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Section S1 Monte Carlo method for uncertainty estimation 35 

Estimating 𝑢!"#$%& requires quantifying the uncertainties of nine input variables. A conservative approach was adopted, 

using the highest reported uncertainty for each variable when available. The total uncertainty from input variables was 

calculated as: 
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For SST, we used a global mean standard deviation of 0.24 °C from the OISST dataset. SSS uncertainty was set to 40 

0.23 psu, based on the global mean standard deviation reported in the Hadley Centre EN.4.2.2 dataset. For MLD, we adopted 

a value of 7.06 m, derived from the global mean grid-level standard deviation in the WOCE Global Data Version 3.0. Chl-a 

uncertainty was set to 0.25 mg m-3, represented as the RMSD of log₁₀-transformed chlorophyll-a concentration in seawater 

provided by the ESA CCI Ocean Colour dataset. Lastly, the uncertainty in pCO2air was taken as 0.22 ppm, based on the global 

mean uncertainty of xCO2. The uncertainties of 4&#-5!
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 are estimated using the standard deviations 45 

derived from monthly climatological data, with corresponding values of 0.16, 0.32, 0.06, and 0.05, respectively. These 

values were used in the Monte Carlo simulation to propagate input uncertainties through the pCO2 estimation process. 

We estimated uncertainty by individually perturbing each input variable. For a given input 𝑥!, we generated 100 sets of 

random perturbations 𝜀!~𝑁(0, 𝑢!), where 𝑢! is the assumed uncertainty of 𝑥!. The perturbed inputs 𝑥! + 𝜀! were used to 

recompute spCO2, and the differences ∆!  between the original and perturbed outputs were calculated. The standard 50 

deviation of ∆! at each grid cell was taken as the uncertainty contribution of that input variable to the reconstructed spCO2. 

Section S2 The data description and climate mode selection 

The stations used in this study include the Bermuda Atlantic Time-Series Study (BATS), Hawaii Ocean Time-series (HOT), 

Eastern Pacific Ocean (Papa station), Irminger Sea Station, California Current Ecosystem (CCE1), Bay of Bengal Ocean 

Acidification (BOBOA), Iceland Station, Tropical Atlantic Ocean (TAO), and the European Station for Time-Series in the 55 

Ocean (ESTOC). The detailed locations are shown in Fig. S2a. These stations are strategically located across different ocean 

basins, covering regions such as the tropical and subtropical zones, high-latitude oceans, and coastal upwelling areas, each 

with its own distinct physical and biogeochemical properties. 

Air-sea CO2 flux data are available for 17 Earth System Models (ESMs) from the CMIP6 ensemble at the Lawrence 

Livermore National Laboratory node. From these 17 models, we selected a subset of 7 ESMs based on the availability of 60 

download access through our cluster and the availability of environmental variables. As detailed in Table S1, the selected 

models are: CESM2, CESM2-FV2, CESM2-WACCM, CESM2-WACCM-FV2, GFDL-ESM4, NorESM2-MM, and 

NorESM2-LM. For ease of data analysis, the output data from these models were regridded from their native horizontal grids 

to a regular 1° x 1° grid using a bilinear remapping method (xESMF, python package, 

https://doi.org/10.5281/zenodo.1134365). 65 

El Niño and La Niña events are identified based on the Niño 3.4 index, which is the 3-month running mean sea surface 

temperature (SST) anomaly for the Niño 3.4 region (5°N–5°S, 120°W–170°W). These events are defined as five consecutive 

overlapping 3-month periods with SST anomalies at or above +0.5°C for El Niño (warm) events, and at or below -0.5°C for 

La Niña (cool) events (for more details, see https://ggweather.com/enso/oni.htm). The selected El Niño and La Niña events 

are listed in Table S2. The Indian Ocean Dipole (IOD) is defined by the Dipole Mode Index (DMI). IOD events are 70 

determined as the three-month running mean DMI is +0.4ºC or above (-0.4ºC or below) for at least three consecutive months 

between June and November (see details in https://ds.data.jma.go.jp/tcc/tcc/products/elnino/iodevents.html). The selected 

positive IOD events are also shown in Table S2. 



Section S3 Table S1-S2 

Table S1. List of the CMIP6 Earth system models used in this study. 75 

Model Ocean 
component 

Ocean 
biogeochemical 

module 

Ocean resolutions 
(lonxlat, levels) Data DOI Members 

labels 

CESM2 POP2 MARBL 320x384, 60 levels (Danabasoglu, 
2019a; b; c) r1i1p1f1 

CESM2-FV2 POP2 MARBL 320x384, 60 levels (Danabasoglu, 
2019d) r1i1p1f1 

CESM2-WACCM POP2 MARBL 320x384, 60 levels (Danabasoglu, 
2019e; f; g) r1i1p1f1 

CESM2-WACCM-
FV2 POP2 MARBL 320x384, 60 levels (Danabasoglu, 

2019h) r1i1p1f1 

GFDL-ESM4 MOM6 COBALTv2 720x576, 75 levels 
(John et al., 

2018; Krasting et 
al., 2018) 

r1i1p1f1 

NorESM2-LM MICOM HAMOCC 360x384, 70 levels (Seland et al., 
2019a; b; c) r1i1p1f1 

NorESM2-MM MICOM HAMOCC 360x384, 70 levels (Bentsen et al., 
2019a; b; c) r1i1p1f1 

 

Table S2. List of selected El Niño, La Niña, and positive IOD events from 1985 to 2018. 

