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Abstract. The ocean plays a crucial role in regulating the global carbon cycle and mitigating climate change. Spatial and
temporal variations of ocean surface partial pressure of CO2 (spCOz) influence the air-sea CO: flux through the difference
between surface ocean and atmospheric pCO2 (ApCOz), which is further modulated by surface wind speed and gas exchange
velocity. However, constructing a global spCO2 data product that is able to resolve interannual and decadal variability remains
a challenge due to the spatial sparsity and temporal discontinuity of observational data. This study presents an approach based
on the Vision Transformer (ViT) model, combining high-quality observational data from the CO2 Atlas (SOCAT) with
multiple advanced global ocean biogeochemical models results to reconstruct a global monthly spCO: dataset (SJTU-AViT)
at 1° resolution from 1982 to 2023. The approach employs the self-attention mechanism of the ViT model to enhance the
modeling of the spatial and temporal variations of spCO2, as well as incorporates physical-biogeochemical constraints from
the derivative of spCO2 with respect to key controlling factors as additional features. The incorporation of advanced ocean
biogeochemical models during the training process allows the ViT-based model to capture more accurate spCO: variability in
these data-sparse regions. Evaluations demonstrate that the new data product effectively captures spCO2 variability at both
global and regional scales, showing good consistency with SOCAT observations, long-term ocean station data, and global
atmospheric COz trends. The reconstructed spCO2 demonstrates strong capability in reproducing spCOz anomalies during El
Nifio-Southern Oscillation (ENSO) events, particularly in the eastern Pacific Ocean, where it shows a correlation of -0.81 with
the Nifo 3.4 index and demonstrates high consistency with cruise data. Based on the SJTU-AVIT dataset, the estimated global
air-sea CO2 flux patterns are consistent with known regional features such as strong uptake in the Southern Ocean and
outgassing in the tropical Pacific. This study not only provides a new 42-year data product for advancing understanding of the

ocean carbon cycle and global carbon budget assessments, but also introduces a new Transformer-based deep learning
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framework  for  Earth-system data  reconstruction. The data product is publicly accessible at

https://doi.org/10.5281/zenodo.15331978 (Zhang et al., 2025) and will be updated regularly.

1 Introduction

Global warming is primarily driven by the continuous increase in atmospheric greenhouse gas concentrations, with carbon
dioxide (COz) being the dominant contributor (Friedlingstein et al., 2023). The ocean, as one of the largest carbon sinks in the
Earth system, absorbs approximately 25% of anthropogenic CO2 emissions (~2.80 PgC yr!), playing a crucial role in regulating
the global carbon cycle and climate change (Friedlingstein et al., 2023). However, the ocean's capacity to absorb COz is not
constant; rather, it is influenced by a complex interplay of atmospheric CO2 concentration, ocean physical and biogeochemical
processes, exhibiting significant spatiotemporal variability (Landschiitzer et al., 2016; Takahashi et al., 2002). Accurate
estimation of oceanic CO:2 fluxes is therefore essential for understanding carbon cycle mechanisms and assessing the
effectiveness of the ocean as a carbon sink.

Accurately quantifying air-sea CO: flux relies on precise estimates of sea surface COz partial pressure (spCOz). While the
surface ocean CO: atlas (SOCAT) database (Bakker et al., 2016) provides a valuable foundation, observational coverage
remains sparse and uneven, particularly in high-latitude regions and during winter months when harsh sea conditions limit
measurements (Mackay and Watson, 2021). Existing approaches for estimating spCO2 primarily fall into two categories:
numerical biogeochemical modeling and data-driven methods. Traditional numerical biogeochemical models simulate spCO2
by parameterizing physical and biogeochemical processes (Kern et al., 2024; Roobaert et al., 2022). However, due to the highly
nonlinear dynamics of the oceanic carbon cycle and regional heterogeneity, numerical biogeochemical models still exhibit
considerable uncertainties in reconstructing the spatiotemporal distribution of spCOz (Rédenbeck et al., 2015; Roobaert et al.,
2022). Moreover, simplified parameterization of biogeochemical processes may lead to underestimation or overestimation of
oceanic carbon uptake, ultimately affecting the accuracy of global carbon budget assessments (Resplandy et al., 2024).

To address these limitations, statistical interpolation and machine learning techniques have been increasingly employed to
reconstruct spCO» distributions based on available observations (Rodenbeck et al., 2015). Statistical interpolation methods,
such as regression-based approaches (Rddenbeck et al., 2015), Bayesian techniques (Valsala et al., 2021), and tree-based
algorithms (Geurts et al., 2006), leverage the spatiotemporal correlation of spCO2 observations and have achieved moderate
success in some regions (Gregor et al., 2019). However, these methods struggle with poor reconstruction accuracy in data-
sparse regions and do not fully capture the complex ocean carbon biogeochemical processes effectively (Hauck et al., 2023).
Consequently, machine learning approaches have gained prominence in recent years. In particular, feedforward neural
networks (FFNNs) have demonstrated superior reconstruction accuracy and have become one of the most widely used tools
for spCOz and other ocean data estimation (Denvil-Sommer et al., 2019; Landschiitzer et al., 2013; Zeng et al., 2014). These
methods yield root mean square errors (RMSE) of approximately 18 patm in open ocean regions, aligning well with SOCAT

observations (Gregor et al., 2019).
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Despite recent advances, significant challenges remain in reconstructing spCOz, particularly in capturing its interannual and
decadal variability, which plays a pivotal role in modulating oceanic carbon uptake. Previous machine learning (ML)-based
interpolations of pCO2 may overly smooths the spatial patterns and interannual variability, which represents a potential
limitation in capturing these features fully. Accurate characterization of this variability remains a central issue in the ocean
carbon field. Furthermore, the widely used FFNNs method may introduce discontinuities at cluster boundaries due to the
discrete nature of data grouping, impacting the representation of spCOz variability (Gregor et al., 2019). These discontinuities
often require additional post-smoothing procedures, which may introduce artificial bias, thereby increasing reconstructed data
uncertainty or suppressing real spatiotemporal variability (Gregor et al., 2019). More broadly, a persistent imbalance of
approximately 1 Pg C yr! remains in the global carbon budget, reflecting unresolved discrepancies between estimated sources
and sinks on the global scale. One plausible contributor to this imbalance is the inadequate characterization of the interannual
variability in oceanic carbon uptake (Friedlingstein et al., 2023). Therefore, this study develops a novel reconstruction method
to more accurately capture interannual dynamics, alleviate artificial spatial discontinuities, particularly across cluster
boundaries, and ultimately contribute to close the global carbon budget (Rédenbeck et al., 2015).

Transformer architectures, originally developed for sequence modeling in natural language processing, have demonstrated
exceptional capabilities in capturing long-range dependencies and learning complex, nonlinear relationships across high-
dimensional datasets. Their scalability and effectiveness in tasks such as machine translation, language understanding, and
large language models (e.g., Chat-GPT) have established them as a cornerstone of modern artificial intelligence. Recently,
these models have been extended to atmospheric science and oceanography, where they have shown promising performance
in forecasting ocean states and extracting spatiotemporal patterns from large-scale environmental data. Given these advantages,
Transformer-based frameworks offer considerable potential for data reconstruction in oceanography, where challenges such
as sparse observations, multiscale variability, and strong spatiotemporal coupling demand flexible and powerful modeling
approaches (Ji et al., 2025; Liu et al., 2024).

Against this backdrop, the image-based Vision Transformer (ViT) architecture, with its multi-head self-attention mechanism
and high representational capacity, has emerged as a powerful tool for capturing the complex spatiotemporal features of
oceanic environmental variables. This model is well-suited for reconstructing spCOz, as it can integrate diverse environmental
drivers such as sea surface temperature (SST), salinity (SSS), chlorophyll concentration (Chl-a), mixed layer depth (MLD),
and atmospheric COz concentration. To enhance the physical constraints of spCOz reconstruction, this study incorporates ocean
carbonate system sensitivities to key variables like SST, SSS, dissolved inorganic carbon (DIC), and total alkalinity (ALK)
(Takahashi et al., 1993). In this context, multi-stage training strategies that combine simulated data from Earth system models
and observational constraints have also proven effective in improving model robustness and accuracy. The spCOz-based
Shanghai Jiao Tong University aggregation Vision Transformer (SJTU-AViT) developed in this study effectively captures
both spatial variations and interannual to decadal variability of ocean carbon dynamics at global scales. This contributes to
enhancing our understanding of the temporal dynamics of oceanic carbon uptake and addressing imbalances in the global

carbon budget.
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2 Data and methods
2.1 Training Data Description

This study selects a range of input features for model training to comprehensively capture the dynamics of surface ocean spCO-
variability through sensitivity tests and other spCO: data reconstruction studies (Denvil-Sommer et al., 2019; Landschiitzer et
al., 2013; Zeng et al., 2014). The selected input features include SST, SSS, Chl-a, MLD, and air CO>. Additionally, we

introduce physical constraints based on the relationship
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features in the deep learning model to reinforce spCOz physical-biogeochemical consistency (Takahashi et al., 1993). These
parameters represent key physical, chemical, and biological factors influencing the distribution of spCO:z in the ocean. All the
input features are interpolated into a uniform 1°x1° spatial resolution and monthly temporal resolution.

