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Response to Referee #2

General comments:

Zhang et al. present a global monthly surface ocean pCO2 dataset (SJTU-AViT) and
corresponding air-sea CO2 fluxes spanning 1982-2023 at 1° resolution, developed
using a Vision Transformer-based deep learning model. The approach combines
SOCAT observation, and observations of climate data with multiple ocean
biogeochemical models and incorporates physical-biogeochemical constraints. The
authors show that their product successfully captures the spatial and temporal
variations of observed pCO2 patterns, from seasonal cycles to interannual variability.
The product shows more realistic small-scale spatial variability and temporal
interannual variability than previous pCO2 products. The resolved air-sea CO2 fluxes
agree with other estimates based on pCO2 observations. The paper is well written, the
methodology is robust, and the line of thought is mostly clear to me. I only have
minor comments regarding some of the technical details and presentation.
We thank the reviewer for the helpful and constructive feedback. We have revised the
manuscript to address all of these comments. Overall, the reviewer’s main concerns
focused on the transparency and robustness of the model training strategy, the
contribution of physical-biogeochemical constraints, the adequacy of uncertainty
estimation method, and several issues related to data processing and presentation. In
response to these concerns, we have made the following revisions.
 Clarify and validate the two-stage training framework, and quantify the

contributions of its components. We elaborated the physical motivations for
CMIP6 pre-training, MOM6 constraints, and SOCAT fine-tuning, and added
ablation experiments to demonstrate their respective roles in improving
convergence, generalization, and accuracy (major comment #1).

 Revise the uncertainty estimation framework. We replaced the
observation-dependent umapwith an algorithm-based uncertainty estimate (ualgorithm)
derived from synthetic sampling experiments, and integrated the complete
workflow and quantitative results into the Methods and Results sections (major
comment #2).

 Enhance diagnostic analyses and visualization. We improved the calculation of
seasonal variability by applying linear detrending prior to analysis, and added
seasonal-phase diagnostics and peak–minimum month difference maps (minor
comments #7, #9).

 Revise minor edits and clarifications (minor comments #1-11).
Please see our detailed point-by-point responses to each comment below.

Major comments:

1. The description of methodology is overall complete. However, certain technical
details are still missing. It is not clear how pre-training on CMIP6 models contributes
to the final model. It is not clear what the fine-tuning of MOM6 really does. Are your
results sensitive to the choice of CMIP6 models and the fine-tuning? How do SOCAT
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data fold into your refinement? For the physical-biogeochemical constraints, are you
only using what is derived from MOM6, or also from CMIP6 models as well? How
are your results, particularly on the seasonal cycle, impacted by these
physical-biogeochemical constraints? In other words, if you exclude these constraints,
how is the representation of the seasonal pCO2 cycle affected?
We thank the reviewer for raising this comprehensive question. We have structured
our response into six corresponding parts for clarity. The revisions include 5 ablation
experiments, with summary findings presented in the main text (section 4, lines
601-612) and full experimental details reported in the supplement (section S5.2-S5.6).

(1) How pre-training on CMIP6 models contributes to the final model?
To quantitatively assess the impact of CMIP6-based pretraining on the reconstruction,
we conducted two controlled experiments that were identical in all settings except for
the use of CMIP6 pretraining.
(a) Test 1 (with CMIP6 pretraining): The model was first pretrained on CMIP6

simulation outputs, allowing it to learn from CMIP6 model results. It was then jointly
fine-tuned using MOM6 and SOCAT observational data.
(b) Test 2 (without CMIP6 pretraining): Under the same conditions, the model

relied solely on MOM6 and SOCAT data.
The ablation experiments reveal a substantial impact of CMIP6 pretraining on the

results. When pretrained on CMIP6 (Test 1), the model achieved an RMSE of 7.44
µatm on the validation set. Without CMIP6 pretraining (Test 2), RMSE increased to
17.13 µatm. Thus, CMIP6 pretraining reduced RMSE by 9.69 µatm, corresponding to
a relative decrease of approximately 56.57%. The spatial map (Fig. R1) indicates that
the largest improvements occur in regions with sparse observations (particularly at
high latitudes) and areas with pronounced low-frequency or interannual variability.
CMIP6 pretraining provides the model with a physically meaningful initialization.

