
1

Reconstructing Global Monthly Ocean Dissolved Oxygen1

(1960–2023) to Nearly 6000 m Depth Using Bayesian2

Ensemble Machine Learning3

4

Mingyu Han1, Yuntao Zhou1*5

1. School of Oceanography, Shanghai Jiao Tong University, Shanghai, China6

Corresponding author7

*Correspondence to: Yuntao Zhou, ytzhou@sjtu.edu.cn, ORCID: 0000-0001-9714-53858

9

Abstract10

Oceanic oxygen levels, crucial for marine ecosystems and biogeochemical cycles, have declined11
significantly over the past few decades, driven by climate change and posing severe12
environmental risks. However, historical dissolved oxygen (DO) measurements, especially below13
2000 m, remain sparse, limiting comprehensive annual and seasonal analyses. Here we introduce14
the BEM-DOR framework, a Bayesian-optimized ensemble of six machine-learning models15
(Random Forest, XGBoost, LightGBM, CatBoost, Extremely Randomized Trees and16
Histogram-based Gradient Boosting) fused via dynamic weighting, to reconstruct global monthly17
DO distributions at 1°×1° resolution from the surface to 5902 m depth over 1960-2023.18
Validation against an independent dataset demonstrates that BEM-DOR outperforms existing19
products. Our dataset captures depth-dependent deoxygenation, with the most pronounced20
decline occurring between 150 and 200 m, and reveals dramatically accelerated oxygen loss in21
the Arctic Ocean and North Atlantic over the past decade. We quantify uncertainties from22
measurement errors, gridding processes, and model algorithms, providing the first long-term,23
high-resolution, uncertainty-quantified DO product from ocean surface to nearly 6000 m depth.24
The extension of DO data into the bathypelagic zone in this work is a significant contribution to25
deep ocean oxygen dynamics and global biogeochemical cycles.26
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1 Introduction31

Over the past few decades, dissolved oxygen (DO) levels in open oceans have been continuously32
decreasing (Breitburg et al., 2018; Keeling et al., 2010), primarily driven by climate change33
(Deutsch et al., 2011). This decline has severe impacts on marine organisms and biogeochemical34
processes, disrupting marine productivity, biodiversity, and biogeochemical cycles (Gruber, 2011;35
Stramma et al., 2012). Climate models predict that global warming will further accelerate this36
deoxygenation (Oschilies et al., 2018), potentially adversely affecting aerobic marine organisms37
within this century (Sampaio et al., 2021), and altering biogeochemical cycles (Gruber, 2004;38
Berman-Frank et al., 2008). Therefore, it is important to develop a comprehensive,39
high-resolution reconstruction of ocean DO across both space and depth to accurately quantify40
historical deoxygenation trends, identify regional hotspots, and inform future ecosystem and41
climate projections.42

43
Despite significant progress in oceanographic data collection, severe gaps in historical DO data44
persist, hindering comprehensive analysis. For instance, the World Ocean Database (WOD)45
(Mishonov et al., 2024) compiles DO profiles from research cruises and floats, yet most ocean46
regions still lack any observations. This sparse spatial coverage severely This sparse spatial47
coverage severely limits the use of data imputation methods to reconstruct planar or48
three-dimensional DO fields. Furthermore, although many Earth System Models (ESMs) attempt49
to simulate global oceanic DO, these models lack adjustments based on DO observation data,50
leading to error propagation (Pathak et al., 2023). Thus, numerical models diverge significantly51
from in-situ observations and consistently underestimate the actual DO decline trends (Bopp et52
al., 2013; Cocco et al., 2013; Long et al., 2016; Kwiatkowski et al., 2020), restricting studies53
related to ocean deoxygenation, Oxygen Minimum Zones (OMZs), biogeochemical cycles, and so54
forth.55

56
Classical geostatistical and interpolation methods have long been employed to map oceanic DO.57
Zhou et al. (2022) combined geostatistical regression with Monte Carlo methods to estimate58
changes in the area of Oxygen Minimum Zones (OMZs) globally and regionally from 1960 to 2019.59
Garcia et al. (2024) applied objective analysis in WOA23 to produce internally consistent annual60
and monthly DO fields from 1965 to 2022. Gouretski et al. (2024) developed an automated61
quality control procedure to detect outliers and correct biases in ocean oxygen profiles,62
producing a consistent global dataset from 1920 to 2023. Roach and Bindoff (2023) used Data63
Interpolating Variational Analysis (DIVA) to generate a global high-resolution oxygen atlas from64
1955 to 2018. Recently, machine learning methods exhibit higher computational efficiency,65
capable of rapidly processing large-scale datasets. Giglio et al. (2018) utilized a Random Forest66
Regression Model to present an estimate of oxygen at 150 m in the Southern Ocean based on67
Argo data during 2008-2012. Sharp et al. (2022) reconstructed a global DO dataset called68
GOBAI-O2 using feedforward neural networks and Random Forest Regression, spanning the years69
2004–2022 with a monthly resolution, and extending from the ocean surface to a depth of 2 km.70
Ito et al. (2024) developed a machine-learning ensemble of neural networks and random forests71
trained on historical shipboard and biogeochemical Argo O2 profiles to generate gridded monthly72
oxygen fields. While some of the DO data reconstruction studies focus on specific regions, some73
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span longer time spans, and some achieve higher temporal or spatial resolutions, it is challenging74
to simultaneously address all aspects.75

