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10 Abstract. This work presents a comprehensive global GNSS climate data record derived from 5085 stations, spanning a 22-

year time period 2000–2021. Generated through the GPAC-Repro campaign, the dataset utilises state-of-the-art processing 

methodologies and precise products from the International GNSS Service (IGS) Repro-3 initiative. The dataset includes high-

quality hourly estimates of Zenith Total Delay (ZTD) and Precipitable Water Vapour (PWV), offering improved accuracy and 

spatiotemporal coverage. A rigorous data screening and quality assessment framework was implemented, including formal 

15 error detection, offset identification, and extensive cross-validation with ERA5 reanalysis dataset, radiosonde profiles, and 

Very Long Baseline Interferometry (VLBI) measurements. Collectively, these efforts ensured the consistency, accuracy, and 

homogeneity of the dataset. In addition, diurnal, monthly, and annual variations in ZTD and PWV have been analysed to 

evaluate and demonstrate its feasibility for monitoring climate variability, atmospheric circulation, and weather extremes. The 

insights provided by the dataset address critical data gaps in global climate observing systems and provide a robust foundation 

20 for advancing climate research and applications. Representing a significant milestone in GNSS climatology, this dataset serves 

as a vital resource for the scientific community, supporting improved understanding of atmospheric processes and more 

effective responses to climate-related challenges. 

Keywords：Global Navigation Satellite Systems (GNSS), precipitable water vapour (PWV), zenith total delay (ZTD), 

satellite Earth observation, GNSS climatology, atmospheric monitoring 

25 1 Introduction 

We are currently experiencing an alarming rise in global temperatures and an accelerated progression of climate change, 

manifesting in increasingly severe and frequent weather and climate extremes across the planet (Seneviratne et al., 2021). The 

repercussions of these events are profound, causing significant adverse socioeconomic consequences and posing substantial 

challenges to the sustainable development of human society. It is estimated that around 3.5 billion people are highly vulnerable 

30 to climate change, with over 1.5 billion already affected by weather and climate extremes (Asian Disaster Reduction Centre, 

2015). Additionally, economic losses attributed to these extreme events now exceed $1.3 trillion annually (Calvin et al., 2023). 

Overall, the growing body of evidence on observed impacts and the escalating trend of disasters highlight a rapidly diminishing 

window of opportunity to enable progress towards constructing climate-resilient communities. Despite global efforts spanning 

several decades, considerable data gaps remain, particularly in the existing climate observing networks. It is therefore 

35 important to generate long-term, homogeneous datasets for Essential Climate Variables (ECVs) to deepen our comprehension 

of the intrinsic nature of weather and climate extremes and enhance comprehensive climate services for the benefit of current 

and future generations (Bojinski et al., 2014). 

Among the various atmospheric parameters, water vapour, recognised as an ECV, plays a significant role in studying global 

climate change and atmospheric variability (Dessler et al., 2008; Solomon et al., 2010; Labbouz et al., 2015; Ye et al., 2015). 
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40 Substantial evidence also demonstrates that the dynamic movement of water vapour directly drives meteorological fluctuations. 

Consequently, access to accurate and timely water vapour data is crucial for enhancing the robustness of climate models and 

improving assessment of climate risks. Since the 1940s, radiosondes have been deployed to monitor atmospheric conditions 

and derive accurate water vapour measurements (Brettle and Galvin, 2003; Durre et al., 2006). However, these sounding 

balloons, typically launched twice daily from sparsely distributed stations around the globe, offer observations with limited 

45 spatiotemporal resolution (Li et al., 2003; Benjamin et al., 2004; Liu et al., 2013). In addition to radiosondes, water vapour 

radiometers and satellite-based instruments have been adopted to measure atmospheric water vapour content (England et al., 

1993; Buehler et al., 2008). While widely adopted, these technologies face certain challenges, including high operational costs, 

limited temporal and vertical resolution, low precision, and susceptibility to weather conditions (Elliott, 1995; Gui et al., 2017). 

Given the limitations, there is a strong rationale for adopting an emerging technology, i.e., Global Navigation Satellite Systems 

50 (GNSS), for additional remote sensing of atmospheric water vapour. Initially designed for positioning, navigation, and timing, 

GNSS technology, like the Global Positioning System (GPS) has broadened its applications to include atmospheric monitoring 

since the 1990s (Elgered et al., 1991; Bevis et al., 1992; Duan et al., 1996). In ground-based GNSS atmospheric monitoring, 

GNSS receivers function as atmospheric sensors by tracking changes in signals as they traverse the atmosphere. Variations in 

water vapour, pressure, and temperature in the troposphere significantly affect the speed and trajectory of these GNSS signals, 

55 causing propagation delays. By measuring and analysing these signal delays from satellites to GNSS receivers, atmospheric 

parameters, like zenith total delay (ZTD) and precipitable water vapour (PWV), can be estimated (Rocken et al., 1993, 1995; 

Nilsson and Elgered, 2008; Wang et al., 2017). With used together with conventional techniques, the distinct advantages of 

GNSS atmospheric data, including high-accuracy, high spatiotemporal resolution, long-term stability, broad-coverage and all-

weather capability, unequivocally enhance the potential for advancing weather and climate research and improving response 

60 to climate risks (Gradinarsky et al., 2002; Jin et al., 2007; Choy et al., 2011; Jones et al., 2020; Li et al., 2020, 2023a, 2023b). 

In recent years, the innovative utilisation of GNSS-derived ZTD and PWV estimates has spurred the development of various 

statistical, numerical, and artificial intelligence (AI)-empowered approaches for nowcasting and very short-range forecasting 

of weather extremes, such as heavy precipitation and tropical cyclones (Zhao et al., 2018, 2022; Benevides et al., 2019; Rohm 

et al., 2019; Manandhar et al., 2019; Zhang et al., 2022; Li et al., 2022b, c). Beyond these meteorological applications, GNSS 

65 atmospheric parameters have also significantly enriched climate studies (Hagemann et al., 2003; Bock et al., 2007; Zhao et al., 

2020; Ma et al., 2021; Li et al., 2022a, d). Notably, Foster et al. (2000) demonstrated that PWV effectively captured the water 

vapour variability induced by the 1997–1998 El Niño event. Gradinarsky et al. (2002) reported a long-term linear increase in 

PWV of 0.1–0.2 mm/year across Scandinavia from 1993 to 2000. Nyeki et al. (2005) highlighted that PWV could track all-

weather water vapour trends, unlike precision filter radiometers, which are limited to clear-sky conditions. Further studies of 

70 trends in PWV series were conducted in Finland and Sweden (Nilsson and Elgered, 2008) from 1996 to 2006, in Switzerland 

(Morland et al., 2009) from 1996 to 2007, and in South Korea (Sohn and Cho, 2010) from 2000 to 2009. Additionally, Wang 

et al. (2018) applied singular spectrum analysis (Wang et al., 2016a, b) to extract nonlinear trends in PWV series, demonstrating 

its potential for depicting the evolution of droughts and floods. Several other studies have also explored seasonal variations in 

GNSS atmospheric parameters, their responses to climate change, and their feasibility in monitoring climate extremes (Jin et 

75 al., 2007; Jin and Luo, 2009; Wang and Zhang, 2009; Ning et al., 2013; Jiang et al., 2017; Li et al., 2024). Collectively, these 

studies underscore the key role of GNSS atmospheric parameters in advancing weather and climate research. However, despite 

the advances, the potential of GNSS atmospheric monitoring remains largely unutilised in the climate community, primarily 

due to the lack of robust long-term GNSS climate datasets and comprehensive analysis. Often, the dataset utilised in the 

aforementioned studies span only around 10 years, which is insufficient for uncovering the climate change signals embedded 

80 in these parameters. Therefore, given the continuous enhancement of multi-constellation, multi-frequency GNSS capabilities, 

the availability of new data streams, and the extensive accumulation of GNSS data since the 1990s, this juncture presents a 

prime opportunity to generate a long-term, homogeneous GNSS climate dataset, thus fully harnessing the capabilities of GNSS 
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atmospheric monitoring for climate applications. 

Numerous international academic organizations and many governmental stakeholders have embarked on initiatives to generate 

85 accurate GNSS atmospheric parameters, aiming to advance atmospheric and climate studies. For example, the Troposphere 

Working Group (TWG) of the International GNSS Service (IGS) exemplifies such efforts by producing the “final” tropospheric 

estimates. These parameters are processed by the United States Naval Observatory (USNO) utilising the “final” satellite, orbit, 

and Earth Orientation Parameters (EOP) combination products, typically made available around three weeks after observation 

(Byram et al., 2011). However, the determined ZTD time series may still exhibit inhomogeneities due to updates in reference 

90 frames and models, variations in mapping function implementations, adjustments in elevation cut-off angles, and modifications 

in processing strategies. For climate-related research, maintaining the homogeneity of ZTD and PWV time series is essential, 

as reliable climate change monitoring relies on the utilisation of robust and consistent datasets (Vey et al., 2009; Van Malderen 

et al., 2014; Ning et al., 2016). Therefore, to address this, it is important to reprocess long-term historical GNSS data using 

consistent processing strategies, including uniform mapping functions, elevation cut-off angles, and models, like phase centre 

95 variation. In response, the IGS analysis centres have undertaken two significant reprocessing campaigns, utilising the most 

recent models, updated processing strategies, and the latest satellite orbits, clock corrections, and EOP estimates. The second 

IGS reprocessing campaign (known as “Repro-2”) produced reprocessed tropospheric parameters covering ZTD data spanning 

1994 to 2013 at about 300 stations in the IGS network. Beyond IGS, other institutes, such as the Geodetic Observatory Pecný 

(GOP), have conducted similar efforts. GOP, for example, reprocessed GNSS data at stations in the Regional Reference Frame 

100 sub-commission for Europe Permanent Network (EPN) from 1996 (30 sites) to 2014 (300 sites) (Dousa et al., 2017), producing 

a combined ZTD dataset for EPN stations using data from five analysis centres (Pacione et al., 2017). From another aspect, 

although an enhanced integrated water vapour dataset from more than 10000 global GNSS stations was determined in (Yuan 

et al., 2023), the dataset is limited only to the year 2020. Therefore, while these reprocessed GNSS datasets provide valuable 

insights into trends and variations in water vapour, their utility is constrained by the relatively low site density and inadequate 

105 temporal coverage, necessitating further expansion and extended data acquisition endeavours. 