By learning from temporally and spatially complete simulation fields, the model can
first capture large-scale spatial patterns and low-frequency signals, enabling faster
convergence during fine-tuning, reducing overfitting in observation-sparse regions,
and achieving better generalization at interannual scales. Although CMIP6
simulations may contain biases, these are effectively corrected during the subsequent
fine-tuning with MOM6 and SOCAT, ensuring the final reconstruction remains
consistent with observations. The substantial RMSE improvement (a reduction of 9.69
µatm, ~56.57%) demonstrates that this two-stage training strategy achieves an
optimal balance between physical consistency and empirical accuracy.
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Figure R1 (Figure S9 in supplement section S5). Impact of CMIP6 pre-training on
reconstructed spCO2 fields. (a) Test 1 (with CMIP6 pretraining): CMIP6 pre-training
followed by MOM6 & SOCAT fine-tuning; (b) Test 2 (without CMIP6 pretraining):
no CMIP6 pre-training, trained only on MOM6 & SOCAT. Inclusion of CMIP6
pre-training reduces validation RMSE by 9.69 µatm (~56.57% relative reduction),
justifying the two-stage training strategy.

(2) What the fine-tuning of MOM6 really does?
To assess the role of MOM6 fine-tuning in our reconstruction framework, we
designed two comparative experiments while keeping all other model settings
identical:
(a) Test 1 (with MOM6 in fine-tuning): The model was first pretrained on CMIP6

outputs and then fine-tuned using both MOM6 simulation outputs and SOCAT
observations. MOM6 provides continuous, physically consistent global fields, while
SOCAT supplies essential observational constraints.
(b) Test 2 (without MOM6 in fine-tuning): The model was pretrained on CMIP6

data as in Test 1 but fine-tuned solely with SOCAT observations, without
incorporating MOM6 outputs.
The fine-tuning strategy that included MOM6 data (Test 1) achieved a validation

RMSE of 7.44 µatm. In contrast, excluding MOM6 during fine-tuning (Test 2)
resulted in a substantially higher RMSE of 12.27 µatm. Thus, incorporating MOM6
during fine-tuning reduced RMSE by 4.83 µatm, corresponding to a relative decrease
of approximately 39.36%. The spatial map (Fig. R2) indicates that the largest
improvements occur in regions with sparse observations, particularly at high latitudes,
and in areas with pronounced low-frequency or interannual spCO2 variability,
highlighting the crucial role of MOM6 in enhancing reconstruction accuracy.
In our framework, MOM6 outputs are incorporated alongside SOCAT observations

during the fine-tuning stage. SOCAT provides the essential observational constraint,
but its spatial and temporal coverage is sparse and uneven. MOM6 complements this
by supplying continuous global fields that embed large-scale physical consistency,
thereby stabilizing the training process and enhancing generalization, particularly in
data-poor regions. Mechanistically, MOM6 fine-tuning serves three key functions: (i)
it exposes the network to continuous, globally coherent background fields (e.g.,
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large-scale gradients, seasonal cycles, and interannual variability), thereby reducing
overfitting to the sparse and uneven SOCAT distribution; (ii) it aligns model weights
with physically plausible oceanographic relationships, mitigating the direct transfer of
structural biases from heterogeneous CMIP6 pre-training and avoiding abrupt or
unrealistic weight corrections during SOCAT anchoring; (iii) it supplies realistic
background variability, enabling the model to learn coherent patterns prior to
adjustment with pointwise observations, which strengthens generalization in
data-limited regions. In summary, MOM6 fine-tuning functions as a physically
consistent bridge between synthetic CMIP6 pre-training and sparse SOCAT
observations, significantly improving the stability, robustness, and reliability of the
reconstruction, especially in regions with limited observational coverage.

Figure R2 (Figure S10 in supplement section S5). Impact of MOM6 fine-tuning on
reconstructed spCO2 fields. (a) Test 1 (with MOM6 in fine-tuning): CMIP6
pre-training followed by MOM6 & SOCAT fine-tuning; (b) Test 2 (without MOM6 in
fine-tuning): CMIP6 pre-training, fine-tuning only on SOCAT. Inclusion of MOM6
fine-tuning reduces validation RMSE by 4.83 µatm (~39.36% relative reduction),
highlighting the crucial role of MOM6 in enhancing reconstruction accuracy.

(3) Are your results sensitive to the choice of CMIP6 models and the fine-tuning?
To assess the sensitivity of our reconstruction to the choice of CMIP6 models and the
fine-tuning strategy, we conducted two comparative pre-training experiments while
keeping all other model settings identical:
(a) Test 1 (3-model CMIP6 pre-training): The model was pre-trained on a subset of

three CMIP6 simulations (GFDL-ESM4, NorESM2-LM, NorESM2-MM) and then
fine-tuned with the same MOM6 and SOCAT data.
(b) Test 2 (4-model CMIP6 pre-training): The model was pre-trained on a different

subset of four CMIP6 simulations (CESM2, CESM2-FV2, CESM2-WACCM,
CESM2-WACCM-FV2) and fine-tuned using the same MOM6 and SOCAT data.
The ViT reconstruction using the 3-model subset (Test 1) achieved a validation

