
1 
 

A surface ocean pCO2 product with improved representation of 
interannual variability using a vision transformer-based model 
Xueying Zhang1, Enhui Liao1*, Wenfang Lu2,3, Zelun Wu4, Guansuo Wang5,6, Xueming Zhu3, Shiyu 
Liang7* 
1School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240, China 5 
2School of Marine Sciences, State Key Laboratory of Environmental Adaptability for Industrial Products, Sun Yat-sen 
University, Zhuhai, Guangdong, 519082, China 
3Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, 519082, China 
4School of Marine Science and Policy, University of Delaware, Newark, Delaware, 19716, USA 
5Observation and Research Station of Huaniaoshan East China Sea Ocean-Atmosphere Integrated Ecosystem, Ministry of 10 
Natural Resources, Shanghai, 200137, China 
6East China Sea Forecasting and Hazard Mitigation Center, Ministry of Natural Resources, Shanghai, 200137, China 
7John Hopcroft Center for Computer Science, Shanghai Jiao Tong University, Shanghai, 200240, China 

Correspondence to: Enhui Liao (ehliao@sjtu.edu.cn) and Shiyu Liang (lsy18602808513@sjtu.edu.cn) 

Abstract. The ocean plays a crucial role in regulating the global carbon cycle and mitigating climate change. Spatial and 15 

temporal variations of ocean surface partial pressure of CO2 (spCO2) influence the air-sea CO2 flux through the difference 

between surface ocean and atmospheric pCO2 (ΔpCO2), which is further modulated by surface wind speed and gas exchange 

velocity. However, constructing a global spCO2 data product that is able to resolve interannual and decadal variability remains 

a challenge due to the spatial sparsity and temporal discontinuity of observational data. This study presents an approach based 

on the Vision Transformer (ViT) model, combining high-quality observational data from the CO2 Atlas (SOCAT) with 20 

multiple advanced global ocean biogeochemical models results to reconstruct a global monthly spCO2 dataset (SJTU-AViT) 

at 1° resolution from 1982 to 2023. The approach employs the self-attention mechanism of the ViT model to enhance the 

modeling of the spatial and temporal variations of spCO2, as well as incorporates physical-biogeochemical constraints from 

the derivative of spCO2 with respect to key controlling factors as additional features. The incorporation of advanced ocean 

biogeochemical models during the training process allows the ViT-based model to capture more accurate spCO2 variability in 25 

these data-sparse regions. Evaluations demonstrate that the new data product effectively captures spCO2 variability at both 

global and regional scales, showing good consistency with SOCAT observations, long-term ocean station data, and global 

atmospheric CO2 trends. The reconstructed spCO2 demonstrates strong capability in reproducing spCO2 anomalies during El 

Niño-Southern Oscillation (ENSO) events, particularly in the eastern Pacific Ocean, where it shows a correlation of -0.81 with 

the Niño 3.4 index and demonstrates high consistency with cruise data. Based on the SJTU-AViT dataset, the estimated global 30 

air-sea CO2 flux patterns are consistent with known regional features such as strong uptake in the Southern Ocean and 

outgassing in the tropical Pacific. This study not only provides a new 42-year data product for advancing understanding of the 

ocean carbon cycle and global carbon budget assessments, but also introduces a new Transformer-based deep learning 
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framework for Earth-system data reconstruction. The data product is publicly accessible at 

https://doi.org/10.5281/zenodo.15331978 (Zhang et al., 2025) and will be updated regularly. 35 

1 Introduction 

Global warming is primarily driven by the continuous increase in atmospheric greenhouse gas concentrations, with carbon 

dioxide (CO2) being the dominant contributor (Friedlingstein et al., 2023). The ocean, as one of the largest carbon sinks in the 

Earth system, absorbs approximately 25% of anthropogenic CO2 emissions (~2.80 PgC yr-1), playing a crucial role in regulating 

the global carbon cycle and climate change (Friedlingstein et al., 2023). However, the ocean's capacity to absorb CO2 is not 40 

constant; rather, it is influenced by a complex interplay of atmospheric CO2 concentration, ocean physical and biogeochemical 

processes, exhibiting significant spatiotemporal variability (Landschützer et al., 2016; Takahashi et al., 2002). Accurate 

estimation of oceanic CO2 fluxes is therefore essential for understanding carbon cycle mechanisms and assessing the 

effectiveness of the ocean as a carbon sink. 

Accurately quantifying air-sea CO2 flux relies on precise estimates of sea surface CO2 partial pressure (spCO2). While the 45 

surface ocean CO2 atlas (SOCAT) database (Bakker et al., 2016) provides a valuable foundation, observational coverage 

remains sparse and uneven, particularly in high-latitude regions and during winter months when harsh sea conditions limit 

measurements (Mackay and Watson, 2021). Existing approaches for estimating spCO2 primarily fall into two categories: 

numerical biogeochemical modeling and data-driven methods. Traditional numerical biogeochemical models simulate spCO2 

by parameterizing physical and biogeochemical processes (Kern et al., 2024; Roobaert et al., 2022). However, due to the highly 50 

nonlinear dynamics of the oceanic carbon cycle and regional heterogeneity, numerical biogeochemical models still exhibit 

considerable uncertainties in reconstructing the spatiotemporal distribution of spCO2 (Rödenbeck et al., 2015; Roobaert et al., 

2022). Moreover, simplified parameterization of biogeochemical processes may lead to underestimation or overestimation of 

oceanic carbon uptake, ultimately affecting the accuracy of global carbon budget assessments (Resplandy et al., 2024). 

To address these limitations, statistical interpolation and machine learning techniques have been increasingly employed to 55 

reconstruct spCO2 distributions based on available observations (Rödenbeck et al., 2015). Statistical interpolation methods, 

such as regression-based approaches (Rödenbeck et al., 2015), Bayesian techniques (Valsala et al., 2021), and tree-based 

algorithms (Geurts et al., 2006), leverage the spatiotemporal correlation of spCO2 observations and have achieved moderate 

success in some regions (Gregor et al., 2019). However, these methods struggle with poor reconstruction accuracy in data-

sparse regions and do not fully capture the complex ocean carbon biogeochemical processes effectively (Hauck et al., 2023). 60 

Consequently, machine learning approaches have gained prominence in recent years. In particular, feedforward neural 

networks (FFNNs) have demonstrated superior reconstruction accuracy and have become one of the most widely used tools 

for spCO2 and other ocean data estimation (Denvil-Sommer et al., 2019; Landschützer et al., 2013; Zeng et al., 2014). These 

methods yield root mean square errors (RMSE) of approximately 18 μatm in open ocean regions, aligning well with SOCAT 

observations (Gregor et al., 2019).  65 
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Despite recent advances, significant challenges remain in reconstructing spCO2, particularly in capturing its interannual and 

decadal variability, which plays a pivotal role in modulating oceanic carbon uptake. Previous machine learning (ML)-based 

interpolations of pCO2 may overly smooths the spatial patterns and interannual variability, which represents a potential 

limitation in capturing these features fully. Accurate characterization of this variability remains a central issue in the ocean 

carbon field. Furthermore, the widely used FFNNs method may introduce discontinuities at cluster boundaries due to the 70 

discrete nature of data grouping, impacting the representation of spCO2 variability (Gregor et al., 2019). These discontinuities 

often require additional post-smoothing procedures, which may introduce artificial bias, thereby increasing reconstructed data 

uncertainty or suppressing real spatiotemporal variability (Gregor et al., 2019). More broadly, a persistent imbalance of 

approximately 1 Pg C yr-1 remains in the global carbon budget, reflecting unresolved discrepancies between estimated sources 

and sinks on the global scale. One plausible contributor to this imbalance is the inadequate characterization of the interannual 75 

variability in oceanic carbon uptake (Friedlingstein et al., 2023). Therefore, this study develops a novel reconstruction method 

to more accurately capture interannual dynamics, alleviate artificial spatial discontinuities, particularly across cluster 

boundaries, and ultimately contribute to close the global carbon budget (Rödenbeck et al., 2015).  

Transformer architectures, originally developed for sequence modeling in natural language processing, have demonstrated 

exceptional capabilities in capturing long-range dependencies and learning complex, nonlinear relationships across high-80 

dimensional datasets. Their scalability and effectiveness in tasks such as machine translation, language understanding, and 

large language models (e.g., Chat-GPT) have established them as a cornerstone of modern artificial intelligence. Recently, 

these models have been extended to atmospheric science and oceanography, where they have shown promising performance 

in forecasting ocean states and extracting spatiotemporal patterns from large-scale environmental data. Given these advantages, 

Transformer-based frameworks offer considerable potential for data reconstruction in oceanography, where challenges such 85 

as sparse observations, multiscale variability, and strong spatiotemporal coupling demand flexible and powerful modeling 

approaches (Ji et al., 2025; Liu et al., 2024). 

