procedure is used. The first anchor point is set to the

C4 data point from the previous date of filtering (e.g., star point in Fig.2 - panel c). Then, to gap-fill the missing observation

for the next 10-day period, a synthetic FPAR value is computed based on LT statistics (with given weight of 30%). However,

instead of using the LT average directly (that may be far larger or smaller in case the current season is better or worse than the250

average season) the synthetic value is obtained by adding to the anchor point FPAR value the corresponding average dekad-

to-dekad variation. This new point becomes the anchor for the next iteration. The process is repeated up to computing five
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FPAR replacement values (C4 to C0). The filtering and the constraint mechanisms are then applied, as in (i). In the exceptional

case of less than five HQ observation in the TWL, missing values are replaced directly with corresponding LTA values, and

the filtering and constraint mechanisms are applied as in, as in (i). With the filtering procedure, we obtained two timeseries of255

filtered data: one for MODIS-FPAR and one for VIIRS-FPAR.

Figure 2. Panel a) shows an example of the NRT filtering approach with enough HQ observations in the latest 40 days and no constraint

mechanism applied. Panel b) displays an example of applying the constraint mechanism that modifies the values of C0 and C1 as their first

SW filtering estimation is out of the admissible value range (i.e., yellow triangles). Panel c) shows an example of applying the gap-filling and

constraint mechanism. The blue dots are the gap-filled values as from the LTA. After the gap-filling, the filtering proceeds with filtering and

constraint mechanism.

4.1.5 NRT quality layers

We keep trace of our filtering mechanism path (e.g. the application of gap-filling procedure) in a status map (SMP), produced

for each dekad and consolidation stage at pixel level (Section 7). Together with the SMP we produce four additional QA layers:

number of HQ observations between stages C4 and C0 (NWM), average weight of observations between stages C4 and C0260

(QWM), number of days from the last HQ observation to the last day of the 10-day window (NLM), and weight of last available

observation (QLM). NWM, QWM, NLM, and QLM refer to quality and availability of observations within the TLW. Indeed,

the lower the number of HQ observations available (NWM and NLM) and the smaller the weight of the observations used
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(QWM and QLM), the less reliable are the FPAR estimates for the unconsolidated stages. The QA layers are stored once with

the reference date of C0 and are valid for all stages produced at the specific date.265

4.2 FPAR filtering assessment

To assess the quality of the filtering we: i) evaluated its robustness by comparing, for each single dekad, the FPAR value of the

unconsolidated stages (i.e., C0 to C4) with the value of the consolidated stage (i.e., CF), assumed to be the best FPAR estimate

(Meroni et al., 2019); ii) evaluated the utility of the constraint mechanism (Section 4.1.3) by an ablation study. In both cases, the

assessment was performed on a subsample of the FPAR global rasters, following the approach described Meroni et al. (2019).270

Our sample was obtained by spatially subsampling the global rasters by selecting the central pixel within a not-overlapping

window of 41x41 FPAR pixels; this approach reduced computational time but still captured global vegetation patterns (Toté

et al., 2017). As a result, the sample is composed of timeseries from 324,004 pixels. All the stages were computed using only

the filtered MODIS-FPAR timeseries as it offers a significantly longer timeseries compared to the VIIRS timeseries, and thus

provides more robust statistics.275

4.2.1 Filtering robustness

To assess the robustness of the filtering, we compared the FPAR stages from C4 to C0 against CF, by dekad. We computed

the mean absolute error (MAE) and the mean error (ME) for each pixel and each MODIS dekad between 01-05-2003 and

31-12-2021. We expressed them as Cx (consolidation stage x) error compared to CF, with the notation _Stage_Cx, following

Eq. (1) and Eq. (2. )280

MAE_Stage_Cx=
∑
y

∑
i

|FPAR_Cxyi −FPAR_CFyi|
N

(1)

ME_Stage_Cx=
∑
y

∑
i

(FPAR_Cxyi −FPAR_CFyi)

N
(2)

Cx is the consolidation stage x (x = 0, . . . , 4), CF is the final and reference consolidated stage, y is the year (19 years in total),

i is the dekad, and N the total number of samples. The metrics were temporally aggregated over the average growing season of285

each pixel and spatially averaged over the three strata: vegetated, cropland, and rangeland (Section 3).