The input datasets consist of long-term time series and high-resolution spatial data, ensuring both temporal and spatial
consistency across variables (Table 1). SST data were obtained from the NOAA Optimum Interpolation SST (OISST) (version
v02r01) dataset, spanning from 1982 to 2023 with daily resolution and a spatial resolution of 0.25° (Reynolds et al., 2007;
Huang et al., 2021). SSS data were sourced from the Hadley Centre EN.4.2.2 (c14) dataset, covering the period from 1982 to
2023 with daily resolution and a spatial resolution of 0.25° (Good et al., 2013). Chl-a data were derived from the European
Space Agency Climate Change Initiative (ESA CCI) Ocean Colour (version 5.0) dataset, spanning 1997 to 2022 with daily
resolution and a spatial resolution of 4 km (Jackson et al., 2017). For periods prior to 1997 and for 2023, we employed a
climatology computed from the 1997-2022 Chl-a record to ensure full temporal coverage. Ocean MLD data were obtained
from the World Ocean Circulation Experiment (WOCE) Global Data Version 3.0, providing monthly climatology with a spatial
resolution of 2° (de Boyer Montégut et al., 2004). Atmospheric CO2 mole fraction (xCO2) data were sourced from the NOAA
Earth System Research Laboratories (ESRL) marine boundary layer (MBL) CO: product, covering the period from 1982 to
2023 with about 8-day resolution and meridional spacing (Dlugokencky et al., 2019). In this study, the meridional band product
was mapped onto the model’s 1° x 1° global grid using latitudinal interpolation and longitudinal replication, generating

continuous 2D fields suitable for model simulations.

dspCO, 0spCO, 0spCO, 0spCO,
9SSS > 9SST > 9DIC ° QALK

The monthly climatologies of at a spatial resolution of 1° are included as additional input

features, sourced from the ocean-driven global biogeochemical model simulations (Liao et al., 2020). These rate-of-change
variables help to reflect the influences of temperature, salinity, alkalinity, and DIC on spCOz, thereby enriching the deep
learning model’s representation of the underlying biogeochemical processes. Additionally, spCO:z from the SOCAT database
was used as the target variable for the model training and validation. The SOCAT dataset used in this study is version 2024

(Fig. S1) which is interpolated into the uniform 1°x1° spatial resolution and monthly temporal resolution (Bakker et al., 2016).



The Coupled Model Intercomparison Project Phase 6 (CMIP6) model results are downloaded from the Lawrence Livermore
National Laboratory node database (https://esgf3 Inode.lInl.gov/projects/cmip6/, at the time of this study). We selected a subset
of 7 ESMs based on the availability of download access through our cluster and the availability of environmental variables

(see supplement section S2 for details). The biogeochemical model adopted in this study is from the Geophysical Fluid

135 Dynamics Laboratory (GFDL). The model includes Modular Ocean Model version 6 (MOMS6), sea ice simulator version 2,
carbon ocean biogeochemistry, and lower trophics version 2 (COBALT v2), which is collectively referred to as MOM6-
COBALT?2 (Adcroft et al., 2019; Stock et al., 2020). The model performance is thoroughly assessed, and it reproduces well-
observed physical and biogeochemical features in the global ocean (Stock et al., 2020). More detailed model evaluations and
configurations, including spin-up, atmospheric forcing, and initial conditions, can be found in Liao et al. (2020 and 2024).

140
Table 1. Summary of data sources and variable characteristics used in this study.

Variable Units Period Resolution Dataset reference
Atmospheric COz ppm 1982-2023 Meridional, ESRL MBL CO: product Dlugokencky et al.
xCO2) monthly (2019)
Chlorophyll a (Chl a) mg m 1997-2022 4 km, daily ESA CCI Ocean Colour Jackson et al. (2017)
(Version 5.0)
Sea surface °C 1982-2023 0.25°, daily NOAA OISST (Version Reynolds et al. (2007)
temperature (SST) v02r01)
Sea surface salinity PSU 1982-2023 0.25°, daily Hadley Center EN.4.2.2 Good et al. (2013)
(SSS) (c14)
Ocean mixed layer m 12-month 2°, monthly WOCE Global Data de Boyer Montegut et al.
depth (MLD) climatology Version 3.0 (2004)
SOCAT patm 1982-2023 1°, monthly SOCAT version 2024 Bakker et al. (2016)
data products
2.2 Model Architecture
The deep learning model employed in this study is a Vision Transformer (ViT, Fig. 1), originally proposed by Dosovitskiy et
al. (2020) for capturing spatial dependencies in large-scale image-like datasets. The design of ViT tackled the key limitation
145  of the CNN-like methods, which implies the translation-invariant property of learned kernels. This property failed to learn the

remote connections across regions among multiple variables (Liu et al., 2024). The ViT model employs a self-attention
mechanism to capture long-term connections and complex spatial and temporal patterns (Nguyen et al., 2023), allowing it to

dynamically adjust its receptive field and capture both localized details and large-scale variations. As a result, the model is
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able to provide a more comprehensive characterization of the relationships between spCOz and oceanic variables across spatial
scales.

The ViT-based framework for spCO> reconstruction includes four main steps. The first is variable tokenization, a process
that involves partitioning the input data into local regions. Each region is treated as an image patch for subsequent processing
and feature extraction (Dosovitskiy et al., 2020). These input variables are standardized using variable-wise mean-variance
normalization and formatted into a multi-channel input to ensure feature extraction occurs on a unified scale. Then, the ocean
fields are segmented into fixed-size image patches. For example, the SST field (180%360) is divided into non-overlapping 6x6
grids on every patch, resulting in 30x60 patches. The data in each patch is then projected into a high-dimensional vector
through a patch embedding layer, preserving critical spatial structures and providing a suitable input representation for the
Transformer framework.

The second step is variable aggregation, where a cross-attention mechanism is employed to integrate information across
multiple environmental input variables (Vaswani et al., 2017). Given that different variables influence spCO2 through distinct
mechanisms, other methods like simple concatenation may obscure crucial dynamic relationships. The cross-attention
mechanism enables the model to adaptively assign appropriate weights to different variables, emphasizing those that contribute
most significantly to spCOz variations (Jaegle et al., 2021). To further enhance its ability to capture spatiotemporal dynamics,
the model incorporates position encoding and time encoding at this stage, ensuring temporal consistency in the input data and
improving the interpretability of ocean carbon cycle processes (Wu et al., 2021).

The third step is Transformer backbone, where the data are fed into a Transformer backbone composed of 10 stacked
Transformer blocks. Each block integrates multi-head self-attention (16 heads), layer normalization (LayerNorm), and a
feedforward neural network (MLP) (Dosovitskiy et al., 2020; Vaswani et al., 2017). The multi-head self-attention mechanism
enables the model to learn long-range dependencies and capture complex spatial interactions by attending to multiple
representation subspaces simultaneously—an essential feature for modeling the inherently spatiotemporal dynamics of
oceanographic variables. To further enhance representation learning, linear transformation and concatenation operations
(Linear & Concat) are employed across layers. These operations support deep feature fusion, enabling the network to integrate
both fine-scale local variations and broader climate-driven signals.

The final step is the model output. This step incorporates a pooling head for dimensionality reduction, producing the global
oceanic spCO:z fields as the output. The loss function is minimized by comparing the reconstructed values against observational
datasets, ensuring both physical consistency and numerical accuracy. The ViT-based model contains approximately 115
million parameters and was trained in parallel on eight NVIDIA RTX 4090 GPUs for up to 200 epochs with early stopping
(patience = 10); each training epoch required roughly 10 minutes.