Against this backdrop, the image-based Vision Transformer (ViT) architecture, with its multi-head self-attention mechanism 

and high representational capacity, has emerged as a powerful tool for capturing the complex spatiotemporal features of 

oceanic environmental variables. This model is well-suited for reconstructing spCO2, as it can integrate diverse environmental 90 

drivers such as sea surface temperature (SST), salinity (SSS), chlorophyll concentration (Chl-a), mixed layer depth (MLD), 

and atmospheric CO2 concentration. To enhance the physical constraints of spCO2 reconstruction, this study incorporates ocean 

carbonate system sensitivities to key variables like SST, SSS, dissolved inorganic carbon (DIC), and total alkalinity (ALK) 

(Takahashi et al., 1993). In this context, multi-stage training strategies that combine simulated data from Earth system models 

and observational constraints have also proven effective in improving model robustness and accuracy. The spCO2-based 95 

Shanghai Jiao Tong University aggregation Vision Transformer (SJTU-AViT) developed in this study effectively captures 

both spatial variations and interannual to decadal variability of ocean carbon dynamics at global scales. This contributes to 

enhancing our understanding of the temporal dynamics of oceanic carbon uptake and addressing imbalances in the global 

carbon budget. 
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2 Data and methods 100 

2.1 Training Data Description 

This study selects a range of input features for model training to comprehensively capture the dynamics of surface ocean spCO2 

variability through sensitivity tests and other spCO2 data reconstruction studies (Denvil-Sommer et al., 2019; Landschützer et 

al., 2013; Zeng et al., 2014). The selected input features include SST, SSS, Chl-a, MLD, and air CO2. Additionally, we 

introduce physical constraints based on the relationship  105 
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features in the deep learning model to reinforce spCO2 physical-biogeochemical consistency (Takahashi et al., 1993). These 

parameters represent key physical, chemical, and biological factors influencing the distribution of spCO2 in the ocean. All the 

input features are interpolated into a uniform 1°×1° spatial resolution and monthly temporal resolution. 110 

The input datasets consist of long-term time series and high-resolution spatial data, ensuring both temporal and spatial 

consistency across variables (Table 1). SST data were obtained from the NOAA Optimum Interpolation SST (OISST) (version 

v02r01) dataset, spanning from 1982 to 2023 with daily resolution and a spatial resolution of 0.25° (Reynolds et al., 2007; 

Huang et al., 2021). SSS data were sourced from the Hadley Centre EN.4.2.2 (c14) dataset, covering the period from 1982 to 

2023 with daily resolution and a spatial resolution of 0.25° (Good et al., 2013). Chl-a data were derived from the European 115 

Space Agency Climate Change Initiative (ESA CCI) Ocean Colour (version 5.0) dataset, spanning 1997 to 2022 with daily 

resolution and a spatial resolution of 4 km (Jackson et al., 2017). For periods prior to 1997 and for 2023, we employed a 

climatology computed from the 1997-2022 Chl-a record to ensure full temporal coverage. Ocean MLD data were obtained 

from the World Ocean Circulation Experiment (WOCE) Global Data Version 3.0, providing monthly climatology with a spatial 

resolution of 2° (de Boyer Montégut et al., 2004). Atmospheric CO2 mole fraction (xCO2) data were sourced from the NOAA 120 

Earth System Research Laboratories (ESRL) marine boundary layer (MBL) CO2 product, covering the period from 1982 to 

2023 with about 8-day resolution and meridional spacing (Dlugokencky et al., 2019). In this study, the meridional band product 

was mapped onto the model’s 1° × 1° global grid using latitudinal interpolation and longitudinal replication, generating 

continuous 2D fields suitable for model simulations. 
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 at a spatial resolution of 1° are included as additional input 125 

features, sourced from the ocean-driven global biogeochemical model simulations (Liao et al., 2020). These rate-of-change 

variables help to reflect the influences of temperature, salinity, alkalinity, and DIC on spCO2, thereby enriching the deep 

learning model’s representation of the underlying biogeochemical processes. Additionally, spCO2 from the SOCAT database 

was used as the target variable for the model training and validation. The SOCAT dataset used in this study is version 2024 

(Fig. S1) which is interpolated into the uniform 1°×1° spatial resolution and monthly temporal resolution (Bakker et al., 2016). 130 



5 
 

The Coupled Model Intercomparison Project Phase 6 (CMIP6) model results are downloaded from the Lawrence Livermore 

National Laboratory node database (https://esgf31node.llnl.gov/projects/cmip6/, at the time of this study). We selected a subset 

of 7 ESMs based on the availability of download access through our cluster and the availability of environmental variables 

(see supplement section S2 for details). The biogeochemical model adopted in this study is from the Geophysical Fluid 

Dynamics Laboratory (GFDL). The model includes Modular Ocean Model version 6 (MOM6), sea ice simulator version 2, 135 

carbon ocean biogeochemistry, and lower trophics version 2 (COBALT v2), which is collectively referred to as MOM6-

COBALT2 (Adcroft et al., 2019; Stock et al., 2020). The model performance is thoroughly assessed, and it reproduces well-

observed physical and biogeochemical features in the global ocean (Stock et al., 2020). More detailed model evaluations and 

configurations, including spin-up, atmospheric forcing, and initial conditions, can be found in Liao et al. (2020 and 2024). 

 140 
Table 1. Summary of data sources and variable characteristics used in this study. 

Variable Units Period Resolution Dataset reference 

Atmospheric CO2 
(xCO2) 

ppm 1982-2023 Meridional, 
monthly 

ESRL MBL CO2 product Dlugokencky et al. 
(2019) 

Chlorophyll a (Chl a) mg m-3 1997-2022 4 km, daily ESA CCI Ocean Colour 
(Version 5.0) 

Jackson et al. (2017) 

Sea surface 
temperature (SST) 

°C 1982-2023 0.25°, daily NOAA OISST (Version 
v02r01) 

Reynolds et al. (2007) 

Sea surface salinity 
(SSS ) 

PSU 1982-2023 0.25°, daily Hadley Center EN.4.2.2 
(c14) 

Good et al. (2013) 

Ocean mixed layer 
depth (MLD) 

m 12-month 2°, monthly 
climatology 

WOCE Global Data 
Version 3.0  

de Boyer Montegut et al. 
(2004) 

SOCAT μatm 1982-2023 1°, monthly SOCAT version 2024 
data products 

Bakker et al. (2016) 

2.2 Model Architecture 

The deep learning model employed in this study is a Vision Transformer (ViT, Fig. 1), originally proposed by Dosovitskiy et 

al. (2020) for capturing spatial dependencies in large-scale image-like datasets. The design of ViT tackled the key limitation 

of the CNN-like methods, which implies the translation-invariant property of learned kernels. This property failed to learn the 145 

remote connections across regions among multiple variables (Liu et al., 2024). The ViT model employs a self-attention 

mechanism to capture long-term connections and complex spatial and temporal patterns (Nguyen et al., 2023), allowing it to 

dynamically adjust its receptive field and capture both localized details and large-scale variations. As a result, the model is 
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able to provide a more comprehensive characterization of the relationships between spCO2 and oceanic variables across spatial 

scales. 150 

The ViT-based framework for spCO2 reconstruction includes four main steps. The first is variable tokenization, a process 

that involves partitioning the input data into local regions. Each region is treated as an image patch for subsequent processing 

and feature extraction (Dosovitskiy et al., 2020). These input variables are standardized using variable-wise mean-variance 

normalization and formatted into a multi-channel input to ensure feature extraction occurs on a unified scale. Then, the ocean 

fields are segmented into fixed-size image patches. For example, the SST field (180×360) is divided into non-overlapping 6×6 155 

grids on every patch, resulting in 30×60 patches. The data in each patch is then projected into a high-dimensional vector 

through a patch embedding layer, preserving critical spatial structures and providing a suitable input representation for the 

Transformer framework.  

The second step is variable aggregation, where a cross-attention mechanism is employed to integrate information across 

multiple environmental input variables (Vaswani et al., 2017). Given that different variables influence spCO2 through distinct 160 

mechanisms, other methods like simple concatenation may obscure crucial dynamic relationships. The cross-attention 

mechanism enables the model to adaptively assign appropriate weights to different variables, emphasizing those that contribute 

most significantly to spCO2 variations (Jaegle et al., 2021). To further enhance its ability to capture spatiotemporal dynamics, 

the model incorporates position encoding and time encoding at this stage, ensuring temporal consistency in the input data and 

improving the interpretability of ocean carbon cycle processes (Wu et al., 2021). 165 

The third step is Transformer backbone, where the data are fed into a Transformer backbone composed of 10 stacked 

Transformer blocks. Each block integrates multi-head self-attention (16 heads), layer normalization (LayerNorm), and a 

feedforward neural network (MLP) (Dosovitskiy et al., 2020; Vaswani et al., 2017). The multi-head self-attention mechanism 

enables the model to learn long-range dependencies and capture complex spatial interactions by attending to multiple 

representation subspaces simultaneously—an essential feature for modeling the inherently spatiotemporal dynamics of 170 

oceanographic variables. To further enhance representation learning, linear transformation and concatenation operations 

(Linear & Concat) are employed across layers. These operations support deep feature fusion, enabling the network to integrate 

both fine-scale local variations and broader climate-driven signals. 