4.2.2 Ablation study

To assess whether the constraint mechanism results in more accurate NRT FPAR estimates, we performed an ablation study.

We generated a non-constrained MODIS-FPAR filtered timeseries using the same settings as in Section 4.1.3, but without

applying the constraint mechanism and we then computed MAE_Stage_Cx and ME_Stage_Cx (see Section 4.2.1) for the non-290

constrained timeseries. Finally, we compared these error metrics to those obtained from the constrained-timeseries. We used

data from 01-01-2003 to 31-12-2021, from MODIS only, for the same reasons outlined in Section 4.2.
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4.3 Intercalibration of FPAR filtered timeseries

With the objective of combining the VIIRS and MODIS FPAR filtered timeseries, we first visually compared them and found

spatial and temporal differences. As these differences may affect operational monitoring and forecasting activities, we decided295

to systematically assess the presence of bias and to intercalibrate the filtered VIIRS-FPAR timeseries on the longer filtered

MODIS-FPAR timeseries. Such analysis was done over the 5 years of overalpping data available at the time of analysis, between

01-07-2018 and 30-06-2023. After initial test with several intercalibration methods (Ceccherini et al., 2013; Cammalleri et al.,

2019; Gudmundsson et al., 2012) we opted to apply the mean difference MD correction. MD correction has the advantages that

can be applied using a short overlap period as MODIS-FPAR Collection 6.1 and VIIRS-FPAR Collection 2 and can account for300

temporal and spatial differences, where applied per-dekad and per-pixel. We computed the global rasters of the dekadal MD

between the filtered FPAR timeseries of MODIS and VIIRS for each consolidation stage. Each filtered FPAR value derived

from filtered VIIRS-FPAR timeseries was then corrected by adding its corresponding dekadal MD value, pixel-specific and

consolidation stage-specific.

4.3.1 Intercalibration assessment305

To assess the differences between the same stage of the filtered and intercalibrated VIIRS FPAR timeseries and the filtered

MODIS timeseries we used again MAE and ME but with the notation _Sensor to mark the difference in the domain of applica-

tion and coverage period as compared to Section 4.2.1. MAE_Sensor and ME_Sensor were calculated for each pixel and each

dekad between 01-07-2018 and 30-06-2023, following Eq. (3) and Eq. (4).

MAE_Sensor_Cx=
∑
y

∑
i

(|FPAR_V IIRS_Cxyi −FPAR_MODIS_Cxyi|
N

(3)310

ME_Sensor_Cx=
∑
y

∑
i

((FPAR_V IIRS_Cxyi −FPAR_MODIS_Cxyi)

N
(4)

FPAR_VIIRS is the filtered and intercalibrated FPAR timeseries of VIIRS, FPAR_MODIS is the filtered timeseries of

MODIS, Cx is the consolidation stage x (x = 0, . . . , 4, F). MAE_Sensor and ME_Sensor were temporally and spatially ag-

gregated as those of Eq. (1) and Eq. (2.)315

5 Results

5.1 NRT filtered FPAR timeseries

We produced two global timeseries of filtered FPAR, one based on MODIS-FPAR filtered data and one on the intercalibrated

VIIRS-FPAR filtered data. A total of 16 global rasters were produced every 10 days for both series (from 20-08-2000 to 31-

12-2023 for MODIS, since 01-01-2018 for VIIRS). Each set of 16 rasters was composed by the six FPAR consolidation stages320
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(i.e., C0, C1, C2, C3, C4, CF), the associated SMP rasters (6 rasters), and the four QA rasters (NWM, QWM, NLM, QLM). Fig.

