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Abstract. We present MATCHA (Model for Atmospheric Transport and Chemistry in Asia), a 17-year (2003-2019) regional 10 

hydroclimate-chemical reanalysis for Asia (58o – 140o E, 4o – 40o N) at 12 km resolution that is based on the Weather Research 

and Forecasting model coupled with Chemistry (WRF-Chem), Community Land Model (CLM), and SNow, ICe and Aerosol 

Radiative (SNICAR) model as well as satellite data assimilation to explicitly represent interactions between key atmospheric 

composition and regional hydroclimate (including aerosol-snowpack interactions) across High Mountain Asia (HMA). 

Approximately two decades of satellite observations of aerosol optical depth (AOD) from the Moderate Resolution Imaging 15 

Spectroradiometer (MODIS) and carbon monoxide (CO) profiles from the Measurement of Pollution in the Troposphere 

(MOPITT) were assimilated every three hours into WRF-Chem to further constrain the representation of aerosols and 

chemistry. MATCHA provides comprehensive outputs across different light-absorbing aerosol species, e.g., black carbon 

(BC), dust, and brown carbon (BrC), trace gases, and a range of meteorological, hydrological, and land-surface variables over 

the region. This paper describes the MATCHA coupled modeling and data assimilation framework and evaluates 12 key 20 

variables across aerosols (fine particulate matter (PM2.5/PM10), AOD, single scattering albedo (SSA), and surface BC 

concentration), trace gases (surface CO), meteorology (precipitation, planetary boundary layer height (PBLH), temperature, 

relative humidity, and wind speed), and hydrology (snow cover fraction) against available in-situ and satellite observations 

across Asia. Meteorological fields (surface and vertical profiles) are consistently well-reproduced with Kling-Gupta 

efficiencies (KGEs) ranging from 0.65 to 1. Notable issues include persistent cold and dry bias over high-elevation regions in 25 

winter, with stronger-than-observed surface winds. Snow cover fraction seasonality is well captured with slight 

underestimation during snowmelt seasons across major glacier regions. Daily accumulated precipitation estimates agree with 

satellite observations, particularly with the best KGE (0.6) during the monsoon season, albeit underestimated over high-

elevation regions. The diurnal and seasonal evolution of PBLH is well-represented, with biases reflecting shallower heights in 

the morning and deeper heights in the afternoon in summer, likely due to model parameterizations and resolution limitations. 30 

MATCHA also captures the spatial and seasonal variability of AOD and SSA at 550 nm, yet overestimates summer AOD over 

India and southeast Asia with a strong negative bias in SSA. Biases in PM2.5/PM10 are also higher, which appears to be 

particularly related to high biases in wind speeds, causing overestimation of natural emissions of aerosols and overestimation 
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of anthropogenic emissions. Comparisons with site-specific aerosol chemical composition derived from air samples at Kanpur 

confirm the positive bias in sea salt concentrations and lower carbonaceous aerosols during high pollution events. MATCHA 35 

captures the seasonal cycle of surface CO, but underestimates the observations, which can be attributed to the assimilation of 

CO profiles from MOPITT. A unique feature of MATCHA is its tagged-tracers of BC for sectoral and regional source 

attribution analysis. These tracers show anthropogenic BC peaking in winter, primarily from Chinese sources in the eastern 

and northern part of HMA, and Indian sources in western and central HMA. Biomass burning BC dominates during March–

April along with substantial trans-boundary inflow throughout the year. BC emissions from Pakistan and Nepal also contribute 40 

significantly to the anthropogenic column burden of BC in parts of HMA. MATCHA is the first-of-its-kind high-resolution 

reanalysis to fully couple aerosols, radiation, and snow processes over HMA, offering a valuable dataset for investigating 

aerosol–cryosphere feedbacks and informing emission mitigation strategies in Asia. The dataset consists of hourly surface and 

column-integrated products and 3-hourly three-dimensional fields, and is publicly available at DOI: 

10.5067/CG4OT8DJX2Z7.  45 

1 Introduction 

High-mountain Asia (HMA), often referred to as the Third Pole, is the largest freshwater source in the Earth’s cryosphere after 

the polar regions (Immerzeel et al., 2010). It also acts as the “water tower” for major Asian river systems that supply freshwater 

to approximately 1.5 billion people (Immerzeel et al., 2010; Yao et al., 2022). These river systems are fed by runoff from direct 

precipitation and glacial melt in the region, marked by a complex terrain that acts as an elevated heat source for sustaining the 50 

Asian summer monsoon (Hahn and Manabe, 1975). Hydrological changes in HMA’s glaciers and the dynamic processes 

affecting them are especially sensitive to climate change, with significant socio-economic consequences due to the presence 

of rapidly developing and highly populated economies in the vicinity of these glaciers (Pepin et al., 2022). Recent 

advancements in satellite observations, in situ measurements, and model simulations have characterized multiple changes in 

HMA, including high elevation warming, increased precipitation, heterogeneous retreating of glaciers, declining snow cover, 55 

and enhanced greening and vegetation growth (Hasson et al., 2016; Maina et al., 2022b, a, c; Notarnicola, 2022). These changes 

impact downstream regions by affecting water supply, regional ecology, land-use practices, and even the risk of natural hazards 

like landslides and glacial lake outburst floods (Kirschbaum et al., 2020). 

 

The changes observed in HMA are driven by a combination of factors, including precipitation and temperature patterns, 60 

greenhouse gas (GHG) dynamics, and the emissions of short-lived climate forcing agents called light-absorbing particles 

(LAPs), including black carbon (BC), dust, and brown carbon (BrC). LAPs have been shown to cause significant reductions 

in snow albedo and accelerate the melting of snow and glaciers, with an efficacy comparable to greenhouse gases (Flanner et 

al., 2007; Qian et al., 2015; Ramachandran et al., 2023; Yasunari et al., 2013). Deposition of LAPs on the glaciers of HMA 

has been found to contribute to at least 10% of snow albedo reduction, with an associated radiative forcing of up to more than 65 
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100 W/m2 locally (Sarangi et al., 2019). This forcing can account for approximately 15% of total glacier melt in the 

southeastern Tibetan Plateau (TP) and up to a 6.3% increase in the summer melting rate of Pamir glaciers in the western TP 

(Schmale et al., 2017; Zhang et al., 2018). Snow albedo feedback is a significant contributor to warming in the cryosphere, 

which is further exacerbated by LAPs due to interactions of absorbing aerosols with the surface snow and near-surface 

meteorology (Flanner et al., 2007). Despite growing evidence linking deposition of LAPs to rapid warming and enhanced 70 

snowmelt in High Mountain Asia, our understanding of their precise physical impacts and the relative contribution of different 

types of LAPs remains limited. Observational challenges, model uncertainties, and complex interactions between aerosols and 

snow properties contribute to this gap. Significant gaps in our knowledge stem from uncertainties in aerosol emission estimates, 

incomplete understanding of aerosol radiative properties and chemical composition, and the lack of accurate representations 

of LAP-snowpack-meteorology interactions and BrC aerosols in coupled climate-chemistry models (Collins et al., 2017; Liu 75 

et al., 2020; Qian et al., 2015; Roychoudhury et al., 2022,2025; Skiles et al., 2018; Xu et al., 2021). Current global and regional 

chemical transport models tend to underestimate BC and dust concentrations, leading to underestimations of LAPs in source 

pollution regions, surface snow, and columnar aerosol absorption (Goto et al., 2011; He et al., 2014). These discrepancies in 

LAPs concentrations and LAPs-related aerosol properties result in significant errors in estimates of aerosol-climate interactions 

(such as radiative forcing and aerosol-induced snow albedo feedback) (Liu et al., 2020; Tuccella et al., 2021; Xu et al., 2021). 80 

 

Despite the critical role of HMA as a major Asian freshwater source, monitoring the changes in this region is a challenging 

task because of the complex terrain of HMA along with the heterogeneous nature of glaciers, which makes it very difficult to 

set up and maintain in situ network measurements, and leads to relatively large uncertainties in satellite retrievals. Polar 

orbiting satellite retrievals such as those from the Moderate Resolution Imaging Spectroradiometer (MODIS) and 85 

Measurement of Pollution in the Troposphere (MOPITT) have a good spatial coverage but limited temporal (1-2 times per 

day) coverage. Dynamical models serve as another option to create datasets to study long-term changes in HMA. However, 

such model simulations have their own biases due to spatial resolution, simplified representation of different physics and 

chemistry processes via parameterizations, and inaccuracies in model input datasets (Tarek et al., 2021). This issue can be 

partially addressed by global and regional reanalyses that are developed by assimilating available in situ and satellite 90 

observations into models to keep the model state as close to observations as possible within the constraints of model and 

observation errors. The reanalyses represent spatio-temporally continuous and dynamically consistent datasets and can be used 

to assess trends and emerging patterns in climate, snow properties, precipitation, temperature, and aerosols. Several global 

meteorological and chemical reanalysis datasets are available and widely used, such as ERA5, CAMS-EAC4, and MERRA-

2. However, coarser spatial resolution in global reanalyses leads to biases in precipitation, snow properties, temperature, and 95 

atmospheric chemistry estimates over HMA due to inaccurate representation of the complex topography and the inability of 

the models to resolve the spatial heterogeneity in such regions. Additionally, existing reanalyses that include atmospheric 

chemistry neither consider the coupling between aerosols and meteorology to its fullest extent nor provide concentrations for 

species like BrC, which also significantly contributes to LAP-induced radiative forcing. While there are ongoing efforts to 
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enhance the representation of aerosol-meteorology-snow interactions in advanced models (Fast and others, 2006; Grell et al., 100 

2005; He, 2022; He et al., 2014, 2018; Kumar et al., 2014) and to improve Asian emission inventories (Govardhan et al., 2016; 

Sadavarte and Venkataraman, 2014), recent model developments suggest that assimilation of satellite retrievals of quantities 

like carbon monoxide (CO) and aerosol optical depth (AOD) can significantly improve simulations of aerosol species (Arellano 

Jr. et al., 2010; Kumar et al., 2019; Liu et al., 2011; Saide et al., 2013; Werner et al., 2019). Regional reanalyses attempt to 

address this issue by employing higher spatial resolution and smaller time steps and better resolving mesoscale processes to 105 

constrain these uncertainties. Several regional reanalyses have been developed over HMA, such as the 18-year HMA Snow 

Reanalysis (HMASR) dataset, the High Asia Refined analysis (HAR) that focuses on snow properties and meteorological 

variables, as well as a multi-decadal land reanalysis focusing on hydrological budget over the region (Liu et al., 2021; Maina 

et al., 2024; Wang et al., 2021). However, none have been developed so far that provide a long-term (more than a decade) 

record across meteorological, snow and atmospheric composition quantities over HMA, especially a chemical reanalysis that 110 

constrains atmospheric composition using satellite observations and simultaneously accounts for interactions across 

atmospheric composition, meteorology, land surface, and snow.  

 

Given the issues related to the representation of LAPs, their feedbacks and impact on climate over HMA, as well as the potential 

of data assimilation of relevant satellite retrievals to improve atmospheric composition estimates, we present a first attempt 115 

towards developing a new regional hydroclimate-chemical reanalysis called MATCHA (Model for Atmospheric Transport 

and Chemistry in Asia) and evaluate its ability to simulate meteorological, hydrology and air quality parameters (Kumar et al., 

2024). This reanalysis encompasses around 17 years of simulations from 1st January 2003 to 31st August 2019. It is based on 

the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) that uses the Community Land Model 

(CLM) coupled with SNICAR (SNow, ICe, and Aerosol Radiative) model for land surface processes to capture aerosol-120 

snowpack interaction. The MATCHA reanalysis provides hourly (for two-dimensional quantities) to three-hourly (for three-

dimensional quantities) estimates at a spatial grid spacing of 12 km over the Asian domain (58o – 140oE, 4o – 40oN) and 35 

sigma levels extending from the surface to 50 hPa. The novelty of this regional reanalysis includes: 

1. coupling aerosol species with radiation and snowpack using CLM-SNICAR coupled with WRF-Chem. 

2. assimilating nearly two decades of aerosol optical depth (AOD) data from MODIS and carbon monoxide profiles 125 

from MOPITT. 

3. simulating the lifecycle of BrC aerosols, including its deposition on snowpack. 