76
Here we introduce the Bayesian Ensemble Machine-learning Dissolved Oxygen Reconstruction77
(BEM-DOR) framework , which integrates six tree-based learners, Random Forest, XGBoost,78
LightGBM, CatBoost, Extremely Randomized Trees and Histogram-based Gradient Boosting, each79
tuned via Bayesian hyperparameter optimization. Model outputs are fused with dynamic “soft”80
weights combining global cross-validation skill and local error performance. BEM-DOR produces a81
global 1°× 1° monthly DO dataset from 1960 to 2023 down to 5902 m, filling critical82
deep-ocean gaps. We validate against The Global Ocean Data Analysis Project version 283
(GLODAPv2) (Olsen et al., 2016) with eight-fold temporal cross-validation, compare spatially with84
Gridded Ocean Biogeochemistry from Artificial Intelligence - Oxygen (GOBAI) (Sharp et al., 2022),85
ITO’s product (Ito et al., 2024) and World Ocean Atlas 2023 (WOA23) (Garcia et al., 2024), and86
quantify measurement, gridding and algorithm uncertainties. Finally, we analyze global, basin and87
depth-resolved DO distribution and deoxygenation trends. We divided the global ocean into ten88
basins to capture regional differences in oxygen storage and trends: North Pacific (NP), Equatorial89
Pacific (EP), South Pacific (SP), North Atlantic (NA), Equatorial Atlantic (EA), South Atlantic (SA),90
Indian Ocean north of the equator (NI), Indian Ocean south of the equator (SI), Southern Ocean91
(SO) and Arctic Ocean (AO). Basin boundaries follow Schmidtko et al. (2017).92

93

2 Data and methods94

2.1 Data95
2.1.1 In-situ data of dissolved oxygen96

We assembled our observational DO database by merging quality‐controlled profiles from the97
Array for Real-Time Geostrophic Oceanography dataset (Argo, https://argo.ucsd.edu) (Wong et al.,98
2020) with CTD and OSD measurements archived in the World Ocean Database (WOD,99
https://www.ncei.noaa.gov/products/world-ocean-database) (Mishonov et al., 2024). Each100
profile consists of oxygen concentrations sampled at multiple depths at a given date and location.101
We retained only those records flagged as good, then de‐duplicated overlapping casts by102
keeping the version with finer vertical sampling. We discarded any profile showing unrealistically103
high or low values and excluded casts in which oxygen fell below 10 μmol kg⁻ ¹ at any depth,104
which likely indicate incorrect unit descriptions. Following Schmidtko et al. (2017), we treated the105
combined dataset as free of systematic errors.106

2.1.2 Reanalysis data of environmental factors107
In this study, we investigated the contribution of physical, chemical, and biological factors to108
ocean DO during the period of 1960 –2023. We obtained monthly ocean temperature (T, ℃),109
salinity (S, ‰), meridional velocity and zonal velocity (MV and ZV, m/s) from the Ocean110
Reanalysis System 5 (ORAS5) gridded ocean dataset with a spatial resolution of 0.25°×0.25° and111
75 vertical levels (Table S2), ranging from ocean surface to nearly 6000 m in depth112
(https://cds.climate.copernicus.eu/datasets/reanalysis-oras5).113