3a shows an example of the global raster from the intercalibrated VIIRS-FPAR timeseries for dekad 13 of 2023 (01-05-2023

to 10-05-2023). It nicely shows the gradient of vegetation vigour in Europe, with FPAR values around 80% in the West and

between 40 % to 60 % in the East, and very low FPAR values for the Iberian Peninsula due to the severe drought conditions that

spring (EC-JRC, 2023). Figure 3b illustrates the SMP for the same dekad, indicating the quality of the information provided.325

For the largest share of vegetated land the FPAR values were obtained with favourable filtering conditions with no need for

constraint or gap-filling procedures. In contrast, constraint and gap-filled procedures were used where prolonged periods of

snow or clouds occurred (orange or red colours), as at higher latitude, or at elevated altitude (e.g. the Alps) and over tropical

forests. The corresponding QA layers are presented in Fig. C1a–C1d.

Figure 3. Global maps of intercalibrated VIIRS-FPAR filtered for dekad 13 of 2023 (period 1-10 May 2023). Panel a) displays the filtered

FPAR values, and panel b) the SMP status map describing which operations were performed to compute the final FPAR value. The abbrevi-

ations of Filt. and const. stand for filtering and constrained, respectively.

5.2 NRT filtering robustness330

We assessed the robustness of the NRT filtering by evaluating its accuracy in predicting CF value during the growing season. A

preliminary visual assessment of the timeseries for each consolidation stage at the selected sample points showed convergence

toward the CF, as illustrated in Fig. 4. For example, in early 2022, FPAR was strongly overestimated for C0, although values

were still realistic and close to the LTA. From the second estimation (C1) onwards, FPAR values moved significantly closer to
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Figure 4. Temporal profile of MODIS-FPAR filtered data for an arable land pixel in Portugal for the period 01-01-2001 to 31-10-2023. CF,

C4, C3, C2, C1, C0 represent the consolidation stages and LTA is the average computed over the CF timeseries. The bottom panel provides a

detailed view of the 2022-2023 data. Dots represent the non-filtered FPAR values as from MOD15A2H.061 and MCD15A3H.061, coloured

according to the weight assigned.

the final CF. Later, in March 2022, C0 underestimated the CF due to persistent low-quality observations (weighted at 20 %),335

whereas the C1 estimation, incorporating new HQ data, was already very close to the CF. Despite our filtering has a conservative

approach relying on historic information (e.g., constraint mechanism), it effectively estimates FPAR values that deviate from

the average. This is particularly evident in the 2022-2023 agricultural season, when green-up occurred much earlier than the

average (Fig. 4). Fig. 5 presents a quantitative evaluation, showing the FPAR differences between all consolidation stages

and CF. The density distributions converge toward 0 % error as the consolidation progresses, indicating improved FPAR340

estimation with more observations. The distribution of relative errors indicates that the C2 estimation already provides a good

approximation of CF, with the distribution closely resembling that of C4.
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Figure 5. Violin plots of FPAR differences computed between the MODIS-FPAR values of each consolidation stage (C0, C1, C2, C3, C4)

and the correspondent final stage (CF), for the global FPAR raster of dekad from 01-05-2023 to 10-05-2023. The values are calculated

considering all vegetated pixels.

5.3 Ablation study results

We evaluated the utility of the constraint approach as described in Section 4.2.2. We averaged MAE for each consolidation

stage, for all vegetated pixels, over all the growing seasons in the 19 available years of the MODIS-FPAR timeseries. We com-345

puted two error metrics with and without constrained filtering, which were compared stage by stage. Results (Fig. D1) showed

similar spatial patterns, with the highest errors in northern latitudes and in tropical regions. Constrained filtering significantly

reduced MAE, in particular for the C0 stage. High MAE in these regions was mainly due to low-quality FPAR observations

(e.g., persistent cloud or snow coverage), but the constraints prevented unrealistic spikes and frequent drops in FPAR values.

ME analysis for C0 confirmed that unconstrained filtering predominantly led to negative ME values, while constrained filter-350

ing resulted in slightly positive ME values. This indicated that constrained filtering at C0 mildly overestimated CF, whereas

unconstrained filtering underestimated it more significantly. As expected, this effect diminished in later consolidation stages

as more data became available, reducing MAE. These results demonstrate the added value of the constraint mechanism and

justify its operational use.