The final step is the model output. This step incorporates a pooling head for dimensionality reduction, producing the global 

oceanic spCO2 fields as the output. The loss function is minimized by comparing the reconstructed values against observational 175 

datasets, ensuring both physical consistency and numerical accuracy. The ViT-based model contains approximately 115 

million parameters and was trained in parallel on eight NVIDIA RTX 4090 GPUs for up to 200 epochs with early stopping 

(patience = 10); each training epoch required roughly 10 minutes. 
To enhance model performance, we employ a multi-stage training strategy. First, we pre-train the ViT-based model using 

the 7 CMIP6 model results to learn a general relationship between spCO2 and the environmental variables (SST, SSS, Chl-a, 180 

MLD, and air CO2). We then fine-tune the ViT-based model using data from the ocean-driven global ocean biogeochemical 

models (e.g., MOM6-COBALT) and further refine it with SOCAT observations to improve accuracy and applicability. The 
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incorporation of the CMIP6 model and advanced ocean biogeochemical models enhances the spCO2 reconstruction by 

mitigating the data sparsity issue, particularly in regions with limited observations, such as the Indian Ocean and high-latitude 

areas. Through the use of transfer learning, the model can better leverage global climate data to fill gaps in observational 185 

coverage. The overall workflow of this multi-stage training strategy is summarized in Fig. 2, which also provides a schematic 

overview of the spCO2 reconstruction workflow based on the ViT framework. The figure clearly visualizes the main steps, 

from data preprocessing through model training to evaluation (see detailed description in section S5.1). 

 

 190 
Figure 1. Schematic of the Vision Transformer (ViT)-based framework for spCO2 reconstruction. The framework includes four 
main steps. The first is variable tokenization, where the input oceanographic variables (e.g., SST, SSS, Chl-a, MLD, and atmospheric 
CO2) are divided into spatial patches and passed through a convolutional embedding layer. The second step is variable aggregation, 
where multiple variables are aggregated into one vector through the cross-attention mechanism. The third step is Transformer 
backbone, where the data are passed through stacked Transformer blocks that incorporate multi-head self-attention, layer 195 
normalization, and feedforward neural networks to capture complex spatiotemporal dependencies. The final step is model output, 
where a pooling head aggregates the learned representations and generates the spCO2 fields. 
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Figure 2. Workflow of the spCO2 reconstruction using the ViT-based framework. The workflow consists of four major stages: (a) 200 
Data processing, where CMIP6, MOM6, and SOCAT inputs are temporally harmonized, spatially interpolated, and normalized; (b) 
Model architecture, where variables are tokenized, aggregated into spatio-temporal embeddings, and processed by a Transformer 
backbone to predict monthly spCO2; (c) Training and validation, involving CMIP6 pretraining, MOM6 and SOCAT fine-tuning, 
and evaluation against withheld SOCAT data and long-term stations; and (d) Evaluation and analysis, where model performance 
metrics, climatology, seasonal cycles, and interannual variability are assessed, leading to downstream analyses such as air-sea CO2 205 
flux estimation and uncertainty analysis (see detailed description in supplement section S5.1). 

2.3 Validation Procedure and Data 

The SOCAT dataset was randomly divided into 80% (277,528 samples) for training and 20% (69,142 samples) for validation, 

using a fixed random seed (seed = 42) to ensure reproducibility. For the independent test at long-term stations, data from these 

stations were excluded, and the model was trained using the remaining SOCAT data. In the final results generation phase, the 210 

full SOCAT dataset was utilized to produce the spCO2 estimates. These estimates are subsequently used for analyses of 



9 
 

climatological states, seasonal variations, and interannual changes in spCO2. For comparison with SOCAT, we used the 

monthly 1° gridded SOCAT product and evaluated our SJTU-AViT reconstruction on the same grid, without applying any 

additional spatial interpolation. Reconstructed values were masked where SOCAT is missing, and all skill metrics were 

computed only at grid-time points with valid SOCAT data. For the independent test at long-term stations, reconstructed values 215 

were extracted at the corresponding station locations using bilinear spatial interpolation, which incorporates information from 

surrounding grid cells to provide smoother and more representative estimates, and skill metrics were subsequently computed 

to evaluate model performance. Detailed information for these stations, including their names, geographic locations, 

observation periods, number of samples, and data sources, is provided in supplement Table S3, and their locations are shown 

in supplement Fig. S2 to facilitate visual interpretation. Subsequently, the climatological mean, seasonal variations, and 220 

interannual changes are calculated at each grid point where data are available. The processed SJTU-AViT data are then 

compared with the corresponding SOCAT observations in the following sections. 

In the training process, we adopt the latitude-weighted mean squared error (MSE) as the loss function to ensure that the 

model accommodates the spatial variability caused by the Earth’s curvature. The latitude-weighted MSE effectively 

emphasizes the prediction accuracy in low-latitude regions, which occupy a larger proportion of the Earth’s surface (Nguyen 225 

et al., 2023; Willard et al., 2024). The loss function is computed as follows: 

𝑀𝑆𝐸 = .
/
.
0
.
1
∑ ∑ ∑ 𝛼(ℎ)(𝑦2,4,5 − 𝑦67#,2,4,5)!1

58.
0
48.

/
28.                                                      (2) 

where N is the total number of time points in the dataset, H and W are the numbers of latitudinal and longitudinal grid points, 

respectively, and t, h, and w represent the time, latitude, and longitude indices, respectively. 𝑦67#,2,4,5 is the observed value, 

and 𝑦2,4,5 is the predicted value. The term 𝛼(ℎ) is the latitude weight. 230 

In the validation process, we use multiple evaluation metrics, including mean bias error (MBE), mean absolute error (MAE), 

root mean square error (RMSE), and coefficient of determination (R2). These metrics have been extensively used in 

reconstructed data assessments and climate model evaluations. It is computed as follows: 

𝑀𝐵𝐸 = .
9
∑ (𝑦:;<,= − 𝑦67#,=9
=8. )                                                                          (3) 

𝑀𝐴𝐸 = 1/𝑛∑ =𝑦:;<,= − 𝑦67#,==9
=8.                                                                         (4) 235 

𝑅𝑀𝑆𝐸 = ?1/𝑛∑ (𝑦:;<,= − 𝑦67#,=)!9
=8.                                                                     (5) 

𝑅! = 1 −∑ @𝑦67#,= − 𝑦:;<,=A
!9

=8. /∑ (9
=8. (𝑦67#,= − 𝑦67#BBBBB)!                                                     (6) 

where n represents the number of data samples, 𝑦:;<,= denotes the reconstructed values, while 𝑦67#,= and 𝑦67#BBBBB represent the 

observed values and their mean, respectively.  

To evaluate the performance of the deep learning model (ViT-base Model) adopted in this study, we selected eight global 240 

ocean spCO2 products (Table 2), nine independent observational stations (Fig. S2a), and SOCAT data. The chosen benchmark 

datasets include Jena-MLS, MPI-SOMFFN, OS-ETHZ-GRaCER, and five other data products (Table 2), which are widely 

used in the ocean carbon community. These data products cover periods from 1957 to 2023 at varying spatial resolutions from 
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1° to 2.50°, with temporal resolutions ranging from daily to monthly. The nine stations span various periods and effectively 

capture the spatial and temporal variability of ocean spCO2. The diversity of the benchmark datasets provides a deeper 245 

understanding of the model’s performance across different oceanic environments, thus further optimizing its predictive 

capabilities. 

 
Table 2. References for global spCO2 products used for comparison. 

Dataset Time range Spatial Resolution Temporal Resolution Reference 

Jena-MLS 1957-2023 2.50°lon×2°lat daily Rödenbeck et al. (2014) 

MPI-SOMFFN 1982-2022 1°×1° monthly Landschützer et al. (2016) 

OS-ETHZ-
GRaCER 

1982-2022 1°×1° monthly Gregor and Gruber (2021) 

CMEMS-LSCE-
FFNN 

1985-2018 1°×1° monthly Chau et al. (2022) 

CSIR-ML6 1985-2018 1°×1° monthly Gregor et al. (2019) 

Watson 1985-2019 1°×1° monthly Watson et al. (2020) 

NIES-NN 1980-2019 1°×1° monthly Zeng et al. (2014)  

JMA-MLR 1985-2019 1°×1° monthly Iida et al. (2020) 

2.4 Air–sea CO2 flux computation 250 

We calculate the air-sea CO2 flux (FCO2, mol C m-2 yr-1) from the reconstructed spCO2 using a standard bulk parameterization 

(Wanninkhof, 2014), given by the equation: 

𝐹𝐶𝑂! = 𝑘5 ⋅ 𝐾> ⋅ (	1 − 𝑓=<;) ⋅ (𝑠𝑝𝐶𝑂! − 𝑎𝑝𝐶𝑂!)                                                          (7) 

Here, the flux (FCO2) is considered positive when CO2 is outgassed from the ocean and negative when CO2 is absorbed by the 

ocean. The fluxes are adjusted to account for the ice-free area of each pixel, with the sea ice cover data (fice) taken from Rayner 255 

et al. (2003). The gas transfer velocity of CO2 (kw) is computed using the parameterization of Wanninkhof (2014), which 

assumes a quadratic dependence on wind speed. The Schmidt number (Sc) required in this formulation is calculated following 

the temperature-dependent empirical formula provided by Wanninkhof (2014). The wind speed data is sourced from ERA5, 

with a 6-hourly temporal resolution spanning 1982-2023 and a 1° spatial resolution. To ensure consistency with global 

radiocarbon-based constraints (Graven et al., 2012; Müller et al., 2008; Sweeney et al., 2007; Wanninkhof, 2014), the scaling 260 

factor is set as 0.251 (Wanninkhof, 2014), which equals about a global mean transfer velocity of 16 cm h-1. The solubility of 

CO2 in seawater (K0) is calculated as a function of SST and SSS (Weiss, 1974). The partial pressure of atmospheric CO2 
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(apCO2) is estimated using the mole fraction of CO2 in dry air (xCO2) from the ESRL MBL CO2 product, with water vapor 

correction from Dickson et al. (2007). 