To enhance model performance, we employ a multi-stage training strategy. First, we pre-train the ViT-based model using
the 7 CMIP6 model results to learn a general relationship between spCO:z and the environmental variables (SST, SSS, Chl-a,
MLD, and air CO2). We then fine-tune the ViT-based model using data from the ocean-driven global ocean biogeochemical
models (e.g., MOM6-COBALT) and further refine it with SOCAT observations to improve accuracy and applicability. The

6
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incorporation of the CMIP6 model and advanced ocean biogeochemical models enhances the spCO: reconstruction by
mitigating the data sparsity issue, particularly in regions with limited observations, such as the Indian Ocean and high-latitude
areas. Through the use of transfer learning, the model can better leverage global climate data to fill gaps in observational
coverage. The overall workflow of this multi-stage training strategy is summarized in Fig. 2, which also provides a schematic
overview of the spCOz reconstruction workflow based on the ViT framework. The figure clearly visualizes the main steps,

from data preprocessing through model training to evaluation (see detailed description in section S5.1).
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Figure 1. Schematic of the Vision Transformer (ViT)-based framework for spCO; reconstruction. The framework includes four
main steps. The first is variable tokenization, where the input oceanographic variables (e.g., SST, SSS, Chl-a, MLD, and atmospheric
CO,) are divided into spatial patches and passed through a convolutional embedding layer. The second step is variable aggregation,
where multiple variables are aggregated into one vector through the cross-attention mechanism. The third step is Transformer
backbone, where the data are passed through stacked Transformer blocks that incorporate multi-head self-attention, layer
normalization, and feedforward neural networks to capture complex spatiotemporal dependencies. The final step is model output,
where a pooling head aggregates the learned representations and generates the spCO; fields.
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Figure 2. Workflow of the spCO; reconstruction using the ViT-based framework. The workflow consists of four major stages: (a)
Data processing, where CMIP6, MOM6, and SOCAT inputs are temporally harmonized, spatially interpolated, and normalized; (b)
Model architecture, where variables are tokenized, aggregated into spatio-temporal embeddings, and processed by a Transformer
backbone to predict monthly spCO»; (¢) Training and validation, involving CMIP6 pretraining, MOM6 and SOCAT fine-tuning,
and evaluation against withheld SOCAT data and long-term stations; and (d) Evaluation and analysis, where model performance
metrics, climatology, seasonal cycles, and interannual variability are assessed, leading to downstream analyses such as air-sea CO,
flux estimation and uncertainty analysis (see detailed description in supplement section S5.1).

2.3 Validation Procedure and Data

The SOCAT dataset was randomly divided into 80% (277,528 samples) for training and 20% (69,142 samples) for validation,
using a fixed random seed (seed = 42) to ensure reproducibility. For the independent test at long-term stations, data from these
stations were excluded, and the model was trained using the remaining SOCAT data. In the final results generation phase, the

full SOCAT dataset was utilized to produce the spCO: estimates. These estimates are subsequently used for analyses of
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climatological states, seasonal variations, and interannual changes in spCOz. For comparison with SOCAT, we used the
monthly 1° gridded SOCAT product and evaluated our SJTU-AViT reconstruction on the same grid, without applying any
additional spatial interpolation. Reconstructed values were masked where SOCAT is missing, and all skill metrics were
computed only at grid-time points with valid SOCAT data. For the independent test at long-term stations, reconstructed values
were extracted at the corresponding station locations using bilinear spatial interpolation, which incorporates information from
surrounding grid cells to provide smoother and more representative estimates, and skill metrics were subsequently computed
to evaluate model performance. Detailed information for these stations, including their names, geographic locations,
observation periods, number of samples, and data sources, is provided in supplement Table S3, and their locations are shown
in supplement Fig. S2 to facilitate visual interpretation. Subsequently, the climatological mean, seasonal variations, and
interannual changes are calculated at each grid point where data are available. The processed SJITU-AVIT data are then
compared with the corresponding SOCAT observations in the following sections.

In the training process, we adopt the latitude-weighted mean squared error (MSE) as the loss function to ensure that the
model accommodates the spatial variability caused by the Earth’s curvature. The latitude-weighted MSE effectively
emphasizes the prediction accuracy in low-latitude regions, which occupy a larger proportion of the Earth’s surface (Nguyen

et al., 2023; Willard et al., 2024). The loss function is computed as follows:

111

MSE = ——— 1tv=1 Zg=1 val//=1 a(h) Oeaw — yobs,t,h,w)z 2

NHW

where N is the total number of time points in the dataset, H and  are the numbers of latitudinal and longitudinal grid points,
respectively, and 7, &, and w represent the time, latitude, and longitude indices, respectively. Yopsnw 1S the observed value,
and y;p,, isthe predicted value. The term a(h) is the latitude weight.

In the validation process, we use multiple evaluation metrics, including mean bias error (MBE), mean absolute error (MAE),
root mean square error (RMSE), and coefficient of determination (R?). These metrics have been extensively used in

reconstructed data assessments and climate model evaluations. It is computed as follows:

MBE = %Z?zl(yrec,i — Yobs,i) @
MAE = 1/n 3% |Vreci — Yobs,i] @
RMSE = \[T/0 S Orent — Yous)? ©)
R? =1-3Y" (Yobsi — Yrec,i)z / Zi=1(Wobs,i — Yobs)® 6)

where n represents the number of data samples, y,..; denotes the reconstructed values, while y,,s; and y,,s represent the
observed values and their mean, respectively.

To evaluate the performance of the deep learning model (ViT-base Model) adopted in this study, we selected eight global
ocean spCOz products (Table 2), nine independent observational stations (Fig. S2a), and SOCAT data. The chosen benchmark
datasets include Jena-MLS, MPI-SOMFFN, OS-ETHZ-GRaCER, and five other data products (Table 2), which are widely

used in the ocean carbon community. These data products cover periods from 1957 to 2023 at varying spatial resolutions from
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1° to 2.50°, with temporal resolutions ranging from daily to monthly. The nine stations span various periods and effectively

capture the spatial and temporal variability of ocean spCOz. The diversity of the benchmark datasets provides a deeper
understanding of the model’s performance across different oceanic environments, thus further optimizing its predictive

capabilities.

Table 2. References for global spCO; products used for comparison.

Dataset Time range Spatial Resolution Temporal Resolution Reference
Jena-MLS 1957-2023 2.50°lonx2°lat daily Rodenbeck et al. (2014)
MPI-SOMFFN 1982-2022 1°x1° monthly Landschiitzer et al. (2016)
OS-ETHZ- 1982-2022 1°x1° monthly Gregor and Gruber (2021)
GRaCER
CMEMS-LSCE- 1985-2018 1°x1° monthly Chau et al. (2022)
FFNN
CSIR-ML6 1985-2018 1°x1° monthly Gregor et al. (2019)
Watson 1985-2019 1°x1° monthly Watson et al. (2020)
NIES-NN 1980-2019 1°x1° monthly Zeng et al. (2014)
JMA-MLR 1985-2019 1°x1° monthly lida et al. (2020)

2.4 Air-sea CO: flux computation

We calculate the air-sea CO; flux (FCOz, mol C m? yr!) from the reconstructed spCOz using a standard bulk parameterization
(Wanninkhof, 2014), given by the equation:

FCO; = ky - Ko (1 = fice) - (spCO, — apCO,) (7
Here, the flux (FCO>) is considered positive when CO:z is outgassed from the ocean and negative when CO:z is absorbed by the
ocean. The fluxes are adjusted to account for the ice-free area of each pixel, with the sea ice cover data (ficc) taken from Rayner
et al. (2003). The gas transfer velocity of COz (kw) is computed using the parameterization of Wanninkhof (2014), which
assumes a quadratic dependence on wind speed. The Schmidt number (Sc) required in this formulation is calculated following
the temperature-dependent empirical formula provided by Wanninkhof (2014). The wind speed data is sourced from ERAS,
with a 6-hourly temporal resolution spanning 1982-2023 and a 1° spatial resolution. To ensure consistency with global
radiocarbon-based constraints (Graven et al., 2012; Miiller et al., 2008; Sweeney et al., 2007; Wanninkhof, 2014), the scaling
factor is set as 0.251 (Wanninkhof, 2014), which equals about a global mean transfer velocity of 16 cm h'!. The solubility of
CO:z in seawater (Ko) is calculated as a function of SST and SSS (Weiss, 1974). The partial pressure of atmospheric CO2

10
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(apCO:>) is estimated using the mole fraction of COz in dry air (xCO2) from the ESRL MBL COz product, with water vapor

correction from Dickson et al. (2007).