In this work, we reprocessed historical GNSS observations from over 5000 stations, covering a 22-year period 2000–2021. 

The goal is to fulfil the requirements of climate studies for homogeneous, long-term atmospheric parameters across a broad 

network. This reprocessing campaign, named “GPAC-Repro” hereinafter, used precise satellite orbit, clock, and EOP products 

from the third IGS data reprocessing campaign (IGS Repro-3), in conjunction with state-of-the-art strategies and models to 

110 further ensure the quality and consistency of the dataset. The ZTD estimates derived from the GNSS data were converted to 

PWV using temperature and pressure data from the fifth generation of European ReAnalysis (ERA5) atmospheric reanalysis 

(Hersbach et al., 2020). Then, a rigorous quality assessment of the determined ZTD and PWV estimates was conducted by 

comparing them with their counterparts from ERA5, radiosonde, and Very Long-Baseline Interferometry (VLBI). Additionally, 

to elucidate the characteristics of the new dataset and facilitate its use in climate studies, we also calculated the maximum and 

115 minimum, as well as daily, monthly, and annual mean values of PWV and ZTD for each station over the entire study period. 

Overall, this newly reprocessed, long-term, homogeneous GNSS climate dataset is one of the most comprehensive GNSS 

atmospheric datasets available. It represents a significant advancement in the innovative field of GNSS climatology, providing 

a valuable resource for scientific communities engaged in climate studies. 

2 Data and Methods 

120 2.1 Data acquisition and analysis  

This reprocessing campaign initially utilised GNSS observations from 5180 globally distributed stations, covering a 22-year 

period 2000–2021. The GNSS data were sourced from four archive centres, including the Crustal Dynamics Data Information 

System (CDDIS, ftp://gdc.cddis.eosdis.nasa.gov/gnss/data/daily), the Scripps Orbit and Permanent Array Centre (SOPAC, 
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http://garner.ucsd.edu/pub/rinex), Geoscience Australia (GA, sftp.data.gnss.ga.gov.au), and the Hong Kong Geodetic Survey 

125 Section of the Survey and Mapping Office (SMO, ftp://ftp.geodetic.gov.hk/rinex2). The daily GNSS observations were stored 

in the standard Receiver INdependent EXchange (RINEX) format, which contains dual-frequency carrier phase and code 

measurements, typically recorded at a 30-second sampling interval. Following a rigorous data screening process, 95 sites were 

excluded due to identified issues with the atmospheric results, leading to a final dataset comprising 5085 GNSS stations. The 

detailed exclusion criteria and screening procedures are described in Section 3. Fig.1 illustrates the geographical distribution 

130 of the GNSS stations included in the GPAC-Repro campaign, all of which successfully passed the quality control checks. In 

addition to the distribution, further analysis of the data record duration and integrity across the 5085 sites is presented in Fig.2. 

 
Figure 1. Geographical distribution of 5085 GNSS sites (a). Zoomed-in figures of regions with high station density, including the 
United States (b), Europe (c), Australia (d), and Japan (e). 

135  
Figure 2. Recorded length (a) and data integrity (b) of the generated GNSS climate dataset across the 5085 stations. 
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Specifically, Fig.2a provides an overview of the length of data records for each station, represented by color-coded symbols. 

The durations range from 3 months to 22 years, offering a detailed perspective on the temporal coverage of the determined 

dataset. Statistically, over 30% of the stations have records exceeding 15 years, 25.4% and 23.9% of the stations have records 

140 spanning 10–15 years and 5–10 years, respectively, while 20.5% of the sites have records shorter than 5 years. Fig.2b, on the 

other hand, presents data integrity, with stations color-coded based on their completeness percentage. This metric highlights 

the availability and continuity of the dataset across all stations, providing valuable insights into the quality of the dataset for 

subsequent analyses. Together, these figures emphasize the robust temporal and spatial characteristics of the generated dataset. 

2.2 GNSS data processing  

145 This campaign adhered to the highest international standards recommended by the IGS (http://acc.igs.org/repro3/repro3.html, 

last access: 1 October 2024). Advanced modelling and correction techniques were implemented using Bernese GNSS Software 

Version 5.2, incorporating the latest updates to further enhance accuracy. Key updates include the International Earth Rotation 

and Reference Systems Service (IERS) linear pole model and the high-frequency (sub-daily) Earth Orientation Parameters 

(EOP) tide model proposed in (Desai and Sibois, 2016). Table 1 provides a summary of the primary modelling features and 

150 corrections applied in the GPAC-Repro campaign. 

Table 1. Modelling features and corrections adopted in the GPAC-Repro campaign 

Item Strategy 

Observations GPS L1 and L2 observations with a 300 s sampling rate 

Orbit/Clock/ERP Products from CODE Repro-3 campaign 
Sub-daily EOP model  High frequency pole model 

Gravity field model EGM2008 up to degree and order 12 

Solid Earth Tides, Solid and Ocean Pole 
Tides IERS Conventions 2010 

Ocean Tide loading FES2014b ocean tide loading model 
Atmospheric tides Not applied 
Nontidal loadings Not applied 

Ionosphere 
First-order effect was eliminated by forming the ionosphere-free linear 
combination, high order ionosphere (HOI) effect was corrected using 
CODE global ionosphere model 

Cut-off elevation angle 3° 

Antenna model igsR3_2077 mode for receiver and satellite phase centre offsets and 
variations 

Mapping function Vienna Mapping Function (VMF1) 
Priori hydrostatic delay Vienna Mapping Function (VMF1) 
Troposphere gradient models The Chen-Herring gradient model 
Troposphere-estimated parameters ZTD (1 hour) and horizontal parameters (24 hours) 
Solution type Precise Point Positioning (PPP) 

Data Span 
Long-arc solutions include the data from three days, combined on normal 
equation level, ZTD and gradient parameters are extracted from the 
middle day 

Note that, for this reprocessing effort, only GPS observations were utilised to avoid potential shifts in the ZTD series during a 

transition to multi-GNSS systems (Nguyen et al., 2021). Consistent with the recommendations of the IGS Repro-3, the 2010 

IERS conventions were followed for modelling solid Earth tides, solid Earth pole tides, as well as ocean pole tides. Ocean tidal 

155 loading (OTL) effects were accounted for using the FES2014b model. Note that the atmospheric tidal loading (ATL) and non-

tidal loading (NTL) effects were excluded due to the insufficient accuracy of current models (EPN, 2022) and their negligible 

impact on ZTD values (Pacione et al., 2017). According to the IERS 2010 conventions, NTL effects exhibit minimal variability 

over standard integration periods, and their inclusion in final solutions is generally discouraged (Petit and Luzum, 2010). Our 

experiments confirmed that incorporating the ATL and NTL models had an insignificant effect on ZTD estimates, yielding a 

160 mean root mean square (RMS) error of just 0.15 mm, well below typical ZTD uncertainty levels. The antenna correction model 
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(igsR3_2077.atx) was also adopted in this work. In addition, the VMF1 (Boehm et al., 2006) was used as the a priori hydrostatic 

delay model and mapping function, with a 3°cut-off angle. Remaining tropospheric delays, as well as horizontal gradients in 

the North–South and East–West directions (Chen and Herring, 1997), were estimated utilising Precise Point Positioning (PPP) 

mode at intervals of 1 hour and 24 hours, respectively. One critical challenge in ZTD estimation is the day boundary problem, 

165 which occurs when GNSS data are processed independently on a daily basis (Byram et al., 2011). To address this, a 27-hour 

time window was adopted, enabling the generation of daily normal equations. These equations were subsequently combined 

across three consecutive days to produce a 3-day solution, from which ZTD values for the central date were extracted (Dousa 

et al., 2017), thereby enhancing the continuity and accuracy of the dataset. 

2.3 Retrieval of PWV 

170 The retrieval of PWV from ZTD requires the inclusion of meteorological parameters, specifically temperature and pressure, 

at the locations of GNSS sites. However, the absence of meteorological sensors at most GNSS stations presents a significant 

challenge in obtaining these parameters. To address this, this study used atmospheric data from the high-quality ERA5 dataset 

to provide the necessary meteorological inputs for the retrieval process. The process begins by calculating the Zenith Wet 

Delay (ZWD), which is derived by subtracting the Zenith Hydrostatic Delay (ZHD) from the ZTDs obtained from GNSS data.  