5.4 Evaluation of the MODIS-VIIRS intercalibration355

We compared the MODIS-FPAR and VIIRS-FPAR filtered timeseries through cumulative distribution functions (CDFs) of

MAE_Sensor and ME_Sensor for each consolidation stage, with and without the MD correction. Without MD correction, the

mean ME_Sensor was already very small, around -1 % across all consolidation stages, indicating a slight underestimation

of MODIS-FPAR filtered values by VIIRS-FPAR filtered values. This agrees with the findings of Román et al. (2024) that

examined the continuity between row MODIS-FPAR Collection 6.1 and from VIIRS-FPAR Collection, found that VIIRS360

slightly underestimated MODIS FPAR, and suggested the two FPAR products could be used interchangeably. The analysis
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of MAE_Sensor revealed larger dispersion between the two timeseries, with most (> 70 %) pixels exhibiting a MAE_Sensor

below 5 % (Rangeland and Vegetation) and 6 % (Cropland) across the majority of consolidation stages. For all land cover

types considered, MAE_Sensor decreased as the consolidation stage progressed, as earlier consolidation stages (e.g., C0)

are more sensitive to cloud and snow screening differences (Section 2). The MD correction reduced discrepancies across all365

consolidation stages (Fig. 6, continuous lines) as shown by the CDFs for the intercalibrated timeseries. This indicates that

the best agreement between the two timeseries as the filtered FPAR values stabilized and approached true values (i.e., CF)

with around 50% of CF pixels exhibiting a MAE_Sensor error lower than 2% for the rangeland and vegetation pixels, while

slitghly higher (2.5 %) for cropland pixels. When the geographical distribution of MAE_Sensor was considered (Fig.C2) we

observed consistent patterns across all consolidation stages. Larger MAE_Sensor between uncalibrated timeseries was found370

in areas with more persistent cloud cover (i.e. the tropics and areas at high latitude) as shown by Fig.C2a while MD correction

(Fig.C2b) effectively reduced MAE_Sensor, especially at high and medium latitudes.

6 Example of applying the intercalibrated FPAR series for crop monitoring

We illustrate the potential use and advantages of the intercalibrated timeseries with an example application. The computation of

FPAR anomalies (i.e. deviation of current values from historical average, Section 1) is a standard approach in NRT monitoring375

of crop biomass. Negative anomalies typically indicate biomass deficit, while positive anomalies a surplus with respect to

normal. Fig. 7 showcases an anomaly assessment for arable land pixels for the county of Oise, France. We generated three

relative FPAR anomaly maps for the period 1-10 May (dekad 13) 2023, using as reference the average FPAR computed over

the timeseries (2002-2023) of CF stage from MODIS-FPAR data. The first anomaly map (Fig. 7a) is produced from the original

VIIRS-FPAR data (reference doy 121, original 8-day composite VNP15A2H.002_Fpar_doy2023121000000); the second (Fig.380

7b) is produced using C0 stage from the intercalibrated VIIRS-FPAR filtered data, the third (7-c)) using the CF stage from the

same timeseries as in panel b). As CF stage represents the best FPAR estimation, we consider the resulting anomaly map as

the truth.

The original VIIRS-FPAR data is limited by cloud coverage, misses both positive and negative anomalies over large areas.

In contrast, our filtering approach demonstrates a clear advantage already at the C0 stage, where the entire area exhibits a385

consistent FPAR anomaly closely matching the CF-based anomaly. This demonstrates our method’s reliability in estimating

FPAR values, even with sparse and cloud-contaminated observations, when missing observations would normally be flagged

as unavailable, leading to uninformed interpretations of vegetation status. Additionally, since EWS and CYFS workflows

summarize data at the administrative unit level (e.g., average anomaly or FPAR value), aggregating only cloud-free areas may

result in FPAR values that do not accurately reflect real conditions. Our proposed approach overcomes these limitations by390

providing timely, reliable data for EWS and CYFS, ensuring consistent updates for stakeholders. By estimating FPAR values

despite sparse or cloud-contaminated data, it supports more accurate and informed decision-making process.
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Figure 6. MAE_Sensor and ME_Sensor computed between the MODIS-FPAR filtered data and i) the VIIRS-FPAR filtered data (represented

with dotted line) or ii) the intercalibrated VIIRS-FPAR filtered data (represented with continuous line). The analysis is provided for each

consolidation stage for all global vegetated pixels, for the respective land cover classes, during the five overlapping growing seasons between