4. providing BC, dust, and BrC abundances and quantifying BC deposition (both wet and dry) in HMA from 10 Asian 

source regions using a tagged-tracer approach for source attribution of anthropogenic pollution and its impact on 

HMA’s cryosphere. 130 

 

This study 1) presents the model description behind MATCHA and the assimilation methods involved, and 2) evaluates a 

variety of key meteorological and chemical quantities from MATCHA with observations (ground-based and satellite 
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measurements) to understand the model biases in simulating these quantities. The primary objective of this paper is to provide 

a comprehensive validation of the MATCHA dataset and document error characteristics for different parameters so that future 135 

users have a better understanding of when and where this dataset can be applied. The remainder of the paper is structured as 

follows: Section 2 describes the model configuration, the tagged-tracer approach, the daily assimilation setup, and the various 

observations that are used for evaluations. Section 3 describes the evaluation results across different meteorological and 

chemical variables, with a discussion on the model biases and the factors causing them. Section 4 discusses the key findings 

related to the evaluation and the applicability of the reanalysis for future studies. 140 

2 Data and Methods 

2.1 Model Description and Setup 

We employed version 3.9.1 of the WRF-Chem model coupled with CLMv4-SNICAR to simulate the three-dimensional 

distributions of meteorological parameters, and chemical constituents including LAPs, their deposition and evolution in the 

atmosphere and snow-covered areas over HMA. Our fully-fledged WRF-Chem-CLM-SNICAR (WC-CS) modeling system 145 

simulates the interactions between atmospheric composition (trace gases and aerosols), radiation, clouds, snowpack, and land-

surface processes. The model domain covers the majority of Asia on a Lambert conformal grid centered at 32oN, 97oE with a 

horizontal grid spacing of 12 km by 12 km and 35 vertical levels stretching from the surface up to 50 hPa. Meteorological 

fields from the ERA-Interim (Dee et al., 2011) were used to nudge the temperature, specific humidity, and wind variables in 

the model every six hours, except for the lowest ten model levels (below the planetary boundary layer), to constrain the large-150 

scale dynamics (Bowden et al., 2012; Seaman et al., 1995). We adopt key model configurations for meteorological, chemical, 

and land surface processes from Kumar et al., 2013, 2015a, building on our past efforts to simulate key meteorological and 

chemical characteristics of south Asia (see Table 1 for the schemes and configurations). For simulation of aerosols, the Model 

for Simulating Aerosol Interactions and Chemistry (MOSAIC) 4-bin sectional aerosol scheme was utilized. MOSAIC 

simulates both the mass and size distribution of aerosols, thereby enabling interactions of aerosols with cloud microphysics 155 

and radiation as demonstrated by previous studies over Asia (Kumar et al., 2015b; Matsui, 2016; Sarangi et al., 2019).  

 

Figure 2 highlights key environmental characteristics of the MATCHA domain, including elevation, population density, land 

cover, and local climate zones, to provide context for the region’s physical and human landscape. The complex topography of 

the region can be seen through the sparsely populated high elevation regions of the Himalayas and the Tibetan Plateau (> 2.3 160 

km) in Fig. 2a, in contrast with the low elevation regions of the Indo-Gangetic Plain and eastern China (< 1.5 km), which 

accommodates approximately 10% of the world’s population, including some of the most polluted cities globally (Mogno et 

al., 2021). The clustered population hotspots over the Indo-Gangetic Plain and eastern China can be seen in Fig. 2b, depicting 

the total population count in the model grid (12 km) averaged between 2003-2019 from the GlobPOP dataset (Liu et al., 2024). 

The land cover classification averaged (mode) across the domain from the MODIS International Geosphere Biosphere 165 
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Programme (IGBP) global vegetation classification scheme in Fig. 2c shows extensive croplands in areas of high population, 

and natural forests (mixed forests and grasslands) in areas of high elevation. Finally, in Fig. 2d, the local climate zones, mapped 

by Demuzere et al., 2022), highlight the level of urbanization and rapid development across Asia with pockets of major 

metropolitan centers (in red) interspersed with natural vegetation (green) and low-density developments (light orange). 

Previous studies have shown how air quality and weather patterns in Asia are impacted by the complex interactions between 170 

the complex topography, population density, urbanization effects, and land use patterns (Ganzeveld et al., 2010; Stewart et al., 

2013; Tian et al., 2021).  

2.1.1 Tagged-Tracer Approach for Source Contribution of BC 

A tracer approach implemented in WRF-Chem tracks BC particles and their deposition fluxes (both wet and dry) from 10 

different emission source regions and different sources across Asia, following the method described in our previous study 175 

(Kumar et al., 2015a). The BC tracers are independent variables added to the model simulation that experience the same 

atmospheric processes as standard BC particles (emissions, transport, aging, and deposition) but do not interfere with the model 

simulation/processes (e.g., radiation, clouds, atmospheric chemistry) or other aerosol particles. The BC tracers account for all 

sources of BC in the model by tracking BC emitted from anthropogenic (BC-ANT) and biomass burning (BC-BB) sources 

within the domain, as well as BC inflow from the lateral domain boundaries resulting from all emission sources located outside 180 

the model domain (BC-BDY) to provide insights into the background levels of BC in HMA. In addition to these emission 

sources, ten regional tracers are added to track BC emitted from different Asian countries or source regions, as shown in Fig. 

1a. The anthropogenic emissions of BC from outside of these 10 regions are tracked separately as a tracer and defined as “Rest 

of Asia”. The tracers for the source regions do not strictly follow administrative (country) boundaries, some of which are 

defined based on elevation. For instance, grid cells above 1500 km are defined as part of the Tibetan Plateau and Nepal tracers 185 

rather than India. The ability to quantify the BC abundance from these regions individually can thus help attribute the 

deposition of BC over snowpacks in HMA. This tagged-tracer approach has been applied to previous air quality studies for 

both CO and BC to assess sectoral, regional, and local contributions in Asia and Africa (Ghude et al., 2020; Kumar et al., 2013, 

2015b, 2022). 

2.1.2 Implementation of BrC aerosols in WC-CS 190 

We implement a BrC lifecycle scheme in WRF-Chem that explicitly track both primary and secondary BrC species through 

key processes: direct emissions, secondary formation, direct interaction with radiation (absorption and scattering), interaction 

with clouds (as cloud condensation nuclei), wet and dry deposition, and interaction with snowpack post-deposition (reducing 

snow albedo). Specifically, the wavelength-dependent BrC refractive indices follow Wang et al., 2014 who derived a best-

fitting line based on previous observations. The refractive indices are used to compute BrC optical properties (extinction and 195 

absorption cross-sections, single-scattering albedo, asymmetry factor) based on the Mie theory in WRF-Chem. We only 
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consider the biofuel and biomass burning sources for primary BrC emissions, since previous studies found that fossil fuel 

combustion contributes very slightly to BrC emissions and is poorly characterized (Saleh et al., 2015). Primary BrC emissions 

are estimated by assuming that all light absorption from total organic aerosol (OA) at the time of emissions is from BrC.  This 

is done by matching the total OA absorption at emissions, which is computed using the BC/OA emission ratio based on the 200 

observationally derived parameterization from Lu et al., 2015. The secondary BrC formation is assumed to be aromatic 

secondary organic aerosol (SOA) production following previous studies (Nakayama et al., 2010; Zhang et al., 2020). The BrC 

photobleaching process follows the parameterization by Wang et al., 2018. The BrC transported from global boundary 

conditions is set to 20% of total OC boundary transport fluxes based on the mean global BrC/OC burden ratio (Jo et al., 2016). 

The BrC transport, interaction with radiation and clouds, and deposition processes follow the default WRF-Chem treatments 205 

of OC. The BrC evolution in snowpack after deposition and impact on snow albedo reduction are represented following Flanner 

et al, 2009.  

2.1.3 Chemical data assimilation (DA) system and set-up 

We use the three-dimensional variational scheme from the community GSI (Gridpoint Statistical Interpolation) system to 

assimilate satellite observations: MODIS AOD and MOPITT CO, into the WRF-Chem-CLM-SNICAR model background. 210 

This assimilation is performed every three hours to produce an optimal analysis state for chemical species. Previous studies 

have demonstrated the improvement in PM2.5 forecasts from MODIS AOD and CO simulations from MOPITT CO profiles 

(Kumar et al., 2019, 2025). The assimilation system consists of four major components: 

a. Quality control of satellite observations to be assimilated: Level 2 retrievals of MODIS AOD Collection 6.1 and 

MOPITT CO version 9 are selected within the simulation period using quality assurance flags within the products, 215 

following previous studies (Kumar et al., 2025).  

b. Background error covariance (BEC): The BEC represents the error in the model background. The National 

Meteorological Center (NMC) method of the community Generalized Background Error (GEN_BE) system is used 

for calculating winter and summer representative BEC (Parrish and Derber, 1992). The NMC method uses two 

different WRF-Chem forecasts valid at the same time to calculate the statistical parameters in BEC. It calculates every 220 

3 hours to be consistent with the assimilation cycles. Anthropogenic and biomass burning emission uncertainties are 

considered in the design of the BEC following a 100% uncertainty assumption in both types of emission sources 

(Kumar et al., 2020). 

c. Observation error covariance: The observation error covariance for AOD is specified following Remer et al., 2005. 

For CO retrievals, the uncertainty reported in the MOPITT products is used for the observation error covariance 225 

(NASA/LARC/SD/ASDC, 2000). 

d. Observation operator: The observation/forward operator converts model-simulated chemical species into 

corresponding satellite-observed quantities (AOD and CO here). The default forward operator in GSI is modified for 
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transforming the MOSAIC simulated aerosols in WRF-Chem into AOD based on the parameterization from Malm 

and Hand, 2007 as follows,  230 

𝑊𝐶𝐶𝑆!"# 	= 	&𝛽$%&!

'

()*

𝑑𝑧( 	 (1) 

 

𝛽$%&! = 0.003𝑓(𝑅𝐻){[𝑎𝑚𝑚𝑜𝑛𝑖𝑢𝑚	𝑛𝑖𝑡𝑟𝑎𝑡𝑒] + [𝑎𝑚𝑚𝑜𝑛𝑖𝑢𝑚	𝑠𝑢𝑙𝑓𝑎𝑡𝑒]} + 0.004[𝑜𝑟𝑔𝑎𝑛𝑖𝑐	𝑚𝑎𝑠𝑠]

+ 0.010[𝐿𝑖𝑔ℎ𝑡 − 𝑎𝑏𝑠𝑜𝑟𝑏𝑖𝑛𝑔	𝑐𝑎𝑟𝑏𝑜𝑛] + 0.001[𝑓𝑖𝑛𝑒	𝑠𝑜𝑖𝑙] + 0.0006[𝑐𝑜𝑎𝑟𝑠𝑒	𝑠𝑜𝑖𝑙]

+ 0.00137𝑓(𝑅𝐻)++{[𝑠𝑒𝑎	𝑠𝑎𝑙𝑡]}																																																																																											(2) 235 

 

where i = 1,2 … N represents the vertical layers in the WC-CS model, 𝛽$%&! represents the extinction coefficient for 

layer i, values in the square brackets represent the mass concentrations of different aerosol compounds, f(RH) and 

f(RH)ss represents the relative humidity (RH) correction factor that accounts for hydroscopic growth of sulfate-nitrate-

ammonium and sea salt aerosol components respectively. f(RH) and f(RH)ss are determined from look-up tables. 240 

Extinction due to other aerosol components is assumed to be invariant with RH. The forward operator for assimilating 

MOPITT CO follows that of (Kumar et al., 2025). This forward operator convolves WRF-Chem CO profiles using a 

priori profiles and averaging kernels from MOPITT before calculating the innovation in CO. 

The analysis and background states consist of different LAPs and CO concentrations simulated in MATCHA. Daily 

assimilation of MODIS AOD and MOPITT CO is performed as shown in Fig. 1c. For MODIS AOD, exploration of the satellite 245 

products from both Terra and Aqua showed that the swaths cover the HMA domain between 0130 UTC to 0930 UTC. The 

assimilation is performed in a series of three-hour windows until 0900 UTC daily. 

 

2.1.4 CLM-SNICAR to simulate LAP-snow-radiation interactions 

Deposition fluxes (wet and dry) of LAPs, calculated in WRF-Chem (see Table 1), are supplied online to the CLM version 4.0 250 

land scheme (integrated within WRF-Chem) coupled with the SNICAR snow albedo model. This coupling allows for the 

simulation of LAPs’ evolution and their impact within the snowpack. In particular, CLM-SNICAR is used to compute the 

albedo and radiative flux of the vertically resolved multi-layer (up to five layers) snowpack containing LAPs (Flanner et al., 

2007; Flanner et al, 2009). BC and BrC particles in snow are represented as both externally and internally mixed with snow 

grains based on deposition mechanisms following Zhao et al., 2014 while dust in four size bins is only treated as externally 255 

mixed with snow. Snow aging processes and meltwater transport are accounted for within CLM-SNICAR, which scavenges 

LAPs from the top layers to the bottom layers and redistributes LAPs through the snow layers (Flanner et al., 2007). The LAP-

induced snowpack water and energy changes are used to simulate corresponding changes in other land surface conditions (e.g., 

soil moisture and runoff) and associated feedback in the atmosphere. The CLM-SNICAR scheme coupled with WRF-Chem 
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has been successfully used to reproduce snow albedo and LAPs in snow over other global mid-latitude mountain regions (e.g., 260 

Huang et al., 2022).  

2.2 Observations 

This section provides a brief overview of the observational datasets used to evaluate the MATCHA reanalysis. We draw on 

available chemical, meteorological, and hydrological measurements from global networks and satellite missions, with a focus 

on key variables that influence aerosol–meteorology interactions and snow processes. We evaluate across 12 key variables 265 

that represent meteorology (temperature, relative humidity, and wind speeds; both surface and profiles), land-atmosphere 

interactions and hydrology (daily precipitation, boundary layer height, and snow cover), and atmospheric composition (aerosol 

optical depth, single scattering albedo, and surface measurements of particulate matter and CO). 