2.5 ViT-based model uncertainty estimation 265 

The uncertainty associated with our reconstructed spCO2 product was estimated using the method proposed by Landschützer 

et al. (2014 and 2018). The uncertainty of estimated spCO2 for each grid cell was accumulated from the quadratic sum of four 

sources of uncertainties: 

𝑢#$<6! = J𝑢67#! +𝑢?:=@! +𝑢AB?6:=24C! +𝑢=9$D2#!                                                               (8) 

𝑢67#  is the observational uncertainty inherited from observations. The SOCAT gridded product compiles the pCO2 270 

observations with WOCE flags A, B (uncertainty < 2 μatm), C, and D (uncertainty < 5 μatm). Adopting a conservative approach, 

we set the maximum value of 𝑢67# to 5 μatm. 𝑢?:=@ is calculated as the standard deviation of the samples used for gridding 

spCO2 in each grid cell (Roobaert et al., 2024a; Wu et al., 2025). 𝑢EFGHIJKLM  is evaluated as the RMSE between the 

reconstructed and reference ocean model spCO2 field. 

In addition to the three uncertainty sources previously mentioned, this study also considers the cumulative uncertainty 275 

introduced by input variables (𝑢=9$D2#). The uncertainties associated with these variables are calculated through Monte Carlo 

simulations (Wu et al., 2025). For each input variable, white noise following a normal distribution (𝑁(0, 𝑢N=)) is added, and 

spCO2 is recalculated using the perturbed inputs. By repeating 100 times, the uncertainty for each input variable is then 

determined by calculating the standard deviation of the differences between the original spCO2 and the spCO2 values obtained 

after adding noise. Detailed procedures for determining these input uncertainties are described in supplement section S1. 280 

3 Results 

3.1 Evaluation of ViT-based Model Performance  

The SJTU-AViT product demonstrated robust performance and high accuracy in capturing spCO2 variability (Fig. 3). In the 

training phase (Fig. 3a), the model achieved a high coefficient of determination (R2 = 0.86), with low root mean square error 

(RMSE = 16.70 µatm), an MAE of 6.89 µatm, and minimal mean bias error (MBE = -0.36 µatm), based on over 277528 (80%) 285 

samples. In the validation phase (Fig. 3b), the model maintained robust performance, with an R2 of 0.82 and an RMSE of 

18.30 µatm, indicating strong generalization ability and no sign of overfitting. Most predicted values lie close to the 1:1 line, 

particularly within the climatologically common spCO2 range (300-420 µatm), as indicated by the high-density regions in Fig. 

3. These results confirm the model’s ability to accurately reconstruct large-scale spCO2 patterns across diverse oceanic regimes. 

In addition, the sensitivity test indicates that the implementation of physical-biogeochemical constraints can significantly 290 

improve model performance, reducing the mean absolute error from 7.15 to 5.95 µatm. 
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Independent test with in-situ buoy observations (which were not used to train the model) (Fig. 4) indicates that the model 

performs best in subtropical regions (e.g., HOT, BATS, CCE1, ESTOC, and Papa), accurately capturing both long-term trends 

(Fig. 4) and seasonal cycles (Fig. S3). At the HOT station, for instance, the model yields a minimal MBE of 0.31 µatm, a low 

RMSE of 8.65 µatm, and a high R2 = 0.86, and similar performance is observed at other subtropical stations, indicating the 295 

model’s accuracy in data-rich, stable regions. In the equatorial Pacific Ocean, the model shows reasonable performance at the 

data-sparse TAO station in the Pacific Ocean, with a slight negative MBE (-7.02 µatm), an RMSE of 13.16 µatm, and an R2 

of 0.74, effectively capturing large-scale seasonal variability in equatorial upwelling-dominated environments (Fig. S3). 

Similarly, at the monsoon-influenced BOBOA station at the Bay of Bengal, where observations are also limited, the model 

captures overall variability with an MBE (-6.07 µatm), an RMSE of 10.48 µatm, and an R² of 0.65, indicating reasonable skill 300 

in capturing the overall variability driven by monsoonal forcing processes. In contrast, performance deteriorates at high-

latitude stations and regions with strong dynamical variability. At the Irminger Sea and Iceland sites, the model exhibits large 

RMSE (35.24 and 21.82 µatm, respectively) and low correlations, with R2 near zero. This suggests that the model has difficulty 

capturing rapid spCO2 fluctuations or processes that are not well represented by the available input features. This discrepancy 

is likely due to high-latitude processes such as seasonal sea-ice variability and freshwater inputs, which are not fully 305 

represented in the current observational constraints. 

In general, the evaluation confirms that the ViT-based method effectively generates essentially bias-free spCO2 fields with 

no signs of overfitting, achieving high accuracy in low latitudes and open oceans, while performance declines at high latitudes. 

 

 310 
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Figure 3. Performance evaluation of the ViT-based model for reconstructing the SJTU-AViT spCO2 product. Density scatter plots 
illustrate the comparison between model-reconstructed sea surface partial pressure of CO2 (spCO2

rec) and in situ SOCAT 
observations (spCO2

obs) during (a) the training phase (using 80% of the samples) and (b) the validation phase (using 20% of the 
samples). Statistical metrics, including the coefficient of determination (R2), root mean square error (RMSE), mean absolute error 
(MAE), mean bias error (MBE), and the number of samples (N), are provided to quantitatively assess model performance. The color 315 
bar indicates the number of data points within each bin, representing the density of observations. The spCO2 in SJTU-AViT is 
interpolated to match the SOCAT observation locations and times in the comparison. 
 

 
Figure 4. Independent test of spCO2 variability between SJTU-AViT and in situ observations at different stations. These in situ data 320 
are independent data and are not used to train the model. The station description and location refer to supplement section S2 and 
Fig. S2. The spCO2 in SJTU-AViT is interpolated to match the station locations and times in the comparison. For each panel, the 
number of samples (N), the mean bias error (MBE), root mean square error (RMSE), and correlation coefficient (R2) between the 
reconstructed and observed spCO2 are displayed. The dashed and solid lines show the linear trend of SJTU-AViT and in situ data. 

3.2 Evaluation of long-term climatology and annual means of spCO2 325 

The reconstructed spCO2 product (SJTU-AViT) exhibits strong agreement with SOCAT observations in terms of long-term 

climatology, successfully capturing the large-scale spatial distribution of spCO2 in the global ocean (Fig. 5a, 5b, and 5c). This 

demonstrates strong consistency with previous climatology products (Landschützer et al., 2020; Takahashi et al., 2002). 
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Elevated spCO2 values are prominent in the tropical oceans (e.g., equatorial Pacific Ocean) and coastal upwelling regions, 

driven by the upwelling of CO2-rich subsurface waters. In contrast, low spCO2 levels are predominantly observed in mid-330 

latitude gyre areas (e.g., the North Pacific Ocean) which is driven by subduction processes. The relatively low spCO2 is present 

in the high-latitude regions, driven primarily by low temperature and a strong biological pump. 

Compared with all SOCAT observation grid cells, the SJTU-AViT product exhibits good performance metrics in terms of 

long-term climatology, characterized by a low bias (MBE = -0.21 µatm, Fig. 5d), a low MAE of 5.95 µatm, a low RMSE of 

7.44 µatm, and a notably high correlation coefficient (R = 0.94). The small averaged bias suggests that the model does not 335 

exhibit systematic over- or under-estimation at the global scale, further validating its reliability in estimating the monthly and 

annual mean climatology of spCO2. However, despite the small overall bias, the spatial distribution of bias shows significant 

regional variation (Fig. 5d). The larger biases (> 4 µatm) are predominantly found in the coastal, tropical, and high-latitude 

oceans. The bias comparison between coastal and open oceans indicates the probability distribution function (pdf) for open 

ocean centers around 0.16 µatm, with 90% of the biases falling between -12 µatm to +10 µatm (Fig. 6b). Conversely, the pdf 340 

for coastal ocean (400 km distance from the coastline) bias centers around -1.44 µatm, with 90% of the biases remain within 

the range of -18 µatm to +14 µatm (Fig. 6c). The larger biases in the coastal ocean may stem from complex coastal physical-

biogeochemical processes, such as terrestrial inputs, tidal mixing, and freshwater fluxes from rivers (Bauer et al., 2013; Cai et 

al., 2020; Roobaert et al., 2024b). These processes are often difficult to accurately capture in global-scale reconstruction models. 