2.5 ViT-based model uncertainty estimation

The uncertainty associated with our reconstructed spCOz product was estimated using the method proposed by Landschiitzer
et al. (2014 and 2018). The uncertainty of estimated spCO: for each grid cell was accumulated from the quadratic sum of four

sources of uncertainties:

— 2 2 2 2
uspcoz - \/uobs+ugrid +ualgorithm+uinputs (8)

Uyps 1S the observational uncertainty inherited from observations. The SOCAT gridded product compiles the pCO2
observations with WOCE flags A, B (uncertainty <2 patm), C, and D (uncertainty < 5 patm). Adopting a conservative approach,
we set the maximum value of w,,s to 5 patm. g4 is calculated as the standard deviation of the samples used for gridding
spCO2 in each grid cell (Roobaert et al., 2024a; Wu et al., 2025). U,gorithm 18 €valuated as the RMSE between the
reconstructed and reference ocean model spCO: field.

In addition to the three uncertainty sources previously mentioned, this study also considers the cumulative uncertainty
introduced by input variables (Unpys5)- The uncertainties associated with these variables are calculated through Monte Carlo
simulations (Wu et al., 2025). For each input variable, white noise following a normal distribution (N (0, u,;)) is added, and
spCO:z is recalculated using the perturbed inputs. By repeating 100 times, the uncertainty for each input variable is then
determined by calculating the standard deviation of the differences between the original spCO:2 and the spCO» values obtained

after adding noise. Detailed procedures for determining these input uncertainties are described in supplement section S1.

3 Results
3.1 Evaluation of ViT-based Model Performance

The SJTU-AVIT product demonstrated robust performance and high accuracy in capturing spCOz variability (Fig. 3). In the
training phase (Fig. 3a), the model achieved a high coefficient of determination (R? = 0.86), with low root mean square error
(RMSE = 16.70 patm), an MAE of 6.89 patm, and minimal mean bias error (MBE = -0.36 patm), based on over 277528 (80%)
samples. In the validation phase (Fig. 3b), the model maintained robust performance, with an R? of 0.82 and an RMSE of
18.30 patm, indicating strong generalization ability and no sign of overfitting. Most predicted values lie close to the 1:1 line,
particularly within the climatologically common spCO: range (300-420 patm), as indicated by the high-density regions in Fig.
3. These results confirm the model’s ability to accurately reconstruct large-scale spCOz patterns across diverse oceanic regimes.
In addition, the sensitivity test indicates that the implementation of physical-biogeochemical constraints can significantly

improve model performance, reducing the mean absolute error from 7.15 to 5.95 patm.
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Independent test with in-situ buoy observations (which were not used to train the model) (Fig. 4) indicates that the model
performs best in subtropical regions (e.g., HOT, BATS, CCE1, ESTOC, and Papa), accurately capturing both long-term trends
(Fig. 4) and seasonal cycles (Fig. S3). At the HOT station, for instance, the model yields a minimal MBE of 0.31 patm, a low
RMSE of 8.65 patm, and a high R? = 0.86, and similar performance is observed at other subtropical stations, indicating the
model’s accuracy in data-rich, stable regions. In the equatorial Pacific Ocean, the model shows reasonable performance at the
data-sparse TAO station in the Pacific Ocean, with a slight negative MBE (-7.02 patm), an RMSE of 13.16 patm, and an R?
of 0.74, effectively capturing large-scale seasonal variability in equatorial upwelling-dominated environments (Fig. S3).
Similarly, at the monsoon-influenced BOBOA station at the Bay of Bengal, where observations are also limited, the model
captures overall variability with an MBE (-6.07 patm), an RMSE of 10.48 patm, and an R? of 0.65, indicating reasonable skill
in capturing the overall variability driven by monsoonal forcing processes. In contrast, performance deteriorates at high-
latitude stations and regions with strong dynamical variability. At the Irminger Sea and Iceland sites, the model exhibits large
RMSE (35.24 and 21.82 patm, respectively) and low correlations, with R? near zero. This suggests that the model has difficulty
capturing rapid spCO:z fluctuations or processes that are not well represented by the available input features. This discrepancy
is likely due to high-latitude processes such as seasonal sea-ice variability and freshwater inputs, which are not fully
represented in the current observational constraints.

In general, the evaluation confirms that the ViT-based method effectively generates essentially bias-free spCO2 fields with

no signs of overfitting, achieving high accuracy in low latitudes and open oceans, while performance declines at high latitudes.
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Figure 3. Performance evaluation of the ViT-based model for reconstructing the SJTU-AVIiT spCO; product. Density scatter plots
illustrate the comparison between model-reconstructed sea surface partial pressure of CO; (spCO,") and in situ SOCAT
observations (spCO;°") during (a) the training phase (using 80% of the samples) and (b) the validation phase (using 20% of the
samples). Statistical metrics, including the coefficient of determination (R?), root mean square error (RMSE), mean absolute error
(MAE), mean bias error (MBE), and the number of samples (N), are provided to quantitatively assess model performance. The color
bar indicates the number of data points within each bin, representing the density of observations. The spCO; in SJTU-AVIT is
interpolated to match the SOCAT observation locations and times in the comparison.
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Figure 4. Independent test of spCO; variability between SJTU-AVIT and in situ observations at different stations. These in situ data
are independent data and are not used to train the model. The station description and location refer to supplement section S2 and
Fig. S2. The spCO; in SJTU-AVIT is interpolated to match the station locations and times in the comparison. For each panel, the
number of samples (N), the mean bias error (MBE), root mean square error (RMSE), and correlation coefficient (R?) between the
reconstructed and observed spCO; are displayed. The dashed and solid lines show the linear trend of SJTU-AVIT and in situ data.

3.2 Evaluation of long-term climatology and annual means of spCO2

The reconstructed spCO:z product (SJTU-AViT) exhibits strong agreement with SOCAT observations in terms of long-term
climatology, successfully capturing the large-scale spatial distribution of spCO: in the global ocean (Fig. 5a, 5b, and 5¢). This

demonstrates strong consistency with previous climatology products (Landschiitzer et al., 2020; Takahashi et al., 2002).
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Elevated spCOz values are prominent in the tropical oceans (e.g., equatorial Pacific Ocean) and coastal upwelling regions,
driven by the upwelling of COz-rich subsurface waters. In contrast, low spCOz levels are predominantly observed in mid-
latitude gyre areas (e.g., the North Pacific Ocean) which is driven by subduction processes. The relatively low spCOz is present
in the high-latitude regions, driven primarily by low temperature and a strong biological pump.

Compared with all SOCAT observation grid cells, the SJTU-AViT product exhibits good performance metrics in terms of
long-term climatology, characterized by a low bias (MBE = -0.21 patm, Fig. 5d), a low MAE of 5.95 patm, a low RMSE of
7.44 patm, and a notably high correlation coefficient (R = 0.94). The small averaged bias suggests that the model does not
exhibit systematic over- or under-estimation at the global scale, further validating its reliability in estimating the monthly and
annual mean climatology of spCO2. However, despite the small overall bias, the spatial distribution of bias shows significant
regional variation (Fig. 5d). The larger biases (> 4 patm) are predominantly found in the coastal, tropical, and high-latitude
oceans. The bias comparison between coastal and open oceans indicates the probability distribution function (pdf) for open
ocean centers around 0.16 patm, with 90% of the biases falling between -12 patm to +10 patm (Fig. 6b). Conversely, the pdf
for coastal ocean (400 km distance from the coastline) bias centers around -1.44 patm, with 90% of the biases remain within
the range of -18 patm to +14 patm (Fig. 6¢). The larger biases in the coastal ocean may stem from complex coastal physical-
biogeochemical processes, such as terrestrial inputs, tidal mixing, and freshwater fluxes from rivers (Bauer et al., 2013; Cai et
al., 2020; Roobaert et al., 2024b). These processes are often difficult to accurately capture in global-scale reconstruction models.

Comparison among different ocean basins (see basin boundary in Fig. S2b) indicate that spCOz biases in high latitude oceans,
specifically the Arctic and Southern Oceans, are much larger than the biases in the low and middle latitudes of the Pacific,
Atlantic, and Indian Oceans (Fig. 6). The bias of pdf line for the Arctic Ocean and Southern Ocean centers around -1.95 and -
0.64 patm, with 90% of the biases falling within the range of -20 patm to +16 patm and -14 patm to +12 patm respectively
(Fig. 6g and 6h). The biases in other ocean basins have a near-zero mean value and a narrow range of 90% of the grid cells (-
12 patm to +10 patm, Fig. 6). The increased spCOz uncertainty in the high-latitude oceans might be related to factors such as
seasonal ice cover, intense local hydrological changes, and sparse observational data. The smaller bias in the low and middle
latitudes of other ocean basins can be attributed to the relatively stable oceanic conditions and the availability of abundant
observational data, which help improve the accuracy of model reconstruction in regions dominated by large-scale physical
processes driving air-sea CO2 exchange. Additionally, relatively large bias observed in the tropical ocean may stem from
complex interannual variability associated with climate variability like El Nifio-Southern Oscillation(ENSO) and Indian Ocean
dipole (IOD). Despite these regional differences, the low overall bias demonstrates the SJTTU-AViT product’s effectiveness in
accurately capturing the spatial distribution of spCO2 on a global scale.