2.2.1 OpenAQ 

OpenAQ is an open-source platform that compiles air quality data from multiple sources (public sources, environmental 270 

agencies, and international organizations) across the globe (Hasenkopf et al., 2016; Velasco et al., 2024), and can be accessed 

at https://openaq.org/. We obtained fine particulate matter (PM2.5), coarse particulate matter (PM10), and CO measurements 

during 2003 – 2019 across Asia within the model domain to compare with surface layer simulations from MATCHA. The 

OpenAQ measurements across all species were all post-2015 at an hourly resolution. In total, we had obtained approximately 

10 million hourly measurements across 1705 (for PM2.5), 1588 (for PM10), and 1705 (for CO) sites. Considering that OpenAQ 275 

data do not have any quality assurance standard within the retrieved and compiled data, we used a modified version of the 

probabilistic outlier detection system from Wu et al., 2018 to detect three types of outliers from the retrieved OpenAQ data for 

surface PM2.5, PM10, and CO. The outliers were based on large variances and periodic discrepancies for each site and each of 

these species, as well as spatio-temporal outliers based on neighboring sites. Detecting spatio-temporal outliers requires a 

characteristic localization length that defines the radius within which neighboring stations influence a given site. An 280 

exploratory analysis of how inter-site correlations decay with distance indicated two such suitable lengths: 342 km for the 

dense networks across China and 117 km for stations elsewhere in the domain. We show the percentage of outliers removed 

across four seasons for each of the three species (PM2.5, PM10, and CO) in Fig. A1. The number of outliers removed for PM2.5 

is highest, particularly in summer (2%, ~19600 observations removed), while CO-related outliers were removed the least (less 

than 0.05%). Overall, the outlier detection system shows the strongest impact in summer for PM2.5, suggesting greater 285 

variability in the observations across the 1705 sites over the domain.  

2.2.2 Aerosol Robotic Network (AERONET) 

The AERONET network provides radiometer measurements of aerosol optical properties like AOD and single scattering 

albedo (SSA) at different wavelengths across ground-based sites globally (Sinyuk et al., 2020, Holben et al., 1998). The AOD 

measurements have an estimated uncertainty of 0.01 at visible wavelengths and 0.02 at near-ultraviolet wavelengths (Dubovik 290 
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et al., 2000). The uncertainty due to instrumental calibration for SSA is within 0.03 for AOD at 440 nm greater than 0.4 

(Dubovik et al., 2000; Giles et al., 2019). We used AERONET Level 2 (cloud-screened and quality-controlled) data version 3 

for AOD at 550 nm across 185 sites that lie within the MATCHA domain, and the inversion products were used to calculate 

SSA at 550 nm across 153 sites. AERONET AOD is available at 340, 380, 440, 500, 675, 870, and 1020 nm, sparingly across 

all sites. For this study, AOD at 550 nm (denoted as AOD550 hereafter) is estimated by using AOD values at nearby available 295 

wavelengths (500-675 nm or 440-675 nm) to calculate the Angström exponent using the higher and lower wavelengths, which 

was further used to estimate AOD at 550 nm. 

SSA at 550 nm (denoted as SSA550 hereafter), on the other hand, is calculated using the following relation, 

𝑆𝑆𝐴,,-./ = !"#""#$%0!!"#""#$%
!"#""#$%

                   (3) 

Where AOD and AAOD (absorption AOD) at 550 nm are calculated using the following relation, 300 

𝜏,,-./ = 𝜏12-./
33-
12-

a
                   (4) 

Where τ is the AOD/AAOD at the corresponding wavelength, and α is the Angström exponent for 440 to 870 nm, available in 

the Level 2 inversion products. We note that AERONET datasets have been widely used in evaluating model aerosol 

simulations, reanalyses, and satellite retrievals globally (Bright and Gueymard, 2019; Gueymard and Yang, 2020; Xian et al., 

2024).  305 

2.2.3 Integrated Multi-satellitE Retrievals for GPM (IMERG) 

The Integrated Multi-satellitE Retrievals for GPM (IMERG) from NASA is a global surface precipitation product at 0.1o 

resolution generated from the Global Precipitation Measurement (GPM) satellite constellation as a NASA-JAXA collaborative 

effort (Huffman et al., 2014). In this study, we use the daily accumulated precipitation from the final run version of IMERG 

(IMERG-F), which calibrates the satellite measurements through monthly rain gauge analysis from the Global Precipitation 310 

Climatology Centre (GPCP). We considered the calibrated daily accumulated precipitation files from 2003 through 2019 and 

performed a first-order conservative interpolation to the MATCHA grid for comparison. Among available satellite products, 

the IMERG Final Run is one of the most accurate for daily and monthly precipitation over HMA and much of Asia, although, 

like other precipitation datasets, it exhibits systematic biases over complex terrain and during extreme rainfall events (Dollan 

et al., 2024; Lee et al., 2019; Yu et al., 2021). 315 

2.2.4 Integrated Global Radiosonde Archive (IGRA) 

The Integrated Global Radiosonde Archive (IGRA) version 2 from NCEI-NOAA (National Oceanic and Atmospheric 

Administration’s National Centers for Environmental Information) hosts radiosonde and weather balloon observations across 

the globe from multiple sources with observations of temperature and relative humidity profiles at 00 and 12 UTC (Durre et 

al., 2018). While the records are quality controlled for climatological and temperature-related outliers (in addition to other 320 

issues), there exist some known limitations, particularly unreliable humidity measurements above 250 hPa, inhomogeneities 
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in temperature and wind profiles due to changes in instruments, station locations, and lack of uncertainty estimates in the 

records (Durre et al., 2006, 2018; Madonna et al., 2022). The observations are standardized at the following pressure levels: 

1000, 925, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20, and 10 hPa. We obtained radiosonde profiles of 

temperature, relative humidity, and wind speed from 129 sites over the MATCHA domain and only considered layers up to 325 

100 hPa for comparison, considering the model top pressure of 50 hPa in the MATCHA model configuration (see Table 1). In 

addition, we obtained planetary boundary layer (PBLH) height values derived within IGRA v2 (based on the parcel method in 

Seidel et al., 2010) at 00 and 12 UTC for 125 sites within the model domain and simulation period, for comparison with 

MATCHA. It is important to note here that the actual launch time of the radiosondes and their derived PBLH may differ from 

the standard reporting times (00/12 UTC); therefore, we used the nearest time from the hourly simulations of MATCHA to 330 

obtain the spatiotemporally collocated model PBLH. Most observations were launched before the standard reporting time, 

with a median lead time of approximately 30 minutes with a similar variability. Although the derived PBLH values are reported 

to have an uncertainty of a few 100 m (Seidel et al., 2010), sparse sampling in the vertical within IGRA can result in large 

uncertainties in deriving the PBLH, compared to high-resolution soundings (Guo et al., 2021; Liu and Liang, 2010). The parcel 

method used to derive PBLH within the IGRA archive has also been shown to yield systematically lower values than other 335 

methods, with greater diurnal and seasonal variability (Seidel et al., 2010). Uncertainties in humidity sensors onboard 

radiosondes also contribute to the overall uncertainty in PBLH estimates. Additionally, radiosonde observations from IGRA 

do not include near-surface wind measurements, which can introduce discrepancies in the derived PBLH reported within IGRA 

(Madonna et al., 2021). Considering the absence of quality assurance of these derived PBLH within the archive, we 

implemented a three-step outlier detection process for our evaluation of PBLH as follows,  340 

1. We applied a rolling window-based method to both observed and modeled PBLH time series for each site, using a 

window of seven consecutive data points, corresponding to a week of measurements at 00 and 12 UTC, analyzed 

separately. We then calculated the local median and median absolute deviation (MAD) across this window (Leys et 

al., 2013) and scaled the MAD by multiplying it by 1.4826 to make it comparable to the standard deviation for 

Gaussian data. Modeled and observed PBLH values were then considered outliers if their absolute deviation from the 345 

median exceeded twice the scaled MAD. A multiplier of 2 was chosen to make the outlier detection conservative 

based on empirical testing of different values.  

2. After identifying the outliers in both the modeled and observed PBLH, we computed their differences and applied the 

same window-based method with a multiplier of 2 to identify periods of exceptionally high disagreements between 

the observations and the model. These discrepancies may be attributed to measurement errors, model biases associated 350 

with strong daytime convective mixing, very stable nocturnal boundary layers, complex topography, and spatio-

temporal representativeness issues.  
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3. We finally applied a simple MAD-based filter (using a multiplier of 2 again) across the full set of observed and 

modeled PBLH values. This step helps identify additional extreme values that may not have been flagged by the rolling 

window approach. 355 

This method allows robust filtering across datasets of spurious values that might arise from both observational and model 

uncertainties. The window-based approach allows us to filter out periodic outliers, while the last step allows us to filter out 

highly variable values from the entire dataset. Figure A2 shows histograms of both observed and modeled PBLH at 00 UTC 

and 12 UTC across seasons, comparing the distributions with and without outlier removal. In the top row (the original dataset 

with outliers), there are pronounced tails extending to higher PBLH values, particularly during summer at 12 UTC, suggesting 360 

that a small fraction of extreme values dominate the upper range of PBLH values. In the bottom row (after outlier removal), 

these tails are substantially reduced, resulting in more plausible distributions of PBLH.  

2.2.5 NOAA’s Integrated Surface Database (ISD) 

The Integrated Surface Database (ISD) from NOAA consists of sub-daily measurements of several meteorological parameters 

pertaining to surface climate across tens of thousands of ground-based stations globally (Smith et al., 2011). We obtained six-365 

hourly surface measurements of temperature at 2 m, dewpoint at 2 m, and wind speed at 10 m, after applying quality flags 

((Lott, 2004)) from 1114 sites within the model domain and simulation period, and compared them with MATCHA. We 

calculated relative humidity at 2 m from temperature and dewpoint at 2 m from the ISD values based on (Hyland and Wexler, 

1983) and compared them with relative humidity at 2 m in MATCHA (which was estimated based on Hyland and Wexler, 

1983, using temperature, specific humidity at 2 m, and surface pressure from MATCHA). The ISD database has been used in 370 

a couple of previous studies as a validation dataset for meteorology over Asia (Faber et al., 2024; Kumar et al., 2015b; Xi, 

2021; Yin et al., 2022). 

2.2.6 BC Observations 

Daily surface BC measurements between 2015 – 2019 were obtained from the Atmospheric Pollution and Cryospheric Changes 

(APCC) program, a monitoring network established over the Third Pole (Tibetan Plateau) and its surroundings to study the 375 

impact of atmospheric pollutants on the cryospheric changes over the region (Kang et al., 2022). We obtained daily BC 

measurements from 19 sites in the APCC program across the Tibetan Plateau and the Himalayas and compared them with 

surface BC abundance from MATCHA. In addition, monthly atmospheric surface BC measurements from 13 sites (across 

India and the Tibetan Plateau) for the year 2006 and seasonal averages of surface BC for 24 sites over India were obtained 

from He et al., 2014 and Kumar et al., 2015b.  380 

 

2.2.7 MODIS Snow Cover Fraction 
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Given that MATCHA incorporates CLM coupled with SNICAR, we specifically evaluated snow cover fraction (SCF in %) 

between MATCHA and satellite-based MODIS retrievals. We use daily SCF at a spatial resolution of 0.05° based on the 

Normalized Difference Snow Index (NDSI) (Hall and Riggs, 2007). Specifically, we use the MODIS (Terra and Aqua) Daily 385 

Level 3 (L3) Global 0.05 Deg Climate Modeling Grid Version 6 product with pixels having only recommended quality flags 

of 0 (best). We resampled the MODIS pixels to MATCHA’s 12 km resolution by aggregating and averaging the finer pixels. 

For our comparison, our results are particularly focused on the aggregated first-order glacier regions over HMA based on the 

Randolph Glacier Inventory (RGI v6) (Pfeffer et al., 2014). These products have been used in previous studies over the domain, 

where they have reported promising results and high accuracy over HMA (Immerzeel et al., 2009; Li et al., 2018; Pu et al., 390 

2007).  

2.3 Evaluation metrics 

We use four metrics: mean bias difference (MB), root mean square error (RMSE), Spearman’s rank correlation (R), and a non-

parametric version of the Kling-Gupta efficiency (KGE) statistic (Gupta et al., 2009; Pool et al., 2018) to evaluate the 

performance of MATCHA. MB represents the deviation of model (MATCHA) values from observations in both magnitude 395 

and sign, ranging from − ∞ to ∞ with a perfect value of 0. RMSE represents the positive deviation of the model from 

observations, ranging from − ∞ to ∞, with a perfect value of 0. R represents the degree of monotonic relationship between 

models and observations and is less sensitive to outliers compared to the commonly used Pearson’s correlation (Wilcox, 2016). 

KGE quantifies the overall accuracy of the model by integrating correlation, bias, and variability. It ranges from − ∞ to 1, with 

a perfect value of 1. Here we use the non-parametric version of the original KGE metric based on Pool et al., 2018. The 400 

definitions of these metrics are as follows, 

𝑀𝐵 = 𝑀( − 𝑂(	 (5) 

  

𝑅𝑀𝑆𝐸 =	T(𝑀( − 𝑂()4	 (6)	 

𝑅 =
𝑐𝑜𝑣(𝑟5 , 𝑟")
𝜎6&	𝜎6'

	 (7) 405 

𝐾𝐺𝐸'8 = 1 − Z(𝑅 − 1)4 + (𝛽 − 1)4 + (𝛼 − 1)4		 (8) 

 

where M and O are the model and observed values respectively, i refers to the seasonal average per site or grid cell, r refers to 

the ranks of the model and observed values, s refers to the standard deviation of the ranks, cov refers to the covariance of the 

ranks r, b refers to the bias ratio, and a refers to the variability ratio. b and a are defined as follows, 410 

𝛽 =	
𝑀9]]]
𝑂9̂
		 (9) 
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𝛼 = 1 −
1
2	&`𝐹5(b −𝐹"(b`

'

()*

	 (10) 

where 𝐹5! 	and 𝐹"! 	are the model and observed values, sorted and normalized by the product of their mean and sample size, as 

follows, 

𝐹9c = 	
𝑥(
𝜇%𝑁

	 (11) 415 

where 𝑥( 	is the i-th largest value of the model or observed set of values, 𝜇% is the model or observed mean, and N is the number 

of values. The non-parametric variant of KGE uses the Spearman correlation (R), instead of Pearson’s correlation in the original 

KGE, and the variability ratio in the non-parametric version is based on quantifying the similarity in the empirical distributions 

of the model and observed values, rather than the ratio of their means as in the original KGE.  