Comparison among different ocean basins (see basin boundary in Fig. S2b) indicate that spCO2 biases in high latitude oceans, 345 

specifically the Arctic and Southern Oceans, are much larger than the biases in the low and middle latitudes of the Pacific, 

Atlantic, and Indian Oceans (Fig. 6). The bias of pdf line for the Arctic Ocean and Southern Ocean centers around -1.95 and -

0.64 µatm, with 90% of the biases falling within the range of -20 µatm to +16 µatm and -14 µatm to +12 µatm respectively 

(Fig. 6g and 6h). The biases in other ocean basins have a near-zero mean value and a narrow range of 90% of the grid cells (-

12 µatm to +10 µatm, Fig. 6). The increased spCO2 uncertainty in the high-latitude oceans might be related to factors such as 350 

seasonal ice cover, intense local hydrological changes, and sparse observational data. The smaller bias in the low and middle 

latitudes of other ocean basins can be attributed to the relatively stable oceanic conditions and the availability of abundant 

observational data, which help improve the accuracy of model reconstruction in regions dominated by large-scale physical 

processes driving air-sea CO2 exchange. Additionally, relatively large bias observed in the tropical ocean may stem from 

complex interannual variability associated with climate variability like El Niño-Southern Oscillation(ENSO) and Indian Ocean 355 

dipole (IOD). Despite these regional differences, the low overall bias demonstrates the SJTU-AViT product’s effectiveness in 

accurately capturing the spatial distribution of spCO2 on a global scale. 

The distribution of temporal evolution of annual mean spCO2 (Fig. 7a) exhibits a clear rightward shift over time, indicating 

a long-term rise in spCO2. Specifically, the annual mean spCO2 rises from 330 µatm to 400 µatm, with an estimated trend of 

1.42 µatm yr-1. This trend is consistent with the long-term increase in global oceanic spCO2 driven by atmospheric CO2 growth 360 

(Gruber et al., 2023; Landschützer et al., 2016), further validating the reliability of the reconstruction. In addition to this overall 

increase, the shape of the spCO2 frequency distribution varies across years (Fig. 7a). Notably, the pdf gradually broadens over 
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time, suggesting enhanced spatial heterogeneity in surface ocean CO2 concentrations under the combined influence of rising 

CO2 levels and global warming. The distribution of reconstruction biases (Fig. 7b) centers around 0 with a narrow range (<30 

uatm), suggesting that the reconstruction data has no systematic offset. This further indicates that the features of shape 365 

variability across years captured by SJTU-AViT data are trustworthy. In the early years (from the 1980s to the mid-1990s), 

the bias distribution is more dispersed with a notable skew toward negative values, implying that the model tended to 

underestimate surface CO2 partial pressure during this period. As time progresses, the bias distribution becomes increasingly 

concentrated and more symmetric around zero. This shift reflects improved reconstruction accuracy as the spatial coverage of 

observational data increased (Fig. S4). However, we note that the absolute range of biases may increase in later years. This 370 

widening is likely due to a combination of factors, including the expansion of observational coverage to regions with more 

extreme or marginal conditions, which introduces a larger range of reconstructed values, as well as the enhanced seasonal and 

interannual variability that the model may not fully capture in some regions, leading to increased biases under local or extreme 

conditions. Overall, the temporal evolution of the bias distribution highlights both the influence of observational coverage and 

the challenges in capturing high-frequency or extreme variations. 375 
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Figure 5. Comparison of long-term mean spCO2 between SJTU-AViT and SOCAT over 1982–2023. (a) Long-term mean spCO2 
from SJTU-AViT on the SOCAT observation grid points. (b) Long-term mean spCO2 from SOCAT. (c) Long-term mean spCO2 
from SJTU-AViT at all grid points. (d) Mean bias (SJTU-AViT minus SOCAT, panel a minus panel b) on SOCAT observation grid 380 
points. In panel a, SJTU-AViT values are first interpolated to match the spatial and temporal locations of SOCAT observations, 
after which the long-term mean is calculated at each grid point where data are available (see detailed computation in section 2.3).  
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Figure 6. Bias probability density distributions of long-term mean spCO2 for the SJTU-AViT product compared to SOCAT data 
across different ocean regions. (a) Global ocean, (b) Open ocean, (c) Coastal ocean, and (d–h) individual ocean basins. Coastal ocean 385 
is defined as the region within 400 km from coastline. The spatial extents of the ocean basins are shown in Fig. S2. The vertical 
dashed line represents the mean spCO2 value for each region, with the 95% and 5% threshold points marked on either side of the 
mean. The values next to the dashed lines indicate the corresponding mean bias and the values at the two sides of dashed lines are 
95% and 5% percentiles for each region. The spCO2 in SJTU-AViT is interpolated to match the SOCAT observation locations and 
times in the bias computation (see detailed computation in section 2.3). The asymmetry in the percentiles is due to the asymmetric 390 
shape of the probability density function. 
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Figure 7. Probability density distributions of annual mean spCO2 from the SJTU-AViT and bias relative to SOCAT. (a) Probability 
density distribution of annual mean spCO2 from the SJTU-AViT; (b) Bias probability density distribution of annual mean spCO2 395 
between SJTU-AViT and SOCAT. The vertical dashed line indicates the mean spCO2 value and mean bias in panels a and b, 
respectively. The spCO2 in SJTU-AViT is interpolated to match the SOCAT observation locations and times in the bias computation 
(see detailed computation in section 2.3). 

3.3 Evaluation of full spCO2 variability and seasonal cycle 

The variability in spCO2 mainly includes the seasonal, interannual, and decadal variability. To evaluate the ability of SJTU-400 

AViT in reproducing this variability, we compute the overall standard deviation of spCO2 at each observational grid cell (Fig. 

8a). The SJTU-AViT data product effectively reproduces the magnitude and spatial distribution of observed spCO2 variability 

from 1982 to 2023, as indicated by the consistent spCO2 standard deviation between SJTU-AViT and SOCAT data (Fig. 8a 

and 8b). The SOCAT observations (Fig. 8b) show that the strongest spCO2 variability (std>30 µatm) is concentrated in the 

tropical Pacific Ocean, the North Pacific Ocean (40°N and 60°N), the North Atlantic Ocean (40°N), and parts of the South 405 

Pacific Ocean (30°S). The SJTU-AViT successfully reproduces these spatial features, exhibiting low bias across most regions 

(Fig. 8d). The ratio of SJTU-AViT vs SOCAT standard deviation ranges from 0.80-1.20 which indicates the SJTU-AViT data 

is able to capture the 80-120% varied amplitude. The bias comparison shows that the deep learning model exhibits a mean bias 

in standard deviation of -1.97 μatm, indicating high reliability in capturing spCO2 variability (Fig. 8d). However, the standard 

deviation bias (Fig. 8d) reveals an overall underestimation of variability, with only 18.69% of grid points showing a positive 410 

bias. This underestimation is particularly pronounced in high-latitude regions and is likely attributed to the smoothing effect 

of the machine learning model, which attenuates high-frequency variability, as well as the spatial inhomogeneity of 

observational data. In contrast, some overestimations are observed in regions with sparse data coverage, such as the Southern 

Ocean and the Indian Ocean (Fig. 8c). 

The SJTU-AViT effectively captures the large-scale seasonal distribution and amplitude of spCO2, as shown in Figs. 9-10. 415 

Across the four climatological seasons—MAM (March-May), JJA (June-August), SON (September-November), and DJF 

(December-February)—the model reconstructs major spatial patterns that are broadly consistent with SOCAT observations. 

Notably, the model successfully reproduces persistently high spCO2 concentrations in the equatorial Pacific Ocean, primarily 

driven by continuous upwelling of CO2-rich subsurface waters throughout the year. It also captures elevated spCO2 values in 

both the Atlantic and Pacific Oceans within the 5°N–30°N and 5°S–30°S latitudinal band during the respective summer and 420 

autumn seasons of each hemisphere, reflecting the combined effects of increased surface temperatures and seasonally 

weakened biological uptake. Furthermore, the model reasonably reproduces seasonal increases in spCO2 in the North Pacific 

and North Atlantic (40°-60°N) during Northern Hemisphere winter and early spring. This suggests that the model has likely 

captured underlying mechanisms, such as the deepening of the winter mixed layer and the entrainment of DIC-rich subsurface 

waters, which drive seasonal variations in surface ocean pCO2 (Keppler et al., 2020). Conversely, a pronounced seasonal 425 

decrease in spCO2 is simulated in the high-latitude Southern Ocean (south of 60°S) during the same period, indicating that the 

model may also have learned the influence of cooling-driven solubility changes and biological activity on ocean pCO2. These 
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spatial and seasonal patterns demonstrate the model’s capacity to incorporate key physical and biogeochemical processes 

regulating spCO2 variability. 