MODIS-FPAR data and VIIRS-FPAR data (01-09-2018 to 31-08-2023). The x-axis shows the relative difference of FPAR values between

the filtered timeseries, while the y-axis indicates the CDF.

7 Dataset description

We publicly released two timeseries that updated every 10 days: 1) 10-day filtered MODIS-FPAR global raster from 21-08-

2000 to 31-12-2023; 2) 10-days intercalibrated VIIRS-FPAR filtered global rasters from 01-07-2018 to present. Both datasets395

are provided together with associated QA rasters. For the MODIS dataset we provide for each global 10-day FPAR raster the

CF stage and the associated SMP, the other consolidation layers could be made available upon request to the functional email

JRC-ASAP@ec.europa.eu. For the VIIRS dataset we provide the following set of rasters: the six consolidation stages (C0, C1,
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Figure 7. Three different maps of relative FPAR anomalies for 1-10 May (dekad 13) 2023, for the county of Oise, an important agricultural

region in northern France. The historic reference used to calculate the three anomalies is the multi-year CF average of dekad 13 using the full

MODIS-FPAR filtered timeseries. Panel a) shows the relative anomaly map obtained using the original 8-day composite VIIRS-FPAR data

(doy 121 of 2023). Panel b) shows the relative anomaly map using stage C0 from intercalibrated VIIRS-FPAR filtered data from dekad 13 of

2023. For panel c the relative anomaly map is obtained using the stage CF from the intercalibrated VIIRS-FPAR filtered data from dekad 13

of 2023. Pixels masked and labelled as Not relevant arable land have an arable land cover less than 10%, according to Corine Land Cover

2018 (LMS, 2018)

C2, C3, C4, CF), the associated SMP for each consolidation stage, and the four QA layers (i.e., NWM, QWM, NLM, QLM).

All rasters are provided in geographic coordinates (EPSG 4326) with a spatial resolution of approximately 500 m (0.004464°).400

Water pixels are masked using the land/water mask, as from Table 3. The output format is a compressed GeoTIFF. All outputs

are produced in NRT time mode (actual or hindcast). FPAR values are scaled to 8-bits in the same way as to the original files

(Myneni, 2020; Park et al., 2018a). The FPAR rasters have a dimensionless physical unit (ratio), 8-bit data type, and the valid

data range is rescaled to 0-100. Flag values are reported in Table 3. Each NRT global raster and its quality layers are released

two days after the end of the dekad (e.g., for the dekad 1-10 May, the releasing date would be 12 May). Apart from the quality405
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control internal to the filtering operational process (e.g., check for missing tiles) at each release the products are randomly

sampled and visually inspected to control for visible artefacts.

Table 2. Quality information stored during NRT filtering per dekadal raster, SMP is provided for each stage, the other indicators are provided

for C0 only, all layers have data format of 8-bit unsigned integers.

Parameter Description Units Flag values Valid range

SMP
Status map indicating the filtering con-

dition
-

1. Data not processed (water, other

land)

2. Filtered

3. Filtered and constrained

4. Gap-filled and filtered

5. Gap-filled, filtered and con-

strained

6. Gap-filled (no input files at all

available)

-

NWM
Number of HQ observations between

stages C4 and C0
- 251, 254, 255 0-13

QWM
Average weight of observations be-

tween stages C4 and C0
% 251, 254, 255 0-100

NLM

Number of days from the last HQ ob-

servation to the last day of the temporal

window

Days 250, 251, 254, 255 0-190

QLM Weight of last available observation % 251, 254, 255 0-100

Table 3. Flag values of the output rasters

Flag value Description

250 (NLM only) no HQ observations

251 non-vegetated land

254 water

255 no data (e.g. too few observations)
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8 Recommended use of the timeseries