The distribution of temporal evolution of annual mean spCOz (Fig. 7a) exhibits a clear rightward shift over time, indicating
a long-term rise in spCOxz. Specifically, the annual mean spCOz rises from 330 patm to 400 patm, with an estimated trend of
1.42 patm yr!. This trend is consistent with the long-term increase in global oceanic spCO: driven by atmospheric CO:z growth
(Gruber et al., 2023; Landschiitzer et al., 2016), further validating the reliability of the reconstruction. In addition to this overall

increase, the shape of the spCO: frequency distribution varies across years (Fig. 7a). Notably, the pdf gradually broadens over
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time, suggesting enhanced spatial heterogeneity in surface ocean CO2 concentrations under the combined influence of rising
COz levels and global warming. The distribution of reconstruction biases (Fig. 7b) centers around 0 with a narrow range (<30
uatm), suggesting that the reconstruction data has no systematic offset. This further indicates that the features of shape
variability across years captured by SJTU-AViT data are trustworthy. In the early years (from the 1980s to the mid-1990s),
the bias distribution is more dispersed with a notable skew toward negative values, implying that the model tended to
underestimate surface COz partial pressure during this period. As time progresses, the bias distribution becomes increasingly
concentrated and more symmetric around zero. This shift reflects improved reconstruction accuracy as the spatial coverage of
observational data increased (Fig. S4). However, we note that the absolute range of biases may increase in later years. This
widening is likely due to a combination of factors, including the expansion of observational coverage to regions with more
extreme or marginal conditions, which introduces a larger range of reconstructed values, as well as the enhanced seasonal and
interannual variability that the model may not fully capture in some regions, leading to increased biases under local or extreme
conditions. Overall, the temporal evolution of the bias distribution highlights both the influence of observational coverage and

the challenges in capturing high-frequency or extreme variations.
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Figure 5. Comparison of long-term mean spCO; between SJTU-AViIiT and SOCAT over 1982-2023. (a) Long-term mean spCO;
from SJTU-AVIT on the SOCAT observation grid points. (b) Long-term mean spCQO; from SOCAT. (c) Long-term mean spCO,
380 from SJTU-AVIT at all grid points. (d) Mean bias (SJTU-AViT minus SOCAT, panel a minus panel b) on SOCAT observation grid
points. In panel a, SJTU-AVIT values are first interpolated to match the spatial and temporal locations of SOCAT observations,
after which the long-term mean is calculated at each grid point where data are available (see detailed computation in section 2.3).
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Figure 6. Bias probability density distributions of long-term mean spCO; for the SJTU-AViT product compared to SOCAT data
across different ocean regions. (a) Global ocean, (b) Open ocean, (c) Coastal ocean, and (d-h) individual ocean basins. Coastal ocean
is defined as the region within 400 km from coastline. The spatial extents of the ocean basins are shown in Fig. S2. The vertical
dashed line represents the mean spCO; value for each region, with the 95% and 5% threshold points marked on either side of the
mean. The values next to the dashed lines indicate the corresponding mean bias and the values at the two sides of dashed lines are
95% and 5% percentiles for each region. The spCO; in SJTU-AVIT is interpolated to match the SOCAT observation locations and
times in the bias computation (see detailed computation in section 2.3). The asymmetry in the percentiles is due to the asymmetric
shape of the probability density function.
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Figure 7. Probability density distributions of annual mean spCO; from the SJTU-AVIiT and bias relative to SOCAT. (a) Probability
density distribution of annual mean spCO; from the SJTU-AViT; (b) Bias probability density distribution of annual mean spCO,
between SJTU-AVIiT and SOCAT. The vertical dashed line indicates the mean spCQO; value and mean bias in panels a and b,
respectively. The spCO; in SJTU-AVIT is interpolated to match the SOCAT observation locations and times in the bias computation
(see detailed computation in section 2.3).

3.3 Evaluation of full spCO: variability and seasonal cycle

The variability in spCO2 mainly includes the seasonal, interannual, and decadal variability. To evaluate the ability of SJITU-
AVIT in reproducing this variability, we compute the overall standard deviation of spCOz at each observational grid cell (Fig.
8a). The SITU-AVIT data product effectively reproduces the magnitude and spatial distribution of observed spCOxz variability
from 1982 to 2023, as indicated by the consistent spCO: standard deviation between SJITU-AViT and SOCAT data (Fig. 8a
and 8b). The SOCAT observations (Fig. 8b) show that the strongest spCOz variability (std>30 patm) is concentrated in the
tropical Pacific Ocean, the North Pacific Ocean (40°N and 60°N), the North Atlantic Ocean (40°N), and parts of the South
Pacific Ocean (30°S). The SJTU-AVIT successfully reproduces these spatial features, exhibiting low bias across most regions
(Fig. 8d). The ratio of SITU-AVIT vs SOCAT standard deviation ranges from 0.80-1.20 which indicates the SITTU-AViT data
is able to capture the 80-120% varied amplitude. The bias comparison shows that the deep learning model exhibits a mean bias
in standard deviation of -1.97 patm, indicating high reliability in capturing spCO: variability (Fig. 8d). However, the standard
deviation bias (Fig. 8d) reveals an overall underestimation of variability, with only 18.69% of grid points showing a positive
bias. This underestimation is particularly pronounced in high-latitude regions and is likely attributed to the smoothing effect
of the machine learning model, which attenuates high-frequency variability, as well as the spatial inhomogeneity of
observational data. In contrast, some overestimations are observed in regions with sparse data coverage, such as the Southern
Ocean and the Indian Ocean (Fig. 8c).

The SITU-AVIT effectively captures the large-scale seasonal distribution and amplitude of spCOz, as shown in Figs. 9-10.
Across the four climatological seasons—MAM (March-May), JJA (June-August), SON (September-November), and DJF
(December-February)—the model reconstructs major spatial patterns that are broadly consistent with SOCAT observations.
Notably, the model successfully reproduces persistently high spCOz concentrations in the equatorial Pacific Ocean, primarily
driven by continuous upwelling of CO»-rich subsurface waters throughout the year. It also captures elevated spCO: values in
both the Atlantic and Pacific Oceans within the 5°N-30°N and 5°S-30°S latitudinal band during the respective summer and
autumn seasons of each hemisphere, reflecting the combined effects of increased surface temperatures and seasonally
weakened biological uptake. Furthermore, the model reasonably reproduces seasonal increases in spCOz in the North Pacific
and North Atlantic (40°-60°N) during Northern Hemisphere winter and early spring. This suggests that the model has likely
captured underlying mechanisms, such as the deepening of the winter mixed layer and the entrainment of DIC-rich subsurface
waters, which drive seasonal variations in surface ocean pCO2 (Keppler et al., 2020). Conversely, a pronounced seasonal
decrease in spCOz is simulated in the high-latitude Southern Ocean (south of 60°S) during the same period, indicating that the

model may also have learned the influence of cooling-driven solubility changes and biological activity on ocean pCO2. These
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spatial and seasonal patterns demonstrate the model’s capacity to incorporate key physical and biogeochemical processes
regulating spCOz variability.

Bias analysis in Fig. 9i-91 reveals seasonal model—-observation discrepancies through the mean absolute error distribution.
Larger errors (MAE exceeding 10 patm) are observed in mid- to high-latitude regions during JJA and SON, particularly in the
North Pacific Ocean, North Atlantic Ocean, and coastal zones. These discrepancies are likely linked to complex biological
processes (e.g., seasonal blooms, net community production), which are not well captured using data-driven approaches. In
contrast, lower mean absolute errors are found in subtropical gyres during DJF and MAM, with MAE values typically below
6 patm, where variability is predominantly governed by physical drivers like SST and MLD, which are more effectively
resolved by the model. Despite the pronounced interannual influence of ENSO events on spCO: variability in equatorial
regions, the model consistently achieves low reconstruction bias across different seasons, indicating that SJTU-AViT
effectively captures ENSO-related interannual anomalies in spCOz. Additionally, the reduced observation density may
contribute to the high bias of seasonal variability in the Southern Ocean and parts of the Indian Ocean.

