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Response to Referee #1

General comments:

This manuscript introduces a novel machine learning framework (SJTU-AViT) for
reconstructing global sea surface pCO2 at 1°×1° monthly resolution over the period
1982–2023. By incorporating physical–biogeochemical constraints as derived features,
the approach enhances the quality of ocean carbon data reconstruction. The evaluation
is comprehensive, covering mean states, seasonal cycles, and interannual variability,
and shows strong skill in reproducing ENSO-related signals. This study makes a
substantial contribution by providing a valuable new ocean carbon data product for
the ocean carbon community and a useful machine learning framework in the field of
ocean data reconstruction. The subject is highly relevant to the scope of Earth System
Science Data. However, I have several general and specific comments and
suggestions that should be addressed before the manuscript can be considered for
publication.
We sincerely thank the reviewer for the constructive and insightful comments, which
have greatly improved the quality and clarity of our manuscript. The reviewer’s main
concerns focused on the independence of training and validation data and its impact
on the robustness of our results. To address these concerns, we supplemented analyses
using independent datasets, confirming the robustness of the assessed interannual
variability. We also clarified and expanded methodological details, data processing,
training settings, and figures/tables to enhance transparency and reproducibility.
Specifically, we have made the following revisions:
 Clarify the train/test split strategy with added spatiotemporal distribution maps,

and validate model generalization against independent long-term stations (major
comment #1, #5, minor comments #7).

 Address concerns on model–validation dependence by recalculating
detrended/deseasoned STD using MPI-SOM-FFN trends and seasonal cycles,
confirming robust spatial patterns beyond data dependence (major comment #2).

 Enhance methodological clarity by adding a process flowchart, specifying
SOCAT gridded comparison and interpolation procedures, and clarifying variable
standardization (major comment #3, #6, minor comments #1).

 Clarify input coverage by filling pre-1997 and 2023 gaps in Chl-a with
climatology, using climatological MLD as input data with noted limitations,
detailing xCO2 (MBL) mapping (major comment #7, #8, minor comments #5).

 Implement minor edits and clarifications to enhance precision and consistency
throughout the text, as detailed in the point-by-point response (major comment #4,
minor comments #1-17).

Please see the detailed response below.

Major comments:

1. The Methods section (Model training & testing) should more clearly describe how
the data were split into training and testing sets, along with the sample size



2

distribution. This information is essential for evaluating the model’s generalization
ability. The authors should specify whether the split was random, temporal, or spatial
(e.g., by cruise lines or fixed stations). They should also report the number or
proportion of samples in each subset, ideally stratified by time (e.g., decades) and/or
region. Such details would improve transparency and reproducibility.
We have clarified the data partitioning procedure in the section 2.3 and have included
additional analyses to support transparency and robustness of the evaluation.
Specifically, SOCAT samples were randomly split into training and test subsets,

with 80% (277,528 samples) allocated for model training and 20% (69,142 samples)
reserved as an independent test set. All random operations were conducted using a
fixed seed (seed = 42) to ensure full reproducibility. The detailed split procedure and
exact sample counts are now explicitly documented in the revised text (new Fig. 2 and
lines 208-209), now as “The SOCAT dataset was randomly divided into 80%
(277,528 samples) for training and 20% (69,142 samples) for validation, using a fixed
random seed (seed = 42) to ensure reproducibility.”.
The test procedure is included in the new reconstruction workflow (Fig. 2) and

described in section S5 of the supplement (see explanation in our response to
comment 3), and Figure S1 has also been revised to clearly illustrate the temporal and
spatial distributions of the training and test sets. In addition, we additionally evaluated
its performance against nine independent long-term observation stations that are not
included in the SOCAT dataset. These stations provide continuous time series and
serve as an independent benchmark. The results indicate that the model reliably
captures both temporal variability and long-term trends, providing strong evidence of
its generalization capability beyond the original training data.
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Figure R1. (Figure S1 in supplement section S4). Data availability for spCO2

reconstruction. (a) Spatial distribution of the number of all spCO2 data points. (b)
Annual data count of all spCO2 data points over the period from 1982 to 2023. (c)
Spatial distribution of the number of spCO2 data points used for training. (d) Annual
data count used for training over the period from 1982 to 2023. (e) Spatial distribution
of the number of spCO2 data points used for validation. (f) Annual data count used for
validation over the period from 1982 to 2023.