RMSE of 10.48 µatm, while the 4-model subset (Test 2) yielded a slightly lower
RMSE of 9.54 µatm. Both are higher than the RMSE obtained using all seven CMIP6
models (7.44 µatm), indicating that the total amount of pre-training data can influence
reconstruction performance. Nevertheless, the difference between the two subsets is
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small (RMSE difference of 0.94 µatm, ~8.97%), and deviations from the 7-model
pre-training result are modest (~2-3 µatm).
Overall, these results indicate that, as long as multiple CMIP6 models are included

to capture diverse large-scale oceanic patterns, the reconstruction is largely robust to
the specific choice of pre-training models. The two-stage training framework
effectively stabilizes reconstruction performance, corrects model-specific biases, and
reliably integrates observational information. To further strengthen robustness,
CMIP6 models were carefully selected based on the evaluation framework of Liao et
al. (2021), ensuring that the chosen models accurately represent key oceanic carbon
dynamics. Through multi-model pre-training combined with carefully designed
fine-tuning strategies, our approach maintains stable and reliable reconstruction
performance, effectively capturing large-scale patterns, low-frequency variability, and
regional details across different spatial and temporal scales.

The reconstruction results are robust to reasonable systematic changes in key
fine-tuning hyperparameters (such as learning rate, batch size, patch size, and
Transformer block number) though extreme changes (e.g., reducing Transformer
blocks from 10 to 5) can substantially affect performance. Fine-tuning data are crucial:
MOM6 provides physically consistent global fields to stabilize training and enhance
generalization (see response 1.2), while SOCAT observations correct local and
regional biases (see response 1.4), together ensuring stable, reliable, and physically
coherent spCO2 reconstructions across both well-observed and data-sparse regions.

Figure R3 (Figure S11 in supplement section S5). The sensitivity of reconstructed
spCO2 fields to the choice of CMIP6 models. (a) Test 1 (3-model CMIP6 pre-training):
three CMIP6 simulations (GFDL-ESM4, NorESM2-LM, NorESM2-MM)
pre-training followed by MOM6 & SOCAT fine-tuning; (b) Test 2 (4-model CMIP6
pre-training): four CMIP6 simulations (CESM2, CESM2-FV2, CESM2-WACCM,
CESM2-WACCM-FV2) pre-training followed by MOM6 & SOCAT fine-tuning.

(4) How do SOCAT data fold into your refinement?
To evaluate the role of SOCAT observations in the fine-tuning stage, we designed two
comparative experiments while keeping all other model settings identical:
(a) Test 1 (with SOCAT in fine-tuning): The model, pretrained on CMIP6 and

optionally fine-tuned with MOM6 fields, was further fine-tuned using SOCAT in situ
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pCO2 observations. SOCAT provides high-quality pointwise constraints that correct
model biases and ensure alignment with real-world ocean conditions.
(b) Test 2 (without SOCAT in fine-tuning): The same pretrained model was

fine-tuned without using SOCAT data, relying solely on MOM6 fields for spatial
coverage and physical consistency.
Incorporating SOCAT observations during fine-tuning (Test 1) yielded a validation

RMSE of 7.44 µatm. In contrast, excluding SOCAT (Test 2) resulted in a
dramatically higher RMSE of 26.87 µatm. Thus, the inclusion of SOCAT reduced
RMSE by 19.43 µatm, corresponding to a relative decrease of approximately 72.31%.
This large improvement demonstrates the critical role of SOCAT observations in
aligning the reconstructed spCO2 field with real-world measurements.
SOCAT data act as a supervisory signal that corrects local and regional biases in

the model, ensuring the fine-tuned reconstruction reproduces observed variability
while retaining large-scale spatiotemporal patterns learned during CMIP6 pretraining
and MOM6 fine-tuning. Without SOCAT, the model cannot accurately capture local
pCO2 variations, leading to substantial errors. Proper integration of SOCAT with
MOM6 fields balances the influence of sparse observational points and physically
consistent background patterns, enhancing overall predictive skill, particularly in
regions with limited observations.

Figure R4 (Figure S12 in supplement section S5). Impact of SOCAT observations on
the fine-tuning of the reconstructed spCO2 field. (a) Test 1 (with SOCAT in
fine-tuning): CMIP6 pre-training followed by MOM6 & SOCAT fine-tuning; (b) Test
2 (without SOCAT in fine-tuning): CMIP6 pre-training, fine-tuning only on MOM6.
Inclusion of SOCAT observations reduces validation RMSE by 19.43 µatm (~72.31%
relative reduction), demonstrating the pivotal role of SOCAT in achieving accurate
spCO2 reconstruction.