Figure 10 further supports the model’s performance in reproducing seasonal spCO2 amplitude. Zonally averaged seasonal
amplitudes across the global ocean and individual ocean basins show a high degree of agreement between SJTU-AViT and
SOCAT, particularly in the Atlantic and Pacific Oceans. The model captures the amplitude peaks in the Northern Hemisphere
around 40°—60°N and in the Southern Hemisphere near 50°S, aligning with regions of pronounced seasonal forcing. However,
deviations are observed in the Arctic Ocean, where limited data coverage likely leads to an underestimation of seasonal
amplitude. Similarly, in the Southern Ocean, the model slightly overestimates seasonal amplitude in some latitudes, which
may stem from the smoothing nature of machine learning algorithms and the scarcity of high-frequency, high-latitude
measurements.

To evaluate the accuracy of the SITU-AVIT in capturing the seasonal phasing of spCO2, we compared it against SOCAT
climatology (supplement Figs. S16-S18). Climatological seasonal cycles were evaluated for the global ocean and five major
basins, separately for the Northern and Southern Hemispheres. The SJITU-AVIT closely reproduces the timing of seasonal
maxima and minima in spCO2, generally aligning with SOCAT observations. Global maps of phase differences show that most
regions deviate by less than +1 month, with only ~5% of grid points exceeding this range. These results demonstrate that the
reconstruction data reliably captures the observed seasonal phasing.

The bias of standard deviation in each season remains relatively low and spatially coherent across all four climatological
seasons, providing further evidence of the model’s robustness in representing both the magnitude and spatial distribution of
seasonal spCO: variability (Fig. S5). Overall, the SITU-AVIT product exhibits strong skill in reconstructing seasonal spCO2
patterns, amplitudes and phases globally. The remaining biases highlight the need for improved observational coverage in
polar and biologically dynamic regions, and for enhanced model formulations that better account for nonlinear biological and

physical interactions driving seasonal COz variability.
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Figure 8. Comparison of spCO; standard deviation from 1982-2023 between SJTU-AViT and SOCAT. (a) Standard deviation of
spCO:; from the SJTU-AVIT reconstruction. (b) Standard deviation of spCO; from SOCAT data. (c) Standard deviation ratio,
representing the ratio of SJTU-AVIT to SOCAT standard deviation (SJTU-AVIT divided by SOCAT). (d) Standard deviation bias,
465 showing the difference between the SJTU-AVIiT and SOCAT standard deviations (SJTU-AViT minus SOCAT). The standard
deviation (STD) is quantified as the standard deviation of residuals after removing long-term trends. In the panels ¢ and d, the
SJTU-AVIT values are interpolated to match the spatial and temporal locations of SOCAT observations (see detailed computation

in section 2.3).
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Figure 9. Comparison of seasonal spCO; means and mean absolute errors between SJTU-AViT and SOCAT. (a-d) Seasonal mean
spCO; from the SJTU-AVIT reconstruction for MAM (March-May), JJA (June-August), SON (September-November), and DJF
(December-February). (e-h) Seasonal mean spCO; from SOCAT data. (i-) Mean absolute error (MAE) of spCO; between SJTU-
AVIiT and SOCAT for each season. The spCO; in SJTU-AVIT is interpolated to match the SOCAT observation locations and times
in the MAE computation (see detailed computation in section 2.3).
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Figure 10. Comparison of meridional seasonal amplitude of spCO; between SJTU-AViT and SOCAT across different ocean regions
from 1982-2023. The seasonal amplitude is defined as the absolute value of the difference between winter (December—February) and
summer (June—August) means, subsequently averaged zonally. The spatial extents of the ocean basins are shown in Fig. S2. The
spCO; in SJTU-AVIT is interpolated to match the SOCAT observation locations and times in the comparison (see detailed
computation in section 2.3).

3.4 Evaluation of spCO: variability on timescales longer than one year

This section evaluates spCO2 variability on timescales longer than one year. Specifically, the variability is quantified as the
standard deviation of residuals after removing both long-term trends and seasonal cycles. For the SOCAT data, calculating the
residual standard deviation is challenging due to the gap in the observation record. Therefore, we use the long-term trend and
seasonal amplitude derived from the SITU-AVIT data to compute the residual for the SOCAT data. While this variability
encompasses both interannual and decadal variability, the signal shown here is predominantly driven by interannual
fluctuations due to the limited temporal range of the data, spanning only 42 years. Therefore, for simplicity, we refer to it as
interannual variability throughout this study. A comprehensive assessment of the global spatial distribution of this variability
is presented in Fig. 11.

Figure 11a-11b compare the interannual variability of spCO2 derived from the SJTU-AViT model and SOCAT observations.
The model accurately captures the spatial patterns of interannual variability, showing strong structural agreement with the
observational dataset. High variability is well reproduced in key regions such as the equatorial Pacific Ocean (15°N—-15°S,

120°E-280°E), the subpolar gyres of the North Pacific and North Atlantic (30°N-60°N), and the high latitudes of the Southern
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Ocean (south of 60°S). The variability in these areas is probably related to the interannual change of wind stress, upwelling,
and mixed layers. To evaluate the model’s performance in reproducing variability amplitude, Figure 11c shows the bias in
interannual standard deviation relative to SOCAT. On a global scale, the bias is generally small (-2.66 patm) but tends toward
slight underestimation. The most pronounced underestimations (>6 patm) appear in the high-latitude North Pacific, North
Atlantic, and Southern Ocean, where high-frequency variability is often suppressed by machine learning models due to their
inherent smoothing.

Figure 11d presents the interannual standard deviation from SJTU-AVIiT, while Figure 11e shows the ensemble mean of
standard deviation in each existing spCOz products as a reference. Notably, SITU-AVIT reveals stronger variability in most
global oceans—especially the Southern Ocean, tropical Pacific, and North Atlantic subtropical gyre (Fig. 11f, Fig. S6).
Considering the SJITU-AVIT still underestimates the interannual variability compared to SOCAT, the Figure. 11 comparison
suggests the ViT-based model better retains ocean—climate variability signals rather than excessively smoothing them. The
improved performance of SJTU-AVIT in capturing interannual amplitude is likely due to the multi-head self-attention
mechanism, high representational capacity, and the transfer learning approach applied using CMIP6 and ocean-driven
biogeochemical model results. This helps the model better capture the interaction between ocean pCO2 and interannual
variability modes, leading to more accurate estimations of spCO: fluctuations on the interannual timescale.

We further assessed the performance of the SJTU-AVIT product in the equatorial Pacific Ocean, where interannual
variability of spCOz is the strongest in the global ocean. The SJITU-AVIT dataset demonstrates clear and spatially coherent
spCO2 anomaly patterns associated with ENSO events (Fig. 12 and Fig. S7). In terms of spatial distribution, SJTTU-AViT
reproduces a significant decline in spCO2 over the eastern Pacific Ocean during El Nifio and a pronounced increase during La
Nifia. These strong comparisons between different phases of ENSO are consistent with well-established physical-
biogeochemical mechanisms of ENSO-driven carbon variability through changes in upwelling, SST, precipitation, and biology
(Liao et al., 2020; Sun et al., 2025). Due to the limited availability of long-term observational data, we compare the SJTU-
AVIT with the composite mean of multiple available spCO: data products. The spatial patterns of anomalies in SJTU-AVIT
are broadly consistent with those in the multi-model ensemble. Notably, the SJITU-AVIT provides finer spatial detail,
particularly in the nearshore eastern Pacific Ocean, where sharp gradients and coastal processes are more pronounced.

The consistency between the SITU-AViT product and these data products is further confirmed by the temporal correlation
between spCOz anomalies and the Nifio 3.4 SST index. The SJTU-AViT shows a correlation of -0.81 and the multiple data
products range from -0.40 to -0.78 (Fig. S7), indicating that the SJTTU-AViT model captures the temporal evolution of ENSO-
related variability in the carbon system. The latitudinal comparison also indicates a strong agreement between SITU-AViT
results, data product, and SOCAT observations during both El Nifio and La Nina periods (Fig. 13).