𝑍𝑊𝐷 = 𝑍𝑇𝐷 ― 𝑍𝐻𝐷 (1) 

175 The ZHD is computed using numerical integration over ERA5 pressure profiles (Haase et al., 2003): 

𝑍𝐻𝐷 = 10―6𝑘1𝑅𝑑

𝑃𝑎𝑛𝑡

0
 

1
𝑔(𝑧) ∙ 𝑑𝑃 (2) 

where 𝑘1 = 77.60 𝐾 ℎ𝑃𝑎―1 is the refractivity coefficient, 𝑅𝑑 = 287.05 𝐽·𝐾―1·𝐾𝑔―1represents the gas constant for dry air, 

and 𝑃𝑎𝑛𝑡 denotes the pressure at the GNSS antenna height. The local gravitational acceleration at geometric height z (in km), 

denoted as 𝑔(𝑧), was determined as follows (NOAA, 1976): 

𝑔(𝑧) = 𝑔𝑠(
𝑅𝑠

𝑅𝑠 + 𝑧 )
2
 (3) 

where 𝑔𝑠 represents the local gravitational acceleration at mean sea level at latitude 𝜑, and 𝑅𝑠 denotes the effective radius of 

180 the Earth at latitude 𝜑. These parameters were determined using (WMO, 2018): 

𝑔𝑠 ≈ 9.80620 ∙ 1 ― 0.0026442 ∙ 𝑐𝑜𝑠(2𝜑) + 5.8 ∙ 10―6 ∙ 𝑐𝑜𝑠2(2𝜑)
𝑅𝑠 = 6378.137/(1.006803 ― 0.006706 ∙ sin2(𝜑))  (4) 

Note that the ERA5 dataset covers 37 pressure levels ranging from 1000 to 1 hPa. Since atmospheric contributions above 1 

hPa were excluded in ZHD calculations based on ERA5 profiles using Eq. (2), an additional equation was used to determined 

ZHD contributions above the highest pressure level of ERA5, i.e., above 1 hPa. This additional contribution was then integrated 

into the ZHD calculations to ensure a more comprehensive analysis (Haase et al., 2003). 

∆𝑍𝐻𝐷 ≈
𝑘1𝑅𝑑𝑃1

𝑔1
1 + 2

𝑅𝑑𝑇1
(𝑅𝑠 + 𝑧1)𝑔1

+ 2
𝑅𝑑𝑇1

(𝑅𝑠 + 𝑧1)𝑔1

2

 (5) 

185 Another important issue needs to address is that, for GNSS sites located above or below the lowest pressure level of the ERA5 

dataset, interpolation or extrapolation methods were used to estimate pressure, humidity, and temperature. Details of these 

procedures and the conversion of GNSS altitudes (referenced to the ellipsoid) to altitudes relative to mean sea level can be 

found in our previous studies (Wang et al., 2016c, 2017). Once the ZWD is determined by subtracting the ERA5-derived ZHD 

from GNSS-derived ZTD, it is converted to PWV using the following equations (Bevis et al., 1992). 
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𝑃𝑊𝑉 =
106

𝑅𝑤 ∙ 𝑘2 ―
𝑅𝑑
𝑅𝑣

𝑘1 +
𝑘3
𝑇𝑚

 
ZWD (6) 

190 where 𝑅𝑤 = 461.5 𝐽·𝐾―1·𝐾𝑔―1 is the gas constant for water vapour, 𝑘2 = 70.4 𝐾 ℎ𝑃𝑎―1 and 𝑘3 = 3.739 × 105 𝐾2 ℎ𝑃𝑎―1 

are refractivity coefficients. 𝑇𝑚 denotes the water vapour-weighted mean temperature, calculated as: 

𝑇𝑚 =
∫𝑡𝑜𝑎

𝑧𝑎𝑛𝑡

𝑃𝑣
𝑇 𝑑𝑧

∫𝑡𝑜𝑎
𝑧𝑎𝑛𝑡

𝑃𝑣
𝑇2 𝑑𝑧

 (7) 

where 𝑧𝑎𝑛𝑡 and 𝑡𝑜𝑎 represent the height of GNSS antenna and the top of the atmosphere, respectively; 𝑃𝑣 is the partial pressure 

of water vapour, and T refers to the absolute temperature. Using the aforementioned procedures, PWV values can be effectively 

retrieved from the determined ZTD estimates. 

195 3 Data screening 

To achieve highly-quality GNSS atmospheric parameters, the adoption of the state-of-the-art processing strategies is essential. 

However, outliers may still occur due to observational errors or short gaps caused by equipment malfunctions or suboptimal 

observational conditions (Stepniak et al., 2018). Additionally, systematic biases may arise from incorrect records of receiver 

or antenna types. To ensure the accuracy of ZTD estimates and the resulting PWV values, a rigorous data screening procedure 

200 is indispensable for identifying and addressing problematic stations and outliers. This study introduces a comprehensive, multi-

step data screening method for outlier identification. The procedure systematically analyses coordinate repeatability, examines 

variations in ZTD values and their formal errors, and detects outliers by comparing GNSS-PWV with reference PWV estimates 

from the ERA5 dataset. Fig.3 illustrates the flowchart of this multi-step data screening approach. 

 
205 Figure 3. Flowchart of the multi-step data screening approach 

3.1 Screening based on coordinate repeatability 

The screening process begins with an analysis of coordinate repeatability, a key indicator of the reliability of GNSS solutions. 

For each station, the standard deviation (STD) of daily coordinates in the North, East, and vertical directions were calculated 

over the entire period. Stations with an STD exceeding 100 m in any direction were excluded, resulting in the removal of 60 

210 GNSS stations. Such large deviations were often associated with local antenna relocations or duplicate station names (Yuan et 

al., 2023). Next, discrepancies between daily coordinate values and corresponding weekly combined solutions were assessed. 

Residuals surpassing thresholds of 15 mm in the North and East directions and 30 mm in the vertical direction led to the 

exclusion of associated daily solutions (Dousa et al., 2017). Therefore, ZTD estimates associated with these flagged days were 

removed, resulting in a data reduction of 0.008%, i.e., 34,852 hourly data samples. 
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215 3.2 Screening based on GNSS-ZTD results only   

Following the coordinate repeatability evaluation, ZTD values underwent further screening utilising range checks and outlier 

detection. As the first step, ZTDs outside the range of 1–3 m (Bock et al., 2014) and those with formal errors (𝜎𝑧𝑡𝑑) exceeding 

10 mm were excluded. Subsequent outlier detection was conducted for each station using thresholds determined via the Inter-

Quartile Range (IQR) method based on a 15-day sliding window. Specifically, daily ZTD threshold limits were calculated 

220 using [𝑄1 ―3 × 𝐼𝑄𝑅,  𝑄3 +3 × 𝐼𝑄𝑅], where 𝐼𝑄𝑅 = 𝑄3 ― 𝑄1, and 𝑄1 and 𝑄3 represent the 25th and 75th percentiles, 

respectively, of all ZTD estimates within a 15-day sliding window centred on the target date (Yuan et al., 2023). Additionally, 

the upper limit for 𝜎𝑧𝑡𝑑 was determined as 2.5 times the median value, calculated over the same 15-day period. Based on these 

criteria, ZTDs and their formal error exceeding station-specific thresholds were flagged and removed, resulting in the removal 

of 0.3486% of the ZTDs. 

225 While this step ensures a refined ZTD dataset for PWV retrieval without requiring external reference models, e.g., ERA5, it 

still has several limitations, particularly in detecting systematic biases within ZTD time series. To address this, atmospheric 

parameters from co-located GNSS stations were further assessed for consistency. Note that, to ensure the robustness of the 

analysis and minimise the influence of spatial separation, co-located stations were defined as having horizontal and vertical 

separations of no more than 1000 m and 50 m, respectively. Additionally, each pair of co-located stations was required to have 

230 at least 8760 paired ZTD data samples, equivalent to one year of hourly observations. Given their close proximity and shared 

atmospheric conditions, co-located stations are expected to showcase a high level of agreement in their ZTD estimates. Fig. 4 

illustrates the RMS and mean differences in ZTD at 390 co-located stations.  

 
Figure 4. RMS and mean differences in ZTD at 390 pairs of co-located GNSS stations 

235 It was found that the majority of station pairs (352 pairs) exhibited RMS below 10 mm, with biases confined within ±5 mm, 

indicating strong consistency in their ZTD estimates. However, 29 station pairs showed RMS differences ranging from 10 and 

20 mm, and 9 pairs exceeded 20 mm. 

After a detailed evaluation, discrepancies in ZTD between co-located GNSS sites are often attributed to height differences. 