114
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2.2 BEM-DOR framework115
We developed the BEM-DOR (Bayesian Ensemble Machine-learning Dissolved Oxygen116
Reconstruction) framework to reconstruct a global, monthly DO product from 1960 through 2023.117
The process begins with assembling and preprocessing all available in situ DO profiles alongside118
key environmental factors, such as temperature, salinity, and currents, onto a monthly grid119
featuring 1°×1° horizontal resolution and 75 vertical levels. Next, each of six tree-based learners120
(Random Forest, XGBoost, LightGBM, CatBoost, Extremely Randomized Trees and121
Histogram-based Gradient Boosting) undergoes Bayesian hyperparameter tuning via Optuna’s122
TPE sampler, ensuring that each model’s configuration minimizes cross-validation RMSE (Akiba et123
al., 2019). Once optimized, the models train on the full gridded dataset and predict DO at every124
valid grid cell, producing six complete five-dimensional DO fields. Those outputs are then merged125
through a dynamic weighting scheme: global “prior” weights reflect each model’s time-CV skill,126
while local “dynamic” weights adjust according to the magnitude of agreement with nearby127
observations, yielding a soft-weighted ensemble that adapts in space and time (Dietterich, 2000).128
Finally, we validate and quantify uncertainty by performing eight-fold temporal cross-validation,129
independent evaluation against GLODAPv2 (Olsen et al., 2016) and comparisons with GOBAI130
(Sharp et al., 2022), ITO (Ito et al., 2024) and WOA23 (Garcia et al., 2024). We then analyze depth131
and basin-resolved deoxygenation trends to reveal the full vertical and regional patterns of132
oxygen change.133
2.2.1 Data processing134
In this study, all ocean DO observation data include temporal and spatial information, including135
year, month, day, longitude, latitude, and measurement depth. Longitude and month are both136
periodic features. For instance, longitude ranges from 0° to 360° , with 360° overlapping137
with 0° , and months cycle annually. To address this issue, we followed the approach of Gade138
(2010) and Tang et al. (2019) by converting the longitude and month attributes to polar139
coordinate systems, using sine and cosine functions to simulate these features, thus preserving140
their cyclical nature in the model.141
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144
We use the ORAS5 reanalysis grid (1°× 1° horizontal, 75 depth levels) as the target for145
gridding all variables. DO observations are binned to each grid cell by averaging all points that fall146
within the cell the same month and depth level. We upscaled the other environmental factors147
with finer resolution, using inverse distance weighting of surrounding pixel values to match these148
resolutions. To address potential multicollinearity, which can lead to instability in subsequent149
modeling and increase the risk of overfitting, we analyzed correlations between the 11 factors.150
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No correlation coefficient exceeded 0.4, so variable selection was not necessary in this case. A151
complete list of predictors, with abbreviations and data sources are shown in Table 1.152
Table 1. Predictors, abbreviation and products/reference of the 19 environmental factors.153
Predictor Abbreviation Product/Reference
sin(latitude·π/180) coord_1 WOD (CTD+OSD) & Argo
sin(longitude·π/180) ·cos(latitude·π/180) coord_2
-cos(longitude·π/180) ·cos(latitude·π/180) coord_3
Year Year
cos(month·2π/12) time_cos
sin(month·2π/12) time_sin
Depth Depth
Temperature T ORA-S5
Salinity S
Zonal Velocity ZV
Meridional Velocity MV
Note: The observational data come from WOD and Argo. The data from ORA-S5 are 0.25°x0.25°154
monthly mean profile data.155

156
2.2.2 Machine learning models157

We used six tree- based algorithms to reconstruct dissolved oxygen. Each model offers a different158
balance of bias, variance and speed. We chose them for their strong performance in regression159
tasks and their ability to handle nonlinear relationships. All models were trained on the same160
input features and tuned via Bayesian optimization (Sect. 2.2.3). Below we describe each model.161
Random Forest (RF) builds many decision trees on bootstrap samples and averages their outputs162
(Breiman, 2001). It selects a random subset of features at each split. This randomness reduces163
overfitting. RF handles large datasets well and is robust to outliers. CatBoost is a164
gradient-boosting library designed for categorical features (Prokhorenkova et al., 2018). It uses165
ordered target statistics to avoid target leakage. It grows symmetric trees and applies efficient166
leaf pruning. CatBoost often converges faster and needs less tuning of learning rate. XGBoost167
implements gradient boosting with second-order optimization (Chen & Guestrin, 2016). It adds168
regularization to control tree complexity. It uses approximate split finding to speed up training on169
large data. XGBoost balances accuracy and runtime efficiency. LightGBM uses histogram-based170
binning and leaf-wise tree growth (Ke et al., 2017). It buckets continuous features into bins,171
reducing memory. Trees grow by selecting splits that yield the largest loss reduction. LightGBM is172
highly efficient for large feature sets and large datasets. Histogram-based Gradient Boosting173
(Hist_GBT) follows Friedman's original gradient boosting framework (Guryanov, 2019;174
Friedman, 2001). It fits a sequence of weak learners to the negative gradient of the loss. It also175
uses histogram binning for faster split evaluation. Hist_GBT offers good accuracy in176
high-dimensional settings. Extremely Randomized Trees (ERT) introduces extra randomness177
compared to RF (Geurts et al., 2006). It picks split thresholds at random rather than searching for178
the best cut. It uses the full dataset, rather than bootstrapping. This strong randomization further179
lowers variance at modest cost in bias.180
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2.2.3 Bayesian parameter optimization181

To optimize hyperparameters across different machine learning models in a systematic and182
efficient manner, we employed Bayesian optimization using the Optuna framework (Akiba et al.,183
2019). This approach selects hyperparameter configurations based on the history of performance184
evaluations, aiming to minimize the prediction error of each model.185

Bayesian optimization constructs a probabilistic surrogate model of the objective function f(x),186
where x is a vector of hyperparameters. The optimization seeks to identify the optimal x* that187
minimizes f:188

)(minargx* xf
x 

 (3)189

Here, χ denotes the hyperparameter space. Optuna models the objective function using a190

Tree-structured Parzen Estimator (TPE), which fits two probability densities: one for good191
parameter configurations and another for all others. The next sampling point is chosen to192
maximize the Expected Improvement (EI):193

 


*y
)|()*()( dyxypyyXEI (4)194

where y* is the current best objective value. The sampling focuses on regions with high EI.195

To reduce temporal overfitting and preserve model generalizability across decades,196
hyperparameter optimization was conducted using a subset of data from eight years (1960, 1968,197
1976, 1984, 1992, 2000, 2008, 2016). The objective function minimized the Mean Squared Error198
(MSE) on an independent validation set derived from other eight test years (1967, 1975, 1983,199
1991, 1999, 2007, 2015, 2023). The objective function was defined as:200





n

i
ii yyMSE

1

2)ˆ(
n
1 (5)201

Each model was optimized over its own hyperparameter space, with the best-performing202
configuration recorded for final training and subsequent prediction on independent test data.203
This consistent, data-driven approach ensured fair comparability across all six learners and204
minimized bias from manual tuning. Below we summarize the search space and optimal205
parameters in Table 2.206

