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Response to Referee #1

General comments:

This manuscript introduces a novel machine learning framework (SJTU-AViT) for
reconstructing global sea surface pCO2 at 1°×1° monthly resolution over the period
1982–2023. By incorporating physical–biogeochemical constraints as derived features,
the approach enhances the quality of ocean carbon data reconstruction. The evaluation
is comprehensive, covering mean states, seasonal cycles, and interannual variability,
and shows strong skill in reproducing ENSO-related signals. This study makes a
substantial contribution by providing a valuable new ocean carbon data product for
the ocean carbon community and a useful machine learning framework in the field of
ocean data reconstruction. The subject is highly relevant to the scope of Earth System
Science Data. However, I have several general and specific comments and
suggestions that should be addressed before the manuscript can be considered for
publication.
We sincerely thank the reviewer for the constructive and insightful comments, which
have greatly improved the quality and clarity of our manuscript. The reviewer’s main
concerns focused on the independence of training and validation data and its impact
on the robustness of our results. To address these concerns, we supplemented analyses
using independent datasets, confirming the robustness of the assessed interannual
variability. We also clarified and expanded methodological details, data processing,
training settings, and figures/tables to enhance transparency and reproducibility.
Specifically, we have made the following revisions:
 Clarify the train/test split strategy with added spatiotemporal distribution maps,

and validate model generalization against independent long-term stations (major
comment #1, #5, minor comments #7).

 Address concerns on model–validation dependence by recalculating
detrended/deseasoned STD using MPI-SOM-FFN trends and seasonal cycles,
confirming robust spatial patterns beyond data dependence (major comment #2).

 Enhance methodological clarity by adding a process flowchart, specifying
SOCAT gridded comparison and interpolation procedures, and clarifying variable
standardization (major comment #3, #6, minor comments #1).

 Clarify input coverage by filling pre-1997 and 2023 gaps in Chl-a with
climatology, using climatological MLD as input data with noted limitations,
detailing xCO2 (MBL) mapping (major comment #7, #8, minor comments #5).

 Implement minor edits and clarifications to enhance precision and consistency
throughout the text, as detailed in the point-by-point response (major comment #4,
minor comments #1-17).

Please see the detailed response below.

Major comments:

1. The Methods section (Model training & testing) should more clearly describe how
the data were split into training and testing sets, along with the sample size
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distribution. This information is essential for evaluating the model’s generalization
ability. The authors should specify whether the split was random, temporal, or spatial
(e.g., by cruise lines or fixed stations). They should also report the number or
proportion of samples in each subset, ideally stratified by time (e.g., decades) and/or
region. Such details would improve transparency and reproducibility.
We have clarified the data partitioning procedure in the section 2.3 and have included
additional analyses to support transparency and robustness of the evaluation.
Specifically, SOCAT samples were randomly split into training and test subsets,

with 80% (277,528 samples) allocated for model training and 20% (69,142 samples)
reserved as an independent test set. All random operations were conducted using a
fixed seed (seed = 42) to ensure full reproducibility. The detailed split procedure and
exact sample counts are now explicitly documented in the revised text (new Fig. 2 and
lines 208-209), now as “The SOCAT dataset was randomly divided into 80%
(277,528 samples) for training and 20% (69,142 samples) for validation, using a fixed
random seed (seed = 42) to ensure reproducibility.”.
The test procedure is included in the new reconstruction workflow (Fig. 2) and

described in section S5 of the supplement (see explanation in our response to
comment 3), and Figure S1 has also been revised to clearly illustrate the temporal and
spatial distributions of the training and test sets. In addition, we additionally evaluated
its performance against nine independent long-term observation stations that are not
included in the SOCAT dataset. These stations provide continuous time series and
serve as an independent benchmark. The results indicate that the model reliably
captures both temporal variability and long-term trends, providing strong evidence of
its generalization capability beyond the original training data.
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Figure R1. (Figure S1 in supplement section S4). Data availability for spCO2

reconstruction. (a) Spatial distribution of the number of all spCO2 data points. (b)
Annual data count of all spCO2 data points over the period from 1982 to 2023. (c)
Spatial distribution of the number of spCO2 data points used for training. (d) Annual
data count used for training over the period from 1982 to 2023. (e) Spatial distribution
of the number of spCO2 data points used for validation. (f) Annual data count used for
validation over the period from 1982 to 2023.

2. The manuscript fills gaps in SOCAT observations using long-term trends and
seasonal cycles from SJTU-AViT, followed by residual analysis to assess interannual
variability. This procedure raises concerns about the lack of independence between
the model and the validation data, since part of the evaluation relies on model-derived
estimates. The authors should clarify and quantify the impact of this approach. For
instance, they could limit the analysis to grid points or stations with continuous
records, or apply long-term trends and seasonal cycles from an independent product to
compare robustness. Demonstrating consistent results across methods would enhance
the credibility of the conclusions.
To address the concern regarding the potential lack of independence between the
model and the validation data, we conducted an additional analysis using an
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independent reconstructed data product from MPI-SOM-FFN (Landschützer et al.
2016). This validation results were provided in the supplement material (section S5.8).
Specifically, when calculating the detrended and deseasonalized SOCAT STD, we
applied the long-term trends and seasonal cycles derived from the MPI-SOM-FFN
data product instead of the SJTU-AViT estimates. The results, shown in the Fig. R2,
demonstrate that the overall spatial distribution of SOCAT STD remains highly
consistent, with only minimal deviations (1.68 µatm). This indicates that the small
deviations observed between SJTU-AViT and SOCAT are not artifacts of model-data
dependence. Therefore, the analysis confirms the robustness of our methodology and
supports the credibility of the interannual variability assessment.
.

Figure R2. (Figure S15 in supplement section S5). Comparison of spCO2 standard
deviations on timescales longer than one year between SJTU-AViT, SOCAT, and
MPI-SOM-FFN data product. (a) Standard deviation of spCO2 from the SJTU-AViT
at SOCAT observation grid points. (b) Standard deviation of spCO2 from SOCAT
data (the long-term trends and seasonal cycles derived from the SJTU-AViT). (c)
Standard deviation bias between SJTU-AViT and SOCAT (panel a minus panel b). (d)
Standard deviation of spCO2 from the SJTU-AViT at SOCAT observation grid points.
(e) Standard deviation of spCO2 from SOCAT data (the long-term trends and seasonal
cycles derived from the MPI-SOM-FFN). (f) Standard deviation bias between
SJTU-AViT and SOCAT (panel d minus panel e).

3. To help readers better understand the implementation of the spCO2 data
reconstruction, I recommend adding a schematic figure in the main text that illustrates
the reconstruction process based on the ViT model. Such a figure would improve both
the readability of the manuscript and the clarity of the methodology.
We have added a schematic framework figure (Fig. 2) in the section 2.2, along with
detailed description in the main text (lines 186-188) and supplement (section S5.1,
lines 128-140), to illustrate the spCO2 reconstruction workflow based on the ViT
framework.
The summary description is presented in the main text (lines 186-188) as “The
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overall workflow of this multi-stage training strategy is summarized in Fig. 2, which
also provides a schematic overview of the spCO2 reconstruction workflow based on
the ViT framework. The figure clearly visualizes the main steps, from data
preprocessing through model training to evaluation (see detailed description in
section S5.1).”.
The detailed description is presented in the supplement (section S5, lines 128-140)

as “The spCO2 reconstruction workflow based on the ViT framework is organized into
four main stages—Data Processing, Model Architecture, Training & Validation, and
Evaluation & Analysis—as illustrated in Fig. 2 (in main text). At the top, the data
processing panel shows the input sources (CMIP6, MOM6, SOCAT) and the
preprocessing steps: temporal harmonization to a monthly cadence, spatial
regridding to a 1°×1° grid, and feature normalization. These boxes indicate that all
inputs are brought to a common spatio-temporal grid and scale before being passed
to the model. The model architecture panel depicts how physical variables are
converted into model inputs: variable tokenization, variable aggregation, and then fed
into a Transformer backbone that learns spatial and temporal dependencies. The
model output block illustrates that the network predicts monthly spCO2 on the same
1° grid. The training & validation panel summarizes our multi-stage training strategy:
(i) pretraining on CMIP6-derived fields, (ii) fine-tuning using MOM6 plus 80% of
SOCAT, and (iii) evaluation using a withheld 20% SOCAT validation split and
independent tests at long-term station sites. Finally, the evaluation & analysis panel
shows the main evaluation products derived from the reconstruction: model
performance metrics, climatology, seasonal cycle, interannual variability, and
downstream analyses (air-sea CO2 flux calculation and uncertainty analysis).”.
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Figure R3. (Figure 2 in main text). Workflow of the spCO2 reconstruction using the
ViT-based framework. The workflow consists of four major stages: (a) Data
processing, where CMIP6, MOM6, and SOCAT inputs are temporally harmonized,
spatially interpolated, and normalized; (b) Model architecture, where variables are
tokenized, aggregated into spatio-temporal embeddings, and processed by a
Transformer backbone to predict monthly spCO2; (c) Training and validation,
involving CMIP6 pretraining, MOM6 and SOCAT fine-tuning, and evaluation against
withheld SOCAT data and long-term stations; and (d) Evaluation and analysis, where
model performance metrics, climatology, seasonal cycles, and interannual variability
are assessed, leading to downstream analyses such as air-sea CO2 flux estimation and
uncertainty analysis (see detailed description in supplement section S5.1).