For example, as depicted in Fig. 5, the ZTD values at MGO3, located 40 m lower than MGO2, showed a positive deviation of 

240 approximately 10 mm compared to those obtained at MGO2. In contrast, the ZTD differences between MDO1 and MGO2, 

with a vertical difference of 2 m, remained within ±5 mm, with an RMS of 2.77 mm and a bias of 0.03 mm. Another common 

source of discrepancies, as mentioned before, is errors in recording receiver or antenna types, often due to human errors. As 
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illustrated in Fig. 6, a significant deviation with an RMS of 27.42 mm was observed between the ZTD values at the co-located 

stations PUB1 and PUB2. This issue was resolved in 2008 following the replacement of PUB1 and PUB2 with PUB5 and 

245 PUB6, respectively, as part of an upgrade involving new antennas and radomes. A comparison with ERA5-derived ZTD 

revealed a notable positive bias of 23.1 mm at PUB2, whereas biases at PUB1, PUB5, and PUB6 were -1.8 mm, 2.4 mm, and 

1.2 mm, respectively. Further investigation suggested that the antenna type for PUB2 was recorded as ASH700829.3 instead 

of the correct ASH701945E_M, leading to the overestimation of ZTD. Similar systematic biases exceeding 20 mm were also 

identified at four additional stations (LRA1, UTK1, UTK2, and CLS6) when compared to co-located stations and the ERA5 

250 dataset. The large discrepancies are likely stemmed from equipment malfunctions or suboptimal observational conditions, like 

strong multipath effects. 

 
Figure 5. ZTD differences among three station pairs: MOD1–MOD2 (orange), MOD1–MOD3 (blue), and MOD2–MOD3 (yellow) 

 
255 Figure 6. ZTD differences between two station pairs: PUB1–PUB2 (blue), and PUB5–PUB6 (orange) 

Although assessing the internal consistency of ZTD estimates from co-located GNSS sites is a valuable method for identifying 

potentially problematic stations, its applicability is greatly limited by the scarcity of co-located counterparts for most stations. 

This constraint prevents a thorough assessment across the entire network. Moreover, even when discrepancies are observed 

between co-located stations, accurately determining which station is problematic within the pair remains challenging without 

260 sufficient external information. Therefore, to address these limitations, additional screening of the dataset is crucial. This can 

be achieved by comparing ZTD values with an independent reference dataset, such as ERA5, to validate and enhance the 

overall quality of the results. 

3.3 Screening based on comparison with reference PWV data 

In the final phase, the screened ZTD estimates were converted to PWV values and further validated using ERA-derived PWVs 

265 as a reference. An initial range check excluded 0.16% of the PWV estimates, which were identified as unrealistic negative 

values. These outliers were predominantly observed at high-latitude and high-altitude stations, like those in Antarctica, where 

the average elevation is 2500 m and mean PWV values are typically below 2 mm. As highlighted in (Thomas et al., 2008), 

remotely-sensing PWV estimates using GNSS atmospheric monitoring techniques in Antarctica is challenging. Both the dry 

atmospheric conditions and poor geometry of GNSS constellations, characterised by satellites visible at low elevation angles, 

270 contribute to reduced accuracy. Furthermore, the VMF1 mapping function and a priori tropospheric models are less reliable in 
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polar regions on account of the limited availability of meteorological data (Labib et al., 2019). Additionally, uncertainties in 

ERA5-derived ZHD estimates can impact the accuracy of PWVs in Antarctica, where the typically low PWV levels are highly 

sensitive to ZHD errors. 

Following the removal of negative PWV values, a robust outlier detection and elimination method was applied. This method 

275 comprises two steps: identifying nearby site and establishing monthly, site-specific thresholds. First, for each station, nearby 

stations were identified based on a spatial criterion of being within 2° of latitude and longitude and having a vertical separation 

of less than 500 m. Then, the differences between the GNSS-PWVs at the target station and the ERA5-PWVs at these nearby 

stations were calculated. Using these differences, monthly thresholds for outlier detection were defined for each station using 

the aforementioned IQR-based method, which were applied to identify and remove outliers from PWV series. This process 

280 was performed for all stations, with each site assigned unique thresholds to account for spatiotemporal atmospheric variability. 

The procedure was repeated iteratively until no additional outliers were identified, typically requiring three iterations to 

converge on a refined dataset. To further illustrate this method, the station SNGO was analysed as an example. As shown in 

Fig. 7a, the nearby stations for SNGO are identified. The differences between GNSS-PWVs and ERA5-PWVs at SNGO and 

its nearby stations were then analysed to establish monthly threshold limits, depicted as red lines in Fig. 7b. Applying these 

285 thresholds to the PWV series resulted in the identification and removal of 0.24% of outliers (red points) that fell outside the 

defined range. Hence, the final screening step excluded 0.29% of the data points, with an average rejection rate of 0.37% 

across all sites. However, it was found that 172 stations exhibited rejection rates exceeding 1%. A detailed examination flagged 

34 problematic sites with considerable discrepancies between GNSS-PWV and ERA5-PWV, as exemplified by AC30 shown 

in Fig. 8. Notably, those sites flagged as “problematic” during the co-location check were also identified through this procedure, 

290 indicating the effectiveness of the ERA5 dataset as a reference for data screening. 

After completing the rigorous multi-step data screening process, the final dataset comprises 435.65M hourly PWV samples 

from 5085 sites, with 95 problematic sites and 1.09M samples removed as outliers. 

 
Figure 7. Identification of nearby stations for SNGO (a) and time series of PWV differences with threshold limits (b) 

295  
Figure 8. Time series of PWV differences for station AC30 
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4 Quality Assessment 

4.1 Formal errors in ZTD estimations 

The formal errors of the estimated ZTD are known to play a key role in analysing the quality of GNSS atmospheric parameters. 

300 In this regard, the distribution and cumulative percentage of formal errors across the 5085 GNSS sites employed in this study 

are shown in Fig. 9. The majority of formal errors range between 0.5 mm and 2 mm, peaking at about 1 mm. The cumulative 

percentage curve (orange line) indicates a rapid increase, reaching 90% at 2 mm and 99.73% at 5 mm. The mean and median 

values of these errors are 1.38 mm and 1.23mm, respectively. Additionally, Fig. 10 depicts the annual distribution of average 

formal errors at 363 sites with ZTD estimates spanning 2000 to 2021. The IQRs, representing the 25th to the 75th percentiles, 

305 are depicted by blue boxes, while the median and mean values are indicated by red and black lines, respectively. The minimum 

and maximum values, excluding outliers (black dots, representing values greater than 1.5 times the IQR), are depicted by blue 

and green lines. The results indicate that most formal errors are below 4 mm, with their mean values decreasing from 2.2 mm 

in 2000 to 1.3 mm in 2005, stabilising thereafter. This temporal trend reflects improvements in the quality of GNSS data and 

satellite orbit and clock products over the years. The presence of outliers (~2% annually) highlights occasional deviations, yet 

310 overall precision has been consistent over the two decades. 

 
Figure 9. Distribution and cumulative percentage of formal errors across the 5085 GNSS stations 

 
Figure 10. Annual distribution of average formal errors at 363 sites with ZTD values over the period 2000–2021 

315 4.2 Cross-comparison of PWV with external references 

The quality of PWVs was assessed through cross-comparisons with external reference datasets. Three external data sources, 

the ERA5 dataset, sounding profiles and VLBI data, were adopted due to their established accuracy in atmospheric observation. 

In addition to the distribution of GNSS stations shown in Fig. 1, Fig. 11 illustrates the geographical distribution of the VLBI 

stations and radiosonde sites analysed in this study. 
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320  
Figure 11. Geographical distribution of VLBI and radiosonde stations 

4.2.1 Comparison with the ERA5 dataset 

ERA5 provides high-quality, hourly atmospheric parameters on 37 pressure levels at a resolution of 0.25°×0.25°, spanning 

from 1940 to the present. To ensure reliable analyses, for GNSS stations situated above or below the lowest pressure level of 

325 ERA5, horizontal interpolation and extrapolation procedures were utilised to determine pressure, humidity, and temperature 

at the altitude of the GNSS site based on four surrounding grid points. Detailed descriptions of these methods are available in 

(Wang et al., 2016c, 2017). Using the pressure and specific humidity profiles at GNSS sites, PWVs were computed using: 

PWV =
1

𝜌𝑤

P𝑎𝑛𝑡

0

𝑞
𝑔(𝑧) 𝑑𝑃 (8) 

where 𝜌𝑤 = 1000 𝑘𝑔 𝑚―3 is the density of water vapour, P and q are the pressure (in Pa) and specific humidity, respectively. 

𝑔(𝑧) represents the local gravitational acceleration at geometric height z (in km), determined utilising Eqs. (3) and (4). The 

330 computed ERA5-PWVs were compared against GNSS-PWVs across 4419 sites with over one year of continuous observations, 

with Fig. 12a and 12b illustrating STD and the mean of their differences, respectively. 

 
Figure 12. The mean and standard deviation of differences in PWV between GNSS and ERA5 

Remarkably, 96.04% of stations exhibit STD values below 3 mm, with median and mean STDs of 1.60 mm and 1.73 mm, 

335 respectively. Furthermore, the mean differences at 96.33% of the stations fall within the range of [-1, 1] mm, with a median of 

-0.06 mm and a mean of -0.08 mm, indicating minimal systematic bias. These results demonstrate a strong global agreement 
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between the two datasets. Latitude-dependent discrepancies are evident, as depicted in Figs. 12c and 12d. The average STD, 

calculated within 5° latitude bins (red lines), increases from approximately 0.5 mm in polar regions to nearly 3 mm near 15° 

S and 15° N. This trend aligns with previous studies (Bock and Parracho, 2019; Chen et al., 2021; Yu et al., 2021) that attribute 

340 such features to the higher abundance and greater variability of water vapour in low-latitude regions compared to high latitudes. 

Additionally, many GNSS stations in the 15° S–15° N belt are situated on islands or coastlines, areas characterised by complex 

atmospheric dynamics, including high humidity and intense convection, contributing to localised anomalies in PWV values. 