207

208

209
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Table 2. Hyperparameter Search Spaces and Optimal Values210
Model Hyperparameter Search Range Best Value
ERT n_estimators 50–500 482

max_depth 3–20 20
min_samples_split 2–20 6
min_samples_leaf 1–10 2
max_features 0.1–1.0 0.856
bootstrap {True, False} False

CatBoost iterations 50–1000 644
depth 3–12 7
learning_rate 0.005–0.3 0.246
l2_leaf_reg 10-5–10 7.18
random_strength 10-5–10 2.96
bagging_temperature 0–1 0.071
border_count 32–255 168

Hist_GBT learning_rate 0.005–0.3 0.219
max_iter 50–1000 748
max_depth 3–12 9
min_samples_leaf 5–50 8
l2_regularization 10-5–10 1.24×10-5

max_bins 32–255 187
LightGBM n_estimators 50–1000 928

max_depth 3–12 9
learning_rate 0.005–0.3 0.132
num_leaves 10–300 118
min_child_samples 5–50 7
subsample 0.5–1.0 0.778
colsample_bytree 0.5–1.0 0.965
reg_alpha 10-8–10 3.24×10-8

reg_lambda 10-8–10 0.187
RF num_trees 10–200 59

min_leaf_size 10–100 10
XGBoost n_estimators 50–1000 830

max_depth 3–12 12
learning_rate 0.005–0.3 0.265
min_child_weight 1–10 1
subsample 0.5–1.0 0.615
colsample_bytree 0.5–1.0 0.908

211
2.2.4 Multi-model fusion and dynamic weighting strategy212
We fuse six model predictions into one field. Our goal is to combine global model skill with local213
fit to observations. We assign each model a static “prior” weight. We then adjust those weights214
at each grid cell using the local agreement between prediction and observation.215
We derive a prior weight wi for model i from its time-cross-validation (Sect. 3.1) RMSE εi. We set a216
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decay parameter β. Then:217
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A smaller εi yields a larger wi. We choose β=1 to balance influence among models.219
At each grid cell x, we compute a dynamic weight vi(x). We use a tuning parameter ɑ. For cells220
where an observation O(x) exists, we set:221

|))()(|exp()( xOxpxv ii   (7)222

Here pi(x) is model i’s prediction. A smaller local error makes vi(x) larger. We use ɑ=1. For cells223
with no observation, we fall back on the static weight:224

ii x )(v (8)225

We compute the ensemble prediction E(x) by normalizing the dynamic weights:226
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and E(x)=NaN if all pi(x) are missing. This formula guarantees that models aligning well with local228
observations gain more influence, while the static weights keep poorly observed regions stable.229
2.2.5 Data reconstruction230
We produce a global, monthly dissolved oxygen (DO) dataset on a regular 1° × 1° grid and 75231
depth levels (0–5902 m) spanning 1960–2023. First, we gather all predictor fields described in232
Table 1. Each field is remapped to the target grid and monthly time step following ORAS5. Next,233
we apply the six optimized machine-learning models (Sect. 2.2.2) at every valid grid cell and time.234
Each model ingests the full vector of predictors and returns a DO estimate only where all235
predictors are present. This yields six parallel prediction arrays of dimensions236
360 × 180 × 75 × 12 × 64. We then merge these arrays using our dynamic weighting scheme237
(Sect. 2.2.4). Static “prior” weights reflect each model’s cross-validation skill. Local weights adapt238
to agreement with any overlapping in situ observation. The weighted combination produces a239
single ensemble DO field at each grid cell and month. We packaged the ensemble field into a240
CF-compliant NetCDF file with coordinate variables, depth layers, time and global attributes241
documenting methods.242

243

3 Model performance244

3.1 Model Temporal Cross- Validation245
We conducted eight-fold temporal cross-validation on each of the six models. In each fold f, data246

from eight test years 7
0}8f1960{  kk formed the test set, with remaining years for training.247

We trained each model using its optimized hyperparameters (Sect. 2.2.3) on the training years,248
predicted the test years, and computed mean bias (ΔDO), mean absolute error (MAE),249
root-mean-square error (RMSE) and coefficient of determination (R2) on the held-out data. These250
metrics collectively provide a comprehensive understanding of the model’s predictive accuracy251
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and bias. The results appear in Tables 3-6.252
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Table 2. Cross-validation ΔDO (μmol kg⁻¹)257
Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8
RF -0.160 0.253 -0.089 0.134 0.085 0.155 0.444 0.347
XGBoost -0.403 0.313 -0.125 0.291 -0.007 0.158 0.325 0.211
LightGBM -0.470 0.289 -0.173 0.250 0.048 0.193 0.391 0.255
Hist_GBT -0.324 0.204 -0.170 0.174 0.052 0.186 0.378 0.285
ERT -0.298 -0.120 -0.346 -0.069 -0.127 0.027 0.662 0.235
CatBoost -0.287 0.128 -0.134 0.244 0.081 0.072 0.505 0.165
Table 3. Cross-validation MAE (μmol kg⁻¹)258
Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8
RF 10.404 9.894 9.786 9.661 9.540 9.457 9.520 9.763
XGBoost 10.943 10.471 10.406 10.281 10.130 10.011 10.130 10.320
LightGBM 10.849 10.376 10.328 10.136 10.011 9.921 9.964 10.218
Hist_GBT 11.510 11.045 10.926 10.799 10.671 10.588 10.663 10.926
ERT 10.627 10.180 9.939 9.834 9.752 9.668 9.726 9.995
CatBoost 11.904 11.538 11.247 11.158 11.053 10.942 10.990 11.299