2. The manuscript fills gaps in SOCAT observations using long-term trends and
seasonal cycles from SJTU-AViT, followed by residual analysis to assess interannual
variability. This procedure raises concerns about the lack of independence between
the model and the validation data, since part of the evaluation relies on model-derived
estimates. The authors should clarify and quantify the impact of this approach. For
instance, they could limit the analysis to grid points or stations with continuous
records, or apply long-term trends and seasonal cycles from an independent product to
compare robustness. Demonstrating consistent results across methods would enhance
the credibility of the conclusions.
To address the concern regarding the potential lack of independence between the
model and the validation data, we conducted an additional analysis using an
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independent reconstructed data product from MPI-SOM-FFN (Landschützer et al.
2016). This validation results were provided in the supplement material (section S5.8).
Specifically, when calculating the detrended and deseasonalized SOCAT STD, we
applied the long-term trends and seasonal cycles derived from the MPI-SOM-FFN
data product instead of the SJTU-AViT estimates. The results, shown in the Fig. R2,
demonstrate that the overall spatial distribution of SOCAT STD remains highly
consistent, with only minimal deviations (1.68 µatm). This indicates that the small
deviations observed between SJTU-AViT and SOCAT are not artifacts of model-data
dependence. Therefore, the analysis confirms the robustness of our methodology and
supports the credibility of the interannual variability assessment.
.

Figure R2. (Figure S15 in supplement section S5). Comparison of spCO2 standard
deviations on timescales longer than one year between SJTU-AViT, SOCAT, and
MPI-SOM-FFN data product. (a) Standard deviation of spCO2 from the SJTU-AViT
at SOCAT observation grid points. (b) Standard deviation of spCO2 from SOCAT
data (the long-term trends and seasonal cycles derived from the SJTU-AViT). (c)
Standard deviation bias between SJTU-AViT and SOCAT (panel a minus panel b). (d)
Standard deviation of spCO2 from the SJTU-AViT at SOCAT observation grid points.
(e) Standard deviation of spCO2 from SOCAT data (the long-term trends and seasonal
cycles derived from the MPI-SOM-FFN). (f) Standard deviation bias between
SJTU-AViT and SOCAT (panel d minus panel e).

3. To help readers better understand the implementation of the spCO2 data
reconstruction, I recommend adding a schematic figure in the main text that illustrates
the reconstruction process based on the ViT model. Such a figure would improve both
the readability of the manuscript and the clarity of the methodology.
We have added a schematic framework figure (Fig. 2) in the section 2.2, along with
detailed description in the main text (lines 186-188) and supplement (section S5.1,
lines 128-140), to illustrate the spCO2 reconstruction workflow based on the ViT
framework.
The summary description is presented in the main text (lines 186-188) as “The
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overall workflow of this multi-stage training strategy is summarized in Fig. 2, which
also provides a schematic overview of the spCO2 reconstruction workflow based on
the ViT framework. The figure clearly visualizes the main steps, from data
preprocessing through model training to evaluation (see detailed description in
section S5.1).”.
The detailed description is presented in the supplement (section S5, lines 128-140)