In these areas, the accuracy of reanalysis data, which depends heavily on satellite observations, is limited in these regions due 

to sparse distribution of GNSS sites over open oceans and frequent cloud cover that obstructs satellite data (Lonitz and Geer, 

345 2017). The interplay of localised atmospheric variability and observational limitations further leads to the latitude-dependent 

differences in PWV. Beyond latitude-related trends, regional variations are also apparent, as shown in Fig. 13. In Australia, 

STD increases from 1–1.5 mm in the south to 2.5–3.5 mm in the north. Similar patterns are found in the Americas, with higher 

STD in the east than in the west, and in Europe, where southern regions exhibit larger STD than northern areas. Additionally, 

ERA5-PWV tends to overestimate GNSS-PWV in regions like southern Australia, Europe, eastern North America, southern 

350 Africa, southern South America, and northern Japan. 

 
Figure 13. Regional variations of STD and mean of differences between GNSS-PWV and ERA5-PWV 

Another major source of these discrepancies arises from representativeness errors inherent in ERA5, largely due to its coarse 

spatial resolution. These errors are particularly pronounced in areas with complex topography, like coastal and mountainous 

355 area (Bock and Parracho, 2019). ERA5-PWV was calculated as the average of atmospheric parameters from four surrounding 

grid points, which often misrepresents the actual atmospheric conditions at GNSS sites, especially in areas with heterogeneous 

terrain or coastal environments. For example, in coastal areas, ERA5-PWV averages conditions over land and sea, whereas 

GNSS-PWV reflects measurements over land. Similarly, in mountainous areas, ERA5-PWV often fails to capture localised 

atmospheric conditions, such as those along slopes or in valleys, due to elevation differences and topographical complexity. 

360 As shown in Fig. 14, these discrepancies are evident in regions like Hawaii, where elevations span from sea level to the summit 

of Mauna Kea (4207 m), and the Andes, with elevations ranging from valleys below sea level to peaks exceeding 6000 m. 
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Figure 14. Impact of elevation differences and topographical complexity on PWV discrepancies between GNSS and ERA5 in 
Hawaii (a) and the Andes (b) 

365 In Hawaii, STD ranges from 1.36 to 3.64 mm, with an average of 2.75 mm, while in the Andes, STD varies from 0.65 to 4.74 

mm, with an average of 2.32 mm. Stations at mountain summits typically show smaller discrepancies in comparison to those 

at slopes, foothills or coastal areas. This is likely due to the lower atmospheric content and reduced variability at higher altitudes, 

making it easier for reanalysis models like ERA5 to represent atmospheric conditions. Conversely, orographic effects in slopes 

and foothills induce greater atmospheric variability, complicating the ability of ERA5 to capture these nuances. Given these 

370 findings, incorporating GNSS atmospheric parameters into reanalysis models offers a promising pathway to further improving 

the accuracy and spatial resolution of ERA5, particularly in regions with complex topography and atmospheric variability. 

4.2.2 Comparison with co-located VLBI 

VLBI, known for its highly directive antennas, is a well-established technique for retrieving water vapour with high precision, 

making it a valuable tool for independently validating other techniques (Niell et al., 2001). Early comparisons of atmospheric 

375 parameters derived from GNSS and VLBI were limited in duration and geographic coverage (Ning et al., 2012). For example, 

Behrend et al. (2014) reported an RMS error of 6.10 mm in ZWD estimates from VLBI and GNSS in Spain over a 9.5-hour 

period. Choy et al. (2015) discovered a STD of 3.5 mm in PWV differences between GNSS and VLBI at Hobart, Australia. 

Subsequent comparisons conducted during continuous VLBI campaigns (Snajdrova et al., 2006; Teke et al., 2011, 2013; Pollet 

et al., 2014; Heinkelmann et al., 2016; Puente et al., 2021) showed good agreement between ZTDs from co-located GNSS and 

380 VLBI stations. Beyond these short-term campaigns, Steigenberger et al. (2007) analysed ZWD data from 24 stations over the 

period 1994–2004 and found STD below 10 mm at most sites. To validate the performance of the reprocessed data, PWVs 

were compared with those from 22 VLBI sites, using IVS-combined ZWDs and weather parameters. A total of 43 VLBI-

GNSS station pairs were identified based on criteria of horizontal distances below 1 km, height differences within ±50 m, and 

at least 1000 paired samples. To address potential biases due to height differences between VLBI and GNSS sites, a height 

385 correction procedure was applied using atmospheric parameters at the VLBI site and ERA5-derived atmospheric data at the 

GNSS site: 

∆PWV =
1

𝜌𝑤
∙

(𝑞𝐺 + 𝑞𝑣)

2 ∙ 𝑔(𝑧) (𝑃𝐺 ― 𝑃𝑣) (9) 

where 𝑃𝐺 and 𝑃𝑣 represent pressure at the GNSS and VLBI stations, respectively, and 𝑞𝐺 and 𝑞𝑣 denote specific humidity at 

these sites. Table 2 summarises the number of paired PWV samples, ranging from 1232 to 33,886, with an average of 11,435 

per pair. Generally, PWV values from VLBI and GNSS show strong agreement: 41 out of 43 stations exhibit mean differences 

390 (GNSS-PWV minus VLBI-PWV) within the range of [-0.5, 0.5] mm, and 42 sites have STD values below 1.5 mm. However, 

the VLBI site FORTLEZA and GNSS site FORT displayed the largest deviations, with a mean difference of 1.6 mm and a 

STD of 2.4 mm. This notable discrepancy has been documented in earlier studies. For example, Steigenberger et al. (2007) 

reported a ZTD bias of 7.2 mm and an RMS of 14.1 mm, while Schuh et al. (2005) observed a bias of 13.5 mm with a STD of 

9.6 mm when comparing GNSS-ZTD to VLBI-ZTD at site FORTLEZA. These studies attributed the large deviations to great 

395 atmospheric variability near the equator. In contrast, the comparison between VLBI site FORTLEZA and GNSS site BRFT 

revealed only a minor bias of -0.2 mm and a STD of 1.5 mm. This suggests that the large discrepancy between FORTLEZA 

and FORT may be due to site-specific biases at station FORT, potentially caused by environmental factors or hardware issues, 

which warrant further investigation in future studies. 

Table 2. Number of paired PWV samples at co-located GNSS and VLBI stations 

VLBI site (ID) GNSS site Observation period No. of 
samples 

Horizontal 
distance 

Vertical 
distance Bias STD 

BADARY (7382) BADG 8 Sep 2011 22 Jun 2018 3085 96.0 -10.2 0.7 0.9 
TIGOCONC (7640) CONT 3 Jan 2006 30 May 2014 11,877 24.6 2.5 0.4 1.4 
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 CONZ 11 Jun 2002 30 May 2014 20,157 119.9 9.7 0.5 1.5 
GILCREEK (7225) FAIR 28 Jan 2002 28 Dec 2005 5481 93.1 -13.1 -0.2 0.9 
FORTLEZA (7297) FORT 3 Jan 2002 7 Apr 2006 2885 53.4 -3.6 1.6 2.4 

 BRFT 6 Oct 2005 16 Mar 2018 13,698 58.0 -1.4 -0.2 1.5 
HARTRAO (7232) HRAC 17 Nov 2005 4 Jan 2017 4166 84.9 -8.9 0.2 1.3 

 HRAO 22 Jan 2002 3 Oct 2017 6171 163.5 -1.5 -0.1 1.4 
HARTRAO15 (7378) HRAC 11 Oct 2012 8 Sep 2017 5223 185.2 -2.2 0.3 1.5 

 HRAO 11 Oct 2012 13 Jul 2018 6704 274.3 5.1 0.0 1.1 
HOBART (7242) HOB2 24 Jan 2002 11 Dec 2017 6562 192.4 -24 -0.2 1.2 

HOBART12 (7374) HOB2 7 Oct 2010 20 Jun 2017 7924 107.1 0.1 -0.3 1.2 
KATH12M (7375) KAT1 4 Aug 2011 13 Jul 2018 9215 113.9 -5.0 0.4 1.3 

 KAT2 4 Aug 2011 13 Jul 2018 9418 45.7 -5.0 0.4 1.4 
KOKEE (7298) KOKR 20 Oct 2016 13 Jul 2018 2229 387.2 -13 0.4 1.4 

 KOKC 20 Oct 2005 5 Jan 2015 15,230 26.5 -10.4 0 1.3 
 KOKV 26 Sep 2008 13 Jul 2018 15,533 45.3 -9.2 0.1 1.2 
 KOKB 4 Apr 2002 13 Jul 2018 24,958 45.8 -9.2 0.0 1.3 

MATERA (7243) MATE 19 Feb 2002 25 May 2018 9833 57.5 -7.7 -0.1 1.1 
 MAT1 11 Jun 2002 25 May 2018 12,584 68.1 -8.8 -0.1 1.2 

MEDICINA (7230) MEDI 28 Jan 2002 22 Jun 2018 4252 60.4 -17.1 -0.2 1.1 
NYALES20 (7331) NYA2 15 Feb 2007 13 Jul 2018 2919 272.4 -5.9 0 0.7 