Table 4. Cross-validation RMSE (μmol kg⁻¹)259
Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8
RF 17.294 16.610 16.317 16.337 15.999 16.028 16.344 16.302
XGBoost 17.620 16.968 16.814 16.829 16.479 16.391 16.756 16.752
LightGBM 17.405 16.789 16.634 16.506 16.260 16.273 16.526 16.503
Hist_GBT 18.048 17.477 17.130 17.154 16.892 16.859 17.210 17.179
ERT 17.325 16.801 16.238 16.433 16.016 16.094 16.321 16.349
CatBoost 18.501 18.068 17.464 17.607 17.312 17.324 17.568 17.582

Table 5. Cross-validation R²260
Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8
RF 0.958 0.961 0.960 0.959 0.960 0.960 0.960 0.963
XGBoost 0.957 0.959 0.958 0.957 0.957 0.958 0.958 0.961
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LightGBM 0.958 0.960 0.958 0.959 0.959 0.958 0.959 0.962
Hist_GBT 0.954 0.957 0.956 0.955 0.955 0.955 0.956 0.959
ERT 0.958 0.960 0.960 0.959 0.959 0.959 0.960 0.963
CatBoost 0.952 0.954 0.954 0.953 0.953 0.953 0.954 0.957

261
All six learners exhibit remarkably consistent skill across the eight temporal folds, with only minor262
spread in error metrics (Table 2-5). LightGBM’s MAE varies by less than 0.9 μmol kg⁻¹ (9.92–10.85)263
and its RMSE by under 0.9 μmol kg⁻¹ (16.26–17.41), yielding an R² range of 0.958–0.962—small264
fluctuations that underscore stable performance year-to-year. RF delivers the lowest RMSE265
(15.99–17.29) and highest R² (0.958–0.963). In contrast, CatBoost and Hist_GBT register higher266
mean errors (MAE up to 11.90 and 11.51, RMSE up to 18.50 and 18.05) and slightly larger267
inter-fold variability, indicating they are more sensitive to the specific training/test split (Table268
2–5). ERT and XGBoost fall between these extremes, with moderate error levels and consistent R².269
Crucially, no model ever produces an outlier fold with dramatically degraded skill—each270
maintains MAE < 12 μmol kg⁻¹ and R² > 0.95. This uniformity across folds confirms strong271
temporal generalization and validates our choice of an ensemble approach (Bergmeir & Benítez,272
2012; Roberts et al., 2017).273

274
3.2 Evaluation on independent observations275
We evaluated both the ensemble and each single model against an independent GLODAPv2276
dissolved oxygen dataset, treated here as ground truth. GLODAPv2 profiles were averaged into277
the same 1°×1° grid and monthly time step as the reconstructions. We then identified grid cells278
where both the gridded GLODAPv2 values and model predictions were non-NaN. At those279
collocated points we computed four summary metrics: mean bias (ΔDO), mean absolute error280
(MAE), root mean square error (RMSE) and coefficient of determination (R²).281

Table 6. Comparison of Ensemble and Single Models on GLODAPv2 Dataset282
Model MAE (μmol kg⁻¹) RMSE (μmol

kg⁻¹)
R² ΔDO (μmol

kg⁻¹)
Ensemble 5.003 9.895 0.985 0.311
Ensemble(static
weight=1)

5.061 9.982 0.985 0.341

RF 5.802 10.979 0.982 0.221
XGBoost 6.198 10.943 0.982 0.330
ERT 6.757 11.960 0.979 0.405
LightGBM 7.637 12.825 0.975 0.543
Hist_GBT 8.632 13.875 0.971 0.589
CatBoost 9.179 14.474 0.969 0.693

283
Table 6 also includes an equal-weight ensemble (static weight = 1), which yields MAE = 5.061284
μmol kg⁻¹, RMSE = 9.982 μmol kg⁻¹ and R² = 0.985 (ΔDO = 0.341). Although this uniform blend285
already outperforms any single model, our RMSE-based prior weights push performance further,286
dropping MAE to 5.003 μmol kg⁻¹, RMSE to 9.895 μmol kg⁻¹ and raising R² to 0.985,287
demonstrating that leveraging each learner’s cross-validation skill yields a measurably better288
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ensemble than equal weighting. Among the individual algorithms, Random Forest (MAE 5.802,289
RMSE 10.979, R² 0.982) and XGBoost (MAE 6.198, RMSE 10.943, R² 0.982) follow most closely,290
while CatBoost (MAE 9.179, RMSE 14.474, R² 0.969) and Hist_GBT (MAE 8.632, RMSE 13.875, R²291
0.971) sit at the lower end. All models keep bias under 0.7 μmol kg⁻¹. No single method ever292
exhibits a catastrophic fold, underscoring the robustness of our dynamic weighting in combining293
complementary strengths and minimizing weaknesses (Dietterich, 2000).294