(5) For the physical-biogeochemical constraints, are you only using what is derived
from MOM6, or also from CMIP6 models as well?
In our study, the physical-biogeochemical constraints incorporated in the ViT model
are derived exclusively from MOM6 simulations. MOM6 provides high-resolution,
rigorously validated ocean-driven fields that more accurately represent conditions
relevant to the surface carbon system (Stock et al., 2020; Liao et al., 2020).
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Evaluations such as those by Liao et al. (2021) indicate that CMIP6 model outputs
contain relatively large biases in space and time, which could reduce the reliability of
any constraints derived directly from CMIP6. Therefore, MOM6 is used as the sole
source for physical-biogeochemical constraints to ensure accuracy, consistency, and
physical realism in the model refinement stage. In addition, we have conducted
comparison experiments in the manuscript between models trained with and without
these constraints, demonstrating that incorporating MOM6-derived information
significantly improves predictive skill in data-sparse regions and high-latitude oceans.

(6) How are your results, particularly on the seasonal cycle, impacted by these
physical-biogeochemical constraints? In other words, if you exclude these constraints,
how is the representation of the seasonal pCO2 cycle affected?
To assess the impact of MOM6-derived physical-biogeochemical constraints on the
seasonal cycle of spCO2, we conducted two comparative experiments while keeping
all other model settings identical:
(a) Test 1 (with physical-biogeochemical constraints): The SJTU-AViT model

reconstruction incorporated MOM6-derived constraints during training, enforcing
physically and biogeochemically plausible relationships among environmental
variables.
(b) Test 2 (without physical-biogeochemical constraints): The SJTU-AViT

reconstruction excluded these constraints, allowing the model to rely solely on
observational and CMIP6-derived information.
The constraints systematically improve model performance across all seasons (Fig.

R5), as reflected in reduced RMSE values: MAM decreases from 11.66 to 11.35 µatm
(~2.66%), JJA from 12.31 to 11.93 µatm (~3.09%), SON from 13.67 to 12.51 µatm
(~8.49%), and DJF from 10.32 to 10.18 µatm (~1.36%). On average, the inclusion of
constraints reduces RMSE by ~3.90% across the four seasons.
These improvements are systematic and physically meaningful rather than random

fluctuations. The MOM6-derived constraints anchor the model to physically and
biogeochemically plausible relationships, enhancing the accuracy and robustness of
the seasonal spCO2 representation. The constraints are particularly effective in regions
with sparse observational coverage, where purely data-driven reconstructions may be
prone to larger errors. Overall, the results demonstrate that including
physical-biogeochemical constraints play a substantial and reliable role in improving
the seasonal cycle representation of spCO2, rather than merely introducing stochastic
or localized enhancements.
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Figure R5 (Figure S13 in supplement section S5). Seasonal comparison of
SJTU-AViT spCO2 means and RMSE with and without physical-biogeochemical
constraints. (a-d) Test 1 (with physical-biogeochemical constraints): seasonal mean
spCO2 from SJTU-AViT with physical-biogeochemical constraints for MAM
(March-May), JJA (June-August), SON (September-November), and DJF
(December-February). (e-h) Test 2 (without physical-biogeochemical constraints):
seasonal mean spCO2 from SJTU-AViT without constraints. (i-l) Test 1 (with
physical-biogeochemical constraints): seasonal RMSE of spCO2 between SJTU-AViT
and SOCAT with constraints. (m-p) Test 2 (without physical-biogeochemical
constraints): seasonal RMSE of spCO2 between SJTU-AViT and SOCAT without
constraints. For RMSE calculations, SJTU-AViT spCO2 was interpolated to SOCAT
observation locations and times.

The results are summarized in the main text (lines 601-612) as “In addition, we
evaluated the contributions of CMIP6 pre-training, MOM6 fine-tuning, SOCAT
observations, and MOM6-derived physical-biogeochemical constraints within the
SJTU-AViT framework. CMIP6 pre-training substantially improved model
initialization and skill, reducing validation RMSE by ~56.57% versus random
initialization by supplying large-scale structure and low-frequency variability. MOM6
fine-tuning further stabilized the model—especially in observation-sparse
regions—lowering RMSE by ~39.36% and enforcing physically plausible
relationships. Including SOCAT during fine-tuning was critical for local and regional
accuracy, reducing RMSE by ~72.31% through high-quality pointwise constraints.
Sensitivity tests indicate the reconstruction is largely robust to the specific choice of
CMIP6 pre-training subsets, provided multiple models are used to capture diverse
large-scale patterns. Finally, adding MOM6-derived physical constraints improved
overall performance (MAE from 7.15 to 5.95 µatm) and reduced seasonal RMSE by



9

1.36-8.49%, with the largest gains in high-latitude and data-sparse regions.
Collectively, these results confirm that CMIP6 pre-training followed by MOM6- and
SOCAT-constrained fine-tuning with physically informed constraints yields a robust,
reliable, and physically consistent reconstruction of spCO2 across spatial and
temporal scales.”.