as “The spCO2 reconstruction workflow based on the ViT framework is organized into
four main stages—Data Processing, Model Architecture, Training & Validation, and
Evaluation & Analysis—as illustrated in Fig. 2 (in main text). At the top, the data
processing panel shows the input sources (CMIP6, MOM6, SOCAT) and the
preprocessing steps: temporal harmonization to a monthly cadence, spatial
regridding to a 1°×1° grid, and feature normalization. These boxes indicate that all
inputs are brought to a common spatio-temporal grid and scale before being passed
to the model. The model architecture panel depicts how physical variables are
converted into model inputs: variable tokenization, variable aggregation, and then fed
into a Transformer backbone that learns spatial and temporal dependencies. The
model output block illustrates that the network predicts monthly spCO2 on the same
1° grid. The training & validation panel summarizes our multi-stage training strategy:
(i) pretraining on CMIP6-derived fields, (ii) fine-tuning using MOM6 plus 80% of
SOCAT, and (iii) evaluation using a withheld 20% SOCAT validation split and
independent tests at long-term station sites. Finally, the evaluation & analysis panel
shows the main evaluation products derived from the reconstruction: model
performance metrics, climatology, seasonal cycle, interannual variability, and
downstream analyses (air-sea CO2 flux calculation and uncertainty analysis).”.
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Figure R3. (Figure 2 in main text). Workflow of the spCO2 reconstruction using the
ViT-based framework. The workflow consists of four major stages: (a) Data
processing, where CMIP6, MOM6, and SOCAT inputs are temporally harmonized,
spatially interpolated, and normalized; (b) Model architecture, where variables are
tokenized, aggregated into spatio-temporal embeddings, and processed by a
Transformer backbone to predict monthly spCO2; (c) Training and validation,
involving CMIP6 pretraining, MOM6 and SOCAT fine-tuning, and evaluation against
withheld SOCAT data and long-term stations; and (d) Evaluation and analysis, where
model performance metrics, climatology, seasonal cycles, and interannual variability
are assessed, leading to downstream analyses such as air-sea CO2 flux estimation and
uncertainty analysis (see detailed description in supplement section S5.1).

4. It is recommended that the authors include skill distribution tables in the
supplement, stratified by ocean basin and latitude band. These tables should report,
for each group, the sample size (N), R², RMSE, MAE, and MBE. Such quantitative
evidence would support the statement that “biases are larger at high latitudes” and
clearly demonstrate regional and latitudinal variations in model performance.
We have added skill distribution tables in the supplement (Table S4-S5), stratified by
ocean basin and latitude band. For each group, we report the sample size (N), R²,
RMSE, MAE, and MBE. These tables provide quantitative evidence supporting the



7

statement that biases are larger at high latitudes and clearly illustrate the regional and
latitudinal variations in model performance, as followed.
Based on the statistics, the skill distribution reveals distinct regional and latitudinal

differences. Among ocean basins, the Pacific shows the best performance (N=159,783;
R²=0.94), while the Indian Ocean, despite its smaller sample size (N=6,354), also
exhibits strong skill (R²=0.95; RMSE=5.31). In contrast, the Atlantic performs
relatively weaker with a lower correlation and a slight negative bias (N=111,326;
R²=0.81). The Arctic (N=10,316; RMSE=8.80) and Southern Ocean (N=48,636;
RMSE=8.20) show notably larger errors and systematic negative biases, indicating a
tendency of underestimation in polar regions. When stratified by latitude bands, errors
are markedly larger at high latitudes, particularly in 60°S-90°S (N=16,602; R²=0.86)
and 60°N-90°N (N=30,802; R²=0.92). By comparison, the tropics and subtropics
exhibit smaller errors, such as 0–30°S (N=35,804; R²=0.97). The 0-30°N band shows
moderate error levels (RMSE=6.13) but a lower correlation (R²=0.72), likely
reflecting observational variance and sample characteristics. Overall, these
quantitative results directly support our conclusion that biases are more pronounced at
high latitudes. As discussed in the main text, this pattern can be attributed to the
complexity of seasonal amplitudes and boundary processes (e.g., sea-ice cover and
mixed layer variability), the limited representativeness and accuracy of forcing fields
and input data in polar regions, and uneven observational coverage, all of which can
amplify errors and biases.

Table R1 (Table S4 in supplement section S3). Skill metrics of the reconstructed
spCO2 by ocean basin.