295
3.3 Uncertainty estimations296
We quantify three independent sources of error in the reconstructed DO field. Estimating each297
component lets us understand their relative contributions and report a rigorous total uncertainty.298
Measurement uncertainty (△Omeas) originates from the inherent precision limits of the in situ299
dissolved oxygen observations. In our study, we assume a constant uncertainty based on Ito et al.,300
(2024): OSD and CTD data are assigned a measurement uncertainty of 1 μmol kg⁻¹, while Argo301
data are attributed a value of 3 μmol kg⁻¹. Thus, for any given observation, we represent the302
uncertainty as △Omeas=1 μmol kg⁻¹ for OSD or CTD data and △Omeas=3 μmol kg⁻¹ for Argo data.303
This constant assignment provides a pragmatic baseline for quantifying the observational error in304
the reconstructed dataset, acknowledging that, although regional variations might introduce305
additional variability, such effects are not considered in this baseline estimate.306
Grid uncertainty (△Ogrid) quantifies the representation error associated with assigning a single307
dissolved oxygen value to a 1°×1° spatial cell across time. To estimate grid uncertainty,308
observations within each grid cell are collocated, and the standard deviation (σ) among these309
observations is computed. For a given grid cell, let the n observations be denoted by O₁, O₂, …,310
Oₙ ; then, the grid uncertainty is estimated by:311








n
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where O is the mean value of the observations in that cell. These standard deviations are then313

averaged across the entire dataset, providing an overall estimate of the grid uncertainty. This314
method effectively captures the dispersion due to variable sampling density and spatial315
heterogeneity, reflecting the error introduced by mapping sparse in situ data onto a coarser grid.316
Algorithm uncertainty ( △ Oalg) reflects the error introduced by the machine learning317
reconstruction process. In this study, six ensemble models (RF, XGBoost, LightGBM, CatBoost, ERT,318
and Hist_GBT) were trained using a comprehensive set of dissolved oxygen observations and319
environmental factors. Each model was optimized via Bayesian hyperparameter tuning and320
validated using an eight-fold cross-validation procedure, yielding an MAE for each model,321
denoted by error₁ through error₆. We then compute the prior weight for the i-th model using an322
exponential decay function:323

 



 6

1

i
)exp(

)exp(

j j

i

error
error (15)324

The overall algorithm uncertainty is then estimated as the weighted average of the MAE values:325
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This approach synthesizes the performance of the six different models into a single metric,327
representing the inherent uncertainty of the reconstruction algorithm across the entire dataset.328
The resulting component uncertainties are measurement uncertainty = 1.60 μmol kg⁻¹, grid329
uncertainty = 4.61 μmol kg⁻¹, and algorithm uncertainty = 10.17 μmol kg⁻¹. Finally, the total330
uncertainty in the reconstructed dissolved oxygen field is expressed as331

2
lg

22
total agridmeas OOO  =11.28 μmol kg⁻¹.332

This formulation integrates the observational, mapping, and model reconstruction uncertainties333
into a comprehensive framework for error quantification.334

335

4 Data product comparison336

4.1 Comparison with GLODAPv2 observations337
To rigorously evaluate our DO reconstruction, we conducted a systematic comparison with two338
recent datasets, GOBAI (Sharp et al., 2023) and ITO (Ito et al., 2024), using the quality-controlled339
GLODAPv2 dataset (Olsen et al., 2016) an independent validation standard. Our reconstruction340
consistently achieves the lowest MAE and RMSE, and the highest R², with near-zero bias. Within341
the spatial, temporal, and depth ranges of GOBAI, our model also outperforms GOBAI by 15–20%342
in both MAE and RMSE, and by 0.01 in R². Within the spatial, temporal, and depth ranges of ITO,343
our model show a 30% reduction in MAE and RMSE compared to ITO, while the bias improved344
significantly, decreasing from 1.74 to 0.34 μmol kg⁻¹. These comparisons confirm that our345
ensemble delivers consistently better agreement with independent GLODAPv2 observations,346
both globally and within the individual domains of GOBAI and ITO.347

Table 7. Performance comparison on GLODAPv2348
Product MAE RMSE R² ΔDO
Our
reconstruction
(full
GLODAPv2)

5.003 9.895 0.985 0.311

GOBAI on
GLODAPv2

8.107 14.201 0.969 1.167

Our
reconstruction in
GOBAI
coverage

6.399 12.353 0.980 1.019

ITO on
GLODAPv2

9.417 16.790 0.961 1.742

Our
reconstruction in
ITO coverage

6.507 11.991 0.981 0.344

349
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350

Figure 1. Global maps of RMSE between model reconstructions and GLODAPv2 observations over two domains.351
(a) RMSE of our reconstruction in GOBAI coverage. (b) RMSE of the GOBAI product. (c) RMSE of our352
reconstruction in ITO coverage. (d) RMSE of the ITO reconstruction. Color scale (μmol kg⁻¹) is the same in all353
panels; blue shading indicates low errors (< 10 μmol kg⁻¹), red indicates higher errors (up to 25 μmol kg⁻¹).354