These metrics are based on the seasonal averages at each site or grid cell (depending on the scale of the observations used) per 420 

variable and report them per season in Tables 2,3, and 4. For our evaluation, we show a spatial representation of the seasonal 

average of the variable from the observation source and MATCHA, as well as their model bias. We define four seasons as 

follows: DJF (winter), MAM (spring), JJA (summer), and SON (fall).  

3 Results 

In this section, we present and discuss the evaluation of MATCHA across three key groupings: (1) meteorology, (2) land-425 

atmosphere interactions and hydrology, and (3) atmospheric composition, each reflecting core aspects of the model’s coupled 

atmospheric and surface processes.  

3.1 Meteorology 

3.1.1 Temperature 

Surface temperature at 2 m from both observations and MATCHA (Fig. 3) highlights the zonal temperature gradient and 430 

captures spatial variations very well when compared to surface observations from ISD. The largest biases, exceeding 2°C, 

occur during winter over Asia, particularly in mainland India and southern China. Over the Indo-Gangetic Plain, MATCHA 

exhibits a consistent cold bias greater than 1 °C across all seasons, whereas eastern China shows a pronounced cold bias (< 2 
oC) in winter, absent in other seasons. Overall, MATCHA tends to exhibit a cold bias across most seasons, except during 

summer, where a slight warm bias is noted (MB of 0.07°C; Table 2). The highest cold bias appears in winter (MB of -0.38°C). 435 

RMSEs are lowest in fall (2.5°C) and peak in winter (4°C). Correlations across the domain are very strong (R > 0.95) in all 

seasons except for the slight decline in summer (R of 0.85), indicating that MATCHA captures surface temperature patterns 

effectively across all seasons. KGE values are highest during transition seasons (0.95), suggesting best model performance, 

which worsens a bit during winter (KGE of 0.82). The IMDAA (Indian Monsoon Data Assimilation and Analysis) regional 
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reanalysis over the Indian subcontinent, with a resolution comparable to MATCHA, has also shown near-surface temperature 440 

biases exceeding 2°C over India, which is consistent with the findings of our study (Ashrit et al., 2020). 

The temperature profiles from MATCHA align well with radiosonde profiles from IGRA in Fig. 4. These profiles reveal a 

consistent cold bias across the domain for most seasons, especially in the lower troposphere (below 500 hPa), and a slight 

warm bias in the upper troposphere. The median biases across all sites are at a maximum of 2oC. The cold bias is most 

pronounced in spring (-1.3°C) and smallest in fall (-0.95°C), with RMSEs following a similar seasonal pattern (4 oC versus 445 

3.5oC). Correlations across all sites and atmospheric layers remain high (R > 0.98) across all seasons, suggesting that 

MATCHA reasonably captures the vertical temperature structure despite the systematic cold bias. This is also confirmed by 

the KGE values across the seasons (0.98) suggests almost “perfect” model agreement. KGE values for the lower troposphere 

(below 500 hPa) are slightly higher (KGE ³ 0.99) than the upper troposphere (KGE between 0.95 - 0.97), suggesting better 

agreement in the lower troposphere.  450 

3.1.2 Relative Humidity 

Relative humidity (RH) at 2 m across ISD sites and corresponding MATCHA values are shown in Fig. 5. MATCHA captures 

the seasonal cycle very well, with a strong moisture gradient peaking from spring and declining till winter. Correlation across 

the domain is strong (R > 0.64; Table 2), which varies from 0.85 in summer to 0.64 in winter. However, MATCHA generally 

simulates drier conditions (negative model bias) compared to observed surface RH measurements. This dry bias is pronounced 455 

in northern India, northern and eastern China, and the Himalayas, particularly during winter and spring. Conversely, a 

prominent moist bias is observed in central and northern India, Pakistan, Afghanistan, and southeast Asia during spring and 

summer. The wet bias in Pakistan and Afghanistan peaks in summer (> 15%) and becomes rather wetter during winter (> -

5%). Central Asia exhibits a consistent dry bias (> -10%), which is strongest in summer (> -15%). Across seasons, spring and 

summer exhibit a general wet bias, while winter and fall are characterized by a general dry bias. The domain-averaged biases 460 

are highest in winter (MB = -2%) and lowest in summer (MB of 1%). RMSE values, however, are much larger (> 9%) and 

peak in winter (RMSE of 10%), while being lowest in fall (9%). KGE values lie between 0.6 to 0.85, suggesting good model 

performance, with the best agreement across the domain in summer that slightly worsens in winter. Overall, MATCHA most 

accurately reproduces surface RH values across all seasons. 

RH profiles from MATCHA in Fig. 4 display a slight moist bias (< 5%) in the lower troposphere, transitioning to a drier bias 465 

(> 5%) in the upper troposphere, which increases near the tropopause. The median biases across all sites vary at most by 20%, 

with the strongest differences occurring mostly for winter across all layers. Across the domain, the moist bias below 500 hPa 

is relatively low (<1%) compared to the upper troposphere values, where the biases are drier and higher (-1 to -5%). This upper 

tropospheric dry bias is most prominent in spring and summer. Across the domain, the dry bias (see Table 2) across all 

tropospheric levels is strongest in winter (MB = -3.3%) and weakest in summer (-0.6%). RMSE values are comparatively high 470 

(> 10%) across all seasons, peaking at 15% in winter. Correlations are strong (> 0.66) and highest in summer (0.87). KGE 

values for all layers lie between 0.64-0.85, suggesting good model performance, with the best (worst) agreement in summer 

https://doi.org/10.5194/essd-2025-275
Preprint. Discussion started: 11 September 2025
c© Author(s) 2025. CC BY 4.0 License.



16 
 

(winter). The model agreement, however, worsens for the upper troposphere with a strong contrast between the KGE values 

for winter versus summer (0.2 versus 0.7).  

3.1.3 Wind Speed 475 

The simulated and observed wind speed at 10 m across ISD sites are compared in Fig. 6. MATCHA shows moderate skills in 

capturing the seasonal cycle of 10 m wind speed with moderately strong correlation coefficient values of 0.4 to 0.7 across the 

domain. MATCHA also simulates higher wind speeds compared to observations, with a strong positive bias exceeding 2 m/s 

at most sites. This positive bias is particularly prominent over south Asia, especially during summer, and decreases gradually 

through fall and winter. In northern India, underestimations (negative bias) are observed at some sites in winter. Domain-wide 480 

seasonal biases (Table 2) indicate a consistent positive bias around 1.5-1.7 m/s across all seasons. RMSE values are also 

relatively stable across seasons, ranging between 2.3 m/s in winter to 1.8 m/s in fall. KGE values lie between 0.1-0.2, 

suggesting slightly poor model performance, with the best agreement during transition seasons (spring and fall). WRF is known 

to overestimate 10 m wind speeds for low to moderate wind speeds using all available PBL schemes, particularly over complex 

terrain (Cheng and Steenburgh, 2005; Jiménez and Dudhia, 2012; Mass and Ovens, 2010). Previous studies show a similar 485 

windier bias within the MERRA-2 reanalysis (Faber et al., 2024), particularly at inland stations (Carvalho, 2019). 

Vertical wind profiles, as shown in Fig. 4, however, demonstrate good agreement between MATCHA and IGRA observations 

across all seasons, as seen from the relatively high KGE values (> 0.95), suggesting good model performance across profiles. 

The average bias across all pressure levels is small and rather negative in contrast to the positive bias at the surface, ranging 

from -0.1 m/s in winter to -0.5 m/s in fall. RMSE values are higher at upper levels, peaking at 3 m/s in winter, suggesting 490 

increased variability in performance with altitude. The biases and RMSEs are lower for the lower troposphere and higher in 

the upper troposphere. KGE values, however, are slightly better in the upper troposphere (> 0.95) than in the lower troposphere 

(~ 0.9). However, correlations averaged across all pressure levels are high (> 0.9), indicating that MATCHA effectively 

captures overall wind profiles but exhibits biases near the surface and in the upper troposphere.  

3.2 Land-Atmosphere Interactions and Hydrology 495 

3.2.1 Precipitation 

Figure 7 presents a comparison of seasonal average daily accumulated precipitation between IMERG-F and MATCHA across 

four seasons. The precipitation patterns show a strong south-to-north gradient, particularly in summer and fall, depicting the 

onset and retreat of the Asian summer monsoon, with maximum intensity observed in the Indian subcontinent, especially in 

summer. During winter and spring, precipitation remains low except for coastal regions and parts of south Asia across both 500 

datasets. The high precipitation intensities are clustered in high elevation regions, with MATCHA successfully reproducing 

the broad spatial patterns of precipitation across Asia. MATCHA also captures localized features along the mountain foothills 

and coastal regions, particularly during summer/monsoon, which are smoothed over in IMERG-F. Similar localized patterns 
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are seen in the IMDAA regional reanalysis when compared with a spatially smoother precipitation from the ERA-Interim 

reanalysis (Ashrit et al., 2020; Dee, 2011). Average daily accumulated precipitation from IMERG-F is highest (lowest) during 505 

the summer/monsoon (winter), with a gradual increase in spring followed by a decline in fall. MATCHA captures this 

seasonality over the domain but shows strong biases in southeast Asia (wet bias), northern India (dry bias), southern and eastern 

China (dry bias), and the Tibetan Plateau (dry bias). Over India and eastern China, a dry bias progressively develops in 

MATCHA from winter to summer (> -1 mm), except for a prominent wet bias in summer over the Himalayan foothills and 

the Bay of Bengal (> 1 mm). In summer, MATCHA captures high bands of precipitation above 6 mm, especially over the Bay 510 

of Bengal, albeit drier by 4 mm or more. A consistent wet bias (~ 1 mm or more) is seen in the Tibetan Plateau across all 

seasons, suggesting limitations in MATCHA to represent convective processes and orographic precipitation over complex 

terrain and high elevation areas, which has been noted by previous studies across models (Cannon et al., 2017; Sugimoto et 

al., 2024).  Overestimation of precipitation in higher elevation regions of HMA has also been reported across reanalyses in 

studies, particularly in summer (Dollan et al., 2024). A prominent dry bias is seen in southern China and southeast Asia during 515 

fall (> 0.1 mm), suggesting issues in the model to simulate the seasonal retreat of the summer monsoon. Across the domain, 

the evaluation statistics as discussed in Sect. 2.3 is shown in Table 3. An overall dry bias is observed, which is highest (lowest) 

in summer (winter) (MB of -1.8 mm versus -0.4 mm). The RMSE also shows similar seasonality (5.2 mm in summer versus 

1.2 mm in winter). The correlation across the domain is relatively strong, and highest (lowest) in summer (winter) (R of 0.8 

versus 0.7). The higher correlation during summer can be seen due to general patterns of high precipitation bands associated 520 

with the Indian summer monsoon, as captured by MATCHA. The KGE values vary between 0.5 to 0.6 across seasons, with 

the relatively best (worst) agreement in summer (winter), indicating moderate skill in reproducing the daily precipitation 

climatology. Xie et al., 2022 compared daily precipitation products from both IMERG and ERA5-Land (with a similar 

resolution of 9 km) with rain gauges over China and reported median KGE values in the 0.5 range, as in our study. Contrary 

to the overall biases, MATCHA captures several important features of the daily precipitation cycle well, especially in the 525 

Indian subcontinent, while the performance worsens during winter in high-elevation and desert regions of Central Asia. The 

regional biases observed, particularly the wet bias in high elevation regions, highlight areas where further improvements in 

convection, land-atmosphere coupling schemes, as well as representation of orographic precipitation across complex 

topography, might be necessary (Barros and Arulraj, 2020; Mishra et al., 2021).  

3.2.2 Planetary Boundary Layer Height (PBLH) 530 

PBLH measurements at 00 and 12 UTC from IGRA (following the outlier approach in Sect. 2.2.4) across four seasons are 

shown in Figs. 8 and 9, respectively. Within the study domain, PBLH at 0 UTC represents the dawn to morning PBLH (from 

0330 hours to 0930 local hours) on average, whereas at 12 UTC, the values correspond to the late afternoon to night PBLH 

(from 1530 hours to 2130 local hours). Figures 8 and 9 show the approximate shadow zones (nighttime conditions) at 00 UTC 

and 12 UTC, based on sun elevation angle and local time. MATCHA captures the diurnal variability (increase from morning 535 

to afternoon, 00 to 12 UTC) except in winter when the 12 UTC PBLH is significantly underestimated, particularly over the 
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Indian subcontinent. MATCHA generally reproduces the seasonal variability from a shallower PBLH in winter to a deeper 

PBLH in summer, especially for 12 UTC. For 00 UTC, the biases are generally negative, with the largest underestimation 

observed over India and near the coasts during all seasons. An exception occurs in summer, where overestimations exceeding 

200 m are prominent in eastern China (Fig. 8). For 12 UTC, positive biases dominate across the domain, particularly during 540 

summer (> 350 m) (Fig. 9). In winter, however, MATCHA sometimes underestimates PBLH by more than -200 m, particularly 

over the Indian subcontinent. Biases over eastern China remain predominantly positive across seasons, except for winter at 

certain sites. Over India, positive biases (above 330 m) are observed exclusively during summer.  