Ocean basin N R2 RMSE MAE MBE
Pacific ocean 159783 0.94 6.79 5.29 0.30
Atlantic ocean 111326 0.81 7.10 5.31 -0.31
Indian ocean 6354 0.95 5.31 4.75 -0.08
Arctic ocean 10316 0.90 8.80 7.58 -0.24
Southern ocean 48636 0.88 8.20 6.76 -0.55

Table R2 (Table S5 in supplement section S3). Skill metrics of the reconstructed
spCO2 by latitude band.

latitude band N R2 RMSE MAE MBE
60°N-90°N 30802 0.92 9.23 7.58 -0.56
30°N-60°N 123357 0.91 9.13 6.40 0.07
0-30°N 96608 0.72 6.13 4.74 0.04
0-30°S 35804 0.97 5.70 4.96 -0.07

30°S-60°S 43497 0.90 6.13 5.29 -0.20
60°S-90°S 16602 0.86 11.80 9.29 -1.03

5. Regarding the independent test sites, it is recommended to provide a clear
description in the main text along with detailed information. In the appendix, the nine
observation stations used for independent testing should be listed, including their
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names, geographic locations, observation periods, and the number of samples at each
site. Since the BAT site does not have direct pCO2 observations, please clarify the
method used to calculate its monthly mean pCO2 and specify the data sources for all
sites.
(1) In the revised manuscript, we have added an appendix table and provided a clearer
description of the independent test sites (section 2.3 (lines 215-220), and Table S3).
We explicitly detail the nine long-term observation stations used for independent
testing, including their names, geographic locations, observation periods, number of
samples, and data sources. To facilitate visual interpretation, we have also included a
map (supplement Fig. S2) showing the locations of the stations.
Lines 215-220 now reads as “For the independent test at long-term stations,

reconstructed values were extracted at the corresponding station locations using
bilinear spatial interpolation, which incorporates information from surrounding grid
cells to provide smoother and more representative estimates, and skill metrics were
subsequently computed to evaluate model performance. Detailed information for
these stations, including their names, geographic locations, observation periods,
number of samples, and data sources, is provided in supplement Table S3, and their
locations are shown in supplement Fig. S2 to facilitate visual interpretation.”.
(2) For the BAT station, which does not have direct pCO2 observations, the monthly
mean pCO2 was calculated using the Python version of CO2SYS (PyCO2SYS;
Humphreys et al., 2022). In the calculation, we used the carbonate dissociation
constants from Waters and Millero (2013) (k1k2 = 15), the KSO4 constant from
Dickson (1990) (kso4 = 1), the HF dissociation constant from Perez and Fraga (1987)
(hf = 2), and the total pH scale (pHscale = 1). pCO2 was then estimated from
measurements of dissolved inorganic carbon (DIC) and total alkalinity (ALK),
together with sea surface temperature (SST), sea surface salinity (SSS), silicate, and
phosphate concentrations. Monthly means were obtained by averaging all available
estimates within each month. This approach ensures a consistent and physically based
estimation of pCO2 at the BAT site.

Table R3 (Table S3 in supplement section S3). List of selected independent test
stations with long-term observations.
Station Coordinates Time range Number of

samples

URL

BAT 31.67°N, 295.83°E 10/1991-6/2022 324 https://bios.asu.edu/bats

HOT 22.75°N, 202°E 10/1988-12/2023 325 https://hahana.soest.hawaii.edu/hot/hotco2

ESTOC 29.07°N, 344.17°E 10/1995-11/2009 115 https://www.ncei.noaa.gov/access/ocean-car

bon-acidification-data-system/oceans/Coasta

l/ESTOC.html

CCE1 33.50°N, 237.50°E 11/2008-12/2023 144 https://www.ncei.noaa.gov/access/ocean-car

bon-acidification-data-system/oceans/Moori

ngs/Pacific.html

TAO -0.51°N, 189.98°E 2/2010-8/2016 45 https://www.ncei.noaa.gov/access/ocean-car

bon-acidification-data-system/oceans/Moori
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ngs/Pacific.html

BOBOA 15°N, 90°E 11/2013-11/2018 53 https://www.ncei.noaa.gov/access/ocean-car

bon-acidification-data-system/oceans/Moori

ngs/Indian.html

Papa 50.13°N, 215.17°E 6/2007-4/2023 168 https://www.pmel.noaa.gov/co2/story/Papa