2. The uncertainty quantification might benefit from more detail. For umap, what if
there are no observations in one grid? How do you then quantify umap there? Have you
conducted an analysis on the spatial heterogeneity of the dominant source of
uncertainty? In addition, I think it would be more appropriate to replace umap with
"algorithm uncertainty." Perhaps this can be done by generating a large ensemble of
spCO2 Alternatively, this can be done by using synthetic data. You might consider
subsampling SOCAT data from one of your models and then applying the ML model
to subsampled model fields to generate an spCO2 map. Then you can compare the
absolute differences between pCO2 from the ocean model and the ML reconstruction.
We acknowledge that the traditional umap approach depends directly on observational
coverage and may underestimate uncertainty in regions with sparse or missing
SOCAT data. To address this limitation, we performed an additional experiment using
synthetic data to provide a more robust estimate of algorithm uncertainty. Specifically,
we used the RECCAP2 simulation from the Scott Doney group (hereafter SD data) as
an independent reference “truth,” which the ViT machine learning model had never
seen before. The SD data were divided into two subsets:
 SD_SOCAT: SD outputs sampled at the spatiotemporal locations of SOCAT

observations.
 SD_nonSOCAT: the remaining SD outputs.
Following our standard workflow (CMIP6 pretraining, MOM6 fine-tuning, and

SD_SOCAT fine-tuning), we reconstructed spCO2 and quantified three RMSE values:
(a) RMSE_SD_SOCAT = 5.58 µatm. This is bias at training locations, indicating

good consistency with data the model has seen.
(b) RMSE_SD_nonSOCAT = 7.40 µatm. This is bias at independent validation

points, demonstrating generalization to unseen data.
(c) RMSE_SD_all = 7.39 µatm. This is bias over the full SD dataset, reflecting the

model’s overall performance.
These results show that the training error is slightly lower, as expected, and the

validation and overall errors are nearly identical. This indicates that the ViT model
does not overfit and that its uncertainty estimates are robust across different spatial
domains. The close agreement also demonstrates that algorithm uncertainty captures
the spatial heterogeneity of errors, particularly in high-latitude or data-sparse regions
where umap cannot be defined.
Based on this analysis, we adopt the RMSE_SD_all = 7.39 µatm as a quantitative

measure of algorithm uncertainty (ualgorithm), and have updated the manuscript
accordingly in section 2.5 (lines 273-274) and section 3.6 (lines 580-581).
Specifically, it is now stated as: “ualgorithm is evaluated as the RMSE between the
reconstructed and reference ocean model spCO2 field.” (lines 273-274) and “with the
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dominant contribution arising from the algorithm uncertainty (ualgorithm), which
reaches 7.39 µatm.” (lines 580-581). The full experimental details have been reported
in the supplement (section S5.7).

Figure R6 (Figure S14 in supplement section S5). Spatial distribution of RMSE (µatm)
between the reconstructed spCO2 field and the Scott Doney RECCAP2 simulation
(SD data). (a) RMSE for the full SD dataset. (b) RMSE for the SD_SOCAT subset,
i.e., SD data sampled at SOCAT observation locations and used in training. (c) RMSE
for the SD_nonSOCAT subset, i.e., SD data at locations not sampled by SOCAT and
reserved for independent validation. The mean RMSE value for each panel is
indicated. The SD data is from Doney et al., (2009).

Minor comments:

1. L15-16: The statement that ocean surface partial pressure of spCO2 directly
determines the air-sea CO2 flux is not exactly correct. It is the air-sea pCO2 difference,
which is modulated by surface wind speed and gas exchange velocity.
We agree that the original description was not accurate and have revised the
corresponding sentence in the Abstract (lines 15-18) to read:“The ocean plays a
crucial role in regulating the global carbon cycle and mitigating climate change.
Spatial and temporal variations of ocean surface partial pressure of CO2 (spCO2)
influence the air-sea CO2 flux through the difference between surface ocean and
atmospheric pCO2 (ΔpCO2), which is further modulated by surface wind speed and
gas exchange velocity.”

2. Introduction: Perhaps it is also worth mentioning that previous ML-interpolation of
pCO2 overly smooths the spatial patterns and interannual variability.
We have revised the Introduction accordingly (lines 67-69): “Previous machine
learning (ML)-based interpolations of pCO2 may overly smooths the spatial patterns
and interannual variability, which represents a potential limitation in capturing these
features fully.”