 NYAC 3 Nov 2005 30 Apr 2014 11,413 105.8 -8.2 0.1 0.8 
 NYA1 3 Jan 2002 13 Jul 2018 24,909 105.8 -3.1 0.1 0.7 
 NYAL 3 Jan 2002 13 Jul 2018 25,058 111.6 -8.8 -0.2 0.7 

ONSALA60 (7213) ONS1 14 Dec 2015 24 Apr 2018 1232 122.1 -14.8 0.1 0.8 
SHANGHAI (7227) SHAO 17 Jan 2002 17 Apr 2018 2606 91.7 -7.4 -0.1 1.3 
SVETLOE (7380) SVTL 9 Dec 2004 13 Jul 2018 7526 81.8 -9.4 0.1 0.9 

TSUKUB32 (7345) TSK2 12 May 2003 28 Dec 2016 10,349 307.0 -14.8 -0.3 1.0 
 TSKB 22 Jan 2002 28 Dec 2016 11,136 303.0 -17.5 -0.4 1.1 

WARK12M (7377) WARK 28 Feb 2011 8 Jun 2018 3671 61.3 -16.6 0.2 1.2 
WESTFORD (7209) SA01 1 Jun 2004 3 Sep 2014 8677 622.7 25.4 0.1 0.9 
WETTZELL (7224) WTZT 3 Jan 2002 13 May 2005 6274 138.7 -3.2 0.0 0.8 

 WTZJ 11 Jun 2002 31 Aug 2010 16,098 140.2 -3.2 -0.2 0.7 
 WTZS 29 Jul 2005 13 Jul 2018 23,939 89.0 -5.7 0.1 0.7 
 WTZZ 3 Jan 2002 13 Jul 2018 32,438 137.8 -3.2 0.0 0.7 
 WTZA 3 Jan 2002 13 Jul 2018 33,501 136.8 -3.2 -0.2 0.8 
 WTZR 3 Jan 2002 13 Jul 2018 33,886 139.1 -3.1 0.1 0.7 

YARRA12M (7376) YAR2 26 May 2011 13 Jul 2018 9214 146.4 -6.9 0.3 1.1 
 YARR 26 May 2011 13 Jul 2018 9401 144.6 -6.9 0.2 1.1 
 YAR3 26 May 2011 13 Jul 2018 9482 164.9 -5.8 0.2 1.0 

YEBES (7386) YEBE 20 Oct 2008 13 Jul 2018 3830 151.6 -16.3 0.5 1.1 
ZELENCHK (7381) ZECK 1 Aug 2006 22 Jun 2018 6985 65.2 -8.8 0.5 1.4 

400 4.2.3 Comparison with radiosonde observations 

Since the 1930s, radiosonde observations have provided essential insights into the distribution and variability of water vapour, 

establishing them as a benchmark for validating other sensing techniques. In this study, GNSS-PWV was compared with their 

counterparts from the Integrated Global Radiosonde Archive (IGRA) Version 2 (Durre et al., 2016). Co-located GNSS and 

radiosonde stations were identified using criteria similar to those described earlier: (1) the horizontal distance and vertical 

405 separation must not exceed 50 km and 100 m, respectively; (2) the paired PWV series must span at least one full year with a 

data completeness rate of over 85%; and (3) each date must include at least one observation during both daytime (08:00–18:00) 

and nighttime (18:00–20:00); otherwise, PWV estimates from that date were excluded from the analysis. Hence, these criteria 

yielded 402 GNSS-radiosonde pairs, with the number of paired PWV samples ranging from 888 to 23,749 (with an average of 

7283 data points), equivalent to around 10 years of observations per station. Please note that, in some instances, multiple GNSS 

410 stations were co-located with a single radiosonde site, resulting in 130 unique radiosonde stations across the whole dataset, 63 

of which had multiple co-located GNSS stations. A typical example is that the radiosonde station USM00072493 had 40 co-
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located GNSS sites using the aforementioned criteria. PWV estimates from sounding profiles were computed for comparison 

by interpolating or extrapolating weather parameters (pressure, temperature, humidity) to GNSS antenna height, followed by 

integrating specific humidity over pressure as described in Eq. (8).  

415  
Figure 15. STD and mean differences between GNSS-PWV and radiosonde-PWV 

As shown in Fig. 15, the comparison between the two sets of PWV revealed that the mean differences across 402 paired sites 

range from -4.34 mm to 2.50 mm, with an overall mean of -0.34 mm. The STD values of these differences vary between 0.44 

mm and 3.86 mm, averaging 1.83 mm. Notably, 88.06% of the sites exhibit mean differences within the range of [-1, 1] mm, 

420 while 90.80% have STD below 3 mm, demonstrating robust agreement between the two sets of PWV. According to further 

investigation, spatial distribution significantly influences the discrepancies. Stations in tropical regions, especially coastal and 

island sites, exhibit higher STD values, reflecting complex topographic and atmospheric conditions. This finding is similar to 

that obtained from the comparison of GNSS with ERA5. In addition, analysis of the mean differences reveals distinct regional 

patterns. For example, GNSS-PWVs tend to underestimate PWVs from sounding profiles in Australia, New Zealand, and 

425 Hong Kong (with the mean difference of -0.76 mm). In Europe, negative PWV differences predominate, while in North 

America, they are primarily concentrated in the east, with positive differences more common in the west. Moreover, temporal 

analysis of discrepancies suggests larger STD values during daytime at 81.3% of sites, especially in tropical areas. This may 

stem from solar heating of radiosonde sensors, resulting in biases in relative humidity measurements. Furthermore, these day-

night variations exhibit regional dependence. For example, in Europe, PWV differences are typically negative during the 

430 daytime (underestimation) but shift to positive at nighttime (overestimation). North America showed primarily negative 

nighttime differences, with more varied trends during the day. As per previous studies, the region-dependent differences in 

systematic biases are possibly attributed to diverse atmospheric conditions and differences in radiosonde sensor types. 
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In addition to the general analysis, eight radiosonde stations were identified, each with 10 co-located GNSS sites, providing a 

great opportunity to investigate the factors driving PWV differences between the two sensing techniques. For these sites, apart 

435 from the aforementioned metrics, the median, mean, and IQRs of these statistics were determined, as shown in Fig. 16. 

 
Figure 16. IQR, median, and mean values of PWV differences at 8 radiosonde and their co-located GNSS stations 

It was found that, over the entire observation period including both daytime and nighttime, five out of the eight stations exhibit 

IQRs below 0.5 mm, indicating strong agreement between PWVs determined from sounding data and those from multiple co-

440 located GNSS sites. However, three sites (USM00072293, NZM00093417, and USM00091285) demonstrate IQRs exceeding 

0.5 mm, mainly due to large horizontal separations (10–50 km) or significant topographic variability, as seen at USM00091285 

in Hawaii. Day-night comparisons revealed generally larger IQR values during the daytime, likely attributable to diurnal PWV 

fluctuations or systematic biases in either radiosonde or GNSS measurements. 

Over the years, numerous studies have evaluated the performance of GNSS-PWV using radiosonde data as a reference (Kwon 

445 et al., 2007; Pacione et al., 2011; Mo et al., 2021). Although conclusions vary across regions, our results show strong alignment 

with previous results and, in some cases, surpass them in performance. For example, Choy et al. (2015) reported mean STD 

of approximately 4 mm across six stations (2008–2012) employed in Australia, whereas this study achieved STD of 1.00–1.85 

mm, with a mean of 1.03 mm. Regarding mean differences, Choy et al. (2015) found radiosonde overestimation at four of the 

six sites, while our findings indicate consistent radiosonde overestimation across all 24 station pairs. Park et al. (2012) analysed 

450 GNSS-PWV and radiosonde-PWV in South Korea, noting a daytime dry bias in radiosonde measurements, consistent with our 

results for five GNSS stations co-located with the KSM00047122 radiosonde station in the same region. In polar regions, our 

results (mean differences ranging from -0.23 mm to -0.66 mm across the Arctic) align closely with Negusini et al. (2021), who 

reported a mean difference of -0.51 mm at the CAS1 site in Antarctica. Both studies used reprocessed products with the latest 

model (this study used IGS Repro3 products, while Negusini et al. (2021) used IGS Repro2 products). In Europe, our study 

455 found a mean difference of -0.29 mm and an STD of 1.4 mm across 51 station pairs over the time period 2000–2022, which 

compares to Pacione et al. (2017), who reported a mean difference of 0.6 mm using 183 sites over the study period 1996–2014. 

Both studies agree that radiosonde-ZTD (PWV) generally underestimates GNSS-ZTD (PWV). Overall, despite extensive inter-

comparisons, systematic errors in both GNSS and radiosonde measurements continue to hinder definitive conclusions about 
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their absolute accuracy, even for the same region and period. Variations in processing strategies, co-location criteria, as well 

460 as temporal variability (Buehler et al., 2012; Guerova et al., 2016) highlight the pressing need for standardized methodologies 

to ensure consistent and reproducible results across inter-comparisons. 

4.3 Offset detection 

Despite the fact that GNSS reprocessing eliminates changepoints caused by inconsistencies in data processing strategies, the 

determined PWV time series may still include offsets introduced by receiver or antenna replacements, as well as observation 

465 environment changes. Hence, a consistency check remains necessary. To detect these offsets, this study adopted the penalised 

maximal t-test modified for first-order autoregressive noise in time series (PMTred) method, as described in (Wang et al., 

2007; Wang, 2008), using ERA5 dataset as an external reference. 