4. It is recommended that the authors include skill distribution tables in the
supplement, stratified by ocean basin and latitude band. These tables should report,
for each group, the sample size (N), R², RMSE, MAE, and MBE. Such quantitative
evidence would support the statement that “biases are larger at high latitudes” and
clearly demonstrate regional and latitudinal variations in model performance.
We have added skill distribution tables in the supplement (Table S4-S5), stratified by
ocean basin and latitude band. For each group, we report the sample size (N), R²,
RMSE, MAE, and MBE. These tables provide quantitative evidence supporting the
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statement that biases are larger at high latitudes and clearly illustrate the regional and
latitudinal variations in model performance, as followed.
Based on the statistics, the skill distribution reveals distinct regional and latitudinal

differences. Among ocean basins, the Pacific shows the best performance (N=159,783;
R²=0.94), while the Indian Ocean, despite its smaller sample size (N=6,354), also
exhibits strong skill (R²=0.95; RMSE=5.31). In contrast, the Atlantic performs
relatively weaker with a lower correlation and a slight negative bias (N=111,326;
R²=0.81). The Arctic (N=10,316; RMSE=8.80) and Southern Ocean (N=48,636;
RMSE=8.20) show notably larger errors and systematic negative biases, indicating a
tendency of underestimation in polar regions. When stratified by latitude bands, errors
are markedly larger at high latitudes, particularly in 60°S-90°S (N=16,602; R²=0.86)
and 60°N-90°N (N=30,802; R²=0.92). By comparison, the tropics and subtropics
exhibit smaller errors, such as 0–30°S (N=35,804; R²=0.97). The 0-30°N band shows
moderate error levels (RMSE=6.13) but a lower correlation (R²=0.72), likely
reflecting observational variance and sample characteristics. Overall, these
quantitative results directly support our conclusion that biases are more pronounced at
high latitudes. As discussed in the main text, this pattern can be attributed to the
complexity of seasonal amplitudes and boundary processes (e.g., sea-ice cover and
mixed layer variability), the limited representativeness and accuracy of forcing fields
and input data in polar regions, and uneven observational coverage, all of which can
amplify errors and biases.

Table R1 (Table S4 in supplement section S3). Skill metrics of the reconstructed
spCO2 by ocean basin.

Ocean basin N R2 RMSE MAE MBE
Pacific ocean 159783 0.94 6.79 5.29 0.30
Atlantic ocean 111326 0.81 7.10 5.31 -0.31
Indian ocean 6354 0.95 5.31 4.75 -0.08
Arctic ocean 10316 0.90 8.80 7.58 -0.24
Southern ocean 48636 0.88 8.20 6.76 -0.55

Table R2 (Table S5 in supplement section S3). Skill metrics of the reconstructed
spCO2 by latitude band.

latitude band N R2 RMSE MAE MBE
60°N-90°N 30802 0.92 9.23 7.58 -0.56
30°N-60°N 123357 0.91 9.13 6.40 0.07
0-30°N 96608 0.72 6.13 4.74 0.04
0-30°S 35804 0.97 5.70 4.96 -0.07

30°S-60°S 43497 0.90 6.13 5.29 -0.20
60°S-90°S 16602 0.86 11.80 9.29 -1.03

5. Regarding the independent test sites, it is recommended to provide a clear
description in the main text along with detailed information. In the appendix, the nine
observation stations used for independent testing should be listed, including their
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names, geographic locations, observation periods, and the number of samples at each
site. Since the BAT site does not have direct pCO2 observations, please clarify the
method used to calculate its monthly mean pCO2 and specify the data sources for all
sites.
(1) In the revised manuscript, we have added an appendix table and provided a clearer
description of the independent test sites (section 2.3 (lines 215-220), and Table S3).
We explicitly detail the nine long-term observation stations used for independent
testing, including their names, geographic locations, observation periods, number of
samples, and data sources. To facilitate visual interpretation, we have also included a
map (supplement Fig. S2) showing the locations of the stations.
Lines 215-220 now reads as “For the independent test at long-term stations,

reconstructed values were extracted at the corresponding station locations using
bilinear spatial interpolation, which incorporates information from surrounding grid
cells to provide smoother and more representative estimates, and skill metrics were
subsequently computed to evaluate model performance. Detailed information for
these stations, including their names, geographic locations, observation periods,
number of samples, and data sources, is provided in supplement Table S3, and their
locations are shown in supplement Fig. S2 to facilitate visual interpretation.”.
(2) For the BAT station, which does not have direct pCO2 observations, the monthly
mean pCO2 was calculated using the Python version of CO2SYS (PyCO2SYS;
Humphreys et al., 2022). In the calculation, we used the carbonate dissociation
constants from Waters and Millero (2013) (k1k2 = 15), the KSO4 constant from
Dickson (1990) (kso4 = 1), the HF dissociation constant from Perez and Fraga (1987)
(hf = 2), and the total pH scale (pHscale = 1). pCO2 was then estimated from
measurements of dissolved inorganic carbon (DIC) and total alkalinity (ALK),
together with sea surface temperature (SST), sea surface salinity (SSS), silicate, and
phosphate concentrations. Monthly means were obtained by averaging all available
estimates within each month. This approach ensures a consistent and physically based
estimation of pCO2 at the BAT site.

Table R3 (Table S3 in supplement section S3). List of selected independent test
stations with long-term observations.
Station Coordinates Time range Number of

samples

URL

BAT 31.67°N, 295.83°E 10/1991-6/2022 324 https://bios.asu.edu/bats

HOT 22.75°N, 202°E 10/1988-12/2023 325 https://hahana.soest.hawaii.edu/hot/hotco2

ESTOC 29.07°N, 344.17°E 10/1995-11/2009 115 https://www.ncei.noaa.gov/access/ocean-car

bon-acidification-data-system/oceans/Coasta

l/ESTOC.html

CCE1 33.50°N, 237.50°E 11/2008-12/2023 144 https://www.ncei.noaa.gov/access/ocean-car

bon-acidification-data-system/oceans/Moori

ngs/Pacific.html

TAO -0.51°N, 189.98°E 2/2010-8/2016 45 https://www.ncei.noaa.gov/access/ocean-car

bon-acidification-data-system/oceans/Moori
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ngs/Pacific.html

BOBOA 15°N, 90°E 11/2013-11/2018 53 https://www.ncei.noaa.gov/access/ocean-car

bon-acidification-data-system/oceans/Moori

ngs/Indian.html

Papa 50.13°N, 215.17°E 6/2007-4/2023 168 https://www.pmel.noaa.gov/co2/story/Papa

Iceland 68°N, 347.40°E 2/1985-11/2021 158 https://www.ncei.noaa.gov/access/ocean-car

bon-acidification-data-system/oceans/Moori

ngs/Atlantic.html

Irminger 64.30°N, 332°E 3/1983-11/2012 99 https://www.ncei.noaa.gov/access/ocean-car

bon-acidification-data-system/oceans/Moori

ngs/Atlantic.html

6. The manuscript states that SJTU-AViT outputs were interpolated to the
spatiotemporal locations of SOCAT for comparison, but it does not specify the
interpolation method used (e.g., bilinear, nearest neighbor, or other), nor whether any
temporal or spatial smoothing was applied. The authors should provide these details.
For example, “When comparing with SOCAT, model values were interpolated to
observation locations using bilinear interpolation in space and linear interpolation in
time.”
The Surface Ocean CO2 Atlas (SOCAT) provides two forms of data: synthesis files
and gridded (binned) products. The gridded SOCAT product is generated by
interpolating individual observations onto a regular grid with a spatial resolution of 1°
× 1° and a monthly temporal resolution. Only SOCAT observations with quality
control (QC) flags of A–D and WOCE flags of 2 are included in this product. The
arithmetic mean is first calculated for each cruise passing through a given grid cell,
and these cruise-level means are then averaged to obtain the final gridded value. The
resulting product provides fields with valid values in grid cells and months where
observations are available, while grid cells without observational coverage are
assigned NaN values.
We used the gridded SOCAT product, which share the same longitude and latitude

grid as SJTU-AViT data. Therefore, there is no need for additional spatial or temporal
interpolation. To account for gaps in the SOCAT data (NaNs), we mask the
corresponding reconstructed values at the same grid–time points before computing
any statistics. This ensures that all comparisons are performed only where SOCAT
provides valid data. For the independent test at long-term stations, we use bilinear
spatial interpolation to extract the reconstructed values at the corresponding station
locations. This approach allows us to account for the surrounding grid cell
information rather than relying solely on the nearest neighbor, thereby providing a
smoother and more representative estimate of spCO2 at the station sites.
To make this clearer, we have revised the section 2.3 (lines 212-220) to explicitly

state our comparison procedure. The added text reads :
“For comparison with SOCAT, we used the monthly 1° gridded SOCAT product

and evaluated our SJTU-AViT reconstruction on the same grid, without applying any
additional spatial interpolation. Reconstructed values were masked where SOCAT is
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missing, and all skill metrics were computed only at grid-time points with valid
SOCAT data. For the independent test at long-term stations, reconstructed values
were extracted at the corresponding station locations using bilinear spatial
interpolation, which incorporates information from surrounding grid cells to provide
smoother and more representative estimates, and skill metrics were subsequently
computed to evaluate model performance. Detailed information for these stations,
including their names, geographic locations, observation periods, number of samples,
and data sources, is provided in supplement Table S3, and their locations are shown
in supplement Fig. S2 to facilitate visual interpretation.” .