Iceland 68°N, 347.40°E 2/1985-11/2021 158 https://www.ncei.noaa.gov/access/ocean-car

bon-acidification-data-system/oceans/Moori

ngs/Atlantic.html

Irminger 64.30°N, 332°E 3/1983-11/2012 99 https://www.ncei.noaa.gov/access/ocean-car

bon-acidification-data-system/oceans/Moori

ngs/Atlantic.html

6. The manuscript states that SJTU-AViT outputs were interpolated to the
spatiotemporal locations of SOCAT for comparison, but it does not specify the
interpolation method used (e.g., bilinear, nearest neighbor, or other), nor whether any
temporal or spatial smoothing was applied. The authors should provide these details.
For example, “When comparing with SOCAT, model values were interpolated to
observation locations using bilinear interpolation in space and linear interpolation in
time.”
The Surface Ocean CO2 Atlas (SOCAT) provides two forms of data: synthesis files
and gridded (binned) products. The gridded SOCAT product is generated by
interpolating individual observations onto a regular grid with a spatial resolution of 1°
× 1° and a monthly temporal resolution. Only SOCAT observations with quality
control (QC) flags of A–D and WOCE flags of 2 are included in this product. The
arithmetic mean is first calculated for each cruise passing through a given grid cell,
and these cruise-level means are then averaged to obtain the final gridded value. The
resulting product provides fields with valid values in grid cells and months where
observations are available, while grid cells without observational coverage are
assigned NaN values.
We used the gridded SOCAT product, which share the same longitude and latitude

grid as SJTU-AViT data. Therefore, there is no need for additional spatial or temporal
interpolation. To account for gaps in the SOCAT data (NaNs), we mask the
corresponding reconstructed values at the same grid–time points before computing
any statistics. This ensures that all comparisons are performed only where SOCAT
provides valid data. For the independent test at long-term stations, we use bilinear
spatial interpolation to extract the reconstructed values at the corresponding station
locations. This approach allows us to account for the surrounding grid cell
information rather than relying solely on the nearest neighbor, thereby providing a
smoother and more representative estimate of spCO2 at the station sites.
To make this clearer, we have revised the section 2.3 (lines 212-220) to explicitly

state our comparison procedure. The added text reads :
“For comparison with SOCAT, we used the monthly 1° gridded SOCAT product

and evaluated our SJTU-AViT reconstruction on the same grid, without applying any
additional spatial interpolation. Reconstructed values were masked where SOCAT is
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missing, and all skill metrics were computed only at grid-time points with valid
SOCAT data. For the independent test at long-term stations, reconstructed values
were extracted at the corresponding station locations using bilinear spatial
interpolation, which incorporates information from surrounding grid cells to provide
smoother and more representative estimates, and skill metrics were subsequently
computed to evaluate model performance. Detailed information for these stations,
including their names, geographic locations, observation periods, number of samples,
and data sources, is provided in supplement Table S3, and their locations are shown
in supplement Fig. S2 to facilitate visual interpretation.” .

7. The temporal coverage of Chl-a spans 1997–2022, whereas the product extends
from 1982 to 2023. It is recommended to clarify how the periods prior to 1997 and for
2023 were handled (e.g., climatology, interpolation, gap-filling, or inference from
other variables) to avoid any misunderstanding that the time spans are fully
consistent.
The temporal coverage of the Chl-a dataset spans 1997-2022. For periods prior to
1997 and for 2023, we applied a climatology derived from the 1997-2022 record. We
recognize that the use of a climatological mean does not capture interannual
variability and may introduce a slight bias into the reconstruction. However, this
effect is expected to be minor, while inferring Chl-a from other variables or
extrapolating beyond the observational record could introduce substantially larger
uncertainties. The use of a climatology therefore represents a pragmatic balance
between competing sources of uncertainty, ensuring a stable and physically
reasonable baseline. A similar approach has been adopted in other surface ocean
pCO2 reconstruction efforts, including Landschützer et al. (2016) and Gregor et al.,
(2021).
We have clarified this methodological choice in the revised manuscript (section 2.1,

lines 115-118) to avoid any misunderstanding regarding the temporal consistency of
the input variables, now as “Chl-a data were derived from the European Space
Agency Climate Change Initiative (ESA CCI) Ocean Colour (version 5.0) dataset,
spanning 1997 to 2022 with daily resolution and a spatial resolution of 4 km (Jackson
et al., 2017). For periods prior to 1997 and for 2023, we employed a climatology
computed from the 1997-2022 Chl-a record to ensure full temporal coverage.”.