Bias analysis in Fig. 9i-9l reveals seasonal model–observation discrepancies through the mean absolute error distribution. 430 

Larger errors (MAE exceeding 10 µatm) are observed in mid- to high-latitude regions during JJA and SON, particularly in the 

North Pacific Ocean, North Atlantic Ocean, and coastal zones. These discrepancies are likely linked to complex biological 

processes (e.g., seasonal blooms, net community production), which are not well captured using data-driven approaches. In 

contrast, lower mean absolute errors are found in subtropical gyres during DJF and MAM, with MAE values typically below 

6 µatm, where variability is predominantly governed by physical drivers like SST and MLD, which are more effectively 435 

resolved by the model. Despite the pronounced interannual influence of ENSO events on spCO2 variability in equatorial 

regions, the model consistently achieves low reconstruction bias across different seasons, indicating that SJTU-AViT 

effectively captures ENSO-related interannual anomalies in spCO2. Additionally, the reduced observation density may 

contribute to the high bias of seasonal variability in the Southern Ocean and parts of the Indian Ocean. 

Figure 10 further supports the model’s performance in reproducing seasonal spCO2 amplitude. Zonally averaged seasonal 440 

amplitudes across the global ocean and individual ocean basins show a high degree of agreement between SJTU-AViT and 

SOCAT, particularly in the Atlantic and Pacific Oceans. The model captures the amplitude peaks in the Northern Hemisphere 

around 40°–60°N and in the Southern Hemisphere near 50°S, aligning with regions of pronounced seasonal forcing. However, 

deviations are observed in the Arctic Ocean, where limited data coverage likely leads to an underestimation of seasonal 

amplitude. Similarly, in the Southern Ocean, the model slightly overestimates seasonal amplitude in some latitudes, which 445 

may stem from the smoothing nature of machine learning algorithms and the scarcity of high-frequency, high-latitude 

measurements.  

To evaluate the accuracy of the SJTU-AViT in capturing the seasonal phasing of spCO2, we compared it against SOCAT 

climatology (supplement Figs. S16-S18). Climatological seasonal cycles were evaluated for the global ocean and five major 

basins, separately for the Northern and Southern Hemispheres. The SJTU-AViT closely reproduces the timing of seasonal 450 

maxima and minima in spCO2, generally aligning with SOCAT observations. Global maps of phase differences show that most 

regions deviate by less than ±1 month, with only ~5% of grid points exceeding this range. These results demonstrate that the 

reconstruction data reliably captures the observed seasonal phasing. 

The bias of standard deviation in each season remains relatively low and spatially coherent across all four climatological 

seasons, providing further evidence of the model’s robustness in representing both the magnitude and spatial distribution of 455 

seasonal spCO2 variability (Fig. S5). Overall, the SJTU-AViT product exhibits strong skill in reconstructing seasonal spCO2 

patterns, amplitudes and phases globally. The remaining biases highlight the need for improved observational coverage in 

polar and biologically dynamic regions, and for enhanced model formulations that better account for nonlinear biological and 

physical interactions driving seasonal CO2 variability. 

 460 



20 
 

 
Figure 8. Comparison of spCO2 standard deviation from 1982-2023 between SJTU-AViT and SOCAT. (a) Standard deviation of 
spCO2 from the SJTU-AViT reconstruction. (b) Standard deviation of spCO2 from SOCAT data. (c) Standard deviation ratio, 
representing the ratio of SJTU-AViT to SOCAT standard deviation (SJTU-AViT divided by SOCAT). (d) Standard deviation bias, 
showing the difference between the SJTU-AViT and SOCAT standard deviations (SJTU-AViT minus SOCAT). The standard 465 
deviation (STD) is quantified as the standard deviation of residuals after removing long-term trends. In the panels c and d, the 
SJTU-AViT values are interpolated to match the spatial and temporal locations of SOCAT observations (see detailed computation 
in section 2.3). 
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Figure 9. Comparison of seasonal spCO2 means and mean absolute errors between SJTU-AViT and SOCAT. (a-d) Seasonal mean 470 
spCO2 from the SJTU-AViT reconstruction for MAM (March-May), JJA (June-August), SON (September-November), and DJF 
(December-February). (e-h) Seasonal mean spCO2 from SOCAT data. (i-l) Mean absolute error (MAE) of spCO2 between SJTU-
AViT and SOCAT for each season. The spCO2 in SJTU-AViT is interpolated to match the SOCAT observation locations and times 
in the MAE computation (see detailed computation in section 2.3).  
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 475 
Figure 10. Comparison of meridional seasonal amplitude of spCO2 between SJTU-AViT and SOCAT across different ocean regions 
from 1982-2023. The seasonal amplitude is defined as the absolute value of the difference between winter (December–February) and 
summer (June–August) means, subsequently averaged zonally. The spatial extents of the ocean basins are shown in Fig. S2. The 
spCO2 in SJTU-AViT is interpolated to match the SOCAT observation locations and times in the comparison (see detailed 
computation in section 2.3).  480 

3.4 Evaluation of spCO2 variability on timescales longer than one year 

This section evaluates spCO2 variability on timescales longer than one year. Specifically, the variability is quantified as the 

standard deviation of residuals after removing both long-term trends and seasonal cycles. For the SOCAT data, calculating the 

residual standard deviation is challenging due to the gap in the observation record. Therefore, we use the long-term trend and 

seasonal amplitude derived from the SJTU-AViT data to compute the residual for the SOCAT data. While this variability 485 

encompasses both interannual and decadal variability, the signal shown here is predominantly driven by interannual 

fluctuations due to the limited temporal range of the data, spanning only 42 years. Therefore, for simplicity, we refer to it as 

interannual variability throughout this study. A comprehensive assessment of the global spatial distribution of this variability 

is presented in Fig. 11.  

Figure 11a-11b compare the interannual variability of spCO2 derived from the SJTU-AViT model and SOCAT observations. 490 

The model accurately captures the spatial patterns of interannual variability, showing strong structural agreement with the 

observational dataset. High variability is well reproduced in key regions such as the equatorial Pacific Ocean (15°N–15°S, 

120°E–280°E), the subpolar gyres of the North Pacific and North Atlantic (30°N–60°N), and the high latitudes of the Southern 
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Ocean (south of 60°S). The variability in these areas is probably related to the interannual change of wind stress, upwelling, 

and mixed layers. To evaluate the model’s performance in reproducing variability amplitude, Figure 11c shows the bias in 495 

interannual standard deviation relative to SOCAT. On a global scale, the bias is generally small (-2.66 μatm) but tends toward 

slight underestimation. The most pronounced underestimations (>6 μatm) appear in the high-latitude North Pacific, North 

Atlantic, and Southern Ocean, where high-frequency variability is often suppressed by machine learning models due to their 

inherent smoothing. 

Figure 11d presents the interannual standard deviation from SJTU-AViT, while Figure 11e shows the ensemble mean of 500 

standard deviation in each existing spCO2 products as a reference. Notably, SJTU-AViT reveals stronger variability in most 

global oceans—especially the Southern Ocean, tropical Pacific, and North Atlantic subtropical gyre (Fig. 11f, Fig. S6). 

Considering the SJTU-AViT still underestimates the interannual variability compared to SOCAT, the Figure. 11 comparison 

suggests the ViT-based model better retains ocean–climate variability signals rather than excessively smoothing them. The 

improved performance of SJTU-AViT in capturing interannual amplitude is likely due to the multi-head self-attention 505 

mechanism, high representational capacity, and the transfer learning approach applied using CMIP6 and ocean-driven 

biogeochemical model results. This helps the model better capture the interaction between ocean pCO2 and interannual 

variability modes, leading to more accurate estimations of spCO2 fluctuations on the interannual timescale. 

We further assessed the performance of the SJTU-AViT product in the equatorial Pacific Ocean, where interannual 

variability of spCO2 is the strongest in the global ocean. The SJTU-AViT dataset demonstrates clear and spatially coherent 510 

spCO2 anomaly patterns associated with ENSO events (Fig. 12 and Fig. S7). In terms of spatial distribution, SJTU-AViT 

reproduces a significant decline in spCO2 over the eastern Pacific Ocean during El Niño and a pronounced increase during La 

Niña. These strong comparisons between different phases of ENSO are consistent with well-established physical-

biogeochemical mechanisms of ENSO-driven carbon variability through changes in upwelling, SST, precipitation, and biology 

(Liao et al., 2020; Sun et al., 2025). Due to the limited availability of long-term observational data, we compare the SJTU-515 

AViT with the composite mean of multiple available spCO2 data products. The spatial patterns of anomalies in SJTU-AVIT 

are broadly consistent with those in the multi-model ensemble. Notably, the SJTU-AViT provides finer spatial detail, 

particularly in the nearshore eastern Pacific Ocean, where sharp gradients and coastal processes are more pronounced. 

The consistency between the SJTU-AViT product and these data products is further confirmed by the temporal correlation 

between spCO2 anomalies and the Niño 3.4 SST index. The SJTU-AViT shows a correlation of -0.81 and the multiple data 520 

products range from -0.40 to -0.78 (Fig. S7), indicating that the SJTU-AViT model captures the temporal evolution of ENSO-

related variability in the carbon system. The latitudinal comparison also indicates a strong agreement between SJTU-AViT 

results, data product, and SOCAT observations during both El Niño and La Niña periods (Fig. 13). 

These results indicate that the SJTU-AViT model reliably reconstructs the spatial patterns of interannual and decadal spCO2 

variability at SOCAT observation sites and across the global ocean. Its ability to capture variability in line with key physical 525 

indicators such as SST and MLD demonstrates its robustness in physically consistent reconstructions. Nevertheless, regional 
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discrepancies highlight the need for further refinement, particularly in under-observed areas and regions where non-physical 

factors may dominate reconstructed variability. 