7. The temporal coverage of Chl-a spans 1997–2022, whereas the product extends
from 1982 to 2023. It is recommended to clarify how the periods prior to 1997 and for
2023 were handled (e.g., climatology, interpolation, gap-filling, or inference from
other variables) to avoid any misunderstanding that the time spans are fully
consistent.
The temporal coverage of the Chl-a dataset spans 1997-2022. For periods prior to
1997 and for 2023, we applied a climatology derived from the 1997-2022 record. We
recognize that the use of a climatological mean does not capture interannual
variability and may introduce a slight bias into the reconstruction. However, this
effect is expected to be minor, while inferring Chl-a from other variables or
extrapolating beyond the observational record could introduce substantially larger
uncertainties. The use of a climatology therefore represents a pragmatic balance
between competing sources of uncertainty, ensuring a stable and physically
reasonable baseline. A similar approach has been adopted in other surface ocean
pCO2 reconstruction efforts, including Landschützer et al. (2016) and Gregor et al.,
(2021).
We have clarified this methodological choice in the revised manuscript (section 2.1,

lines 115-118) to avoid any misunderstanding regarding the temporal consistency of
the input variables, now as “Chl-a data were derived from the European Space
Agency Climate Change Initiative (ESA CCI) Ocean Colour (version 5.0) dataset,
spanning 1997 to 2022 with daily resolution and a spatial resolution of 4 km (Jackson
et al., 2017). For periods prior to 1997 and for 2023, we employed a climatology
computed from the 1997-2022 Chl-a record to ensure full temporal coverage.”.

8. The manuscript employs a 2° monthly climatological MLD (WOCE). It is
recommended to explain why a climatological mean was used instead of
incorporating interannual and monthly variability, as this choice may affect the
representation of temporal dynamics.
One of the most widely used and high-quality MLD dataset is the 2° global
climatological MLD product by de Boyer et al. (2004), based on global observed
temperature and salinity profiles. It accurately represents the climatological mean and
provides robust physical constraints for long-term, large-scale spCO2 reconstruction.
During 1982-2023, high-resolution, continuous interannual MLD data are lacking
globally. We acknowledge that climatological MLD does not capture interannual
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variability, which may slightly underestimate spCO2 interannual variability. However,
introducing time-varying MLD from numerical ocean models could potentially
introduce additional uncertainties, potentially larger than the bias introduced by using
a climatology. Consequently, the use of a climatological MLD represents a pragmatic
balance between different sources of uncertainty, ensuring a stable and reliable
baseline for identifying large-scale, long-term patterns. A similar choice has been
adopted in other ocean pCO2 reconstruction, including Landschützer et al., (2016) and
Gregor et al., (2021).
This limitation has been explicitly stated in the revised manuscript (section 4, lines

638-642), now as “It should be noted that the climatological MLD used in this study
cannot capture interannual or monthly variability, which may slightly underestimate
local or short-term impacts on spCO2. Nevertheless, it provides adequate physical
constraints for reconstructing long-term and large-scale spatiotemporal patterns.
Future work will explore incorporating high-quality time-varying MLD data as it
becomes available to improve model fidelity at regional and seasonal scales.”.

Minor comments:

1. Please clarify whether the input data were standardized during the model training
process, and specify the method used (e.g., variable-wise mean–variance
normalization, min–max scaling, or other approaches).
During the model training process, the input data were standardized using
variable-wise mean–variance normalization. Detailed descriptions of this procedure
have been added in section 2.2 (lines 153-154) of the manuscript, now as “These
input variables are standardized using variable-wise mean-variance normalization
and formatted into a multi-channel input to ensure feature extraction occurs on a
unified scale.”.

2. Please clearly indicate the flux sign convention in the caption of Figure 13, for
example: “Negative = ocean uptake (sink), Positive = release to the atmosphere
(source).” Ensure that this convention is consistent with the main text, equations, and
color bar.
Done as suggested. We have updated the figure caption (now is Fig. 14) to clearly
indicate the flux sign convention (lines 576-577): “Negative = ocean uptake (sink),
Positive = release to the atmosphere (source).” In addition, we have thoroughly
checked the main text, relevant equations, and color bar to ensure that this convention
is applied consistently throughout the manuscript.

3. In supplement Figure S6, the legend is labeled as “spCO2” which should be
“spCO2”. Please ensure consistency of the symbol and formatting throughout the
manuscript (e.g., uniformly using the subscript form “spCO2” instead of “spCO2”)
and apply the same convention across all figures, captions, and text. In addition,
please indicate the appropriate units (e.g., μatm) where relevant to avoid confusion.
Done as suggested. We have corrected the legend in supplement Figure S6 from
“spCO2” to “spCO2”, as followed. In addition, we have carefully reviewed the entire
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manuscript to ensure that the subscript formatting for “CO2” is used consistently
across all figures, captions, and text. We have also added the appropriate units (e.g.,
μatm) where relevant to avoid any potential confusion.

Figure R4. (Figure S6 in supplement section S4). Spatial distribution of standard
deviation in interannual time scale of reconstructed spCO2 at multiple data products
from 1985 to 2018. All the panels show the standard deviation of residuals after
removing long-term trends and seasonal cycles. The color scale represents the
magnitude of variability in spCO2, with higher values (red) indicating greater
variability.

4. Line 113 — abbreviation usage: The term “Sea surface salinity (SSS)” repeats a
definition already given earlier. Please use the abbreviation SSS here. A full-text
check is recommended to correct similar inconsistencies.
Done as suggested. At the revised text (now is line 114), we have replaced “Sea
surface salinity (SSS)” with the abbreviation SSS to avoid redundant definitions. In
addition, we conducted a comprehensive review of similar cases throughout the
manuscript to ensure that abbreviations are fully defined upon first appearance and
consistently used thereafter.

5. Regarding xCO2 (MBL), please clarify how the meridional band product was
mapped onto the 1° × 1° grid (e.g., through band replication, interpolation, or another
approach). Providing this detail would improve the transparency of the data
processing procedure.
In our study, the meridional band xCO2 (MBL) product, which is provided at discrete
latitude bands, was mapped onto the 1° × 1° global grid using a two-step procedure:
(1) Latitudinal Interpolation: For each time step, the original xCO2 values at

discrete latitude bands were interpolated to the model’s target latitudes using
one-dimensional linear interpolation along the meridional direction (implemented
with MATLAB’s interp1 function). This ensures a smooth transition of xCO2 values
between the original latitude bands.
(2) Longitudinal Replication: Because the original xCO2 product does not contain

longitudinal variations, the interpolated latitudinal profile was replicated along all
longitudes to produce a complete 2D global field at 1° × 1° resolution. This approach
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preserves the meridional gradient while assuming longitudinal uniformity, consistent
with the original dataset.
This mapping procedure was applied to all time steps from 1982 to 2023. These

details have now been explicitly added to the section 2.1 (lines 122-124) to improve
the transparency and reproducibility of the data processing, now as “In this study, the
meridional band product was mapped onto the model’s 1° × 1° global grid using
latitudinal interpolation and longitudinal replication, generating continuous 2D fields
suitable for model simulations.”

6. In the Methods section, please specify the training setup, including the maximum
number of epochs and/or the early stopping patience (e.g., “trained for up to 200
epochs with early stopping, patience = 20”), to improve the reproducibility of the
approach.
In our study, the ViT-based model was trained for a maximum of 200 epochs with
early stopping applied, using a patience of 10 epochs. This means that training would
terminate if the validation loss did not improve for 10 consecutive epochs. Each
training epoch required roughly 10 minutes. These details have now been explicitly
added to section 2.2 (lines 176-178) to improve the clarity and reproducibility of our
approach, now as “The ViT-based model contains approximately 115 million
parameters and was trained in parallel on eight NVIDIA RTX 4090 GPUs for up to
200 epochs with early stopping (patience = 10); each training epoch required
roughly 10 minutes.”