Domain-wise metrics (in Table 3) at 00 UTC reveal low biases across all seasons, which is highest in summer (MB of 123 m), 

except for a mild underestimation in spring (MB of -2 m) and winter (MB of -14 m). RMSE values range from 167 m in winter 545 

to 210 m in summer, indicating larger variability in summer. At 00 UTC, the mean bias remains within ±125 m in every season, 

indicating that the WC-CS model reproduces the nocturnal PBLH (pre-sunrise) reasonably well. At 12 UTC, however, the bias 

becomes positive and highly variable across seasons, rising from 6 m in winter to 1400 m in summer, indicating a significant 

seasonal variability. There are strong overestimations at 12 UTC across the domain, particularly in summer, where the errors 

are the highest (MB of 1399 m, RMSE of 1552 m), compared to winter, where the errors are quite low (MB = 6 m, RMSE = 550 

259 m). Models often struggle to capture the diurnal cycle of PBLH at the transition periods during morning and evening, 

where the decay during the transition from the daytime convective boundary layer to the nocturnal stable layer (and vice versa, 

a rapid rise from stable BL to convective BL during morning) can lead to the significant PBLH biases around 12 or 00 UTC 

(Cuchiara and Rappenglück, 2017; Hong, 2010; Taylor et al., 2014). For our domain, most of the observations belong to this 

this transition period because radiosonde launches at and 00 (12) UTC in most of Asia span from (pre-dawn) afternoon to 555 

daytime (night) locally, and we can see that (western) eastern part of the domain remains at nighttime conditions in Figs. 8 and 

9 across all seasons. In Fig. A3a, we see that around 42% of the launches are at the transition zone or night times conditions 

(referring to D(LS), CT(M), CT(E), and N; low sun during day, civil twilight in the morning, evening, and night respectively) 

across all seasons, which coincide with the largest PBLH biases (MATCHA-IGRA, -500 m to 2200 m) (in Fig. A3b) as well. 

We group the local launch times of all the observations across five solar regimes, based on the solar elevation angle: N/night 560 

(≤ –6°), CT/civil twilight (–6° to 0°, morning (M) or evening (E) by the solar azimuth), D (LS)/Day Low Sun (0° to 10°), and 

D(HS)/Day High Sun (> 10°). The model biases are particularly high for D(LS) and CT(E) solar regimes, particularly during 

summer, as seen in Table 3. At 00 UTC, when most of the transition-related launches (~19% of total launches) fall into the N, 

CT(M) and D(LS) regimes, MATCHA shows negligible biases ( < 125 m) and lower RMSEs (150 - 210 m, Table 3), confirmed 

by the smaller spread in Fig. A3b. In contrast, at 12 UTC, the large variability in errors is seen by the large spread in Fig. A3b, 565 

where the transition-related launches (~23%) fall into the N, CT(E), and D(LS) regimes. In Fig. A3e-f, we also show the 

distribution of shortwave downward radiation (SWDOWN) and surface sensible heat flux (sSHF) that drives convective BL, 

collocated at the observations. We can see that MATCHA still simulates high radiances and fluxes during the transition 

regimes, particularly at D(LS), CT(E), and even N, well after the Sun has crossed the horizon locally (within 10o elevation). 

This can indicate that the sustained surface forcing leads to increased buoyant turbulence, where the model PBLH continues 570 
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to deepen, when it should already collapse. For instance, in summer, we see that the median sSHF in CT(E) exceeds 150 W 

m-2, leading to PBLH biases up to 2000 m, while during CT(M) or N, the sSHF falls near/below 0, and the biases collapse to 

200 m. It is also important to note that we are limited to the nearest hour by the collocated MATCHA samples, when the actual 

launch times might be varied by minutes. A preliminary analysis showed that during the transition hours, around half (52%) 

of the radiosonde launches are released within ±15 minutes of the model hour, with an inter-quartile range of model biases up 575 

to 1000 m across all seasons. These findings indicate that residual heating due to a mismatch in radiation timing within the 

model can drive these high biases within MATCHA, particularly in summer, due to the delayed collapse in PBL in the 

transition hours. 

For 00 UTC, correlation coefficients are weak across seasons, except weak correlations (0.1-0.2) for transition seasons (spring 

and fall), reflecting weak agreement between MATCHA simulations and IGRA observations. Correlations, however, are 580 

improved for 12 UTC compared to morning/daytime PBLH values, with the strongest correlation during summer (R of 0.5). 

KGE values, however, are slightly better for 00 UTC than 12 UTC, with the best model performance during spring for both 

00 UTC and 12 UTC. The overestimation during summer suggests enhanced vertical mixing within the model due to strong 

convection over tropical regions. Previous studies have reported an overestimation of nighttime PBLH by factors of three or 

at least by 1400 m over regions in Asia from models (Lee et al., 2023; Zhang et al., 2022). A global analysis of daytime PBLH 585 

across reanalysis products like ERA5 and MERRA-2 has shown an average bias of up to 640 m in Asia across seasons (Guo 

et al., 2021). These discrepancies, characterized by high RMSE and low correlation, likely stem from the coarser model 

resolution in the horizontal and vertical (only 35 vertical levels), parameterizations to represent sub-grid scale convection and 

surface energy budgets, particularly in complex and high terrain, as well as the diurnal phase mismatch during the evening 

transition, as discussed in previous studies (Meng et al., 2023; Mues et al., 2018; Shin and Dudhia, 2016). Note that this 590 

validation is not representative of the model’s ability to capture the diurnal cycle of PBL but is only an attempt to validate the 

model performance at two specific times (00 and 12 UTC) that belong to morning and evening transition zones in daily PBLH 

evolution. Nevertheless, our results point to the need for a deeper investigation into the uncertainties in both the observed and 

modeled PBLH, particularly in such regions with complex terrain (Chen et al., 2023). 

3.2.3 Snow Cover 595 

In Fig. 10, we compare SCF (in %) from MODIS and MATCHA across four seasons over the six aggregated major first-order 

glacier regions of HMA, based on the Randolph Glacier Inventory (RGI v6). The six HMA glacier regions from RGI v6 are 

defined as follows: INT: Inner Tibet, S and E Tibet; HTQ: Hengduan Shan, Qilian Shan; TNS: W and E Tien Shan; KNL: W 

and E Kun Lun; HIM: W, C, and E Himalayas; HKPH: Hindu Kush, Karakoram, Pamir, and Hissar Alay. MATCHA in general 

captures the seasonal as well as spatial distribution of SCF observed by MODIS, with the highest SCF in winter and lowest in 600 

summer. Both MODIS and MATCHA show widespread high SCF in winter across most regions, except for strong 

overestimation in INT (>20%) and strong underestimation in TNS (>20%). As snow begins to ablate in spring, MATCHA 

seems to suggest more snowmelt as seen by the negative biases across most regions, while some regions of INT, eastern HIM, 
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and southern HTQ show positive biases, indicating lagged snow ablation. In summer, the highest SCF is mostly limited to the 

higher altitudes but is much lower in MATCHA compared to MODIS, particularly in HIM and HKPH. In fall, as snow begins 605 

to accumulate, MATCHA continues to exhibit negative biases over regions the high elevation areas, with some sporadic 

overestimations in the HMA. Across the glacier regions, MATCHA shows reasonable agreement with MODIS in winter over 

HIM, except for the larger biases during snowmelt. Highly rugged regions like HKPH also show strong biases likely due to 

limitations in resolving sub-grid processes. Areas like INT and HTQ show the strongest biases during winter. Domain-wide 

metrics in Table 3 show the lowest bias in winter (MB of -2%) and the strongest bias in spring (MB of -9%). RMSE values 610 

peak in winter (24%) and are lowest in summer (12%), suggesting greater variability in SCF in winter despite the lowest bias. 

Correlation values are strong across all seasons (R > 0.7), while the KGE values show the best agreement during winter, 

followed by spring (0.7 and 0.6). These results suggest that overall, MATCHA seems to struggle mostly during snowmelt 

periods. A recent study comparing SCF across various reanalyses over the TP found that the TP-averaged SCF was around 12-

14%, which closely aligns with our estimates of SCF from MATCHA (11%) and MODIS (12%) over the INT region (Yan et 615 

al., 2024).  

3.3 Atmospheric Composition 

3.3.1 AOD and SSA at 550 nm 

We compare mean daily AOD550 across seasons as shown in Fig. 11. MATCHA successfully captures the overall spatial 

patterns observed in AERONET, including consistently low values over the Tibetan Plateau, the Gobi and Taklamakan deserts, 620 

and the higher values over the Indian subcontinent due to pollution hotspots across all seasons except in summer, where the 

positive biases are the highest (>0.5). The seasonal cycle is also captured well, with AOD550 peaking in summer and declining 

during fall. A consistent negative bias is seen in spring, transitioning to a strong positive bias in southeast Asia and over India 

during summer. Over eastern China, the bias remains consistently positive during winter and spring and turns generally 

negative post-spring. Domain-wide metrics (Table 4) show a positive bias in all seasons, peaking in winter (MB of 0.2) with 625 

a slight negative bias in spring (MB of -0.01). RMSE values lie between 0.2 to 0.6, with the highest RMSE in winter (0.4) and 

the lowest in spring (0.2). Correlation values are highest in fall (0.7) and lowest in winter (0.5), with KGE values ranging 

between 0.7 in spring to 0.2 in summer, suggesting good agreement between MATCHA and AERONET values, with the best 

(worst) performance in spring (summer). Previous studies comparing AOD550 from AERONET across several reanalysis 

products have highlighted similar model biases over Asia, with bias values around 0.1-0.2 and RMSE values exceeding 0.2 630 

for polluted regions, which is in line with our evaluation (Ansari and Ramachandran, 2024; Gueymard and Yang, 2020; Singh 

et al., 2017; Xian et al., 2024). These studies have also highlighted the fact that AOD550 biases over Asia are higher than in 

other regions of the globe. In addition to the magnitude of AOD550, we also look at the monthly climatology of AOD550 as 

seen from AERONET and MATCHA in Fig. A7, where we visualize the median AOD550 across months for sites grouped by 

tagged-tracer regions within MATCHA. While the seasonality and variability of AOD550 are captured at most sites, especially 635 
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in China, we see major discrepancies during summer months among sites over India and Nepal. Similar discrepancies can be 

seen for Bangladesh, Myanmar, and southeast Asia, where AOD550 is much higher in the model during summer months than 

in AERONET. This highlights issues in the model regarding wet scavenging and deposition during the Asian monsoon, as 

well as convective transport to high-elevation regions, which leads to the higher bias during the summer months.  

We also evaluated SSA550 from AERONET and MATCHA simulations in Fig. 12 to assess the relative contributions of 640 

scattering and absorbing aerosols represented in MATCHA. MATCHA generally underestimates SSA550 across the domain, 

indicating a higher fraction of absorbing aerosols in its simulations compared to AERONET. The negative bias in SSA550 

peaks at -0.1 during winter and fall over most regions except in summer, where there is a slight positive bias (0.05) over India 

and southeast Asia, suggesting the influence of marine aerosols (which are scattering in nature) during monsoon. The 

seasonality of SSA550 is also captured in MATCHA as seen by the peak SSA550 (> 0.93) in summer, with the lowest SSA550 645 

in winter (~0.65). Across the domain, a negative bias is seen across all seasons that peaks in winter (-0.2) and is lowest in 

summer (-0.02). RMSE values are highest in winter (0.2) and lowest in summer (0.04) as well. Correlation and KGE values 

are relatively low, except in fall (R of 0.6), suggesting relatively strong agreement. These results suggest that while MATCHA 

captures the optical properties post-spring, it struggles particularly in winter. The negative SSA550 bias across the domain 

indicates more absorbing aerosols simulated within MATCHA, which, when deposited on snow via the SNICAR module, 650 

darken the surface and accelerate snowmelt and can help drive the negative SCF bias observed in MATCHA (Sect. 3.2.3). 

Uncertainties in SSA550 in previous studies across WRF-Chem and other reanalyses have been reported to be up to 0.05, in 

contrast with the biases in MATCHA particularly for winter, suggesting differences in atmospheric composition within the 

model that can arise due to the emission inputs, and model parameterization related to deposition schemes and transport within 

the model. Biases in SSA within models often arise from physical and chemical assumptions related to aerosol composition 655 

and treatment. Internal mixing of absorbing particles (e.g., BC with sulphate), as employed in the MOSAIC aerosol model, 

tends to increase absorption, thereby lowering SSA values. Studies have shown that accounting for proper mixing state, 

refractive index, and including brown carbon and realistic dust size distributions can reduce SSA biases. Others report SSA 

underestimations in polluted regions, largely driven by emissions that overestimate absorbing aerosols inventories or the 

underestimation of scattering from hygroscopic growth (Dong et al., 2023). 660 

3.3.2 PM2.5, PM10, and CO surface measurements 

Fig. 13 shows the spatial distribution of seasonally averaged surface PM2.5 mass concentrations from OpenAQ observations 

and MATCHA simulations. While MATCHA reproduces PM2.5 seasonality in general, it diverges in magnitude, with 

pronounced regional differences. OpenAQ observations show the highest PM2.5 concentrations during winter, followed by a 

decline in spring, the lowest levels in summer, and a rebound in fall. MATCHA captures this seasonal pattern over China but 665 

deviates over India, where it successfully simulates the fall-to-winter increase and the winter-to-spring decrease but 

inaccurately predicts an increase from spring to summer, contrary to the observed decline. MATCHA exhibits large positive 

biases over eastern China across all seasons, peaking in winter (> 107 µg/m³) and reaching a minimum in summer (< 62 µg/m³). 
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In contrast, MATCHA consistently underestimates PM2.5 over western China and HMA, with negative biases exceeding -6 

µg/m³ throughout the year. Over India, biases are predominantly positive across all seasons, with the smallest deviations 670 

observed in spring and fall (within ±62 µg/m³). These discrepancies point to uncertainties in emission inventories and 

limitations in MATCHA's representation of transport, transformation, and deposition processes, particularly in regions with 

complex topography. 