3. L195: Is the interpolation based on inverse distance weighted average? How do
you deal with the fine-resolution time (i.e., not monthly average)?
A similar question was also raised by the other reviewer. To clarify, we directly used
the monthly 1° × 1° gridded product provided by the Surface Ocean CO2 Atlas
(SOCAT) for data construction. Therefore, no additional spatial interpolation was
applied, and the temporal resolution is already monthly. To handle missing values, we
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masked the corresponding reconstructed values at the same grid-time points before
computing statistics, ensuring that all comparisons are made only where SOCAT
provides valid data.
For independent validation at long-term stations, reconstructed values were

extracted at the station locations using bilinear interpolation from the surrounding grid
cells, rather than simply selecting the nearest grid cell. This approach yields smoother
and more representative spCO2 estimates. All datasets, including these station
comparisons, were consistently processed as monthly averages, with no further
temporal interpolation.
We have revised the section 2.3 (lines 212-220) accordingly. The new text

reads:“For comparison with SOCAT, we used the monthly 1° gridded SOCAT product
and evaluated our SJTU-AViT reconstruction on the same grid, without applying any
additional spatial interpolation. Reconstructed values were masked where SOCAT is
missing, and all skill metrics were computed only at grid-time points with valid
SOCAT data. For the independent test at long-term stations, reconstructed values
were extracted at the corresponding station locations using bilinear spatial
interpolation, which incorporates information from surrounding grid cells to provide
smoother and more representative estimates, and skill metrics were subsequently
computed to evaluate model performance. Detailed information for these stations,
including their names, geographic locations, observation periods, number of samples,
and data sources, is provided in supplement Table S3, and their locations are shown
in supplement Fig. S2 to facilitate visual interpretation.”.

4. Figure 3: Systematic biases are clear at Iceland and Irminger, with SJTU-AViT
underestimating the pCO2. Any clues why?
These high-latitude regions are strongly influenced by processes such as seasonal
sea-ice coverage and freshwater input from precipitation, which are not well captured
in our machine learning model due to the lack of corresponding observational
constraints. As a result, the model cannot fully resolve these pCO2 variabilities,
leading to the observed negative bias. This behavior is not unique to our product and
similar biases have been reported in other reconstruction products under complex
environmental conditions (e.g., Landschützer et al., 2016; Gregor et al., 2021). In
future work, we plan to incorporate additional predictors, such as non-climatological
mixed-layer depth (MLD), sea-ice coverage, precipitation, and chlorophyll, into the
machine learning framework to improve reconstruction accuracy in high-latitude
regions.
Modified sentence in the section 3.1 (lines 302-306): “At the Irminger Sea and

Iceland sites, the model exhibits large RMSE (35.24 and 21.82 µatm, respectively)
and low correlations, with R2 near zero. This suggests that the model has difficulty
capturing rapid spCO2 fluctuations or processes that are not well represented by the
available input features. This discrepancy is likely due to high-latitude processes such
as seasonal sea-ice variability and freshwater inputs, which are not fully represented
in the current observational constraints.”
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5. Figure 5: The negative bias would lead to an overestimation of global ocean CO2

uptake through the bulk equation. Might be worth mentioning when you talk about the
flux.
We have mentioned this potential bias in the updated manuscript in section 3.5.
Specifically, while SJTU-AViT effectively reproduces the overall spatial patterns and
mechanisms of air-sea CO2 flux, negative spCO2 biases remain in certain high-latitude
regions (now is Fig. 6). These biases probably result from underestimation of pCO2 in
areas affected by seasonal sea-ice variability, freshwater inputs, and other
high-latitude processes that are not fully captured by observational constraints.
The revised text now reads (section 3.5, lines 559-563): “While SJTU-AViT

effectively reproduces the overall spatial patterns and mechanisms of air-sea CO2 flux,
Figure 6 indicates that negative spCO2 biases remain in certain high-latitude regions.
The negative bias, likely associated with underrepresented high-latitude processes
such as seasonal sea-ice variability and freshwater inputs, can lead to an
overestimation of global ocean CO2 uptake through the bulk equation and should be
considered when interpreting the absolute flux magnitude.”.