7. It is recommended to indicate the sample size for each data point or category in
Figure 3, allowing readers to more clearly understand the data coverage and the
reliability of the statistics.
Following the comment, we have indicated the sample size for each data station in
revised figure (now is Fig. 4). The addition is shown in the figure below.
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Figure R5. (Figure 4 in main text). Independent test of spCO2 variability between
SJTU-AViT and in situ observations at different stations. These in situ data are
independent data and are not used to train the model. The station description and
location refer to supplement section S2 and Fig. S2. The spCO2 in SJTU-AViT is
interpolated to match the station locations and times in the comparison. For each
panel, the number of samples (N), the mean bias error (MBE), root mean square error
(RMSE), and correlation coefficient (R2) between the reconstructed and observed
spCO2 are displayed. The dashed and solid lines show the linear trend of SJTU-AViT
and in situ data.

8. It is recommended to review the entire manuscript and ensure that all instances of
“CO2” use a subscript for the number 2, maintaining consistency and adhering to
scientific writing conventions.
Done as suggested. We have carefully reviewed the entire manuscript and ensured
that all instances of “CO2” now use a subscript for the number 2, maintaining
consistency throughout the text and adhering to standard scientific writing
conventions.

9. Line 31: In the abstract, change “This study not only provide…” to “This study not
only provides…”. It is recommended to review the entire manuscript for program
errors.
Done as suggested. We have corrected the sentence in the abstract (now is line 32) to
“This study not only provides…”. In addition, we have carefully reviewed the entire
manuscript to identify and correct similar grammatical errors, ensuring the accuracy
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and readability of the text.

10. Line 31: In the abstract, change “Earth system” to “Earth-system” when used as a
compound adjective for clarity
Done as suggested. We have revised the abstract (now is line 34) to change “Earth
system” to “Earth-system” when used as a compound adjective.

11. Line 170: It is recommended to revise the sentence to: “The ViT-based model
contains approximately 115 million parameters and was trained in parallel on eight
NVIDIA RTX 4090 GPUs; each training epoch required roughly 10 minutes.”
Done as suggested. Incorporating the suggestion from minor comment 6, we have
revised the sentence (now is lines 176-178) to: “The ViT-based model contains
approximately 115 million parameters and was trained in parallel on eight NVIDIA
RTX 4090 GPUs for up to 200 epochs with early stopping (patience = 10); each
training epoch required roughly 10 minutes.”

12. Line 260: It is recommended to revise the sentence to: “Most predicted values lie
close to the 1:1 line, particularly within the climatologically common spCO2 range
(300–420 µatm), as indicated by the high-density regions in Fig. 2.”
Done as suggested. We have revised the sentence (now is lines 287-289) to: “Most
predicted values lie close to the 1:1 line, particularly within the climatologically
common spCO2 range (300-420 µatm), as indicated by the high-density regions in Fig.
3.”

13. Line 312: Ensure there is a space before “µatm,” e.g., “-12 µatm to +10 µatm.”
Done as suggested. We have corrected the formatting issue by adding a space before
“µatm” (e.g., “-12 µatm to +10 µatm”) in the revised text (now is line 340). We have
also carefully checked the entire manuscript to ensure consistent formatting of units
throughout.

14. It is recommended to standardize the number of decimal places throughout the
manuscript (e.g., consistently using two or three decimal places).
We have carefully checked all numerical values reported in the manuscript and
standardized the format to retain two decimal places throughout. We note, however,
that for prescribed data such as Niño 3.4 and the scaling factor (set as 0.251), no
modification was made.

15. For the air–sea flux calculation, the parameterization of Wanninkhof (2014)
requires the Schmidt number, wind speed source, and resolution (you used ERA5). It
is recommended to specify in section 2.4 the temporal and spatial resolution of ERA5
and the formula or reference used for computing the Schmidt number.
Done as suggested. In our study, the air-sea CO2 flux was calculated using the
parameterization of Wanninkhof (2014). The wind speed data were sourced from the
ERA5 reanalysis, with a 6-hourly temporal resolution covering 1982-2023 and a
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horizontal spatial resolution of 1°.
The gas transfer velocity of CO2 (kw) is computed using a quadratic dependence on

wind speed:

�� = 0.251 ∙ (푆�/660)
−12 ∙ �2

where u is the wind speed at 10 m above the sea surface, and Sc is the Schmidt
number of CO2 in seawater. The Schmidt number is calculated from the
temperature-dependent empirical formula:

푆� = 2116.8 − 136.25 ∙ � + 4.7353 ∙ �2 − 0.092307 ∙ �3 + 0.0007555 ∙ �4

where T is the sea surface temperature in °C. This formulation accounts for the effect
of sea surface temperature on CO2 diffusivity in seawater.
These details, including the information on ERA5 data and the reference used for

computing the Schmidt number, have been added to section 2.4 (lines 257-259) of the
manuscript. They are now described as: “The Schmidt number (Sc) required in this
formulation is calculated following the temperature-dependent empirical formula
provided by Wanninkhof (2014). The wind speed data is sourced from ERA5, with a
6-hourly temporal resolution spanning 1982-2023 and a 1° spatial resolution.”

16. Table 1: It is recommended to change “12 month” to “12-month.”
Done as suggested. This correction has been applied in Table 1 and carefully
reviewed throughout the manuscript to ensure consistency.

17. In the Abstract, it is stated that the model shows a correlation of 0.81 with the
Niño 3.4 index, whereas section 3.4 reports a correlation of –0.81. This inconsistency
in the sign of the correlation may confuse readers. Please verify the original
calculation and ensure that the values and their signs are reported consistently
throughout the manuscript.
Done as suggested. The value reported in the Abstract (0.81) was a typo and the
correct correlation coefficient is -0.81. This has been corrected in the revised
manuscript (Abstract, line 29).

References not in manuscript:

Dickson, A. G.: Standard potential of the reaction: , and the standard acidity constant
of the ion HSO in synthetic sea water from 273.15 to 318.15 K, J. Chem.
Thermodyn., 22, 113-127, https://doi.org/10.1016/0021-9614(90)90074-Z, 1990.

Humphreys, M. P., Lewis, E. R., Sharp, J. D., and Pierrot, D.: PyCO2SYS v1.8:
marine carbonate system calculations in Python, Geosci. Model Dev., 15, 15-43,
https://doi.org/10.5194/gmd-15-15-2022, 2022.

Waters, J. F. and Millero, F. J.: The free proton concentration scale for seawater pH,
Mar. Chem., 149, 8-22, https://doi.org/10.1016/j.marchem.2012.11.003, 2013.

Perez, F. F. and Fraga, F.: Association constant of fluoride and hydrogen ions in
seawater, Mar. Chem., 21, 161-168,
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Response to Referee #2

General comments:

Zhang et al. present a global monthly surface ocean pCO2 dataset (SJTU-AViT) and
corresponding air-sea CO2 fluxes spanning 1982-2023 at 1° resolution, developed
using a Vision Transformer-based deep learning model. The approach combines
SOCAT observation, and observations of climate data with multiple ocean
biogeochemical models and incorporates physical-biogeochemical constraints. The
authors show that their product successfully captures the spatial and temporal
variations of observed pCO2 patterns, from seasonal cycles to interannual variability.
The product shows more realistic small-scale spatial variability and temporal
interannual variability than previous pCO2 products. The resolved air-sea CO2 fluxes
agree with other estimates based on pCO2 observations. The paper is well written, the
methodology is robust, and the line of thought is mostly clear to me. I only have
minor comments regarding some of the technical details and presentation.
We thank the reviewer for the helpful and constructive feedback. We have revised the
manuscript to address all of these comments. Overall, the reviewer’s main concerns
focused on the transparency and robustness of the model training strategy, the
contribution of physical-biogeochemical constraints, the adequacy of uncertainty
estimation method, and several issues related to data processing and presentation. In
response to these concerns, we have made the following revisions.
 Clarify and validate the two-stage training framework, and quantify the

contributions of its components. We elaborated the physical motivations for
CMIP6 pre-training, MOM6 constraints, and SOCAT fine-tuning, and added
ablation experiments to demonstrate their respective roles in improving
convergence, generalization, and accuracy (major comment #1).

 Revise the uncertainty estimation framework. We replaced the
observation-dependent umapwith an algorithm-based uncertainty estimate (ualgorithm)
derived from synthetic sampling experiments, and integrated the complete
workflow and quantitative results into the Methods and Results sections (major
comment #2).