Event El Niño La Niña Positive IOD 

Event No. Start Date End Date Start Date End Date Start Date End Date 

1 1986-12-01 1987-03-01 1988-12-01 1989-03-01 1994-09-01 1994-12-01 

2 1987-12-01 1988-03-01 1995-12-01 1996-03-01 1997-09-01 1997-12-01 

3 1991-12-01 1992-03-01 1998-12-01 1999-03-01 2006-09-01 2006-12-01 

4 1994-12-01 1995-03-01 1999-12-01 2000-03-01 2007-09-01 2007-12-01 

5 1997-12-01 1998-03-01 2007-12-01 2008-03-01 2012-09-01 2012-12-01 

6 2002-12-01 2003-03-01 2010-12-01 2011-03-01 2015-09-01 2015-12-01 

7 2009-12-01 2010-03-01 2011-12-01 2012-03-01 2017-09-01 2017-12-01 

8 2015-12-01 2016-03-01 \ \ 2018-09-01 2018-12-01 

Section S4 Fig. S1-S8 

 

Figure S1. Data availability for spCO2 reconstruction. (a) Spatial distribution of the number of spCO2 data points. (b) Annual data 80 
count over the period from 1982 to 2023. 

 



 

Figure S2. Spatial distribution of independent in situ observations and the definition of ocean basins used in this study. 
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Figure S3. Independent test of seasonal cycles of spCO2 climatology between SJTU-AViT and in situ observations. These in situ data 
are independent data and are not used to train the model. The station description and location refer to Supplement Section S2 and 
Fig. S2. The spCO2 in SJTU-AViT is interpolated to match the station locations and times in the comparison. The lines represent the 
monthly mean spCO2 values, with the shaded regions indicating the standard deviation for the observed climatology. The 90 
SJTU-AViT data product demonstrates good agreement with the observed climatological spCO2 patterns at each station. 

 



 

Figure S4. Temporal evolution of bias and SOCAT observation count from 1982 to 2023. The blue line represents the bias in 
long-term mean spCO2 (SJTU-AViT minus SOCAT), while the red bars show the annual number of SOCAT observations 95 
contributing to the data. The increasing observation count over time correlates with a decrease in the mean bias, suggesting 
improvements in model performance as more observational data became available. 

 

 

Figure S5. Bias in the standard deviation of spCO2 between SJTU-AViT and SOCAT at each season from 1982 to 2023. (a) MAM 100 
(March–May), (b) JJA (June–August), (c) SON (September–November), and (d) DJF (December–February). The bias is calculated 
as the difference between SJTU-AViT and SOCAT standard deviations at each season (SJTU-AViT minus SOCAT). Positive values 
(red) indicate overestimation of variability by SJTU-AViT, while negative values (blue) indicate underestimation. These seasonal 
biases highlight the model's performance across different seasonal periods and regions. The spCO2 in SJTU-AViT is interpolated to 
match the SOCAT observation locations and times in the comparison (see detailed computation in section 2.3). 105 



 

Figure S6. Spatial distribution of standard deviation in interannual time scale of reconstructed spCO2 at multiple data products 
from 1985 to 2018. All the panels show the standard deviation of residuals after removing long-term trends and seasonal cycles. The 
color scale represents the magnitude of variability in spCO2, with higher values (red) indicating greater variability. 



 110 
Figure S7. Spatial and temporal patterns of spCO2 anomalies during ENSO events in the equatorial Pacific Ocean: comparison 
between SJTU-AViT and multiple data products. The left column shows composite spatial distribution of spCO2 anomalies during 
eight El Niño events. The middle column shows composite spatial distribution of spCO2 anomalies during seven La Niña events. The 
right column shows the time series of spCO2 anomalies averaged over the equatorial eastern Pacific and their correlation with the 
Niño 3.4 SST index. The eight El Niños and seven La Niñas are indicated in the Supplement Section S2 and S3. 115 



 

Figure S8. Spatial distribution of SOCAT spCO2 observations in the Equatorial Pacific Ocean (240°E–280°E) during selected ENSO 
events. The color scale indicates the valid data count per 1°×1° grid cell during four distinct ENSO events: (a) El Niño 1997–1998, (b) 
El Niño 2002–2003, (c) La Niña 1995–1996, and (d) La Niña 1998–1999. 
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