8. The manuscript employs a 2° monthly climatological MLD (WOCE). It is
recommended to explain why a climatological mean was used instead of
incorporating interannual and monthly variability, as this choice may affect the
representation of temporal dynamics.
One of the most widely used and high-quality MLD dataset is the 2° global
climatological MLD product by de Boyer et al. (2004), based on global observed
temperature and salinity profiles. It accurately represents the climatological mean and
provides robust physical constraints for long-term, large-scale spCO2 reconstruction.
During 1982-2023, high-resolution, continuous interannual MLD data are lacking
globally. We acknowledge that climatological MLD does not capture interannual
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variability, which may slightly underestimate spCO2 interannual variability. However,
introducing time-varying MLD from numerical ocean models could potentially
introduce additional uncertainties, potentially larger than the bias introduced by using
a climatology. Consequently, the use of a climatological MLD represents a pragmatic
balance between different sources of uncertainty, ensuring a stable and reliable
baseline for identifying large-scale, long-term patterns. A similar choice has been
adopted in other ocean pCO2 reconstruction, including Landschützer et al., (2016) and
Gregor et al., (2021).
This limitation has been explicitly stated in the revised manuscript (section 4, lines

638-642), now as “It should be noted that the climatological MLD used in this study
cannot capture interannual or monthly variability, which may slightly underestimate
local or short-term impacts on spCO2. Nevertheless, it provides adequate physical
constraints for reconstructing long-term and large-scale spatiotemporal patterns.
Future work will explore incorporating high-quality time-varying MLD data as it
becomes available to improve model fidelity at regional and seasonal scales.”.

Minor comments:

1. Please clarify whether the input data were standardized during the model training
process, and specify the method used (e.g., variable-wise mean–variance
normalization, min–max scaling, or other approaches).
During the model training process, the input data were standardized using
variable-wise mean–variance normalization. Detailed descriptions of this procedure
have been added in section 2.2 (lines 153-154) of the manuscript, now as “These
input variables are standardized using variable-wise mean-variance normalization
and formatted into a multi-channel input to ensure feature extraction occurs on a
unified scale.”.

2. Please clearly indicate the flux sign convention in the caption of Figure 13, for
example: “Negative = ocean uptake (sink), Positive = release to the atmosphere
(source).” Ensure that this convention is consistent with the main text, equations, and
color bar.
Done as suggested. We have updated the figure caption (now is Fig. 14) to clearly
indicate the flux sign convention (lines 576-577): “Negative = ocean uptake (sink),
Positive = release to the atmosphere (source).” In addition, we have thoroughly
checked the main text, relevant equations, and color bar to ensure that this convention
is applied consistently throughout the manuscript.

3. In supplement Figure S6, the legend is labeled as “spCO2” which should be
“spCO2”. Please ensure consistency of the symbol and formatting throughout the
manuscript (e.g., uniformly using the subscript form “spCO2” instead of “spCO2”)
and apply the same convention across all figures, captions, and text. In addition,
please indicate the appropriate units (e.g., μatm) where relevant to avoid confusion.
Done as suggested. We have corrected the legend in supplement Figure S6 from
“spCO2” to “spCO2”, as followed. In addition, we have carefully reviewed the entire
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manuscript to ensure that the subscript formatting for “CO2” is used consistently
across all figures, captions, and text. We have also added the appropriate units (e.g.,
μatm) where relevant to avoid any potential confusion.

Figure R4. (Figure S6 in supplement section S4). Spatial distribution of standard
deviation in interannual time scale of reconstructed spCO2 at multiple data products
from 1985 to 2018. All the panels show the standard deviation of residuals after
removing long-term trends and seasonal cycles. The color scale represents the
magnitude of variability in spCO2, with higher values (red) indicating greater
variability.

4. Line 113 — abbreviation usage: The term “Sea surface salinity (SSS)” repeats a
definition already given earlier. Please use the abbreviation SSS here. A full-text
check is recommended to correct similar inconsistencies.
Done as suggested. At the revised text (now is line 114), we have replaced “Sea
surface salinity (SSS)” with the abbreviation SSS to avoid redundant definitions. In
addition, we conducted a comprehensive review of similar cases throughout the
manuscript to ensure that abbreviations are fully defined upon first appearance and
consistently used thereafter.