6. Fig. 6b: Seems like the bias PDF is wider in certain years. Speculation?
It is noteworthy that the bias probability density function (PDF) exhibits interannual
variability and even decadal trends (now is Fig. 7b). In the early years (1980s to
mid-1990s), the bias distribution is relatively broad, reflecting larger uncertainties.
This is probably attributable to the sparse SOCAT coverage during that period.
Limited observational data constrained the model’s ability to resolve local and
temporal variations, leading to larger bias. Over time, as SOCAT coverage expanded,
reconstruction accuracy improved in most regions. The bias distribution became
narrower and more symmetric, with the PDF centered near zero, indicating reduced
systematic bias.
In recent years, however, the bias range appears to increase. This widening is likely

related to the extension of observational coverage into high-latitude, polar, and coastal
regions, where conditions are more variable and extreme. In addition, recent ocean
pCO2 changes have exhibited enhanced seasonal and interannual variability, which
the model may not fully capture, particularly under extreme or marginal conditions.
These interpretations remain tentative, and more detailed analyses—such as targeted
experiments and the incorporation of additional datasets—will be necessary to fully
disentangle these drivers. We view this as an important avenue for future work and
would welcome collaborations to further investigate these aspects.
This has been added to section 3.2 (lines 370-375) as “However, we note that the

absolute range of biases may increase in later years. This widening is likely due to a
combination of factors, including the expansion of observational coverage to regions
with more extreme or marginal conditions, which introduces a larger range of
reconstructed values, as well as the enhanced seasonal and interannual variability
that the model may not fully capture in some regions, leading to increased biases
under local or extreme conditions. Overall, the temporal evolution of the bias
distribution highlights both the influence of observational coverage and the
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challenges in capturing high-frequency or extreme variations.”.

7. L369-372: The section title is on the seasonal cycle, but the first few sentences
focus on variability at all time scales. Might consider moving this to a later section.
Also, the trend should be removed beforehand in calculating STD in Fig. 7.
We carefully considered splitting this section into two parts (full variability and
seasonal variability). However, doing so would result in very little content for the full
variability part and lead to an imbalance between subsections. Therefore, in the
revised manuscript we chose to keep the two components together but revised the
section title to “3.3 Evaluation of full spCO2 variability and seasonal cycle” (line
399), which more accurately reflects the content.
In addition, as suggested, we removed the long-term trend prior to calculating the

standard deviation (STD) in the figure (now is Fig. 8 and Fig. S5). After detrending,
the STD values are slightly smaller than in the original calculation. But the relative
magnitudes among different regions remain unchanged, and the spatial patterns of
variability are still highly consistent with the observational data. Therefore, this
adjustment does not affect our main conclusion that the model captures the full
variability of spCO2 well across most regions.

Figure R7 (Figure 8 in main text). Comparison of spCO2 standard deviation from
1982-2023 between SJTU-AViT and SOCAT. (a) Standard deviation of spCO2 from
the SJTU-AViT reconstruction. (b) Standard deviation of spCO2 from SOCAT data.
(c) Standard deviation ratio, representing the ratio of SJTU-AViT to SOCAT standard
deviation (SJTU-AViT divided by SOCAT). (d) Standard deviation bias, showing the
difference between the SJTU-AViT and SOCAT standard deviations (SJTU-AViT
minus SOCAT). The standard deviation (STD) is quantified as the standard deviation
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of residuals after removing long-term trends. In the panels c and d, the SJTU-AViT
values are interpolated to match the spatial and temporal locations of SOCAT
observations (see detailed computation in section 2.3).

Figure R8 (Figure S5 in supplement section S4). Bias in the standard deviation of
spCO2 between SJTU-AViT and SOCAT at each season from 1982 to 2023. (a)
MAM (March-May), (b) JJA (June-August), (c) SON (September-November), and (d)
DJF (December-February). The standard deviation (STD) is quantified as the standard
deviation of residuals after removing long-term trends. The bias is calculated as the
difference between SJTU-AViT and SOCAT standard deviations at each season
(SJTU-AViT minus SOCAT). Positive values (red) indicate overestimation of
variability by SJTU-AViT, while negative values (blue) indicate underestimation.
These seasonal biases highlight the model's performance across different seasonal
periods and regions. The spCO2 in SJTU-AViT is interpolated to match the SOCAT
observation locations and times in the comparison (see detailed computation in
section 2.3).

8. L391-396: A presentation issue. The seasonal changes are, physically, attributed to
these factors you mentioned. This is based on our understanding of the ocean carbon
dynamics rather than being directly learned from ML output. The sentences read like
you confirm these dominant factors from your model output. Might consider making
it clear that these are not model results. Or, indeed, you could do factor contribution
analysis.
We agree that the physical attributions in the original text are based on established
oceanographic understanding rather than direct causal inferences from the ML outputs.
We have clarified the text in the revised manuscript (now is lines 422-427):
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“Furthermore, the model reasonably reproduces seasonal increases in spCO2 in the
North Pacific and North Atlantic (40°-60°N) during Northern Hemisphere winter and
early spring. This suggests that the model has likely captured underlying mechanisms,
such as the deepening of the winter mixed layer and the entrainment of DIC-rich
subsurface waters, which drive seasonal variations in surface ocean pCO2 (Keppler et
al., 2020). Conversely, a pronounced seasonal decrease in spCO2 is simulated in the
high-latitude Southern Ocean (south of 60°S) during the same period, indicating that
the model may also have learned the influence of cooling-driven solubility changes
and biological activity on ocean pCO2.”