A total of 2485 sites with observation periods exceeding 10 years and data missing rates below 20% were selected. For each 

station, the time series of monthly mean PWV differences between GNSS and ERA5 data was subjected to the PMTred test. 

470 Standardised log files for each site recorded all station-related changes. Initially, a 95% confidence level, as the critical value 

(CV), was applied to identify all potential changepoints. If a detected changepoint corresponded to a recorded change within 

a six-month time period (before or after) in the log file, it was identified as a documented changepoint. For unrecorded changes, 

a stricter 99.9% confidence level was utilised, and changepoints exceeding the threshold were also recorded  (Ning et al., 

2016). Based on this approach, results revealed that 1416 of the 2485 stations exhibited a total of 2427 changepoints in their 

475 PWV difference time series, while the remaining 1069 stations showed no changepoints. The detailed classification and 

performance of the changepoints is listed in Table 3. Among these, 1190 changepoints were undocumented, potentially due to 

unrecorded hardware changes or environmental factors. Of the documented hardware changes, 386 were linked to receiver 

replacements, 137 to antenna changes, 157 to simultaneous receiver and antenna changes, and 557 to firmware upgrades. 

Table 3. Classification and performance of the detected changepoints 

Change type Changepoints Mean (mm) RMS (mm) 
Only receiver change 386 0.008 0.954 
Only antenna change 137 0.152 1.022 

Both receiver and antenna changes 157 -0.044 1.032 
Firmware upgrades 557 0.157 0.892 

Other factors 1190 0.182 0.873 
All 2427 0.133 0.909 

480 5 Further Analysis 

After comprehensively illustrating the characteristics and assessing the quality of the dataset, this work further advances by 

offering a preliminary analysis, focusing on its innovative applications in the climate community. Specifically, the maximum, 

minimum, and diurnal, monthly and annual mean values of PWV and ZTD estimates are determined and analysed. 

5.1 Analysis of maxima and minima of PWV and ZTD 

485 In this study, we first identified the hourly maxima and minima of PWV and ZTD for each site over the whole period, as shown 

in Fig. 17. Generally, as per the statistics, PWV minima across all stations range from 0 to 43.6 mm, while maxima span 3.2 

to 88.5 mm. For ZTDs, minima vary from 1.21 to 2.57 m, and maxima range from 1.32 to 2.80 m. 
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Figure 17. Maxima and minima of PWV and ZTD for each station over the whole period 

490 By taking a closer examination, some further insights can be revealed. Fig. 17a, i.e., the PWV minima, illustrates the different 

patterns along latitudinal gradient. Specifically, PWV minima tend to increase toward the Equator, with higher values observed 

in low-latitude regions (30°N–30°S) and near-zero values in mid- to high-latitude regions (30–90°N and 30–90°S). However, 

PWV minima exhibit no clear trend with longitude. This finding is also evident, albeit less pronounced, in Fig. 17b, which 

displays PWV maxima. The observed variations are influenced by factors like latitude, altitude, as well as weather and climate 

495 conditions. For example, as reported in (Yuan et al., 2023), PWV maxima exhibit complex geographical patterns. The lowest 

PWV maximum value of 3.2 mm occurs at the AMUN station in Antarctica (89.99°S, 139.15°E), a region with persistently 

low temperatures and year-round ice and snow cover, which limits the capacity to hold water vapour, resulting in low PWV. 

Additionally, AMUN sits at an elevation of about 2816 m, where lower atmospheric pressure further decreases water vapour. 

In contrast, the highest PWV maximum value of 88.5 mm is recorded at the G212 station in Okinawa (26.21°N, 127.66°E), a 

500 subtropical location with a warm, humid climate affected by moist air from the Pacific Ocean. During rainy/monsoon seasons 

and typhoon events, this area experiences particularly higher water vapour content, which is exactly the case in this study. 

Furthermore, in contrast to the AMUN station, the lower elevation of the G212 station (38 m) results in higher atmospheric 

pressure and denser air, enabling it to retain more water vapour. 

Figs. 17c and 17d present the minima and maxima of ZTD, which exhibit similar but distinct patterns, in comparison to Figs. 

505 17a and 17b, due to the aforementioned influencing factors. Although PWV can be obtained from ZTD through a conversion 

factor dependent on meteorological parameters, i.e., temperature, this factor varies by station. In other words, although a typical 

station presents a direct relationship between ZTD and PWV, the global characteristics of ZTD and PWV maxima and minima 

differ significantly. For example, the lowest PWV values occur at different stations, however, the lowest ZTD maximum and 

minimum both appear at the LLST station in the Andes Mountains (25.17°S, 68.52°W) at an altitude of 5272 m. This high 

510 elevation leads to reduced atmospheric pressure and, consequently, lower ZTD values. Moreover, the dry air at high altitudes 

decreases the wet delay, an important component of ZTD, compounded by thinner atmospheric layers and fewer air molecules, 

which also contribute to lower ZTD values. 

In general, the geographical characteristics of the maxima and minima of PWV and ZTD are affected by factors including 

latitude, altitude, and regional meteorological and climate conditions. Hence, when applying the parameters in weather and 

515 climate research, careful consideration of these factors is essential for accurate analysis and interpretation. 
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5.2 Analysis of diurnal and monthly mean PWV and ZTD 

Although hourly PWV and ZTD values are widely utilised in various atmospheric and meteorological research, expanding the 

applicability of the dataset, especially for climate research, which depends on parameters reflecting long-term atmospheric 

conditions, require additional processing. In this study, the daily and monthly mean values of PWV and ZTD were calculated 

520 to facilitate comprehensive, long-term assessments. To minimize the impact of missing data on the analysis, we applied a strict 

inclusion criterion, i.e., only days with at least 21 hourly estimates, and months with a minimum of 650 hourly data samples 

were included in the calculation, thus ensuring an approximate 90% completeness threshold. 

To demonstrate the characteristics of the determined daily and monthly mean of ZTD and PWV, as well as to compare their 

variations, Fig. 18 depicts the time series of daily and monthly mean PWV and ZTD values at the NYAL and PALM stations 

525 as typical examples over the whole study period 2000–2021. In this figure, red and blue circles denote the daily and monthly 

mean values, respectively. 

 
Figure 18. Time series of daily and monthly mean PWV and ZTD values at the NYAL and PALM sites over the study period. 

Daily mean values exhibit more pronounced variations and a wider range of extreme values, as they are prone to impact from 

530 typical weather extremes and atmospheric conditions. In contrast, monthly mean values, as aggregates of daily data, tend to 

smooth out these extremes (noises) and reduce short-term fluctuations, leading to a more stable trend. From another perspective, 

the temporal resolution of daily means is reduced by a factor of 24 compared to hourly estimates, but it is still over 30 times 

higher than that of monthly averages. Therefore, with a larger volume of data, daily means are better suited for analysing short-

term meteorological phenomena, while monthly means, by providing a clearer picture of month-to-season variations, more 

535 accurately capture general climate features and are more ideal for studying long-term trends, climate variability, and abnormal 

climate patterns. In general, hourly, daily, and monthly data each play an essential role in atmospheric studies. Understanding 

data characteristics across these time scales is crucial for effective utilisation of this information in various applications. 

Following a similar approach as in Section 4, we also assessed the quality of the determined daily and monthly mean PWVs 

by using the ERA5 dataset as an external reference. Specifically, we evaluated the performance of daily and monthly mean 

540 values of PWV by comparing them against the ERA5 dataset across all the sites adopted in this study. Fig. 19 presents the bias 

and RMS results over the period 2001–2021. Note that the bias values are calculated by subtracting the PWVs obtained from 

the ERA5 dataset from those derived from GNSS observations.  
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Figure 19. Bias (a, b) and RMS (c, d) statistics resulting from the comparison of daily and monthly mean PWV at all the stations 

545 against ERA5 dataset over the whole study period. 

The RMS quantifies the overall agreement between the datasets by measuring the magnitude of error, independent of direction. 

As illustrated in Figs. 19a and 19b, the RMS exhibits a certain degree of latitude dependence, with higher values concentrated 

in low-latitude areas, specifically between 30°N and 30°S. This pattern can be attributed to the relatively larger PWV values 

and more pronounced variations in equatorial regions, as discussed in Section 5.1. Additionally, the sparse coverage of GNSS 

550 sites in these regions likely exacerbates this effect, as the limited number of data available constrains the robustness of data 

screening and quality control processes. In contrast, RMS values at sites in high-latitude regions are close to zero. Furthermore, 

a detailed comparison of Figs. 19a and 19b indicates that monthly RMS values are generally smaller than daily RMS values, 

suggesting closer alignment between monthly means of the two datasets. This is largely attributed to the smoothing effect, 

narrower data range, and reduced data volume associated with monthly means. Regarding bias analysis, which captures the 

555 systematic offset or average deviation between two datasets, a similar latitude-dependent pattern is observed. However, since 

bias indicates the direction of deviation, an additional finding is that most positive bias values are found at sites in low-latitude 

regions, indicating that PWVs derived from GNSS data are generally higher than those from the ERA5, consistent with findings 

in (Yu et al., 2021). Note that this pattern is not absolute, as some low-latitude stations also exhibit negative bias values, 

probably due to factors like local climate conditions, latitude, and data processing differences. 