5. Regarding xCO2 (MBL), please clarify how the meridional band product was
mapped onto the 1° × 1° grid (e.g., through band replication, interpolation, or another
approach). Providing this detail would improve the transparency of the data
processing procedure.
In our study, the meridional band xCO2 (MBL) product, which is provided at discrete
latitude bands, was mapped onto the 1° × 1° global grid using a two-step procedure:
(1) Latitudinal Interpolation: For each time step, the original xCO2 values at

discrete latitude bands were interpolated to the model’s target latitudes using
one-dimensional linear interpolation along the meridional direction (implemented
with MATLAB’s interp1 function). This ensures a smooth transition of xCO2 values
between the original latitude bands.
(2) Longitudinal Replication: Because the original xCO2 product does not contain

longitudinal variations, the interpolated latitudinal profile was replicated along all
longitudes to produce a complete 2D global field at 1° × 1° resolution. This approach
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preserves the meridional gradient while assuming longitudinal uniformity, consistent
with the original dataset.
This mapping procedure was applied to all time steps from 1982 to 2023. These

details have now been explicitly added to the section 2.1 (lines 122-124) to improve
the transparency and reproducibility of the data processing, now as “In this study, the
meridional band product was mapped onto the model’s 1° × 1° global grid using
latitudinal interpolation and longitudinal replication, generating continuous 2D fields
suitable for model simulations.”

6. In the Methods section, please specify the training setup, including the maximum
number of epochs and/or the early stopping patience (e.g., “trained for up to 200
epochs with early stopping, patience = 20”), to improve the reproducibility of the
approach.
In our study, the ViT-based model was trained for a maximum of 200 epochs with
early stopping applied, using a patience of 10 epochs. This means that training would
terminate if the validation loss did not improve for 10 consecutive epochs. Each
training epoch required roughly 10 minutes. These details have now been explicitly
added to section 2.2 (lines 176-178) to improve the clarity and reproducibility of our
approach, now as “The ViT-based model contains approximately 115 million
parameters and was trained in parallel on eight NVIDIA RTX 4090 GPUs for up to
200 epochs with early stopping (patience = 10); each training epoch required
roughly 10 minutes.”

7. It is recommended to indicate the sample size for each data point or category in
Figure 3, allowing readers to more clearly understand the data coverage and the
reliability of the statistics.
Following the comment, we have indicated the sample size for each data station in
revised figure (now is Fig. 4). The addition is shown in the figure below.
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Figure R5. (Figure 4 in main text). Independent test of spCO2 variability between
SJTU-AViT and in situ observations at different stations. These in situ data are
independent data and are not used to train the model. The station description and
location refer to supplement section S2 and Fig. S2. The spCO2 in SJTU-AViT is
interpolated to match the station locations and times in the comparison. For each
panel, the number of samples (N), the mean bias error (MBE), root mean square error
(RMSE), and correlation coefficient (R2) between the reconstructed and observed
spCO2 are displayed. The dashed and solid lines show the linear trend of SJTU-AViT
and in situ data.

8. It is recommended to review the entire manuscript and ensure that all instances of
“CO2” use a subscript for the number 2, maintaining consistency and adhering to
scientific writing conventions.
Done as suggested. We have carefully reviewed the entire manuscript and ensured
that all instances of “CO2” now use a subscript for the number 2, maintaining
consistency throughout the text and adhering to standard scientific writing
conventions.

9. Line 31: In the abstract, change “This study not only provide…” to “This study not
only provides…”. It is recommended to review the entire manuscript for program
errors.
Done as suggested. We have corrected the sentence in the abstract (now is line 32) to
“This study not only provides…”. In addition, we have carefully reviewed the entire
manuscript to identify and correct similar grammatical errors, ensuring the accuracy



15

and readability of the text.