 

 530 
Figure 11. Comparison of spCO2 standard deviations on timescales longer than one year between SJTU-AViT, SOCAT, and multiple 
data products. (a) Standard deviation of spCO2 from the SJTU-AViT at SOCAT observation grid points. (b) Standard deviation of 
spCO2 from SOCAT data. (c) Standard deviation bias between SJTU-AViT and SOCAT (panel a minus panel b). (d) Standard 
deviation of spCO2 from the SJTU-AViT. (e) Ensemble mean standard deviation from multiple existing spCO2 data products. (f) 
Standard deviation difference between the SJTU-AViT and the ensemble mean standard deviation (panel d minus panel e). The 535 
standard deviation (STD) is quantified as the standard deviation of residuals after removing both long-term trends and seasonal 
cycles, representing the variability on timescales longer than one year. The spCO2 in SJTU-AViT is interpolated to match the 
SOCAT observation locations and times in the panel (a)-(c) comparison (see detailed computation in section 2.3). 
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 540 
Figure 12. Comparison of spCO2 anomalies during El Niño and La Niña events between SJTU-AViT and multiple data products. 
Panels (a) and (b) show the composite mean spCO2 anomalies during eight El Niño and seven La Niña events, respectively, as 
reconstructed by the SJTU-AViT product. Panels (c) and (d) display the corresponding composite mean anomalies from the 
ensemble mean of eight spCO2 data products. The eight El Niños and seven La Niñas are indicated in the supplement section S2 and 
S3. The spCO₂ anomalies are defined as residuals after removing both long-term trends and seasonal cycles. 545 

 

 
Figure 13. Comparison of meridional spCO2 between SJTU-AViT, SOCAT, and multiple data products during (a) El Niño and (b) 
La Niña events. The selected El Niño events are 1997–1998 and 2002–2003, while the La Niña events are 1995–1996 and 1998–1999. 
These events are selected due to the availability of several cruise datasets during these periods. The cruise data are distributed over 550 
240°E–280°E, which are shown in Fig. S8. The spCO2 in all data products is interpolated to match the SOCAT observation locations 
and times in the comparison.  

3.5 Evaluation of the Air-Sea CO2 Fluxes 

The air-sea CO2 flux based on SJTU-AViT spCO2 reproduces consistent known features with multiple data products (Gregor 

et al., 2019; Landschützer et al., 2016; Takahashi et al., 2009). Elevated FCO2 is observed along the equator, particularly in 555 

the eastern equatorial Pacific, associated with the upwelling of carbon-rich waters. In contrast, mid-to-high latitudes act as net 
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CO2 sinks (Fig. 14a). This substantial carbon sequestration is primarily driven by the enhanced solubility of CO2 in cold waters, 

deep water mixing, transport processes, and the biological carbon pump (Devries et al., 2017; Gregor et al., 2018; Sarmiento 

et al., 2004; Takahashi et al., 2009). While SJTU-AViT effectively reproduces the overall spatial patterns and mechanisms of 

air-sea CO2 flux, Figure 6 indicates that negative spCO2 biases remain in certain high-latitude regions. The negative bias, likely 560 

associated with underrepresented high-latitude processes such as seasonal sea-ice variability and freshwater inputs, can lead 

to an overestimation of global ocean CO2 uptake through the bulk equation and should be considered when interpreting the 

absolute flux magnitude. 

The time series of global air–sea CO2 flux (Fig. 14b) shows a strengthening oceanic carbon sink over the past four decades, 

from -1.40 Pg C yr-1 in the early 1980s to -2.60 Pg C yr-1 in the 2010s. Notably, the SJTU-AViT reconstruction is consistently 565 

maintained within the ±2 standard deviation envelope of existing multi-product ensemble estimates and exhibits strong 

agreement with other FCO2 products. Interannual and decadal variability are evident, such as a temporary weakening of the 

sink from the late 1990s to the early 21st century, reflecting the modulation of global carbon sink strength by external forcing 

and climate variability (Devries, 2022; Mckinley et al., 2020). In particular, the significant weakening of the carbon sink during 

the 1997–1998 strong El Niño event is effectively reproduced, without exhibiting the abrupt discontinuities or artificial jumps.  570 

 

 
Figure 14. Spatial and temporal characteristics of air-sea CO2 flux (FCO2, mol C m-2 yr-1); (a) Spatial distribution of the long-term 
annual mean FCO2; (b) Comparison of time series of yearly global integrated CO2 flux between SJTU-AViT and multiple data 
products. Colored lines represent individual products, with SJTU-AViT highlighted in bold. The shaded area indicates the ±2 575 
standard deviation range, centered on the ensemble mean. Negative = ocean uptake (sink), Positive = release to the atmosphere 
(source). 

3.6 Evaluation of the uncertainty of reconstructed spCO2 

The global uncertainty associated with the reconstructed spCO2 is estimated to evaluate the reliability of the data product. The 

estimated global mean uncertainty is 11.05 µatm, with the dominant contribution arising from the algorithm uncertainty 580 

(𝑢EFGHIJKLM), which reaches 7.39 µatm. This value was obtained through error propagation and reflects the cumulative impact 

of both systematic and random errors introduced throughout the reconstruction procedure. Given the conservative nature of 
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our uncertainty estimation, this magnitude is considered reasonable. Specifically, to ensure a conservative approach, the 

observational uncertainty (𝑢67#) for each SOCAT data point was uniformly set to 5 µatm, following established practices. The 

gridding process applied to SOCAT data (𝑢?:=@) resulted in an uncertainty of 6.34 µatm. The contribution from uncertainties 585 

in the input variables (𝑢=9$D2#) is comparatively minor, also estimated at 1.50 µatm. 

Regionally, the estimated uncertainties of reconstructed spCO2 exhibit moderate spatial variability across the major ocean 

basins. Among the five RECCAP2-defined open ocean regions, the Indian Ocean shows the lowest mean uncertainty at 8.62 

µatm, followed by the Pacific Ocean (10.10 µatm) and the Atlantic Ocean (10.28 µatm). Higher uncertainty levels are observed 

in the Southern Ocean (11.64 µatm) and the Arctic Ocean (12.45 µatm), consistent with sparser observational coverage, 590 

enhanced seasonal variability, and more complex air–sea interactions in these regions. These regional patterns suggest that 

while the global uncertainty level remains controlled, localized differences—particularly in high-latitude oceans—should be 

considered when interpreting the product in regional carbon budget assessments. 

4 Discussion 

In this study, we present a new reconstructed data product of spCO2 (SJTU-AViT) with improved interannual variability using 595 

the ViT-based deep learning model. The ViT-based deep learning model integrates the Vision Transformer (ViT) architecture 

with physics-informed constraints and assimilates outputs from advanced ocean biogeochemical models, including CMIP6 

models and ocean-driven biogeochemical model (MOM6-COBALT2). This integration enables a more precise extraction of 

the complex relationships between oceanic environmental variables and spCO2. The SJTU-AViT product effectively captures 

key spatiotemporal patterns and reconstructs improved interannual spCO2 variability. 600 

In addition, we evaluated the contributions of CMIP6 pre-training, MOM6 fine-tuning, SOCAT observations, and MOM6-

derived physical-biogeochemical constraints within the SJTU-AViT framework. CMIP6 pre-training substantially improved 

model initialization and skill, reducing validation RMSE by ~56.57% versus random initialization by supplying large-scale 

structure and low-frequency variability. MOM6 fine-tuning further stabilized the model—especially in observation-sparse 

regions—lowering RMSE by ~39.36% and enforcing physically plausible relationships. Including SOCAT during fine-tuning 605 

was critical for local and regional accuracy, reducing RMSE by ~72.31% through high-quality pointwise constraints. 

Sensitivity tests indicate the reconstruction is largely robust to the specific choice of CMIP6 pre-training subsets, provided 

multiple models are used to capture diverse large-scale patterns. Finally, adding MOM6-derived physical constraints improved 

overall performance (MAE from 7.15 to 5.95 µatm) and reduced seasonal RMSE by 1.36-8.49%, with the largest gains in 

high-latitude and data-sparse regions. Collectively, these results confirm that CMIP6 pre-training followed by MOM6- and 610 

SOCAT-constrained fine-tuning with physically informed constraints yields a robust, reliable, and physically consistent 

reconstruction of spCO2 across spatial and temporal scales. 

Despite the strong performance of SJTU-AViT, several challenges remain. A key issue is to understand and reconcile the 

discrepancy among different reconstruction products, particularly when considering the influence of specific climate modes 
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such as the Indian Ocean Dipole (IOD). As illustrated in Fig. 15, during positive IOD events, nine distinct spCO2 data products 615 

exhibit divergent composite anomaly patterns across the Indian Ocean (see IOD definition in supplement section S2). The 

SJTU-AViT results indicate an increase in spCO2 in the western Indian Ocean basin and a decrease in the eastern basin (Valsala 

et al., 2020). The other data products present divergent or even opposite spatial patterns, raising fundamental questions about 

which data product most accurately reflects reality in the data-limited region. The scarcity of in situ observations in the Indian 

Ocean exacerbates the difficulty in determining the most reliable spCO2 distribution (Valsala et al., 2021). These uncertainties 620 

underscore the urgent need to enhance observational efforts, particularly in regions where data products exhibit significant 

divergence (Rödenbeck et al., 2015). Future work should focus on expanding observation networks and leveraging autonomous 

platforms such as biogeochemical Argo floats (Claustre et al., 2020; Williams et al., 2017) to provide crucial validation data. 