Across the domain (see Table 2), the positive bias is highest in winter (188 µg/m³), while the lowest is in spring (59 µg/m³). 

RMSE values are also substantial, peaking in winter (212 µg/m³) and reaching their lowest in both spring and summer (77 675 

µg/m³). The significant RMSE values indicate marked seasonal variability, particularly in spring and summer, where similar 

mean biases (~61 µg/m³) and RMSE values are seen (117 µg/m³ in spring versus 94 µg/m³ in summer). Correlation values 

across the domain are moderate (~ 0.5-0.6) except in spring (R of 0.2), while KGE values are negative, reflecting limited 

agreement between MATCHA simulations and observed PM2.5 concentrations. The KGE values suggest that MATCHA 

performs best during the transition seasons and struggles particularly in winter. 680 

To investigate the processes contributing to the positive biases in surface PM2.5, we analyzed the contributions of various 

aerosol species to surface PM2.5 mass concentrations across the model domain. Additional analyses using the MATCHA dataset 

revealed several potential causes for these strong positive biases: 

1. Elevated near-surface wind speeds along the Arabian Sea coastline, as seen in MATCHA, contribute to higher 

concentrations of surface sea salt and dust aerosols. An overestimation of near-surface winds (see Sect. 3.1.3) impacts 685 

the sea salt parameterization scheme within MATCHA based on (Gong et al., 1997), which strongly depends on 10 

m wind speeds. Previous studies have demonstrated the overestimation of sea salt emissions from models based on 

this parameterization (Chen et al., 2016; Neumann et al., 2016; Saide et al., 2012). Sect. 3.1.3 highlights a positive 

bias in 10 m wind speeds, which aligns with this observation. Figure A4 shows the spatial distribution of sodium and 

chloride (components of sea salt) across four seasons, alongside average 10 m wind speeds. During summer, average 690 

wind speeds exceed 4 m/s along the western coast of the Indian subcontinent, transporting marine aerosols from the 

Arabian Sea to inland regions. Consequently, high concentrations of sodium and chloride are simulated in summer, 

exceeding 51 µg/m³. 

2. Lower precipitation intensity simulated during summer, compared to observations, reduces wet scavenging 

efficiency, allowing aerosols to persist in the atmosphere. Precipitation totals in Fig. 7 highlight a dry bias over the 695 

Arabian Sea during summer, further supporting this underestimation. This reduced precipitation intensity limits 

aerosol removal, contributing to higher concentrations of marine aerosols in the region. 

3. Errors in the partitioning of gas-phase NO2 into particle-phase NO3 aerosols lead to an overestimation of nitrate 

aerosols over India. The MOSAIC aerosol scheme used in MATCHA relies on several factors for gas-to-particle 

partitioning: 1) availability of hydroxyl (OH) radicals for oxidizing NO2 to HNO3, 2) high aerosol concentrations 700 

promoting HNO₃ condensation, and 3) favorable conditions such as lower ambient temperatures and higher RH for 

HNO₃-to-NO₃ partitioning. Several studies have mentioned the overestimation of nitrates in models (Sha et al., 2022; 
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Zakoura and Pandis, 2018). Figure S5 compares daily tropospheric column NO₂ concentrations from MATCHA (for 

2014) to satellite-based observations from the Ozone Monitoring Instrument (OMI) (Boersma et al., 2017). In 

summer, a distinct negative bias in tropospheric column NO₂ (> 1.4 molecules cm-2) is seen over India, suggesting 705 

excessive conversion of gas-phase NO₂ to nitrate aerosols, which increases PM2.5 concentrations in MATCHA. 

4. The high positive biases in PM2.5 over eastern China can be attributed to discrepancies in the emission inventory. 

Specifically, the CAMS-ANT-GLOB inventory used in MATCHA fails to accurately capture the observed decreasing 

trend in emissions over China (Soulie et al., 2023). This discrepancy likely results in an overestimation of PM2.5 in 

MATCHA for this region. 710 

These findings highlight key limitations in the representation of marine aerosols, wet scavenging processes, gas-particle 

partitioning, and emission trends within the MATCHA model, each of which contributes to the positive biases in surface PM2.5. 

 

Similar to PM2.5, MATCHA exhibits significant biases in PM10, particularly during the summer season (Fig. 14). To understand 

if errors in simulations of natural aerosols are the primary contributors to biases in PM10, we recalculated the mean bias in 715 

PM10 by removing the contributions of these species from MATCHA simulations, as shown in Fig. 14 and the domain-wide 

statistics in Table 4. As in PM2.5, the seasonality of PM10 concentrations is consistent between OpenAQ observations and 

MATCHA. After removing sea salt and dust that are overestimated by MATCHA (Table 4), the mean bias in winter decreases 

substantially from 203 to 62 µg/m³, and in spring, the bias reduces from 39 µg/m³ to just 9 µg/m³. Overall, removing sea salt 

and dust improves the mean bias, with the largest reduction observed during winter. Despite this adjustment, MATCHA still 720 

shows a consistent positive bias, particularly in winter, indicating an important contribution of error in anthropogenic emissions 

to the overestimation of PM10 by MATCHA. Compared to PM2.5, the strong positive wintertime bias in PM10 is more localized, 

primarily observed over eastern China, while PM2.5 biases are prominent over both India and China. For the adjusted surface 

PM10 concentrations (excluding sea salt and dust), the highest domain-wide bias occurs in winter (MB of 62 µg/m³) and the 

lowest in fall (MB of 6 µg/m³). RMSE values are highest in winter (100 µg/m³) and lowest in summer (42 µg/m³), highlighting 725 

greater variability in winter. Correlation values remain moderate overall, peaking in summer (R of 0.5) except in spring (R of 

-0.01). KGE values suggest the best model agreement of the adjusted PM10 values in summer and fall. If sea salt and dust are 

not removed, the positive biases increase substantially, particularly in winter (from 62 µg/m³ to 203 µg/m³) and fall (from 6 

µg/m³ to 73 µg/m³), further emphasizing the contribution of these species to the observed overestimation in MATCHA. 

 730 

Surface CO, in contrast, is consistently underestimated by MATCHA across all seasons, although the biases are smaller 

compared to PM2.5 and PM10. In winter, high surface CO concentrations are observed over the Indo-Gangetic Plain and eastern 

China in both OpenAQ and MATCHA (Fig. 15). MATCHA exhibits strong seasonality in surface CO, similar to OpenAQ, 

albeit with a negative bias persistent across the domain and all seasons. The persistent negative bias across all seasons is likely 

due to constraints imposed by the daily data assimilation (DA) system used in MATCHA. The domain-wide smallest negative 735 

biases occur in summer (MB of -197 ppbv), while the largest is seen in fall (MB = -246 ppbv). Correlation values for CO are 
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consistently moderate across seasons (R of 0.3-0.4), with the highest correlation in winter (R of 0.35). KGE values suggest 

similar moderate agreement across the seasons (0.2-0.3), with the best performance during winter (KGE of 0.3). These biases 

are likely driven by regional inaccuracies in surface CO emissions (Gaubert et al., 2020; Ojha et al., 2016), particularly over 

India and China, despite the constraints from daily MOPITT CO profile assimilation, which may primarily influence CO in 740 

the free troposphere rather than its surface concentrations (Deeter et al., 2022; Hooghiemstra et al., 2012; Jiang et al., 2015).  

3.3.3 Surface BC 

Atmospheric black carbon (BC) abundances near the surface are evaluated in Fig. 16. MATCHA shows a strong overestimate 

of surface BC concentrations over India during winter, while underestimates are observed in most other seasons. Both 

observations and model simulations exhibit strong seasonality in BC abundances. Higher-elevation regions, such as the Tibetan 745 

Plateau and the Himalayas, consistently show underestimation by the model across all seasons, whereas urban areas at lower 

elevations exhibit weak positive biases. This spatial pattern of the biases and reproduction of the BC seasonal cycle by 

MATCHA suggests that the elevated PM burden previously noted in MATCHA is primarily driven by natural aerosol 

emissions (e.g., sea salt and dust) rather than anthropogenic sources such as BC. Across the domain, the biases in MATCHA 

are negative across all seasons except in winter, where the bias is positive and highest (MB of 3 µg/m³). Winter also exhibits 750 

the highest RMSE (8 µg/m³), reflecting significant variability in BC concentrations. This is also suggested by the positive bias 

in PM10 observed in Fig. 14 (Sect. 3.3.2) after removing the contribution of natural aerosols to the total PM10 burden. The 

largest negative bias occurs in spring (MB = -2 µg/m³), while summer shows the lowest bias (-1 µg/m³) and RMSE (2 µg/m³). 

Correlations between MATCHA and observations are relatively strong across all seasons (0.6-0.7), with the highest correlation 

observed in spring and winter (R of 0.75), while the lowest is in summer (R of 0.6). KGE values indicate consistent 755 

performance across all seasons, with the best agreement in fall (0.5) followed by winter (0.4). These results indicate that while 

MATCHA captures the general spatial and seasonal trends of BC, it struggles to accurately represent BC abundances in some 

regions, particularly over India during winter and in high-altitude regions throughout the year. 

3.3.4 Additional surface aerosol species 

To gain insights into whether anthropogenic emission sources might be contributing to errors in MATCHA simulated PM, we 760 

compare surface observations of PM10 as well as eight other aerosol for an urban site named Kanpur (26.5oN, 80.3oE) in the 

northwestern India with MATCHA based on daily samples collected between January of 2007 to March of 2008 (Ram et al., 

2010). The observations are daily averages (between 0600 and 1800 local time) collected using high-volume samplers. Samples 

for the monsoon months (July to September) were not collected and hence not shown in Fig. 17. We see reasonable agreement 

for bulk PM10 and several species (as seen by KGE ³ 0.2 in Fig. 17) in all months except for Ca2+, Na+, and Cl-, where we see 765 

significant differences (as seen by the negative KGEs). Na+ shows significant overestimations across all months, Ca2+ is almost 

absent in most months, while Cl- concentrations are significantly high during spring. These biases can stem from the 

parameterizations related to natural aerosols and dust speciation, (as discussed in Sect. 3.3.2). In Fig. A6, we show the monthly 
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average percentage contributions of these eight species to total PM, from the observations and MATCHA (based on collocated 

observations and model simulations for the site at Kanpur, as well as based on the average 17-year contribution over the site 770 

from MATCHA). Observations reveal organic carbon (OC) as the dominant contributor, peaking in winter months 

(November–February), with consistently higher contributions compared to MATCHA. Contribution of SO42- is overestimated 

in MATCHA during summer (May–June), particularly in the 17-year average, which shows a more uniform seasonal 

contribution. NO3- contribution peaks during winter and is consistently underestimated by MATCHA. Thus, observations 

indicate stronger seasonal variability in components like OC, NO3-, and NH4+, while MATCHA (both 1-year and 17-year 775 

averages) smooths out these fluctuations. MATCHA overpredicts SO42- and NH4+ m during non-winter months while 

underestimating components like OC and elemental carbon (EC), particularly in winter. These results point towards more 

accurate emission inventories and improved parameterizations of sea salt and dust speciation for accurate simulation of PM 

within models. 

3.3.5 Source attribution of BC 780 

We used the tagged-tracers of anthropogenic BC across ten Asian regions within MATCHA, along with biomass burning and 

boundary inflow, to quantify the relative contribution of black carbon (BC) from anthropogenic emissions originating in ten 

different countries or regions, as well as sectors to the BC burden in HMA. Figure 18a–c shows the monthly averaged total 

column burden BC (tBC in µg/m2) for these tracers across 17 years (2003-2019), spatially averaged over HMA (based on 

aggregated first-order regions from the Randolph Glacier Inventory (RGI) v6; see Sect. 3.2.3). Winter exhibits the highest tBC 785 

for total BC (total refers to the sum of anthropogenic, BB, and transboundary sources of BC) and the highest variability, while 

anthropogenic tBC shows the highest variability across all months. Biomass burning tBC peaks in March–April, coinciding 

with seasonal agricultural burning in south, east, and southeast Asia (Wiedinmyer et al., 2023). Anthropogenic tBC is primarily 

dominated by China and India (Fig. 18b), with China showing the largest seasonal variability, particularly in winter. Pakistan 

and the Tibetan Plateau (Fig. 18c) show peak concentrations and variability during the summer and monsoon months, followed 790 

by the remaining regions of the model domain (Rest of Asia; Fig. 18c). In Fig. 18d, we show the average ~17-year contribution 

of 12 tags (ten tagged regions + biomass burning + boundary inflow) to tBC over the six major glacier regions of HMA. India 

and China are the dominant sources across all seasons, with India contributing more to the western and central regions of HMA 

(e.g., HKH, HIM) and China to the northern and eastern regions (e.g., HTQ, TNS). Contributions to anthropogenic tBC from 

other regions, like southeast Asia and Pakistan, increase during spring and summer, especially in the southern areas of HMA. 795 

Contributions from boundary inflow also dominate for most of the glacier regions across all seasons, which indicates the 

significance of long-range transport of BC at high-altitude areas. The tagged-tracers within MATCHA can thus assist in 

inferring the contribution of major Asian regions to anthropogenic BC, as well as separating the influence of biomass burning 

and boundary inflow over the domain. This source attribution capacity can help determine which emission sources affect the 

BC loading over HMA during different seasons. These estimates can provide critical input for process-level studies in 800 
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investigating aerosol-meteorology-snow interactions over HMA, where snowmelt impacts downstream freshwater availability 

(Roychoudhury et al., 2022,2025).  