 Enhance diagnostic analyses and visualization. We improved the calculation of
seasonal variability by applying linear detrending prior to analysis, and added
seasonal-phase diagnostics and peak–minimum month difference maps (minor
comments #7, #9).

 Revise minor edits and clarifications (minor comments #1-11).
Please see our detailed point-by-point responses to each comment below.

Major comments:

1. The description of methodology is overall complete. However, certain technical
details are still missing. It is not clear how pre-training on CMIP6 models contributes
to the final model. It is not clear what the fine-tuning of MOM6 really does. Are your
results sensitive to the choice of CMIP6 models and the fine-tuning? How do SOCAT
data fold into your refinement? For the physical-biogeochemical constraints, are you
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only using what is derived from MOM6, or also from CMIP6 models as well? How
are your results, particularly on the seasonal cycle, impacted by these
physical-biogeochemical constraints? In other words, if you exclude these constraints,
how is the representation of the seasonal pCO2 cycle affected?
We thank the reviewer for raising this comprehensive question. We have structured
our response into six corresponding parts for clarity. The revisions include 5 ablation
experiments, with summary findings presented in the main text (section 4, lines
601-612) and full experimental details reported in the supplement (section S5.2-S5.6).

(1) How pre-training on CMIP6 models contributes to the final model?
To quantitatively assess the impact of CMIP6-based pretraining on the reconstruction,
we conducted two controlled experiments that were identical in all settings except for
the use of CMIP6 pretraining.
(a) Test 1 (with CMIP6 pretraining): The model was first pretrained on CMIP6

simulation outputs, allowing it to learn from CMIP6 model results. It was then jointly
fine-tuned using MOM6 and SOCAT observational data.
(b) Test 2 (without CMIP6 pretraining): Under the same conditions, the model

relied solely on MOM6 and SOCAT data.
The ablation experiments reveal a substantial impact of CMIP6 pretraining on the

results. When pretrained on CMIP6 (Test 1), the model achieved an RMSE of 7.44
µatm on the validation set. Without CMIP6 pretraining (Test 2), RMSE increased to
17.13 µatm. Thus, CMIP6 pretraining reduced RMSE by 9.69 µatm, corresponding to
a relative decrease of approximately 56.57%. The spatial map (Fig. R1) indicates that
the largest improvements occur in regions with sparse observations (particularly at
high latitudes) and areas with pronounced low-frequency or interannual variability.
CMIP6 pretraining provides the model with a physically meaningful initialization.

By learning from temporally and spatially complete simulation fields, the model can
first capture large-scale spatial patterns and low-frequency signals, enabling faster
convergence during fine-tuning, reducing overfitting in observation-sparse regions,
and achieving better generalization at interannual scales. Although CMIP6
simulations may contain biases, these are effectively corrected during the subsequent
fine-tuning with MOM6 and SOCAT, ensuring the final reconstruction remains
consistent with observations. The substantial RMSE improvement (a reduction of 9.69
µatm, ~56.57%) demonstrates that this two-stage training strategy achieves an
optimal balance between physical consistency and empirical accuracy.
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Figure R1 (Figure S9 in supplement section S5). Impact of CMIP6 pre-training on
reconstructed spCO2 fields. (a) Test 1 (with CMIP6 pretraining): CMIP6 pre-training
followed by MOM6 & SOCAT fine-tuning; (b) Test 2 (without CMIP6 pretraining):
no CMIP6 pre-training, trained only on MOM6 & SOCAT. Inclusion of CMIP6
pre-training reduces validation RMSE by 9.69 µatm (~56.57% relative reduction),
justifying the two-stage training strategy.

(2) What the fine-tuning of MOM6 really does?
To assess the role of MOM6 fine-tuning in our reconstruction framework, we
designed two comparative experiments while keeping all other model settings
identical:
(a) Test 1 (with MOM6 in fine-tuning): The model was first pretrained on CMIP6

outputs and then fine-tuned using both MOM6 simulation outputs and SOCAT
observations. MOM6 provides continuous, physically consistent global fields, while
SOCAT supplies essential observational constraints.
(b) Test 2 (without MOM6 in fine-tuning): The model was pretrained on CMIP6

data as in Test 1 but fine-tuned solely with SOCAT observations, without
incorporating MOM6 outputs.
The fine-tuning strategy that included MOM6 data (Test 1) achieved a validation

RMSE of 7.44 µatm. In contrast, excluding MOM6 during fine-tuning (Test 2)
resulted in a substantially higher RMSE of 12.27 µatm. Thus, incorporating MOM6
during fine-tuning reduced RMSE by 4.83 µatm, corresponding to a relative decrease
of approximately 39.36%. The spatial map (Fig. R2) indicates that the largest
improvements occur in regions with sparse observations, particularly at high latitudes,
and in areas with pronounced low-frequency or interannual spCO2 variability,
highlighting the crucial role of MOM6 in enhancing reconstruction accuracy.
In our framework, MOM6 outputs are incorporated alongside SOCAT observations

during the fine-tuning stage. SOCAT provides the essential observational constraint,
but its spatial and temporal coverage is sparse and uneven. MOM6 complements this
by supplying continuous global fields that embed large-scale physical consistency,
thereby stabilizing the training process and enhancing generalization, particularly in
data-poor regions. Mechanistically, MOM6 fine-tuning serves three key functions: (i)
it exposes the network to continuous, globally coherent background fields (e.g.,
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large-scale gradients, seasonal cycles, and interannual variability), thereby reducing
overfitting to the sparse and uneven SOCAT distribution; (ii) it aligns model weights
with physically plausible oceanographic relationships, mitigating the direct transfer of
structural biases from heterogeneous CMIP6 pre-training and avoiding abrupt or
unrealistic weight corrections during SOCAT anchoring; (iii) it supplies realistic
background variability, enabling the model to learn coherent patterns prior to
adjustment with pointwise observations, which strengthens generalization in
data-limited regions. In summary, MOM6 fine-tuning functions as a physically
consistent bridge between synthetic CMIP6 pre-training and sparse SOCAT
observations, significantly improving the stability, robustness, and reliability of the
reconstruction, especially in regions with limited observational coverage.

Figure R2 (Figure S10 in supplement section S5). Impact of MOM6 fine-tuning on
reconstructed spCO2 fields. (a) Test 1 (with MOM6 in fine-tuning): CMIP6
pre-training followed by MOM6 & SOCAT fine-tuning; (b) Test 2 (without MOM6 in
fine-tuning): CMIP6 pre-training, fine-tuning only on SOCAT. Inclusion of MOM6
fine-tuning reduces validation RMSE by 4.83 µatm (~39.36% relative reduction),
highlighting the crucial role of MOM6 in enhancing reconstruction accuracy.

(3) Are your results sensitive to the choice of CMIP6 models and the fine-tuning?
To assess the sensitivity of our reconstruction to the choice of CMIP6 models and the
fine-tuning strategy, we conducted two comparative pre-training experiments while
keeping all other model settings identical:
(a) Test 1 (3-model CMIP6 pre-training): The model was pre-trained on a subset of

three CMIP6 simulations (GFDL-ESM4, NorESM2-LM, NorESM2-MM) and then
fine-tuned with the same MOM6 and SOCAT data.
(b) Test 2 (4-model CMIP6 pre-training): The model was pre-trained on a different

subset of four CMIP6 simulations (CESM2, CESM2-FV2, CESM2-WACCM,
CESM2-WACCM-FV2) and fine-tuned using the same MOM6 and SOCAT data.
The ViT reconstruction using the 3-model subset (Test 1) achieved a validation

RMSE of 10.48 µatm, while the 4-model subset (Test 2) yielded a slightly lower
RMSE of 9.54 µatm. Both are higher than the RMSE obtained using all seven CMIP6
models (7.44 µatm), indicating that the total amount of pre-training data can influence
reconstruction performance. Nevertheless, the difference between the two subsets is
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small (RMSE difference of 0.94 µatm, ~8.97%), and deviations from the 7-model
pre-training result are modest (~2-3 µatm).
Overall, these results indicate that, as long as multiple CMIP6 models are included

to capture diverse large-scale oceanic patterns, the reconstruction is largely robust to
the specific choice of pre-training models. The two-stage training framework
effectively stabilizes reconstruction performance, corrects model-specific biases, and
reliably integrates observational information. To further strengthen robustness,
CMIP6 models were carefully selected based on the evaluation framework of Liao et
al. (2021), ensuring that the chosen models accurately represent key oceanic carbon
dynamics. Through multi-model pre-training combined with carefully designed
fine-tuning strategies, our approach maintains stable and reliable reconstruction
performance, effectively capturing large-scale patterns, low-frequency variability, and
regional details across different spatial and temporal scales.