Decadal variability presents more significant challenges, with larger biases that require increased attention. Current 

reconstruction methods primarily capture these climate modes (e.g., Pacific Decadal Oscillation, PDO) implicitly and do not 625 

explicitly incorporate relevant indices in the machine learning model training. While increasing observational coverage is 

essential, it may not quickly resolve the issues related to decadal variability. A more effective solution may lie in improving 

the reconstruction methods themselves, particularly through the integration of physics-informed approaches. For instance, 

implementing physical-biogeochemical constraints, such as incorporating spCO2 sensitivity to SST, SSS, DIC, and Alk, can 

significantly improve model performance, reducing the mean absolute error from 7.15 µatm to 5.95 µatm. Future research 630 

should focus more on exploring physics-informed machine learning approaches that integrate climate indices as explicit inputs 

to enhance model interpretability and predictive capability (Reichstein et al., 2019; Willard et al., 2020). 

While ViT-based models effectively learn spatial patterns from observational data, they remain susceptible to inherent biases 

in training data (Dosovitskiy et al., 2020). Systematic biases in SOCAT observations or oceanic variables (e.g., temperature 

and salinity) may propagate through the reconstruction process, impacting regional carbon cycle estimates (Takahashi et al., 635 

2009). To address this, uncertainty quantification techniques such as Bayesian deep learning or ensemble learning could be 

incorporated to assess confidence intervals in reconstructed spCO2 and improve anomaly detection capabilities (Gal and 

Ghahramani, 2016; Lakshminarayanan et al., 2016). It should be noted that the climatological MLD used in this study cannot 

capture interannual or monthly variability, which may slightly underestimate local or short-term impacts on spCO2. 

Nevertheless, it provides adequate physical constraints for reconstructing long-term and large-scale spatiotemporal patterns. 640 

Future work will explore incorporating high-quality time-varying MLD data as it becomes available to improve model fidelity 

at regional and seasonal scales.  

Furthermore, existing spCO2 reconstruction approaches predominantly rely on physical environmental variables while 

largely neglecting biological processes. In high-productivity regions such as the North Atlantic, Southern Ocean, and Arctic 

Ocean, biological processes play a crucial role in regulating CO2 exchange, with phytoplankton photosynthesis significantly 645 

lowering spCO2 (Bates and Mathis, 2009; Boyce et al., 2010; Takahashi et al., 2009). However, Chl-a only partially represents 

biological influences and is subject to considerable uncertainties in high-latitude regions, particularly in ice-covered areas 

(Arrigo et al., 2008). To better account for biological processes, future efforts should incorporate additional biogeochemical 
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variables such as net community production (NCP) (Arrigo and Dijken, 2011; Behrenfeld et al., 2006) and phytoplankton 

community structure, alongside bio-optical remote sensing techniques, to enhance reconstruction accuracy and the physical 650 

coherence of carbon cycle interpretations. 

The generalization capability of machine learning models is contingent on the completeness and representativeness of 

training data, leading to substantial uncertainties in data-sparse regions (Gloege et al., 2021). This is particularly evident in 

high-latitude oceans, where spCO2 is modulated by sea ice cover, biological carbon pumps, and deep-water upwelling—

processes that cannot be fully inferred from surface environmental variables alone (Mongwe et al., 2018). Since current models 655 

primarily rely on surface observations, their ability to capture vertical carbon transport and subsurface processes remains 

limited. Future studies should integrate three-dimensional ocean state variables (e.g., dissolved inorganic carbon and alkalinity) 

(Fennel et al., 2023; Wang et al., 2024; Zhou and Zhang, 2023) and incorporate physical conservation constraints (e.g., mass 

balance and chemical equilibrium) to enhance the physical robustness of machine learning models (Leal et al., 2020; Wang 

and Gupta, 2024). Additionally, applying data assimilation techniques or coupling machine learning with physics-based 660 

biogeochemical models could further improve reconstruction accuracy (Arcucci et al., 2021; Brajard et al., 2021; Chen et al., 

2023). 

In summary, high-resolution spCO2 reconstruction is critical for understanding global ocean carbon sink variability. While 

the ViT-based approach offers an innovative solution, key challenges remain regarding dataset discrepancies, climate 

variability impacts, data uncertainties, and the omission of physical and biological processes. Existing reconstruction data 665 

product must be interpreted with caution when assessing regional carbon fluxes. As ocean acidification and climate change 

continue to alter marine carbon dynamics, improving our ability to reconstruct historical spCO2 trends is essential for predicting 

the future ocean carbon uptake. Advancing spCO2 reconstruction toward higher accuracy and reliability will require multi-

source data integration, explainable machine learning, and robust uncertainty quantification techniques. Furthermore, this 

study highlights the critical synergy between observational programs and machine learning-based modeling approaches in 670 

achieving more precise global carbon assessments. 
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Figure 15. Spatial patterns of spCO2 anomalies during positive IOD in the Indian Ocean between SJTU-AViT and multiple data 
products. The spCO2 anomaly is the composite mean of eight positive IOD events (detailed IOD events are shown in the supplement 675 
section S2 and S3). For each IOD event, the anomalies are averaged over the months of September, October, and November.  

5 Data availability 

The reconstructed spCO2 and FCO2 datasets are publicly available as a NetCDF file at 

https://doi.org/10.5281/zenodo.15331978 (Zhang et al., 2025) and will be updated regularly. The input datasets used for the 

reconstruction are also publicly accessible. The SST and SIC datasets were obtained from the NOAA OISST product 680 

(https://www.ncei.noaa.gov/products/optimum-interpolation-sst). Chl-a data were derived from the ESA CCI Ocean Colour 

project (https://climate.esa.int/en/projects/ocean-colour/). xCO2 data were sourced from the ESRL MBL CO2 product 

(https://gml.noaa.gov/ccgg/mbl/data.php). Wind speed and sea level pressure data were retrieved from the ERA5 reanalysis 

provided by the Medium-Range Weather Forecasts (ECMWF) (https://doi.org/10.24381/cds.f17050d7). 

https://doi.org/10.5281/zenodo.15331978
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6 Conclusions 685 

This study presents a novel global data product of spCO2 reconstructed by a ViT-based deep learning model at a 1° spatial 

resolution for the period 1982–2023. By integrating multi-source observational data, biogeochemical ocean model results, and 

physics-informed constraints, the reconstructed data product demonstrates strong accuracy and spatial coherence across diverse 

oceanic regions, with a particular improvement in capturing interannual variability.  

The model performs robustly during both the training and independent validation phases, with high accuracy (R2 = 0.86 in 690 

training, R2 = 0.82 in validation) and low bias (RMSE of 16.70 µatm in training). The implementation of physical-

biogeochemical constraints can significantly improve model performance, reducing the mean absolute error from 7.15 µatm 

to 5.95 µatm. The reconstructed data product shows strong agreement with SOCAT observations and accurately reproduces 

long-term climatological and annual mean spCO2, with a low global mean bias of -0.21 µatm, a low mean absolute error of 

5.95 µatm, and a high correlation coefficient (R = 0.94). However, biases were found in coastal and high-latitude oceans, 695 

suggesting the need for further refinement in these areas. 

The evaluation of seasonality reveals that the SJTU-AViT model effectively captures both seasonal patterns and amplitudes 

across global ocean basins, particularly in regions with stable conditions, such as subtropical gyres. On the time scale longer 

than one year, the model demonstrated its ability to capture higher interannual spCO2 variability, particularly during El Niño 

and La Niña events, with high spatial and temporal coherence. The higher performance is likely due to the incorporation of 700 

CMIP6 model and advanced ocean biogeochemical model results during the ViT-based model training process. This approach 

allows the model to capture more accurate spCO2 variability in these data-sparse regions. Additionally, it captures the global 

ocean carbon sink’s long-term strengthening, consistent with rising atmospheric CO2. However, uncertainties remain in high-

latitude regions due to challenges in resolving complex oceanic processes. Despite this, the model’s output aligns with the 

uncertainty ranges of existing datasets, demonstrating its reliability for global CO2 exchange assessments. 705 

This study highlights machine learning’s potential in spCO2 reconstruction, while identifying key challenges, such as input 

data limitations and model interpretability. Future work should extend this approach to higher spatial and temporal resolutions, 

integrate more biogeochemical parameters, and couple the model with ocean-atmosphere models for improved long-term 

projections. Additionally, enhancing model interpretability will be crucial for understanding the drivers of spCO2 variability. 

The approach shows promise for reconstructing other carbonate system parameters, contributing to a more comprehensive 710 

global ocean carbon data product. This will support climate change research, carbon neutrality policies, and global carbon 

management efforts. 
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