10. Line 31: In the abstract, change “Earth system” to “Earth-system” when used as a
compound adjective for clarity
Done as suggested. We have revised the abstract (now is line 34) to change “Earth
system” to “Earth-system” when used as a compound adjective.

11. Line 170: It is recommended to revise the sentence to: “The ViT-based model
contains approximately 115 million parameters and was trained in parallel on eight
NVIDIA RTX 4090 GPUs; each training epoch required roughly 10 minutes.”
Done as suggested. Incorporating the suggestion from minor comment 6, we have
revised the sentence (now is lines 176-178) to: “The ViT-based model contains
approximately 115 million parameters and was trained in parallel on eight NVIDIA
RTX 4090 GPUs for up to 200 epochs with early stopping (patience = 10); each
training epoch required roughly 10 minutes.”

12. Line 260: It is recommended to revise the sentence to: “Most predicted values lie
close to the 1:1 line, particularly within the climatologically common spCO2 range
(300–420 µatm), as indicated by the high-density regions in Fig. 2.”
Done as suggested. We have revised the sentence (now is lines 287-289) to: “Most
predicted values lie close to the 1:1 line, particularly within the climatologically
common spCO2 range (300-420 µatm), as indicated by the high-density regions in Fig.
3.”

13. Line 312: Ensure there is a space before “µatm,” e.g., “-12 µatm to +10 µatm.”
Done as suggested. We have corrected the formatting issue by adding a space before
“µatm” (e.g., “-12 µatm to +10 µatm”) in the revised text (now is line 340). We have
also carefully checked the entire manuscript to ensure consistent formatting of units
throughout.

14. It is recommended to standardize the number of decimal places throughout the
manuscript (e.g., consistently using two or three decimal places).
We have carefully checked all numerical values reported in the manuscript and
standardized the format to retain two decimal places throughout. We note, however,
that for prescribed data such as Niño 3.4 and the scaling factor (set as 0.251), no
modification was made.

15. For the air–sea flux calculation, the parameterization of Wanninkhof (2014)
requires the Schmidt number, wind speed source, and resolution (you used ERA5). It
is recommended to specify in section 2.4 the temporal and spatial resolution of ERA5
and the formula or reference used for computing the Schmidt number.
Done as suggested. In our study, the air-sea CO2 flux was calculated using the
parameterization of Wanninkhof (2014). The wind speed data were sourced from the
ERA5 reanalysis, with a 6-hourly temporal resolution covering 1982-2023 and a
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horizontal spatial resolution of 1°.
The gas transfer velocity of CO2 (kw) is computed using a quadratic dependence on

wind speed:

�� = 0.251 ∙ (푆�/660)
−12 ∙ �2

where u is the wind speed at 10 m above the sea surface, and Sc is the Schmidt
number of CO2 in seawater. The Schmidt number is calculated from the
temperature-dependent empirical formula:

푆� = 2116.8 − 136.25 ∙ � + 4.7353 ∙ �2 − 0.092307 ∙ �3 + 0.0007555 ∙ �4

where T is the sea surface temperature in °C. This formulation accounts for the effect
of sea surface temperature on CO2 diffusivity in seawater.
These details, including the information on ERA5 data and the reference used for

computing the Schmidt number, have been added to section 2.4 (lines 257-259) of the
manuscript. They are now described as: “The Schmidt number (Sc) required in this
formulation is calculated following the temperature-dependent empirical formula
provided by Wanninkhof (2014). The wind speed data is sourced from ERA5, with a
6-hourly temporal resolution spanning 1982-2023 and a 1° spatial resolution.”

16. Table 1: It is recommended to change “12 month” to “12-month.”
Done as suggested. This correction has been applied in Table 1 and carefully
reviewed throughout the manuscript to ensure consistency.

17. In the Abstract, it is stated that the model shows a correlation of 0.81 with the
Niño 3.4 index, whereas section 3.4 reports a correlation of –0.81. This inconsistency
in the sign of the correlation may confuse readers. Please verify the original
calculation and ensure that the values and their signs are reported consistently
throughout the manuscript.
Done as suggested. The value reported in the Abstract (0.81) was a typo and the
correct correlation coefficient is -0.81. This has been corrected in the revised
manuscript (Abstract, line 29).
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