The reconstruction results are robust to reasonable systematic changes in key
fine-tuning hyperparameters (such as learning rate, batch size, patch size, and
Transformer block number) though extreme changes (e.g., reducing Transformer
blocks from 10 to 5) can substantially affect performance. Fine-tuning data are crucial:
MOM6 provides physically consistent global fields to stabilize training and enhance
generalization (see response 1.2), while SOCAT observations correct local and
regional biases (see response 1.4), together ensuring stable, reliable, and physically
coherent spCO2 reconstructions across both well-observed and data-sparse regions.

Figure R3 (Figure S11 in supplement section S5). The sensitivity of reconstructed
spCO2 fields to the choice of CMIP6 models. (a) Test 1 (3-model CMIP6 pre-training):
three CMIP6 simulations (GFDL-ESM4, NorESM2-LM, NorESM2-MM)
pre-training followed by MOM6 & SOCAT fine-tuning; (b) Test 2 (4-model CMIP6
pre-training): four CMIP6 simulations (CESM2, CESM2-FV2, CESM2-WACCM,
CESM2-WACCM-FV2) pre-training followed by MOM6 & SOCAT fine-tuning.

(4) How do SOCAT data fold into your refinement?
To evaluate the role of SOCAT observations in the fine-tuning stage, we designed two
comparative experiments while keeping all other model settings identical:
(a) Test 1 (with SOCAT in fine-tuning): The model, pretrained on CMIP6 and

optionally fine-tuned with MOM6 fields, was further fine-tuned using SOCAT in situ
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pCO2 observations. SOCAT provides high-quality pointwise constraints that correct
model biases and ensure alignment with real-world ocean conditions.
(b) Test 2 (without SOCAT in fine-tuning): The same pretrained model was

fine-tuned without using SOCAT data, relying solely on MOM6 fields for spatial
coverage and physical consistency.
Incorporating SOCAT observations during fine-tuning (Test 1) yielded a validation

RMSE of 7.44 µatm. In contrast, excluding SOCAT (Test 2) resulted in a
dramatically higher RMSE of 26.87 µatm. Thus, the inclusion of SOCAT reduced
RMSE by 19.43 µatm, corresponding to a relative decrease of approximately 72.31%.
This large improvement demonstrates the critical role of SOCAT observations in
aligning the reconstructed spCO2 field with real-world measurements.
SOCAT data act as a supervisory signal that corrects local and regional biases in

the model, ensuring the fine-tuned reconstruction reproduces observed variability
while retaining large-scale spatiotemporal patterns learned during CMIP6 pretraining
and MOM6 fine-tuning. Without SOCAT, the model cannot accurately capture local
pCO2 variations, leading to substantial errors. Proper integration of SOCAT with
MOM6 fields balances the influence of sparse observational points and physically
consistent background patterns, enhancing overall predictive skill, particularly in
regions with limited observations.

Figure R4 (Figure S12 in supplement section S5). Impact of SOCAT observations on
the fine-tuning of the reconstructed spCO2 field. (a) Test 1 (with SOCAT in
fine-tuning): CMIP6 pre-training followed by MOM6 & SOCAT fine-tuning; (b) Test
2 (without SOCAT in fine-tuning): CMIP6 pre-training, fine-tuning only on MOM6.
Inclusion of SOCAT observations reduces validation RMSE by 19.43 µatm (~72.31%
relative reduction), demonstrating the pivotal role of SOCAT in achieving accurate
spCO2 reconstruction.

(5) For the physical-biogeochemical constraints, are you only using what is derived
from MOM6, or also from CMIP6 models as well?
In our study, the physical-biogeochemical constraints incorporated in the ViT model
are derived exclusively from MOM6 simulations. MOM6 provides high-resolution,
rigorously validated ocean-driven fields that more accurately represent conditions
relevant to the surface carbon system (Stock et al., 2020; Liao et al., 2020).
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Evaluations such as those by Liao et al. (2021) indicate that CMIP6 model outputs
contain relatively large biases in space and time, which could reduce the reliability of
any constraints derived directly from CMIP6. Therefore, MOM6 is used as the sole
source for physical-biogeochemical constraints to ensure accuracy, consistency, and
physical realism in the model refinement stage. In addition, we have conducted
comparison experiments in the manuscript between models trained with and without
these constraints, demonstrating that incorporating MOM6-derived information
significantly improves predictive skill in data-sparse regions and high-latitude oceans.

(6) How are your results, particularly on the seasonal cycle, impacted by these
physical-biogeochemical constraints? In other words, if you exclude these constraints,
how is the representation of the seasonal pCO2 cycle affected?
To assess the impact of MOM6-derived physical-biogeochemical constraints on the
seasonal cycle of spCO2, we conducted two comparative experiments while keeping
all other model settings identical:
(a) Test 1 (with physical-biogeochemical constraints): The SJTU-AViT model

reconstruction incorporated MOM6-derived constraints during training, enforcing
physically and biogeochemically plausible relationships among environmental
variables.
(b) Test 2 (without physical-biogeochemical constraints): The SJTU-AViT

reconstruction excluded these constraints, allowing the model to rely solely on
observational and CMIP6-derived information.
The constraints systematically improve model performance across all seasons (Fig.

R5), as reflected in reduced RMSE values: MAM decreases from 11.66 to 11.35 µatm
(~2.66%), JJA from 12.31 to 11.93 µatm (~3.09%), SON from 13.67 to 12.51 µatm
(~8.49%), and DJF from 10.32 to 10.18 µatm (~1.36%). On average, the inclusion of
constraints reduces RMSE by ~3.90% across the four seasons.
These improvements are systematic and physically meaningful rather than random

fluctuations. The MOM6-derived constraints anchor the model to physically and
biogeochemically plausible relationships, enhancing the accuracy and robustness of
the seasonal spCO2 representation. The constraints are particularly effective in regions
with sparse observational coverage, where purely data-driven reconstructions may be
prone to larger errors. Overall, the results demonstrate that including
physical-biogeochemical constraints play a substantial and reliable role in improving
the seasonal cycle representation of spCO2, rather than merely introducing stochastic
or localized enhancements.
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Figure R5 (Figure S13 in supplement section S5). Seasonal comparison of
SJTU-AViT spCO2 means and RMSE with and without physical-biogeochemical
constraints. (a-d) Test 1 (with physical-biogeochemical constraints): seasonal mean
spCO2 from SJTU-AViT with physical-biogeochemical constraints for MAM
(March-May), JJA (June-August), SON (September-November), and DJF
(December-February). (e-h) Test 2 (without physical-biogeochemical constraints):
seasonal mean spCO2 from SJTU-AViT without constraints. (i-l) Test 1 (with
physical-biogeochemical constraints): seasonal RMSE of spCO2 between SJTU-AViT
and SOCAT with constraints. (m-p) Test 2 (without physical-biogeochemical
constraints): seasonal RMSE of spCO2 between SJTU-AViT and SOCAT without
constraints. For RMSE calculations, SJTU-AViT spCO2 was interpolated to SOCAT
observation locations and times.

The results are summarized in the main text (lines 601-612) as “In addition, we
evaluated the contributions of CMIP6 pre-training, MOM6 fine-tuning, SOCAT
observations, and MOM6-derived physical-biogeochemical constraints within the
SJTU-AViT framework. CMIP6 pre-training substantially improved model
initialization and skill, reducing validation RMSE by ~56.57% versus random
initialization by supplying large-scale structure and low-frequency variability. MOM6
fine-tuning further stabilized the model—especially in observation-sparse
regions—lowering RMSE by ~39.36% and enforcing physically plausible
relationships. Including SOCAT during fine-tuning was critical for local and regional
accuracy, reducing RMSE by ~72.31% through high-quality pointwise constraints.
Sensitivity tests indicate the reconstruction is largely robust to the specific choice of
CMIP6 pre-training subsets, provided multiple models are used to capture diverse
large-scale patterns. Finally, adding MOM6-derived physical constraints improved
overall performance (MAE from 7.15 to 5.95 µatm) and reduced seasonal RMSE by
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1.36-8.49%, with the largest gains in high-latitude and data-sparse regions.
Collectively, these results confirm that CMIP6 pre-training followed by MOM6- and
SOCAT-constrained fine-tuning with physically informed constraints yields a robust,
reliable, and physically consistent reconstruction of spCO2 across spatial and
temporal scales.”.