355
Across the domain of GOBAI (Fig.1a b), our ensemble consistently achieves RMSE values that are356
3–8 μmol kg⁻¹ lower than those of GOBAI, especially in the equatorial Pacific, Indian Ocean and357
Southern Ocean boundary currents. In contrast, both products show higher RMSE in high-latitude358
regions, reflecting sparse calibration data in these areas. Within the domain of ITO (Fig.1c d), our359
ensemble again shows lower RMSE across most subtropical and mid-latitude basins, with typical360
errors of 8–12 μmol kg⁻¹ compared to 12–18 μmol kg⁻¹ of ITO. The largest errors in ITO occur in361
the North Pacific. These spatial comparisons confirm that our ensemble reconstruction not only362
improves global summary statistics (Table 7) but also delivers consistently lower local errors than363
GOBAI and ITO. The reduction of RMSE in both open-ocean and dynamical boundary regions364
demonstrates the performance of our multi-model, Bayesian-weighted approach in capturing365
complex oxygen variability in the ocean.366

367
4.2 Comparison of mean vertical profile368
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369
Figure 2. Global mean vertical profiles of different dissolved oxygen products (1965–2022). Solid lines show our370
reconstruction (blue), ITO’s reconstruction (orange) and WOA23 climatology (yellow), plotted from the surface371
down to 5902 m.372

373
Our DO reconstruction improves oxycline accuracy and extends coverage into the bathypelagic374
zone, filling gaps left by previous datasets. Figure 2 shows the mean profiles for our375
reconstruction (blue), ITO (orange; Ito et al., 2024), and WOA23 climatology (yellow; Garcia et al.,376
2024), averaged over the ITO/WOA23 domain for 1965–2022. At the surface, all three profiles377
align near 245–250 μmol kg⁻¹. In the main oxycline between 800 and 1,000 m, our reconstruction378
and WOA23 show almost identical profiles, while ITO falls 2–5 μmol kg⁻¹ lower in this depth range.379
By blending multiple models and environmental factors, our ensemble better captures the true380
oxycline shape and matches the widely used WOA23 reference. Below 1000 m, ITO provides no381
data, therefore, the comparison focuses on our reconstruction with WOA23. The two profiles382
remain within 2–3 μmol kg⁻¹ of each other down to 5902 m, demonstrating the reliability of our383
deep-ocean estimates. Our deep-water values fill a critical gap for studies of oxygen supply,384
interior circulation and biogeochemical cycling.385

386
4.3 Spatial difference from climatological distribution387
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388
Figure 3. Maps of dissolved oxygen anomalies relative to WOA23 climatology at four depths (10 m, 30 m, 200 m389
and 700 m). (a,c,e,g) Left panels show the difference between WOA23 and our reconstruction; (b,d,f,h) right390
panels show the difference between WOA23 and ITO’s reconstruction at the same depth and time period. White391
areas indicate near-zero bias, while reds and blues denote positive and negative offsets, respectively (±15 µmol392
kg⁻¹).393

394
Our reconstruction more closely aligns with the WOA23 climatology, particularly in the surface395
and upper-thermocline layers, demonstrating improved accuracy in low- and mid-latitude regions.396
At the surface layer around 10 m depth, our reconstruction shows light difference, with397
anomalies up to ±2 µmol kg-1 deviations in high-latitude regions and equatorial upwelling zones.398
ITO's reconstruction exhibits broader swaths of red (negative bias of 4-8 µmol kg-1) in subtropical399
gyres and pronounced blue (positive bias of 6-10 µmol kg-¹ ) under the Antarctic Circumpolar400
Current. At 30 m our differences remain small in the gyres and mid-latitudes for our ensemble401
reconstruction, with slightly more variability in boundary currents. In contrast, ITO's402
reconstruction again shows larger negative offsets in oligotrophic subtropics and positive offsets403
in the southern high latitudes. Our reconstruction provides a clear advantage in matching WOA23404
in surface ocean. This improvement likely arises from our use of diverse environmental factors405
and dynamic weighting of multiple learners, which together capture the characteristics of406
dissolved oxygen distribution in the surface and upper-thermocline more accurately.407

408
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At around 200 m, both our and ITO's reconstruction exhibit modest departures from the WOA23409
reference, with anomalies mostly within ±10 µmol kg-1 in the tropical and subtropical regions.410
ITO’s biases in the eastern boundary upwelling zones and the Arabian Sea also fall in a similar411
range. Deeper, around 700 m, our reconstruction and WOA23 remain within ±3 µmol kg-1 even412
in the deep basins of the Atlantic and Pacific, indicating comparable performance at mid-depths.413