560 To add depth to the analysis, we examined the monthly characteristics of PWV values. Specifically, we calculated the average 

values of the monthly mean PWV for each month across all sites over the 16-year period 2006–2021, providing a climatological 

perspective across this span. The selection of the period is to mitigate the impact of missing data in the earlier years, i.e. 2001–

2005, and ensures the quality of the determined 16-year climatological monthly mean PWVs. Fig. 20 presents the rendered 

images of these average monthly mean PWVs for each month, derived from 590 GNSS stations located on the West Coast of 

565 the United States. This study region was chosen due to its dense GNSS network, which enhances the accuracy and robustness 

of the 16-year climatological monthly mean PWV representations.  
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Figure 20. Rendered images of the 16-year climatological monthly mean PWV values for each month, derived from 590 GNSS sites 
located on the West Coast of the United States. 

570 It can be found that the highest PWV values typically occur in July and August, while lower PWVs are observed in December, 

January, and February. As the study region is in the Northern Hemisphere, these months correspond to the summer and winter 

seasons, respectively, highlighting clear seasonal variation features in PWV. Specifically, the higher PWV estimates observed 

in summer are largely due to elevated temperatures, which increase the moisture-holding capacity of the atmosphere. As per 

the empirical Clausius-Clapeyron equation, a 1 K increase in temperature can result in an approximate 7% increase in PWV, 

575 indicating that warmer air in summer can retain more water vapour (O’Gorman and Muller, 2010). Additionally, during 

summer, higher temperatures and stronger solar radiation boost evaporation from surface water sources, while prevailing winds 

carry this moist air inland, further raising atmospheric water vapour levels. The combination of these factors directly 

contributes to the pronounced seasonal increase in PWV during summer months. 

5.3 Analysis of annual mean PWV estimates 

580 In addition to examining PWV estimates at hourly, daily and monthly scales, this study extends the analysis to annual mean 

PWV values, as annual averages of ECVs are commonly used in climate studies, especially for analysing long-term trends 

(Coldewey-Egbers et al., 2022; John and Soden, 2007; Masson-Delmotte et al., 2021; Sherwood et al., 2010). Following the 

established guidelines for calculating diurnal and monthly mean PWV, only GNSS stations with consistent PWV data over the 

period 2006–2021 were adopted to maintain the quality of the annual mean values. Fig. 21 depicts rendered images of the 

585 annual mean PWV for each year over the 16-year period, calculated from 590 GNSS sites located on the West Coast of the 

United States. 

https://doi.org/10.5194/essd-2025-283
Preprint. Discussion started: 23 June 2025
c© Author(s) 2025. CC BY 4.0 License.



23 

 
Figure 21. Rendered images of the annual mean PWV values for each year over the 16-year period 2006–2021, calculated from 590 
GNSS sites located on the West Coast of the United States. 

590 Three main phenomena can be observed from the statistical analysis of the calculated annual mean PWV, together with the 

visual examination of Fig.21. First, an overall analysis reveals that the long-term trend of PWV shows a general increase over 

the whole 16-year period, aligning closely with the recorded temperature rise in the region (Masson-Delmotte et al., 2021). 

This phenomenon can be explained by the same principles linking temperature and water vapour discussed in Section 5.2. 

Secondly, it was found that the highest annual PWV for an individual GNSS site was observed at the p501 site in 2015, with 

595 a value of 18.8 mm. Moreover, the highest mean PWV across all analysed stations also occurred in 2015, reaching 13.41 mm. 

This is likely due to the occurrence of an anomalous climate phenomenon known as “the Blob”, a significant mass of relatively 

warm water in the northeast Pacific Ocean off the coast of the United States (Bond et al., 2015; Di Lorenzo and Mantua, 2016; 

Peterson et al., 2015). This phenomenon generated positive temperature anomalies in the area, exceeding 2.5 °C. Consequently, 

the warm ocean surface heated the overlying atmosphere, contributing to a rise in temperature. For example, according to 

600 statistics from the National Oceanic and Atmospheric Administration (NOAA), in 2015, the annual mean temperatures in 

States in the study region such as California, Oregon, and Washington were elevated compared to normal conditions, with 

values of 17.0 °C, 12.2 °C, and 11.1 °C, respectively. Moreover, the increase in sea surface temperature also led to higher 

evaporation rate, resulting in enhanced atmospheric moisture and increased water vapour. 

Lastly, at the opposite end of the spectrum, the lowest annual PWV recorded for a single station was 4.5 mm at the LEWI 
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605 station in 2008. Despite this, the lowest mean PWV across all stations was observed in 2020, with the value of 11.96 mm. As 

per Voosen (2021), based on average readings from thousands of in-situ weather stations and ocean probes, the planet in 2020 

was approximately 1.25°C warmer than in preindustrial times, matching record-high temperatures. While an increase in 

temperature typically corresponds to higher water vapour content, the anomalously low PWV can be attributed to climate 

extremes in this region. For example, unprecedented high temperatures were recorded across many parts of the region in 2020, 

610 leading to prolonged heatwaves and exceptionally low humidity. Typically, in the Santa Ynez Valley of southern California, 

several sites set all-time temperature records, with the highest reaching 48.3°C (Duine et al., 2022). In August 2020, Death 

Valley, California, reported a temperature of 54.4°C, the highest globally recorded since 1931 (Blunden and Boyer, 2021). 

Additionally, in September 2020, Oregon and California experienced a series of wildfires, burning 1.2 million acres and 

contributing to significant low-humidity conditions (Abatzoglou et al., 2021; Khorshidi et al., 2020). During these extremes, 

615 near-surface specific humidity levels in the western Oregon Cascades dropped to just 3.3 g/m³. From an atmospheric physics 

perspective, the smoke plumes from these wildfires increased aerosol optical depth, which, through complex interactions 

between aerosols, radiation, and the boundary layer, intensified local thermal circulations. This, in turn, also led to stronger 

winds and reduced humidity levels (Huang et al., 2023). Overall, while it is crucial to use a wide range of ECVs to effectively 

monitor climate change, these findings provide preliminary evidence that the annual mean estimates of GNSS atmospheric 

620 parameters can serve as a valuable and complementary tool for more comprehensive assessments of climate changes and 

associated climate risks. 

6 Data Availability 

The reprocessed global GNSS climate data record, including hourly ZTD and PWV estimates, from 5085 stations over the 22-

year period 2000–2021 has been submitted to the PANGAEA data repository and is currently under review. The DOI is 

625 pending and the review link is provided here: https://www.pangaea.de/tok/3945654965e0ab80bb82b695dda9426b3e7b597c 

(Wang et al., 2025) to ensure access to the dataset during the peer-review process. The DOI and full citation of the dataset will 

be included in this section upon acceptance of the manuscript. Additionally, the dataset has also been made accessible at 

https://www.gnss.studio/Login, with its data download interface shown in Fig. 22. 

 
630 Figure 22. Download interface of the reprocessed GNSS climate data record 
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7 Summary and Outlook 

This study has produced a comprehensive global GNSS climate data record to fill critical data gaps in existing climate 

observing networks. Spanning a 22-year period from 2000 to 2021, the dataset includes hourly ZTD and PWV estimates from 

5085 sites, providing unprecedented accuracy and spatiotemporal coverage globally. Advanced data reprocessing strategies, 

635 aligned with the highest IGS standards, were used to ensure the consistency and accuracy of the generated atmospheric 

parameters, enhancing their suitability for climate applications. The robustness of the dataset was validated through a rigorous 

quality assessment framework and cross-comparisons with various external references, including ERA5 reanalysis dataset, 

sounding profiles, and VLBI measurements. Strong agreement across these datasets was demonstrated, with minimal 

systematic biases and high consistency in water vapour estimates across diverse geographic and climate conditions. The dataset 

640 represents a critical milestone in GNSS climatology, offering valuable insights into the spatiotemporal variability of 

atmospheric water vapour. Further analyses of diurnal, monthly, seasonal, and annual variations in ZTD and PWV highlighted 

their importance in understanding climate variability, including responses to weather extremes and long-term climate trends. 

Despite these advancements, several key challenges and opportunities for improvement remain. First, while GPS observations 

were primarily used, multi-GNSS systems like Galileo, GLONASS, and BeiDou could be integrated to further enhance 

645 spatiotemporal resolution, particularly in underrepresented regions such as polar areas and oceans. Second, the refinement of 

parameters retrieval techniques is necessary to address challenges posed by complex topographies and high-altitude regions, 

thereby improving dataset robustness in these environments. Third, the incorporation of GNSS atmospheric parameters into 

global reanalysis datasets and climate models is expected to bridge existing gaps in Earth observation networks and 

significantly advance climate applications. Additionally, emerging digital innovation techniques, like artificial intelligence and 

650 digital-twin techniques, are considered promising for extracting deeper insights from the dataset. Collaborative efforts with 

international stakeholders, such as the World Meteorological Organization (WMO) and International Association of Geodesy 

(IAG), are expected to further enable the impact of the dataset and ensure its alignment with global research priorities. 

Overall, the generated dataset represents a significant step toward fully harnessing the transformative potential of GNSS 

atmospheric monitoring techniques for advancing climate and atmospheric studies. By addressing critical challenges and 

655 leveraging cutting-edge methods, this dataset establishes a benchmark for GNSS climatology, offering a robust foundation for 

future research and operational applications across this interdisciplinary field. These contributions will enhance our 

understanding of atmospheric dynamics, supporting sustainable development and facilitating informed decision-making. 
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