In view of an operational use of our dataset, we suggest the approach depicted in Fig.8 to select the relevant stages and

timeseries for NRT analysis410

Figure 8. Example of suggested operational timeseries as would be at the date of 11-01-2025

Suppose that the current date is the 11-01-2025 the operational timeseries First, in an attempt to use the highest data quality

we recommand to use CF outputs from the beginning of the timeseries (dekad 24 of 2000, covering dates from 21-08-2000

to 31-08-2000) until the last produce CF stage, i.e. 90 days ago (dekad 28 of 2024, from 01-10-2024 to 10-10-2024). From

that date up to 40 days ago (30-11-2024) we would rely on C4 stage, having the highest quality among the NRT consolidation

stages. The last four dekads we would use C3 (dekad 34 of 2024, from 01-12-2024 to 10-12-2024), C2 (dekad 35 of 2024, from415

11-12-2024 to 20-12-2024), C1 (dekad 36 of 2024, from 21-12-2024 to 31-11-2024) and C0 (dekad 1 of 2025, from 01-01-

2025 to 10-01-2025) stages. Second, during the overlap period between our MODIS and VIIRS FPAR time series (2018-2023),

we suggest to start using VIIRS from the start of its availability (2018) to ensure the maximum coherence of FPAR between

the latest years and NRT data.

9 Data availability420

NRT data are available within 24 hours from the end of each dekad, typically at 12:00 UTC+2 of the day 1, 11 and 21

of each month. The filtered FPAR timeseries of both MODIS and VIIRS can be accessed through the public JRC Data

Catalogue. The MODIS-FPAR filtered dataset is available at the following persistent identifier https://data.jrc.ec.europa.eu/
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dataset/1aac79d8-0d68-4f1c-a40f-b6e362264e50 (Seguini et al., 2025) or can be directly downloaded from the following

server https://agricultural-production-hotspots.ec.europa.eu/data/MO6_FPAR/. The server data structure is divided according425

to the data source with one folder dedicated to the MODIS data and another to the intercalibrated VIIRS data. Subfolders

contain the associated consolidation stage products.

The structure of the subfolders follows the year and consolidation stage order. Each geotiff has a naming convention like

SSYYDDVVVCX, where SS describes the sensor (MT for MODIS and IT for intercalibrated VIIRS), YY the year, DD the

dekad of reference, VVV the name of the product and X the stage. As example it1819FPRC1 indicates the consolidation stage430

C1 from the intercalibrated VIIRS-FPAR filtered data for year 2018 and dekad 19. Associated to each Geotiff raster a text files

contains all the reference metadata. An example of the metadata file is reported in Table E1.

To facilitate product exploration, rasters and statistics at regional level (including temporal trajectories aggregated over

cropland and rangeland areas) can be visualized in the online Warning Explorer of the ASAP system (https://agricultural-

production-hotspots.ec.europa.eu/wexplorer).435

10 Conclusions

We released a dataset of two timeseries, from MODIS and VIIRS, of global FPAR data at 500 m resolution, updated every

10 days since 2000. This dataset is optimized for agricultural applications, including NRT monitoring of biomass productivity

of cropland and rangeland, and crop yield forecasting. We tuned the filtering parameters using cropland pixels from Europe

and Africa and applied specific algorithms (e.g., constraint mechanisms and gap-filling) for periods with only low-quality440

observations. As demonstrated in the ablation study (Section 4.2.2), applying constraints to early FPAR estimations (C0 to

C4) with few or no HQ observations leads to better alignment with the consolidated CF value, compared to unconstrained

estimations. To avoid unrealistically extrapolated FPAR values in absence of HQ information, our estimations are set to be

conservative, relying on historic information (i.e., gap-filling and constraint approaches). This approach guarantees that the

NRT value of FPAR is always estimated, thus allowing subsequent analysis that otherwise could be potentially hampered by445

missing data. Our dataset thus meets the operational needs of early warning systems (EWS) and crop yield forecasting systems