2. The uncertainty quantification might benefit from more detail. For umap, what if
there are no observations in one grid? How do you then quantify umap there? Have you
conducted an analysis on the spatial heterogeneity of the dominant source of
uncertainty? In addition, I think it would be more appropriate to replace umap with
"algorithm uncertainty." Perhaps this can be done by generating a large ensemble of
spCO2 Alternatively, this can be done by using synthetic data. You might consider
subsampling SOCAT data from one of your models and then applying the ML model
to subsampled model fields to generate an spCO2 map. Then you can compare the
absolute differences between pCO2 from the ocean model and the ML reconstruction.
We acknowledge that the traditional umap approach depends directly on observational
coverage and may underestimate uncertainty in regions with sparse or missing
SOCAT data. To address this limitation, we performed an additional experiment using
synthetic data to provide a more robust estimate of algorithm uncertainty. Specifically,
we used the RECCAP2 simulation from the Scott Doney group (hereafter SD data) as
an independent reference “truth,” which the ViT machine learning model had never
seen before. The SD data were divided into two subsets:
 SD_SOCAT: SD outputs sampled at the spatiotemporal locations of SOCAT

observations.
 SD_nonSOCAT: the remaining SD outputs.
Following our standard workflow (CMIP6 pretraining, MOM6 fine-tuning, and

SD_SOCAT fine-tuning), we reconstructed spCO2 and quantified three RMSE values:
(a) RMSE_SD_SOCAT = 5.58 µatm. This is bias at training locations, indicating

good consistency with data the model has seen.
(b) RMSE_SD_nonSOCAT = 7.40 µatm. This is bias at independent validation

points, demonstrating generalization to unseen data.
(c) RMSE_SD_all = 7.39 µatm. This is bias over the full SD dataset, reflecting the

model’s overall performance.
These results show that the training error is slightly lower, as expected, and the

validation and overall errors are nearly identical. This indicates that the ViT model
does not overfit and that its uncertainty estimates are robust across different spatial
domains. The close agreement also demonstrates that algorithm uncertainty captures
the spatial heterogeneity of errors, particularly in high-latitude or data-sparse regions
where umap cannot be defined.
Based on this analysis, we adopt the RMSE_SD_all = 7.39 µatm as a quantitative

measure of algorithm uncertainty (ualgorithm), and have updated the manuscript
accordingly in section 2.5 (lines 273-274) and section 3.6 (lines 580-581).
Specifically, it is now stated as: “ualgorithm is evaluated as the RMSE between the
reconstructed and reference ocean model spCO2 field.” (lines 273-274) and “with the
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dominant contribution arising from the algorithm uncertainty (ualgorithm), which
reaches 7.39 µatm.” (lines 580-581). The full experimental details have been reported
in the supplement (section S5.7).

Figure R6 (Figure S14 in supplement section S5). Spatial distribution of RMSE (µatm)
between the reconstructed spCO2 field and the Scott Doney RECCAP2 simulation
(SD data). (a) RMSE for the full SD dataset. (b) RMSE for the SD_SOCAT subset,
i.e., SD data sampled at SOCAT observation locations and used in training. (c) RMSE
for the SD_nonSOCAT subset, i.e., SD data at locations not sampled by SOCAT and
reserved for independent validation. The mean RMSE value for each panel is
indicated. The SD data is from Doney et al., (2009).

Minor comments:

1. L15-16: The statement that ocean surface partial pressure of spCO2 directly
determines the air-sea CO2 flux is not exactly correct. It is the air-sea pCO2 difference,
which is modulated by surface wind speed and gas exchange velocity.
We agree that the original description was not accurate and have revised the
corresponding sentence in the Abstract (lines 15-18) to read:“The ocean plays a
crucial role in regulating the global carbon cycle and mitigating climate change.
Spatial and temporal variations of ocean surface partial pressure of CO2 (spCO2)
influence the air-sea CO2 flux through the difference between surface ocean and
atmospheric pCO2 (ΔpCO2), which is further modulated by surface wind speed and
gas exchange velocity.”

2. Introduction: Perhaps it is also worth mentioning that previous ML-interpolation of
pCO2 overly smooths the spatial patterns and interannual variability.
We have revised the Introduction accordingly (lines 67-69): “Previous machine
learning (ML)-based interpolations of pCO2 may overly smooths the spatial patterns
and interannual variability, which represents a potential limitation in capturing these
features fully.”

3. L195: Is the interpolation based on inverse distance weighted average? How do
you deal with the fine-resolution time (i.e., not monthly average)?
A similar question was also raised by the other reviewer. To clarify, we directly used
the monthly 1° × 1° gridded product provided by the Surface Ocean CO2 Atlas
(SOCAT) for data construction. Therefore, no additional spatial interpolation was
applied, and the temporal resolution is already monthly. To handle missing values, we
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masked the corresponding reconstructed values at the same grid-time points before
computing statistics, ensuring that all comparisons are made only where SOCAT
provides valid data.
For independent validation at long-term stations, reconstructed values were

extracted at the station locations using bilinear interpolation from the surrounding grid
cells, rather than simply selecting the nearest grid cell. This approach yields smoother
and more representative spCO2 estimates. All datasets, including these station
comparisons, were consistently processed as monthly averages, with no further
temporal interpolation.
We have revised the section 2.3 (lines 212-220) accordingly. The new text

reads:“For comparison with SOCAT, we used the monthly 1° gridded SOCAT product
and evaluated our SJTU-AViT reconstruction on the same grid, without applying any
additional spatial interpolation. Reconstructed values were masked where SOCAT is
missing, and all skill metrics were computed only at grid-time points with valid
SOCAT data. For the independent test at long-term stations, reconstructed values
were extracted at the corresponding station locations using bilinear spatial
interpolation, which incorporates information from surrounding grid cells to provide
smoother and more representative estimates, and skill metrics were subsequently
computed to evaluate model performance. Detailed information for these stations,
including their names, geographic locations, observation periods, number of samples,
and data sources, is provided in supplement Table S3, and their locations are shown
in supplement Fig. S2 to facilitate visual interpretation.”.

4. Figure 3: Systematic biases are clear at Iceland and Irminger, with SJTU-AViT
underestimating the pCO2. Any clues why?
These high-latitude regions are strongly influenced by processes such as seasonal
sea-ice coverage and freshwater input from precipitation, which are not well captured
in our machine learning model due to the lack of corresponding observational
constraints. As a result, the model cannot fully resolve these pCO2 variabilities,
leading to the observed negative bias. This behavior is not unique to our product and
similar biases have been reported in other reconstruction products under complex
environmental conditions (e.g., Landschützer et al., 2016; Gregor et al., 2021). In
future work, we plan to incorporate additional predictors, such as non-climatological
mixed-layer depth (MLD), sea-ice coverage, precipitation, and chlorophyll, into the
machine learning framework to improve reconstruction accuracy in high-latitude
regions.
Modified sentence in the section 3.1 (lines 302-306): “At the Irminger Sea and

Iceland sites, the model exhibits large RMSE (35.24 and 21.82 µatm, respectively)
and low correlations, with R2 near zero. This suggests that the model has difficulty
capturing rapid spCO2 fluctuations or processes that are not well represented by the
available input features. This discrepancy is likely due to high-latitude processes such
as seasonal sea-ice variability and freshwater inputs, which are not fully represented
in the current observational constraints.”
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5. Figure 5: The negative bias would lead to an overestimation of global ocean CO2

uptake through the bulk equation. Might be worth mentioning when you talk about the
flux.
We have mentioned this potential bias in the updated manuscript in section 3.5.
Specifically, while SJTU-AViT effectively reproduces the overall spatial patterns and
mechanisms of air-sea CO2 flux, negative spCO2 biases remain in certain high-latitude
regions (now is Fig. 6). These biases probably result from underestimation of pCO2 in
areas affected by seasonal sea-ice variability, freshwater inputs, and other
high-latitude processes that are not fully captured by observational constraints.
The revised text now reads (section 3.5, lines 559-563): “While SJTU-AViT

effectively reproduces the overall spatial patterns and mechanisms of air-sea CO2 flux,
Figure 6 indicates that negative spCO2 biases remain in certain high-latitude regions.
The negative bias, likely associated with underrepresented high-latitude processes
such as seasonal sea-ice variability and freshwater inputs, can lead to an
overestimation of global ocean CO2 uptake through the bulk equation and should be
considered when interpreting the absolute flux magnitude.”.

6. Fig. 6b: Seems like the bias PDF is wider in certain years. Speculation?
It is noteworthy that the bias probability density function (PDF) exhibits interannual
variability and even decadal trends (now is Fig. 7b). In the early years (1980s to
mid-1990s), the bias distribution is relatively broad, reflecting larger uncertainties.
This is probably attributable to the sparse SOCAT coverage during that period.
Limited observational data constrained the model’s ability to resolve local and
temporal variations, leading to larger bias. Over time, as SOCAT coverage expanded,
reconstruction accuracy improved in most regions. The bias distribution became
narrower and more symmetric, with the PDF centered near zero, indicating reduced
systematic bias.
In recent years, however, the bias range appears to increase. This widening is likely

related to the extension of observational coverage into high-latitude, polar, and coastal
regions, where conditions are more variable and extreme. In addition, recent ocean
pCO2 changes have exhibited enhanced seasonal and interannual variability, which
the model may not fully capture, particularly under extreme or marginal conditions.
These interpretations remain tentative, and more detailed analyses—such as targeted
experiments and the incorporation of additional datasets—will be necessary to fully
disentangle these drivers. We view this as an important avenue for future work and
would welcome collaborations to further investigate these aspects.
This has been added to section 3.2 (lines 370-375) as “However, we note that the

absolute range of biases may increase in later years. This widening is likely due to a
combination of factors, including the expansion of observational coverage to regions
with more extreme or marginal conditions, which introduces a larger range of
reconstructed values, as well as the enhanced seasonal and interannual variability
that the model may not fully capture in some regions, leading to increased biases
under local or extreme conditions. Overall, the temporal evolution of the bias
distribution highlights both the influence of observational coverage and the



30

challenges in capturing high-frequency or extreme variations.”.