4 Summary and Conclusions 

This paper presents a novel hydroclimate-chemical regional reanalysis, MATCHA (Model for Atmospheric Transport and 

Chemistry in Asia), to support research on light-absorbing particles and their impacts on the cryosphere over High Mountain 805 

Asia (HMA). Compared to existing global reanalyses, MATCHA offers strong coupling between atmospheric chemistry, land 

surface processes, and aerosol–snowpack interactions, thus making it the only regionally focused, fully coupled chemical 

reanalysis currently available for HMA. Our recent work analyzed the degree of coupling incorporated in the model framework 

across MATCHA, ERA5, and MERRA-2 over HMA and found that MATCHA reflects the highest degree of coupling that 

contributes to a more accurate representation of snow cover during the snow ablation season over HMA (Roychoudhury et al., 810 

2025). MATCHA assimilates nearly two decades (2003–2019) of MODIS AOD and MOPITT CO satellite retrievals into the 

WRF-Chem–CLM–SNICAR modeling framework, producing a 12 km resolution dataset with hourly to three-hourly temporal 

outputs for ~17 years. Key features of this dataset include the simulation of BrC aerosol processes, source-tagged-tracers of 

BC, and coupling of aerosols with radiation and snowpack processes. We evaluate the dataset against multiple in situ and 

satellite observations, and the results provide detailed insights into model biases and uncertainties across meteorological, land, 815 

and atmospheric composition variables.  

We summarize the evaluation results as follows, 

1. Surface temperature, relative humidity, wind speed, and their vertical profiles show the strongest overall skill (KGE 

of 0.65–1.0) across all evaluated variables. Minor issues include a cold, dry bias in winter at high elevations and a 

domain-wide 10 m wind overestimate; in the upper troposphere, temperature/RH are slightly low, whereas winds are 820 

high. 

2. Daily accumulated precipitation compared with satellite measurements from IMERG Final Runs is realistically 

represented, with the monsoon rainband and localized features over the Indian sub-continent reproduced the best 

(domain-mean KGE ≈ 0.6 in JJA). Systematic underestimation persists over high terrain, peaking in summer, 

reflecting the difficulty most regional models face with orographic convection. 825 

3. Diurnal and seasonal cycles of PBLH are effectively captured, but MATCHA underestimates early-morning PBLH 

(00 UTC) over India/coastal zones and overestimates afternoon PBLH (12 UTC) across most sites in summer, leading 

to biases that trace back to the YSU PBL scheme, limited vertical resolution, complex terrain, as well as transition of 

daytime to nocturnal PBLH. The skill is highest in spring, and the magnitude of the biases is within the ranges reported 

in the literature. 830 

4. Over HMA, MATCHA recreates the observed snow cover fraction seasonality (R of 0.7–0.9; winter KGE ≈ 0.7), 

with only minor negative biases during the melt period. This can be attributed to negative SSA550 biases observed 
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across the domain, suggesting more absorbing aerosols, which lead to increased snowmelt, with the CLM-SNICAR 

coupling within MATCHA. 

5. Spatial and seasonal patterns of AOD550 and SSA550 are well reproduced, capturing major pollution hot spots. 835 

MATCHA overestimates summer AOD550 over the Indian sub-continent and SE Asia and exhibits a larger-than-

typical negative SSA550 bias, pointing to shortcomings in emission inventories and model parameterizations of 

natural emissions of aerosols. 

6. Surface particulate matter (PM) measurements, based on a network of over 1500 sites from OpenAQ, exhibit 

seasonality and spatial patterns consistent with Asian pollution hotspots identified in MATCHA. However, 840 

MATCHA significantly overestimates surface PM2.5 and PM10 concentrations, particularly during winter. Preliminary 

analysis attributes this bias to four interlinked factors: (i) overstated Arabian Sea winds inflating sea salt and dust 

emissions, (ii) underestimated monsoon rainfall reducing wet scavenging, (iii) excessive NO2-NO3- partitioning 

enhancing nitrate mass, and (iv) the absence of China's recent downward PM trends in the CAMS-GLOB-ANT 

emission inventory used as input for MATCHA.  845 

7. Furthermore, based on aerosol chemical composition measurements of different chemical species from an urban site 

in Kanpur, India, MATCHA captures the bulk PM10 load and the seasonality of most constituents. However, it 

overestimates marine and soil tracers (Na+, Cl-, Ca2+) while failing to reproduce the strong winter peaks in 

carbonaceous (OC, EC) and nitrate (NO3-) aerosols seen in observations. Specifically, the reanalysis underestimates 

OC, EC, and NO3- during November–February and overestimates SO42- and NH4+ during the pre-monsoon and post-850 

monsoon periods. These discrepancies suggest overly efficient secondary inorganic aerosol production and 

underrepresentation of primary combustion sources in MATCHA. Overall, the species-specific biases are consistent 

with the broader regional PM discrepancies and underscore the need for refined emission inventories and improved 

aerosol chemistry parameterizations in future MATCHA updates. 

8. The tagged-tracers from MATCHA are a unique feature within the MATCHA reanalysis that offer insights into the 855 

sources (both regional and sectoral) of BC in the domain across two decades. Initial analysis of these tracers reveals 

that the total column burden of BC peaks in winter, with China and India being the dominant anthropogenic sources 

of the total column burden of anthropogenic BC. China shows the greatest seasonal variability in total column burden 

of anthropogenic BC, particularly over eastern and northern China, while India contributes more to the total column 

burden over western and central HMA. Biomass burning BC peaks in March to April, while trans-boundary inflow 860 

(representing the influence of emissions sources located outside our domain) is significant across all seasons. Regional 

contributions vary, with additional influences from Pakistan, the Tibetan Plateau, and southeast Asia during spring 

and summer. 

 

Overall, MATCHA effectively captures the spatiotemporal distributions and general trends of key meteorological and chemical 865 

variables. Its performance in representing meteorological fields is particularly strong, with KGE values greater than 0.65. In 
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contrast, variables associated with land–atmosphere interactions, such as precipitation, planetary boundary layer height 

(PBLH), and snow cover fraction (SCF), exhibit moderate skill, with maximum KGE values around 0.7. For atmospheric 

composition, MATCHA accurately reproduces the spatiotemporal patterns of anthropogenic aerosols, although biases in 

natural aerosol species contribute to discrepancies in surface PM2.5 and PM10 concentrations. Surface CO measurements, 870 

however, are more tightly constrained, likely due to the implementation of a daily assimilation workflow within MATCHA. 

The identified biases underscore the need for improved parameterizations of surface-atmosphere interactions, cloud 

microphysics, and precipitation processes, as well as the improvements required in emission inventories to enhance the 

simulation of chemical species. While this study presents an initial assessment of 12 variables spanning meteorology, land–

atmosphere coupling, and atmospheric composition at a seasonal scale, further analyses are necessary. Specifically, extending 875 

evaluations to capture regional differences and long-term trends over the past 17 years, across finer spatiotemporal scales, will 

be crucial to fully understand the value added by the high-resolution datasets provided by MATCHA for a region as complex 

as Asia. Moreover, rigorous intercomparisons with other reanalysis products are needed, alongside investigations into 

additional essential climate variables offered by MATCHA.  

 880 

Despite its limitations, MATCHA represents a state-of-the-art, high-resolution, long-term regional chemical reanalysis for 

Asia, specifically designed to address major gaps in representing LAPs and their feedbacks in climate-vulnerable regions like 

HMA. MATCHA’s most distinguishing feature is its explicit coupling of aerosols, radiation, and snowpack processes, allowing 

it to capture complex non-linear interactions among atmospheric composition, meteorology, and the cryosphere (e.g., snow 

hydrology). In contrast to global reanalyses such as ERA5 and MERRA-2, which offer longer periods exceeding 17 years but 885 

operate at coarser resolutions (25-50 km) and lack aerosol-snow coupling, MATCHA provides higher-resolution outputs (12 

km) and includes parameterizations that allow for more accurate representation of the cryosphere-atmosphere feedbacks 

critical to regional hydroclimate. Among current reanalyses, MERRA-2 includes aerosol–radiation interactions but not 

aerosol–snow feedbacks, limiting its utility for evaluating LAPs’ impacts on snowpack and glacier melt. MATCHA further 

distinguishes itself by assimilating nearly two decades of MODIS AOD and MOPITT carbon monoxide retrievals and 890 

simulating the full cycle of black carbon (BC), dust, and brown carbon (BrC), including their deposition on snow surfaces. 

Beyond retrospective analysis across the last two decades, MATCHA offers high-resolution datasets that facilitate assessments 

of the sensitivity of regional hydroclimate and air quality to nonlinear aerosol–climate interactions. Additionally, tagging of 

regional sources of anthropogenic BC with MATCHA enable more precise source attribution studies, providing critical insights 

to inform emission-driven policy interventions, particularly for hydroclimate-vulnerable regions such as the HMA. 895 
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5 Appendix 

A1 Additional Figures 

Figure A1: Percentage of outliers removed from retrieved OpenAQ data of surface CO, PM10, and PM2.5 (purple, green and 900 

orange, respectively) using the outlier detection system in Wu et al., 2018 (see main text). 
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 910 

 

Figure A2: Histograms of both model (red) and observed (black) PBLH values compared across seasons and standard 

radiosonde launch times (solid for 00 UTC and dashed for 12 UTC) before and after applying the outlier-detection approach 

described in Section 2.2.4 of the main text. 
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 925 

 

 
Figure A3: (a) Fraction (in %) of all 00 UTC and 12 UTC radiosonde launches in the domain across different solar regimes 

(CT(M) = Morning Civil Twilight; D(LS) = Day – Low Sun; D(HS) = Day – High Sun; CT(E) = Evening Civil Twilight; 

N = Night) for each season. Solar regimes were defined by computing the solar elevation angle at the exact launch time of 930 

each radiosonde observations and classifying them into five exclusive categories: N (≤ –6°), CT (–6° to 0°, split into morning 

or evening by solar azimuth), D (LS) (0° to 10°), and D(HS) (> 10°).  (b) PBLH bias (model-observed), (c) observed PBLH, 

and (d) modeled PBLH from IGRA and MATCHA across the solar regimes and seasons. (e) Downward shortwave radiation 

flux (SWDOWN) and (f) surface sensible heat flux (sSHF) collocated at IGRA sites from MATCHA across solar regimes and 

seasons. 935 
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Figure A4: Seasonal averages of surface sea-salt partitioned to sodium and chloride (in μg/m3), surface nitrate aerosols (in 940 

μg/m3), and wind speed at 10 m (in m/s) over the model domain.  
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Figure A5: Seasonal averages for the year 2014 of tropospheric column NO2 concentrations (molecules cm-2) from OMI 

satellite observations (L2 products) regridded to MATCHA’s 12 km resolution (left column), MATCHA (middle column), 945 

and the associated model bias (MATCHA-OMI, right column). 
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Figure A6: Monthly averaged percentage contribution of eight chemical species to total particulate matter over the Kanpur 

site based on ~1 year of observations from the site (first group of bars), ~1 year of model simulation over the site (second 955 

group) and 17-year contribution (third group) from the model simulation over the site. 
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Figure A7: Monthly median AOD at 550 nm with their interquartile ranges across AERONET sites (black) compared with 

corresponding values from MATCHA (red) across the ten tagged tracer regions within MATCHA (defined in the main text).  
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6 Data availability 965 

The MATCHA reanalysis is available through the National Snow and Ice Data Center (NSIDC) 

(https://nsidc.org/data/hma2_matcha/versions/1; DOI: https://doi.org/10.5067/CG4OT8DJX2Z7; Kumar et al., 2024). MODIS 

SCF (v6.1), AOD (v6.1), and MOPITT CO (v8) were downloaded from NASA Earthdata 

(https://search.earthdata.nasa.gov/search). AERONET AOD and associated inversion products (v3) were downloaded from 

the AERONET website (https://aeronet.gsfc.nasa.gov/new_web/download_all_v3_aod.html). OpenAQ data can be accessed 970 

through the OpenAQ API (https://docs.openaq.org/about/about). IMERG Final Run daily data were downloaded from NASA 

GES DISC (https://disc.gsfc.nasa.gov/). IGRA sounding data and derived products were downloaded from NOAA NCEI’s 

website (https://www.ncei.noaa.gov/products/weather-balloon/integrated-global-radiosonde-archive). ISD products for sub-

daily surface meteorological measurements across sites can be obtained from NOAA NCEI’s website 

(https://www.ncei.noaa.gov/products/land-based-station/integrated-surface-database).  975 
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Figures 1480 

 

 
Figure 1: MATCHA framework. (a) schematic representation of the model setup in MATCHA. (b) the 10 tagged source 

regions for anthropogenic BC over the entire domain. (c) the assimilation workflow used in MATCHA, where MODIS AOD 

and MOPITT CO profiles were assimilated every 3 hours into the WRF-Chem-CLM-SNICAR model for the ~17 years of 1485 

simulation period.  
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 1495 

 
Figure 2: General characteristics over the model domain in MATCHA, spanning across topography (elevation from GMTED 

2010) in (a), population count from the GlobPOP dataset (b), land cover from MODIS IGBP averaged from 2003-2019 (c), 

and local climate zones (see Sect. 2) mapped over the domain (d). 
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Figure 3: Seasonal averages of temperature at 2 m (in oC) from the ISD archive (left column), MATCHA (middle column), 

and the associated model bias (MATCHA - ISD, right column).  
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Figure 4: Seasonal averages of temperature, relative humidity, and wind speed profiles across the domain (top panel) from 

the IGRA radiosonde archive, and their relative biases (MATCHA-IGRA) in the bottom panel. The dashed lines in the top 1510 

panel refer to profiles from MATCHA, while the solid lines refer to profiles from IGRA. Horizontal error bars in the bottom 

panel correspond to the interquartile range of the relative bias across all sites.   
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Figure 5: Seasonal averages of relative humidity at 2 m (in %) from the ISD archive (left column), MATCHA (middle 

column), and the associated model bias (MATCHA - ISD, right column).  1515 

 

https://doi.org/10.5194/essd-2025-275
Preprint. Discussion started: 11 September 2025
c© Author(s) 2025. CC BY 4.0 License.