(CYFS), serving accurate FPAR estimation instead of missing information. In addition to NRT requirements, EWS and CYFS

require long timeseries to capture interannual variability in crop growth. With the MODIS sensor mission nearing its end,

and ongoing acquisition issues since 2022, we have generated a VIIRS-FPAR timeseries, corrected over the MODIS-FPAR

data, to extend the record into the coming years. Although continuity between MODIS Collection 6.1 and VIIRS Collection450

2 FPAR timeseries was planned and confirmed, we still observed some discrepancies. A simple correction procedure (MD)

significantly reduced these discrepancies across various consolidation stages and regions, though small differences remain.

With the recent release of the VIIRS-FPAR Collection 2 data from 2012 onward, more advanced intercalibration methods

are currently being tested, benefiting from greater overlap between MODIS-FPAR and VIIRS-FPAR data. The JPSS program

ensures the sustainability of this processing pipeline, with VIIRS-NOAA-21 now operational and plans for two more satellites455

(JPSS-3 and JPSS-4) to ensure continuity through the early 2030s. NRT gap-filled data provision and long term data records can
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find applications beyond EWS and CYFS, e.g. in EO-based Index Insurance programs (De Leeuw et al., 2014) where seasonal

FPAR anomalies are used as the index to determine payouts. We recommend data users to utilize the MODIS-FPAR filtered

timeseries from 21-08-2000 to 31-12-2017 and from 01-01-2018 onward the intercalibrated VIIRS-FPAR filtered timeseries.

We plan to keep the operational products updated for the changing landscape of data availability in response to the foreseen460

availability of other VIIRS sensors in the near future. To serve the community, data are, and will remain, freely available.

22



Appendix A: QA Layer information used

Table A1. The MODIS FPAR QA layer information used in the filtering process (Myneni, 2020)

Layer name Bit N° Parameter name Bit Description Filtering usage

FparLai_QC

1 Sensor
0 Terra

Additional information
1 Aqua

2 Dead Detector

0 Detectors apparently fine for up to 50% of chan-

nels 1, 2 Exclude invalid

observations1 Dead detectors caused >50% adjacent detector

retrieval

3 - 4 Cloud state

00 Significant clouds NOT present (clear)

Downweight unreliable

observations

01 Significant clouds WERE present

10 Mixed cloud present in pixel

11 Cloud state not defined, assumed clear

5 - 7 SCF_QC

000 Main (RT) method used, no saturation

Downweight unreliable

observations

001 Main (RT) method used with saturation

010 Empirical algorithm due to bad geometry

011 Empirical algorithm due to other problems

100 Pixel value not produced at all

FparExtra_QC

2 Snow or ice
0 No snow nor ice detected Downweight unreliable

observations1 Snow or ice detected

3 Aerosol
0 No or low atmospheric aerosol detected Downweight unreliable

observations1 Average or high aerosol levels detected

4 Cirrus
0 No cirrus detected Downweight unreliable

observations1 Cirrus detected

5 Internal cloud mask
0 No clouds Downweight unreliable

observations1 Clouds detected

6 Cloud shadow
0 No cloud shadow detected Downweight unreliable

observations1 Cloud shadow detected
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Table A2. The VIIRS FPAR QA layer information used in the filtering process (Park et al., 2018b)

Layer name Bit N° Parameter name Bit Description Filtering usage

FparLai_QC

0 - 2 SCF_QC

000 Main (RT) method used, no saturation

Downweight unreliable

observations

001 Main (RT) method used with saturation

010 Empirical algorithm due to bad geometry

011 Empirical algorithm due to other problems

100 Pixel value not produced at all

2 Dead Detector
0 Both red and NIR detectors are fine Exclude invalid

observations1 At least one band has dead detector

FparExtra_QC

0 - 1
Cloud detection

and confidence

00 Confident clear

Downweight unreliable

observations

01 Probably clear

01 Probably cloudy

01 Confident cloudy

2 Cloud shadow
0 No cloud shadow Downweight unreliable

observations1 Shadow

3 Thin cirrus
0 No cirrus detected Downweight unreliable

observations1 Cirrus was detected

4 - 5 Aerosol quantity

00 Climatology

Downweight unreliable

observations

01 Low

10 Average

11 High

6 Snow/Ice
0 No Downweight unreliable

observations1 Yes
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Appendix B: Sampling