7. L369-372: The section title is on the seasonal cycle, but the first few sentences
focus on variability at all time scales. Might consider moving this to a later section.
Also, the trend should be removed beforehand in calculating STD in Fig. 7.
We carefully considered splitting this section into two parts (full variability and
seasonal variability). However, doing so would result in very little content for the full
variability part and lead to an imbalance between subsections. Therefore, in the
revised manuscript we chose to keep the two components together but revised the
section title to “3.3 Evaluation of full spCO2 variability and seasonal cycle” (line
399), which more accurately reflects the content.
In addition, as suggested, we removed the long-term trend prior to calculating the

standard deviation (STD) in the figure (now is Fig. 8 and Fig. S5). After detrending,
the STD values are slightly smaller than in the original calculation. But the relative
magnitudes among different regions remain unchanged, and the spatial patterns of
variability are still highly consistent with the observational data. Therefore, this
adjustment does not affect our main conclusion that the model captures the full
variability of spCO2 well across most regions.

Figure R7 (Figure 8 in main text). Comparison of spCO2 standard deviation from
1982-2023 between SJTU-AViT and SOCAT. (a) Standard deviation of spCO2 from
the SJTU-AViT reconstruction. (b) Standard deviation of spCO2 from SOCAT data.
(c) Standard deviation ratio, representing the ratio of SJTU-AViT to SOCAT standard
deviation (SJTU-AViT divided by SOCAT). (d) Standard deviation bias, showing the
difference between the SJTU-AViT and SOCAT standard deviations (SJTU-AViT
minus SOCAT). The standard deviation (STD) is quantified as the standard deviation
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of residuals after removing long-term trends. In the panels c and d, the SJTU-AViT
values are interpolated to match the spatial and temporal locations of SOCAT
observations (see detailed computation in section 2.3).

Figure R8 (Figure S5 in supplement section S4). Bias in the standard deviation of
spCO2 between SJTU-AViT and SOCAT at each season from 1982 to 2023. (a)
MAM (March-May), (b) JJA (June-August), (c) SON (September-November), and (d)
DJF (December-February). The standard deviation (STD) is quantified as the standard
deviation of residuals after removing long-term trends. The bias is calculated as the
difference between SJTU-AViT and SOCAT standard deviations at each season
(SJTU-AViT minus SOCAT). Positive values (red) indicate overestimation of
variability by SJTU-AViT, while negative values (blue) indicate underestimation.
These seasonal biases highlight the model's performance across different seasonal
periods and regions. The spCO2 in SJTU-AViT is interpolated to match the SOCAT
observation locations and times in the comparison (see detailed computation in
section 2.3).

8. L391-396: A presentation issue. The seasonal changes are, physically, attributed to
these factors you mentioned. This is based on our understanding of the ocean carbon
dynamics rather than being directly learned from ML output. The sentences read like
you confirm these dominant factors from your model output. Might consider making
it clear that these are not model results. Or, indeed, you could do factor contribution
analysis.
We agree that the physical attributions in the original text are based on established
oceanographic understanding rather than direct causal inferences from the ML outputs.
We have clarified the text in the revised manuscript (now is lines 422-427):
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“Furthermore, the model reasonably reproduces seasonal increases in spCO2 in the
North Pacific and North Atlantic (40°-60°N) during Northern Hemisphere winter and
early spring. This suggests that the model has likely captured underlying mechanisms,
such as the deepening of the winter mixed layer and the entrainment of DIC-rich
subsurface waters, which drive seasonal variations in surface ocean pCO2 (Keppler et
al., 2020). Conversely, a pronounced seasonal decrease in spCO2 is simulated in the
high-latitude Southern Ocean (south of 60°S) during the same period, indicating that
the model may also have learned the influence of cooling-driven solubility changes
and biological activity on ocean pCO2.”

9. Figure 9: I think what is missing here is to show whether the seasonal phases are
consistent compared to SOCAT.
To evaluate whether our reconstruction can accurately capture the seasonal phase
observed in SOCAT, we carried out additional analyses comparing the model results
with SOCAT climatologies (new supplement section S5.9; see lines 448-453 in the
revised manuscript). Specifically:
(a) Seasonal cycle comparison across ocean basins: We have evaluated the

seasonal cycle month-by-month for the global ocean and five major basins, separately
for the Northern and Southern Hemispheres. These comparisons demonstrate that the
model well reproduces the seasonal cycle of spCO2, with peak and minimum months
largely consistent with SOCAT observations (Figs. R9-R10).
(b) Phase bias evaluation: We produced global maps of the difference in ocean

pCO2 peak month and minimum month between SJTU-AViT and SOCAT (in months,
range ±6). Across most regions, the phase differences in both peak and minimum
months are within ±1 month, with only ~5% of grid points exceeding this threshold
(Fig. R11).
Together, these results indicate that the reconstruction reliably reproduces seasonal

phasing. The corresponding text has been added in the revised manuscript section 3.3
(lines 448-453): “To evaluate the accuracy of the SJTU-AViT in capturing the
seasonal phasing of spCO2, we compared it against SOCAT climatology (supplement
Figs. S16-S18). Climatological seasonal cycles were evaluated for the global ocean
and five major basins, separately for the Northern and Southern Hemispheres. The
SJTU-AViT closely reproduces the timing of seasonal maxima and minima in spCO2,
generally aligning with SOCAT observations. Global maps of phase differences show
that most regions deviate by less than ±1 month, with only ~5% of grid points
exceeding this range. These results demonstrate that the reconstruction data reliably
captures the observed seasonal phasing.”.
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Figure R9 (Figure S16 in supplement section S5). Monthly spCO2 regional time series
for the Northern Hemisphere across different ocean regions from 1982 to 2023. Each
panel shows the 12-month mean seasonal cycle for both the model (SJTU-AViT) and
SOCAT observations. Peak months are indicated to allow direct comparison of
seasonal phasing.

Figure R10 (Figure S17 in supplement section S5). Monthly spCO2 regional time
series for the Southern Hemisphere across different ocean regions from 1982 to 2023.
Each panel shows the 12-month mean seasonal cycle for both the model (SJTU-AViT)
and SOCAT observations. Peak months are indicated to allow direct comparison of
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seasonal phasing.

Figure R11 (Figure S18 in supplement section S5). Grid-scale maps of spCO2 peak-
and minimum-month differences (SJTU-AViT − SOCAT, in months, range ±6). For
the peak-month difference map, positive values indicate that SJTU-AViT peaks later
than SOCAT; for the minimum-month difference map, positive values indicate that
SJTU-AViT minimums later than SOCAT. Regions with insufficient observational
coverage are masked. These maps provide a spatial assessment of the model’s ability
to reproduce seasonal maxima and minima timing.

10. Figure 11: Linearly detrended spCO2?
Yes, all spCO2 data shown (now is Fig. 12) have been linearly detrended and
deseasonalized. This processing ensures that the composite mean anomalies clearly
highlight the typical spCO2 responses associated with El Niño and La Niña events.
We have updated the figure caption in the revised manuscript (lines 541-545), now as
“Figure 12. Comparison of spCO2 anomalies during El Niño and La Niña events
between SJTU-AViT and multiple data products. Panels (a) and (b) show the
composite mean spCO2 anomalies during eight El Niño and seven La Niña events,
respectively, as reconstructed by the SJTU-AViT product. Panels (c) and (d) display
the corresponding composite mean anomalies from the ensemble mean of eight spCO2

data products. The eight El Niños and seven La Niñas are indicated in the supplement
section S2 and S3. The spCO2 anomalies are defined as residuals after removing both
long-term trends and seasonal cycles.”.

11. L568-571: PDO-related SST patterns are used in your training; incorporating
other indices (e.g., directly using PDO) would be double counting?
Indeed, the PDO signal is already implicitly embedded in the SST fields used as
predictors, so directly adding the PDO index could raise concerns about double
counting. However, machine learning models are not always efficient at extracting
such low-frequency signals, particularly when the observational record is relatively
short. In these cases, providing strong or even redundant cues can facilitate the
machine learning model representation of decadal variability. In our additional
experiments with physical constraints, we found that explicitly highlighting such kind
of signals enabled the model to more effectively detect latent signals that are difficult
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to capture, thereby improving reconstruction accuracy.
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