9. Figure 9: I think what is missing here is to show whether the seasonal phases are
consistent compared to SOCAT.
To evaluate whether our reconstruction can accurately capture the seasonal phase
observed in SOCAT, we carried out additional analyses comparing the model results
with SOCAT climatologies (new supplement section S5.9; see lines 448-453 in the
revised manuscript). Specifically:
(a) Seasonal cycle comparison across ocean basins: We have evaluated the

seasonal cycle month-by-month for the global ocean and five major basins, separately
for the Northern and Southern Hemispheres. These comparisons demonstrate that the
model well reproduces the seasonal cycle of spCO2, with peak and minimum months
largely consistent with SOCAT observations (Figs. R9-R10).
(b) Phase bias evaluation: We produced global maps of the difference in ocean

pCO2 peak month and minimum month between SJTU-AViT and SOCAT (in months,
range ±6). Across most regions, the phase differences in both peak and minimum
months are within ±1 month, with only ~5% of grid points exceeding this threshold
(Fig. R11).
Together, these results indicate that the reconstruction reliably reproduces seasonal

phasing. The corresponding text has been added in the revised manuscript section 3.3
(lines 448-453): “To evaluate the accuracy of the SJTU-AViT in capturing the
seasonal phasing of spCO2, we compared it against SOCAT climatology (supplement
Figs. S16-S18). Climatological seasonal cycles were evaluated for the global ocean
and five major basins, separately for the Northern and Southern Hemispheres. The
SJTU-AViT closely reproduces the timing of seasonal maxima and minima in spCO2,
generally aligning with SOCAT observations. Global maps of phase differences show
that most regions deviate by less than ±1 month, with only ~5% of grid points
exceeding this range. These results demonstrate that the reconstruction data reliably
captures the observed seasonal phasing.”.
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Figure R9 (Figure S16 in supplement section S5). Monthly spCO2 regional time series
for the Northern Hemisphere across different ocean regions from 1982 to 2023. Each
panel shows the 12-month mean seasonal cycle for both the model (SJTU-AViT) and
SOCAT observations. Peak months are indicated to allow direct comparison of
seasonal phasing.

Figure R10 (Figure S17 in supplement section S5). Monthly spCO2 regional time
series for the Southern Hemisphere across different ocean regions from 1982 to 2023.
Each panel shows the 12-month mean seasonal cycle for both the model (SJTU-AViT)
and SOCAT observations. Peak months are indicated to allow direct comparison of
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seasonal phasing.

Figure R11 (Figure S18 in supplement section S5). Grid-scale maps of spCO2 peak-
and minimum-month differences (SJTU-AViT − SOCAT, in months, range ±6). For
the peak-month difference map, positive values indicate that SJTU-AViT peaks later
than SOCAT; for the minimum-month difference map, positive values indicate that
SJTU-AViT minimums later than SOCAT. Regions with insufficient observational
coverage are masked. These maps provide a spatial assessment of the model’s ability
to reproduce seasonal maxima and minima timing.

10. Figure 11: Linearly detrended spCO2?
Yes, all spCO2 data shown (now is Fig. 12) have been linearly detrended and
deseasonalized. This processing ensures that the composite mean anomalies clearly
highlight the typical spCO2 responses associated with El Niño and La Niña events.
We have updated the figure caption in the revised manuscript (lines 541-545), now as
“Figure 12. Comparison of spCO2 anomalies during El Niño and La Niña events
between SJTU-AViT and multiple data products. Panels (a) and (b) show the
composite mean spCO2 anomalies during eight El Niño and seven La Niña events,
respectively, as reconstructed by the SJTU-AViT product. Panels (c) and (d) display
the corresponding composite mean anomalies from the ensemble mean of eight spCO2

data products. The eight El Niños and seven La Niñas are indicated in the supplement
section S2 and S3. The spCO2 anomalies are defined as residuals after removing both
long-term trends and seasonal cycles.”.

11. L568-571: PDO-related SST patterns are used in your training; incorporating
other indices (e.g., directly using PDO) would be double counting?
Indeed, the PDO signal is already implicitly embedded in the SST fields used as
predictors, so directly adding the PDO index could raise concerns about double
counting. However, machine learning models are not always efficient at extracting
such low-frequency signals, particularly when the observational record is relatively
short. In these cases, providing strong or even redundant cues can facilitate the
machine learning model representation of decadal variability. In our additional
experiments with physical constraints, we found that explicitly highlighting such kind
of signals enabled the model to more effectively detect latent signals that are difficult
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to capture, thereby improving reconstruction accuracy.
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