These results indicate that the SITTU-AViT model reliably reconstructs the spatial patterns of interannual and decadal spCO2
variability at SOCAT observation sites and across the global ocean. Its ability to capture variability in line with key physical

indicators such as SST and MLD demonstrates its robustness in physically consistent reconstructions. Nevertheless, regional
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discrepancies highlight the need for further refinement, particularly in under-observed areas and regions where non-physical

factors may dominate reconstructed variability.
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Figure 11. Comparison of spCO; standard deviations on timescales longer than one year between SJTU-AViT, SOCAT, and multiple
data products. (a) Standard deviation of spCO; from the SJTU-AVIiT at SOCAT observation grid points. (b) Standard deviation of
spCO; from SOCAT data. (c¢) Standard deviation bias between SJTU-AVIiT and SOCAT (panel a minus panel b). (d) Standard
deviation of spCO; from the SJITU-AVIT. (e¢) Ensemble mean standard deviation from multiple existing spCO; data products. (f)
Standard deviation difference between the SJTU-AVIT and the ensemble mean standard deviation (panel d minus panel e). The
standard deviation (STD) is quantified as the standard deviation of residuals after removing both long-term trends and seasonal
cycles, representing the variability on timescales longer than one year. The spCO; in SJTU-AVIT is interpolated to match the
SOCAT observation locations and times in the panel (a)-(c) comparison (see detailed computation in section 2.3).
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Figure 12. Comparison of spCO; anomalies during El Nifio and La Nifia events between SJTU-AVIT and multiple data products.
Panels (a) and (b) show the composite mean spCO; anomalies during eight El Nifio and seven La Nifia events, respectively, as
reconstructed by the SJTU-AVIT product. Panels (c) and (d) display the corresponding composite mean anomalies from the
ensemble mean of eight spCO; data products. The eight El Nifios and seven La Nifias are indicated in the supplement section S2 and
545  S3. The spCO: anomalies are defined as residuals after removing both long-term trends and seasonal cycles.
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Figure 13. Comparison of meridional spCO; between SJITU-AViT, SOCAT, and multiple data products during (a) El Nifio and (b)
La Niiia events. The selected El Nifio events are 1997-1998 and 2002-2003, while the La Niifia events are 1995-1996 and 1998-1999.
550 These events are selected due to the availability of several cruise datasets during these periods. The cruise data are distributed over
240°E-280°E, which are shown in Fig. S8. The spCO; in all data products is interpolated to match the SOCAT observation locations

and times in the comparison.
3.5 Evaluation of the Air-Sea CO: Fluxes

The air-sea COz flux based on SJTU-AViT spCOz reproduces consistent known features with multiple data products (Gregor
555 et al., 2019; Landschiitzer et al., 2016; Takahashi et al., 2009). Elevated FCO:x is observed along the equator, particularly in

the eastern equatorial Pacific, associated with the upwelling of carbon-rich waters. In contrast, mid-to-high latitudes act as net
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COgz sinks (Fig. 14a). This substantial carbon sequestration is primarily driven by the enhanced solubility of CO: in cold waters,
deep water mixing, transport processes, and the biological carbon pump (Devries et al., 2017; Gregor et al., 2018; Sarmiento
et al., 2004; Takahashi et al., 2009). While SITU-AVIT effectively reproduces the overall spatial patterns and mechanisms of
air-sea COz flux, Figure 6 indicates that negative spCOz biases remain in certain high-latitude regions. The negative bias, likely
associated with underrepresented high-latitude processes such as seasonal sea-ice variability and freshwater inputs, can lead
to an overestimation of global ocean CO: uptake through the bulk equation and should be considered when interpreting the
absolute flux magnitude.

The time series of global air—sea COz flux (Fig. 14b) shows a strengthening oceanic carbon sink over the past four decades,
from -1.40 Pg C yr! in the early 1980s to -2.60 Pg C yr'! in the 2010s. Notably, the SITU-AVIiT reconstruction is consistently
maintained within the +2 standard deviation envelope of existing multi-product ensemble estimates and exhibits strong
agreement with other FCOz products. Interannual and decadal variability are evident, such as a temporary weakening of the
sink from the late 1990s to the early 21st century, reflecting the modulation of global carbon sink strength by external forcing
and climate variability (Devries, 2022; Mckinley et al., 2020). In particular, the significant weakening of the carbon sink during

the 1997-1998 strong El Nifio event is effectively reproduced, without exhibiting the abrupt discontinuities or artificial jumps.
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Figure 14. Spatial and temporal characteristics of air-sea CO; flux (FCO;, mol C m? yr'); (a) Spatial distribution of the long-term
annual mean FCO,; (b) Comparison of time series of yearly global integrated CO; flux between SJTU-AViT and multiple data
products. Colored lines represent individual products, with SJTU-AVIT highlighted in bold. The shaded area indicates the +2
standard deviation range, centered on the ensemble mean. Negative = ocean uptake (sink), Positive = release to the atmosphere
(source).

3.6 Evaluation of the uncertainty of reconstructed spCO2

The global uncertainty associated with the reconstructed spCOxz is estimated to evaluate the reliability of the data product. The
estimated global mean uncertainty is 11.05 patm, with the dominant contribution arising from the algorithm uncertainty
(Ualgorithm)> Which reaches 7.39 patm. This value was obtained through error propagation and reflects the cumulative impact

of both systematic and random errors introduced throughout the reconstruction procedure. Given the conservative nature of
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our uncertainty estimation, this magnitude is considered reasonable. Specifically, to ensure a conservative approach, the
observational uncertainty (u,,s) for each SOCAT data point was uniformly set to 5 patm, following established practices. The
gridding process applied to SOCAT data (ug,.;q) resulted in an uncertainty of 6.34 patm. The contribution from uncertainties
in the input variables (Uppys) 18 comparatively minor, also estimated at 1.50 patm.

Regionally, the estimated uncertainties of reconstructed spCOz exhibit moderate spatial variability across the major ocean
basins. Among the five RECCAP2-defined open ocean regions, the Indian Ocean shows the lowest mean uncertainty at 8.62
patm, followed by the Pacific Ocean (10.10 patm) and the Atlantic Ocean (10.28 patm). Higher uncertainty levels are observed
in the Southern Ocean (11.64 patm) and the Arctic Ocean (12.45 patm), consistent with sparser observational coverage,
enhanced seasonal variability, and more complex air—sea interactions in these regions. These regional patterns suggest that
while the global uncertainty level remains controlled, localized differences—particularly in high-latitude oceans—should be

considered when interpreting the product in regional carbon budget assessments.

4 Discussion

In this study, we present a new reconstructed data product of spCOz (SJTU-AViT) with improved interannual variability using
the ViT-based deep learning model. The ViT-based deep learning model integrates the Vision Transformer (ViT) architecture
with physics-informed constraints and assimilates outputs from advanced ocean biogeochemical models, including CMIP6
models and ocean-driven biogeochemical model (MOM6-COBALT?2). This integration enables a more precise extraction of
the complex relationships between oceanic environmental variables and spCO». The SJITU-AViT product effectively captures
key spatiotemporal patterns and reconstructs improved interannual spCO» variability.

In addition, we evaluated the contributions of CMIP6 pre-training, MOM6 fine-tuning, SOCAT observations, and MOM6-
derived physical-biogeochemical constraints within the SITU-AVIT framework. CMIP6 pre-training substantially improved
model initialization and skill, reducing validation RMSE by ~56.57% versus random initialization by supplying large-scale
structure and low-frequency variability. MOM6 fine-tuning further stabilized the model—especially in observation-sparse
regions—lowering RMSE by ~39.36% and enforcing physically plausible relationships. Including SOCAT during fine-tuning
was critical for local and regional accuracy, reducing RMSE by ~72.31% through high-quality pointwise constraints.
Sensitivity tests indicate the reconstruction is largely robust to the specific choice of CMIP6 pre-training subsets, provided
multiple models are used to capture diverse large-scale patterns. Finally, adding MOM6-derived physical constraints improved
overall performance (MAE from 7.15 to 5.95 patm) and reduced seasonal RMSE by 1.36-8.49%, with the largest gains in
high-latitude and data-sparse regions. Collectively, these results confirm that CMIP6 pre-training followed by MOM6- and
SOCAT-constrained fine-tuning with physically informed constraints yields a robust, reliable, and physically consistent
reconstruction of spCOz across spatial and temporal scales.

Despite the strong performance of SITU-AVIT, several challenges remain. A key issue is to understand and reconcile the

discrepancy among different reconstruction products, particularly when considering the influence of specific climate modes
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such as the Indian Ocean Dipole (IOD). As illustrated in Fig. 15, during positive IOD events, nine distinct spCO2 data products
exhibit divergent composite anomaly patterns across the Indian Ocean (see IOD definition in supplement section S2). The
SJTU-AVIT results indicate an increase in spCOz in the western Indian Ocean basin and a decrease in the eastern basin (Valsala
et al., 2020). The other data products present divergent or even opposite spatial patterns, raising fundamental questions about
which data product most accurately reflects reality in the data-limited region. The scarcity of in situ observations in the Indian
Ocean exacerbates the difficulty in determining the most reliable spCOz distribution (Valsala et al., 2021). These uncertainties
underscore the urgent need to enhance observational efforts, particularly in regions where data products exhibit significant
divergence (Rddenbeck et al., 2015). Future work should focus on expanding observation networks and leveraging autonomous
platforms such as biogeochemical Argo floats (Claustre et al., 2020; Williams et al., 2017) to provide crucial validation data.