Figure B1. Sample points used to find suitable settings for weighting and implementing the Whittaker filter at the global level (red to

represent all biomes) and in Europe and Africa (blue to focus on agricultural land use); biome data (Friedl and Sulla-Menashe, 2019)
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Table B1. Sample points distribution according to their geographical position and biome

Biome Europe Africa Global Total

B1 Grasslands / cereal crops 25 21 12 58

B2 Shrublands - - 5 5

B3 Broadleaf croplands 9 12 5 26

B4 Savanna 1 2 9 12

B5 Evergreen Broadleaf Forests (EBF) - - 4 4

B6 Deciduous Broadleaf Forests (DBF) - - 4 4

B7 Evergreen Needleleaf Forests (DNF) - - 6 6

B8 Deciduous Needleleaf Forests (DNF) - - 2 2

Total 35 35 47 117
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Appendix C: QA Layers produced

Figure C1. Examples of QA Layers produced during the filtering of MODIS FPAR as described in 2 for the period 1-10 May (dekad 13)

2023
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Figure C2. Geographical distribution of MAD according to the consolidation stage FPAR for vegetated pixels during the growing season

(201819-202318). MAD is computed in reference to the MODIS-FPAR filtered timeseries using VIIRS-FPAR filtered timeseries (left) or

intercalibrated VIIRS-FPAR filtered timeseries (right).
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Appendix D: Ablation study465

Figure D1. The upper panel shows the MAE_Stage computed for C0 stage from the MODIS-FPAR filtering, using the constraint mechanism.

The lower panel displays the same metric computed without using constraints. FPAR values are expressed in %.
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Appendix E: Metadata

Table E1. Filed name and description of the metadata of a FPAR global raster

Filed name Description

Driver Type of driver used to produce the file

File Original location of the file

Size Width and height in n°of pixel

Coordinate System is: Type of coordinate systems expressed in EPSG code

Origin Coordinates of the raster origins

Pixel size Width and height of each pixel expressed in the reference unit

AREA_OR_POINT Type of information

consolidation_period Period of consolidation according to the filtering nomenclature (from C0 to CF)

file_creation Date of creation of the file

flags Flags used

highest_actual_value The highest value in the file

highest_possible_value The upper maximum value accepted

lineage File name

lowest_actual_value The minimum value in the file

lowest_possible_value The minimum maximum value accepted

program The version of the program used
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Below, in italics an example of metadata associated to the intercalibrated VIIRS-FPAR file for the consolidation stage C1

for the period 1-10 May (dekad 13) 2023.

Driver: GTiff/GeoTIFF470

Files: /vitodata/Mars/MEP/MVIIRS/V070/GLO/ACT/IMG/2018/it2313FPRC1.tif

Size is 80640, 29346

Coordinate System is:

GEOGCS["WGS 84",

DATUM["WGS_1984",475

SPHEROID["WGS 84",6378137,298.257223563,

AUTHORITY["EPSG","7030"]],

AUTHORITY["EPSG","6326"]],

PRIMEM["Greenwich",0],

UNIT["degree",0.0174532925199433],480

AUTHORITY["EPSG","4326"]]

Origin = (-180.004464285714988,75.004464285715002)

Pixel Size = (0.004464285715000,-0.004464285715000)

Metadata:

AREA_OR_POINT=Area485

consolidation_period=C1

creator=VITO

date=20230501

days=10

description=MODIS/VIIRS, FPAR, Smoothed 500m, Product-version=V070490

file_creation=2024-03-25T10:41:43

flags=251=other land, 254=water, 255=not processed

highest_actual_value=100

highest_possible_value=100

lineage=it2313FPRC1.tif495

lowest_actual_value=0

lowest_possible_value=0

program=0.1.1
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