56 
 

 
Figure 6: Seasonal averages of wind speed at 10 m (in m/s) from the ISD archive (left column), MATCHA (middle), and the 

associated model bias (MATCHA - ISD, right column).  
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Figure 7: Seasonal averages of daily accumulated precipitation (in mm) across the domain from IMERG (left column), 

MATCHA (middle column), and the associated model bias (MATCHA-IMERG, right column). 
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Figure 8: Seasonal averages of planetary boundary layer height at approximately 00 UTC from the IGRA archive (left 1525 

column), MATCHA (middle column), and the associated model bias (MATCHA - IGRA, right column). The shadow zones 

show parts of the domain with nighttime conditions depending on the solar elevation angle on the 15th of the months; January 

(for DJF), April (for MAM), July (for JJA), and October (for SON), for the year 2003. 
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Figure 9: Seasonal mean of boundary layer height at approximately 12 UTC from the IGRA archive (left column), MATCHA 1530 

(middle column), and the associated model bias (MATCHA - IGRA, right column). The shadow zones show parts of the 

domain with nighttime conditions depending on the solar elevation angle on the 15th of the months; January (for DJF), April 

(for MAM), July (for JJA), and October (for SON), for the year 2003. 
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Figure 10: Seasonal averages of snow cover fraction (%) during 2003-2018 for the six aggregated first-order glacier regions 1535 

of HMA from RGI v6 (INT: Inner Tibet, S and E Tibet; HTQ: Hengduan Shan, Qilian Shan; TNS: W and E Tien Shan; KNL: 

W and E Kun Lun; HIM: W, C, and E Himalayas, HKPH: Hindu Kush, Karakoram, Pamir, and Hissar Alay). The spatial 

averages are shown for MATCHA (left column), for MATCHA (middle column), and the associated model bias (MATCHA-

MODIS, right column). 
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Figure 11: Seasonal averages of AOD at 550 nm (unitless) from AERONET sites (circles) across the domain (left column), 

MATCHA (middle), and the associated model bias (MATCHA-Observations, right column). 
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 1545 
Figure 12: Seasonal averages of SSA at 550 nm (unitless) from AERONET sites across the domain (left column), from 

MATCHA (middle), and the associated model bias (MATCHA-AERONET, right column). 
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Figure 13: Seasonal averages of surface PM2.5 (in µg/m3) across the domain from OpenAQ (left column), MATCHA (middle), 1550 

and the associated model bias (MATCHA-OpenAQ, right column). 
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Figure 14: Seasonal averages of adjusted surface PM10 (after removing surface sea salt and dust) (in µg/m3) across the domain 

from OpenAQ (left column), MATCHA (middle), and the associated model bias (MATCHA-OpenAQ, right column). 1555 
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Figure 15: Seasonal mean of surface CO (in ppbv) across the domain from OpenAQ (left column), MATCHA (middle), and 

the associated model bias (MATCHA-OpenAQ, right column). 1560 
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Figure 16: Seasonal mean of surface BC mass concentrations (in µg/m3) across observation sites in the domain from ground-

based observation sites (left column), MATCHA (middle), and the median model bias (MATCHA-sites, right column). Circle 

markers denote sites from the APCC network with daily observations, and square markers denote sites with monthly or 1565 

seasonal measurements (see main text for details). 
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 1570 

Figure 17: Observed (black) versus MATCHA-simulated (red) daily averaged (between 0600–1800 IST) concentrations (in 

µg/m3) of total PM₁₀ and eight chemical species at Kanpur (26.5° N, 80.3° E) from January 2007 to March 2008.  
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Figure 18: Average total column BC burden in µg/m2 across sectors (a), across ten tagged regions of anthropogenic total 

column BC (b-c), and the seasonal contribution (%) of the 12 tags (d) (ten tagged regions + biomass burning + trans-boundary 1580 

inflow) at six HMA first-order glacier regions from RGI v6 (INT: Inner Tibet, S and E Tibet; HTQ: Hengduan Shan, Qilian 

Shan; TNS: W and E Tien Shan; KNL: W and E Kun Lun; HIM: W, C, and E Himalayas, HKPH: Hindu Kush, Karakoram, 

Pamir, and Hissar Alay). The shaded regions for (a-c) refer to the average standard deviation across all six regions. The legend 

refers to the colors of the regional and the sectoral tags applicable for (b-d). 
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Tables 

 

Table 1. Domain configuration and parameterizations used in the MATCHA model set-up.  

Model Set-up   

Domain   High Mountain Asia and surrounding countries 
Domain size   466 grid cells by 524 grid cells   
Horizontal grid spacing   12 km by 12 km  
Vertical grid   35 eta levels from surface up to 50 hPa   
Simulation period   1st January 2003 – 31st August 2019   
Temporal Resolution   Hourly and 3-hourly   
Spin-up   1st December – 31st December of every year from 2002 to 2018  
Meteorological IC/BC   ERA-Interim (Dee, 2011)   

Chemical IC/BC   
CAMS-EAC4 (Inness et al., 2019) 
CAM-Chem (Buchholz et al., 2019) 

Physical Processes   

Cloud microphysics   Morrison double moment (Morrison et al., 2009)  
Surface layer   MM5 similarity scheme (Zhang and Anthes, 1982) 
Land surface model   Community Land Model v4 (Lawrence et al., 2011) 
Planetary Boundary layer height   Yonsei University Scheme (Hong, 2010)  
Cumulus parameterization   Grell-Freitas (Grell and Freitas, 2014)  
Radiation (both short and long-wave)   RRTMG (Iacono et al., 2008) 

Chemical Processes   

Gas-phase chemistry   MOZART-4 (Emmons et al., 2010) 
Photolysis   Troposphere Ultraviolet Visible (TUV)   
Dry deposition   Wesely, 1989 
Wet deposition   Neu and Prather, 2012 for gases; Easter et al., 2004 for aerosols   
Aerosol model   MOSAIC (Zaveri et al., 2008) 
Aerosol optical properties   Mie-theory parameterization (Fast et al., 2006) 
Biogenic emissions   MEGAN (Guenther et al., 2006) 
Sea-salt emissions   Gong, 2003; Gong et al., 1997 
Snow radiation model   SNICAR (Flanner et al., 2012; Zhao et al., 2014) 
Anthropogenic emissions   CAMS-ANT-GLOBv4.2 (Granier et al., 2019) 
Plume rise of fire emissions   Freitas et al., 2007 
Fire emissions   FINN v2.5 (Wiedinmyer et al., 2023) 
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Table 2. Evaluation metrics for all variables related to meteorology from MATCHA evaluated in this study across four seasons. 

 

Variable Season MB RMSE R KGE 

Temperature at 2 m (oC) DJF -0.38 4.03 0.97 0.82 
 MAM -0.19 3.57 0.95 0.95 
 JJA 0.07 2.9 0.89 0.89 
 SON -0.28 2.51 0.97 0.95 

Temperature profiles (oC) DJF -1.05 3.67 0.99 0.99 
 MAM -1.26 4.09 0.98 0.98 
 JJA -1.12 3.61 0.98 0.98 
 SON -0.95 3.49 0.99 0.98 

Temperature (oC) 

(lower troposphere, > 500 hPa) 

 

 
 

DJF -0.12 1.02 1 1 

MAM -0.13 0.81 1 1 

JJA 0.04 0.83 0.99 0.99 

SON -0.09 2.16 0.99 0.99 

Temperature (oC) 

(upper troposphere, < 500 hPa) 

 

 
 

DJF -1.4 4.27 0.97 0.97 

MAM -1.69 4.78 0.96 0.96 

JJA -1.56 4.21 0.95 0.95 

SON -1.28 3.88 0.96 0.96 

Relative humidity at 2 m (%) DJF 0.97 10.07 0.67 0.67 
 MAM -2.40 10.25 0.82 0.82 

 JJA -2.18 10.24 0.85 0.85 

 SON -1.60 8.63 0.81 0.81 

Relative humidity profiles (%) DJF -4.20 14.66 0.67 0.64 

 MAM -2.41 12.89 0.78 0.76 

 JJA -0.83 12.41 0.87 0.85 

 SON -3.14 13.36 0.78 0.75 

Relative humidity (%) 

(lower troposphere, > 500 hPa) 

 

 
 

DJF 0.10 6.72 0.94 0.94 

MAM 0.82 5.89 0.94 0.94 

JJA 1.08 5.97 0.94 0.94 

SON 0.63 6.04 0.94 0.94 

Relative humidity (%) DJF -6.16 17.09 0.23 0.17 
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(upper troposphere, < 500 hPa) MAM -3.89 15.04 0.47 0.42 

JJA -1.71 14.44 0.70 0.66 

SON -4.90 15.64 0.45 0.40 

Wind speed at 10 m (m/s) DJF 1.64 2.33 0.65 0.11 
 MAM 1.64 2.04 0.59 0.19 
 JJA 1.67 2.18 0.41 0.04 
 SON 1.55 1.83 0.68 0.15 

Wind speed profiles (m/s) DJF -0.1 2.87 0.97 0.97 
 MAM -0.31 2.41 0.96 0.96 
 JJA -0.41 1.75 0.96 0.95 
 SON -0.53 2.26 0.97 0.95 

Wind speed profiles (m/s) 

(lower troposphere, > 500 hPa) 

 

 
 

DJF 0.08 1.8 0.93 0.93 

MAM -0.05 1.48 0.93 0.93 

JJA -0.14 1.04 0.9 0.9 

SON 0.01 1.64 0.9 0.9 

Wind speed profiles (m/s) 

(upper troposphere, < 500 hPa) 

 

 
 

DJF -0.18 3.24 0.96 0.96 

MAM -0.43 2.72 0.96 0.95 

JJA -0.53 1.98 0.96 0.95 

SON -0.78 2.5 0.96 0.94 
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Table 3. Evaluation metrics for all variables related to land-atmosphere interactions from MATCHA evaluated in this study 

across four seasons. 

 1600 

Variable Season MB RMSE R KGE 

PBLH (m) 

(00 UTC) 

 
 

DJF -13.57 167.04 0.01 -0.01 

MAM -2.47 151.73 0.29 0.28 

JJA 122.97 209.92 0 -0.17 

SON 49.79 148.46 0.21 0.16 

PBLH (m) 

(12 UTC) 

 
 

DJF 5.83 259.11 0.08 0.06 

MAM 525.3 743.91 0.63 0.06 

JJA 1398.53 1552.58 0.44 -0.67 

SON 411.06 637.43 0.41 -0.17 

Daily accumulated precipitation 

(mm) 

 
 

DJF -0.43 1.2 0.72 0.45 

MAM -0.68 1.85 0.74 0.54 

JJA -1.75 5.17 0.82 0.61 

SON -1.29 2.54 0.84 0.54 

SCF (%) DJF -2.07 23.67 0.7 0.68 
 MAM -8.89 18.23 0.86 0.58 
 JJA -5.21 12.2 0.74 0.21 
 SON -8.08 14.28 0.85 0.44 

 

 

 

 

 1605 

 

 

 

 

 1610 
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Table 4. Evaluation metrics for all variables related to atmospheric composition from MATCHA evaluated in this study across 

four seasons. 

 1615 

Variable Season MB RMSE R KGE 

AOD550 DJF 0.18 0.4 0.53 0.28 
 MAM -0.01 0.18 0.67 0.67 
 JJA 0.3 0.6 0.61 0.17 
 SON 0.08 0.21 0.67 0.59 

SSA550 DJF -0.16 0.19 0.11 0.1 
 MAM -0.05 0.07 0.31 0.31 
 JJA -0.02 0.04 0.27 0.27 
 SON -0.07 0.08 0.64 0.63 

Surface PM2.5 (µg/m³) 

DJF 187.64 211.47 0.57 -1.97 

MAM 58.66 76.17 0.25 -0.67 

JJA 63.74 77.43 0.62 -1.8 
 SON 88.73 104.22 0.56 -0.95 

Surface PM10 (µg/m³) DJF 203.02 235.36 0.5 -1.28 
 MAM 38.91 73.54 0.12 -0.03 
 JJA 42.23 58.33 0.48 -0.11 
 SON 73.29 98.74 0.47 -0.06 

Surface PM10 (µg/m³)  

(surface sea salt and dust removed) 

DJF 62.33 100.67 0.36 0.06 

MAM 9.48 62.62 -0.01 -0.02 

JJA 25.51 42.47 0.49 0.22 
 SON 5.64 55.97 0.19 0.18 

Surface CO (ppbv) DJF -221.79 624.26 0.35 0.3 
 MAM -204 466.89 0.33 0.24 
 JJA -196.77 462.4 0.33 0.23 
 SON -245.97 591.11 0.34 0.25 

Surface BC (µg/m³) DJF 2.68 7.63 0.75 0.43 
 MAM -2.13 3.45 0.74 0.33 
 JJA -0.96 1.68 0.59 0.34 
 SON -1.27 3.18 0.68 0.53 
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