Decadal variability presents more significant challenges, with larger biases that require increased attention. Current
reconstruction methods primarily capture these climate modes (e.g., Pacific Decadal Oscillation, PDO) implicitly and do not
explicitly incorporate relevant indices in the machine learning model training. While increasing observational coverage is
essential, it may not quickly resolve the issues related to decadal variability. A more effective solution may lie in improving
the reconstruction methods themselves, particularly through the integration of physics-informed approaches. For instance,
implementing physical-biogeochemical constraints, such as incorporating spCOz sensitivity to SST, SSS, DIC, and Alk, can
significantly improve model performance, reducing the mean absolute error from 7.15 patm to 5.95 patm. Future research
should focus more on exploring physics-informed machine learning approaches that integrate climate indices as explicit inputs
to enhance model interpretability and predictive capability (Reichstein et al., 2019; Willard et al., 2020).

While ViT-based models effectively learn spatial patterns from observational data, they remain susceptible to inherent biases
in training data (Dosovitskiy et al., 2020). Systematic biases in SOCAT observations or oceanic variables (e.g., temperature
and salinity) may propagate through the reconstruction process, impacting regional carbon cycle estimates (Takahashi et al.,
2009). To address this, uncertainty quantification techniques such as Bayesian deep learning or ensemble learning could be
incorporated to assess confidence intervals in reconstructed spCO2 and improve anomaly detection capabilities (Gal and
Ghahramani, 2016; Lakshminarayanan et al., 2016). It should be noted that the climatological MLD used in this study cannot
capture interannual or monthly variability, which may slightly underestimate local or short-term impacts on spCOa.
Nevertheless, it provides adequate physical constraints for reconstructing long-term and large-scale spatiotemporal patterns.
Future work will explore incorporating high-quality time-varying MLD data as it becomes available to improve model fidelity
at regional and seasonal scales.

Furthermore, existing spCO: reconstruction approaches predominantly rely on physical environmental variables while
largely neglecting biological processes. In high-productivity regions such as the North Atlantic, Southern Ocean, and Arctic
Ocean, biological processes play a crucial role in regulating CO2 exchange, with phytoplankton photosynthesis significantly
lowering spCO: (Bates and Mathis, 2009; Boyce et al., 2010; Takahashi et al., 2009). However, Chl-a only partially represents
biological influences and is subject to considerable uncertainties in high-latitude regions, particularly in ice-covered areas

(Arrigo et al., 2008). To better account for biological processes, future efforts should incorporate additional biogeochemical
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variables such as net community production (NCP) (Arrigo and Dijken, 2011; Behrenfeld et al., 2006) and phytoplankton
community structure, alongside bio-optical remote sensing techniques, to enhance reconstruction accuracy and the physical
coherence of carbon cycle interpretations.

The generalization capability of machine learning models is contingent on the completeness and representativeness of
training data, leading to substantial uncertainties in data-sparse regions (Gloege et al., 2021). This is particularly evident in
high-latitude oceans, where spCO2 is modulated by sea ice cover, biological carbon pumps, and deep-water upwelling—
processes that cannot be fully inferred from surface environmental variables alone (Mongwe et al., 2018). Since current models
primarily rely on surface observations, their ability to capture vertical carbon transport and subsurface processes remains
limited. Future studies should integrate three-dimensional ocean state variables (e.g., dissolved inorganic carbon and alkalinity)
(Fennel et al., 2023; Wang et al., 2024; Zhou and Zhang, 2023) and incorporate physical conservation constraints (e.g., mass
balance and chemical equilibrium) to enhance the physical robustness of machine learning models (Leal et al., 2020; Wang
and Gupta, 2024). Additionally, applying data assimilation techniques or coupling machine learning with physics-based
biogeochemical models could further improve reconstruction accuracy (Arcucci et al., 2021; Brajard et al., 2021; Chen et al.,
2023).

In summary, high-resolution spCO2 reconstruction is critical for understanding global ocean carbon sink variability. While
the ViT-based approach offers an innovative solution, key challenges remain regarding dataset discrepancies, climate
variability impacts, data uncertainties, and the omission of physical and biological processes. Existing reconstruction data
product must be interpreted with caution when assessing regional carbon fluxes. As ocean acidification and climate change
continue to alter marine carbon dynamics, improving our ability to reconstruct historical spCO: trends is essential for predicting
the future ocean carbon uptake. Advancing spCO2 reconstruction toward higher accuracy and reliability will require multi-
source data integration, explainable machine learning, and robust uncertainty quantification techniques. Furthermore, this
study highlights the critical synergy between observational programs and machine learning-based modeling approaches in

achieving more precise global carbon assessments.
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Figure 15. Spatial patterns of spCQO; anomalies during positive IOD in the Indian Ocean between SJTU-AViT and multiple data
products. The spCO; anomaly is the composite mean of eight positive IOD events (detailed IOD events are shown in the supplement
section S2 and S3). For each IOD event, the anomalies are averaged over the months of September, October, and November.

5 Data availability

The reconstructed spCO: and FCO2: datasets are publicly available as a NetCDF file at
https://doi.org/10.5281/zenodo.15331978 (Zhang et al., 2025) and will be updated regularly. The input datasets used for the
reconstruction are also publicly accessible. The SST and SIC datasets were obtained from the NOAA OISST product
(https://www.ncei.noaa.gov/products/optimum-interpolation-sst). Chl-a data were derived from the ESA CCI Ocean Colour
project (https://climate.esa.int/en/projects/ocean-colour/). xCO2 data were sourced from the ESRL MBL CO: product
(https://gml.noaa.gov/ccgg/mbl/data.php). Wind speed and sea level pressure data were retrieved from the ERAS reanalysis
provided by the Medium-Range Weather Forecasts (ECMWF) (https://doi.org/10.24381/cds.f17050d7).
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6 Conclusions

This study presents a novel global data product of spCO: reconstructed by a ViT-based deep learning model at a 1° spatial
resolution for the period 1982-2023. By integrating multi-source observational data, biogeochemical ocean model results, and
physics-informed constraints, the reconstructed data product demonstrates strong accuracy and spatial coherence across diverse
oceanic regions, with a particular improvement in capturing interannual variability.

The model performs robustly during both the training and independent validation phases, with high accuracy (R? = 0.86 in
training, R? = 0.82 in validation) and low bias (RMSE of 16.70 patm in training). The implementation of physical-
biogeochemical constraints can significantly improve model performance, reducing the mean absolute error from 7.15 patm
to 5.95 patm. The reconstructed data product shows strong agreement with SOCAT observations and accurately reproduces
long-term climatological and annual mean spCO2, with a low global mean bias of -0.21 patm, a low mean absolute error of
5.95 patm, and a high correlation coefficient (R = 0.94). However, biases were found in coastal and high-latitude oceans,
suggesting the need for further refinement in these areas.

The evaluation of seasonality reveals that the SITU-AViT model effectively captures both seasonal patterns and amplitudes
across global ocean basins, particularly in regions with stable conditions, such as subtropical gyres. On the time scale longer
than one year, the model demonstrated its ability to capture higher interannual spCO: variability, particularly during El Nifio
and La Nifia events, with high spatial and temporal coherence. The higher performance is likely due to the incorporation of
CMIP6 model and advanced ocean biogeochemical model results during the ViT-based model training process. This approach
allows the model to capture more accurate spCO: variability in these data-sparse regions. Additionally, it captures the global
ocean carbon sink’s long-term strengthening, consistent with rising atmospheric CO2. However, uncertainties remain in high-
latitude regions due to challenges in resolving complex oceanic processes. Despite this, the model’s output aligns with the
uncertainty ranges of existing datasets, demonstrating its reliability for global CO2 exchange assessments.

This study highlights machine learning’s potential in spCOz reconstruction, while identifying key challenges, such as input
data limitations and model interpretability. Future work should extend this approach to higher spatial and temporal resolutions,
integrate more biogeochemical parameters, and couple the model with ocean-atmosphere models for improved long-term
projections. Additionally, enhancing model interpretability will be crucial for understanding the drivers of spCOz variability.
The approach shows promise for reconstructing other carbonate system parameters, contributing to a more comprehensive
global ocean carbon data product. This will support climate change research, carbon neutrality policies, and global carbon

management efforts.
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