414
415

5 Global ocean DO distribution and trends416

5.1 Spatial distributions at representative depths417
We explore the spatial patterns of reconstructed DO at four depths: 0.5 m, 200 m, 857 m and418
4093 m (Fig. 4). These levels represent the surface, the thermocline, the core of the global419
oxygen minimum zones (OMZs), and the deep bathypelagic, respectively. At 0.5 m, DO reaches420
relatively high values in high-latitude regions (> 300 μ mol kg-1). At 200 m, the421
thermocline/upper oxycline produces strong horizontal gradients. Tropical OMZs off Peru and in422
the Arabian Sea appear as blue corridors (< 160 μmol kg-1), while subpolar zones remain423
green-yellow (> 200 μmol kg-1). At 857 m, OMZ cores deepen. The eastern Pacific and northern424
Indian Ocean drop below 150 μmol kg-1. The North Atlantic mid-depths maintain 180-200 μ425
mol kg-1. At 4093 m, DO is more uniform (180-200 μmol kg-1) across basins, shaped by Antarctic426
Bottom Water and North Atlantic Deep Water signatures (Talley, 2013). These four depths427
capture the full vertical DO structure, from dynamic surface processes through OMZs to the428
slowly evolving deep ocean, and lay the groundwork for trend and basin-scale analyses.429

430

431
Figure 4. Global maps of reconstructed dissolved oxygen concentration at four representative depths: (a) 0.5 m432
(surface), (b) 200 m (thermocline), (c) 857 m (OMZ core) and (d) 4093 m (bathypelagic).433

434
435

5.2 Global mean DO and deoxygenation profiles436
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437
Figure 5. Global mean dissolved oxygen concentration (red circles, left axis) and its long-term change rate (blue438
stars, right axis) as a function of depth (1960–2023).439

440
The vertical distribution of DO concentrations varies greatly with depth. Along the water column,441
DO concentration peaks at the surface around 250 μmol kg-1 (Figure 5), where air-sea exchange442
and photosynthetic production maintain supersaturated conditions (Ryther, 1956; Kolber et al.,443
2000). Between approximately 70 m and 300 m, it falls rapidly to about 160 μ mol kg-1,444
reflecting diminished gas exchange and ongoing microbial respiration (Keeling et al., 2010;445
Schmidtko et al., 2017). At around 1000 m, the profile exhibits a local minimum near the classical446
oxygen minimum zone (OMZ), then slowly rising toward 200 μmol kg-1 at 2 000 m. Beyond 2447
000 m DO gradually decreases further to 180 μmol kg-1 near 6000 m.448
The deoxygenation rate also shows a distinct depth-dependent pattern. The deoxygenation rate449
(Figure 5) is small (-0.06 μmol kg-1 yr-1) in the surface. Below 60 m, the decline accelerates450
sharply. Between 150 and 200 m, it steepens sharply to about -0.14 μmol kg-1 yr-1. This points to451
an amplification of shallow subsurface oxygen loss, most likely driven by stronger stratification452
that inhibits ventilative exchange and by increased microbial respiration (Keeling et al., 2010;453
Schmidtko et al., 2017). Below 2000 m, the deoxygenation rate lessens, dropping to about -0.05454
μmol kg-1 yr-1 at 4000 m and further to -0.04 μmol kg-1 yr-1 at abyssal depths. The weakening of455
deoxygenation below 2000 m reflects the long renewal times and strong isolation of deep ocean456
water masses, which buffer them against rapid surface driven changes. Observational syntheses457
likewise report smaller long-term oxygen declines at depth compared to the upper ocean,458
consistent with slower ventilation and lower remineralization rates in these remote layers459
(Schmidtko et al., 2017).460
Our reconstruction captures the full vertical extent of historical deoxygenation from surface to461
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abyss, providing continuous monthly fields down to nearly 6 000 m depth and offering a unique,462
high-resolution resource that enables explicit evaluation of deep-water oxygen changes and463
supports future climate, biogeochemical and ecosystem research.464

465
5.3 Basin-scale oxygen content and deoxygenation rates466

467
Figure 6. Basin-scale integrated oxygen content and deoxygenation rates. Green circles (right axis, in Pmol) show468
each basin’s mean oxygen content (1960–2023) for North Pacific (NP), Equatorial Pacific (EP), South Pacific (SP),469
North Atlantic (NA), Equatorial Atlantic (EA), South Atlantic (SA), Southern Ocean (SO), Arctic Ocean (AO), North470
Indian (NI) and South Indian (SI). Blue bars (left axis, in Tmol decade⁻¹) indicate deoxygenation rates (i.e., linear471
trend to each basin’s time series of integrated oxygen) in 1960–2010; orange bars show rates in 2011–2023.472

473
Basin-scale analysis reveals a clear intensification of basin-scale deoxygenation, with dramatic474
increases in deoxygenation rates observed in the North Atlantic, Southern Ocean, and Arctic,475
particularly since 2010. During the period from 1960 to 2010, deoxygenation rates are modest.476
The North Pacific shows the largest loss (112 Tmol decade-1), followed by the Southern Ocean477
(100 Tmol decade-1) and South Atlantic (63 Tmol decade-1). Tropical basins (EI, EA) and the Arctic478
exhibit minimal change (6-17 Tmol decade-1). In contrast, the period after 2010 reveals479
dramatic increases across all basins. The North Atlantic loss more than 15 times to 323 Tmol480
decade-1. The South Atlantic and Southern Ocean both exceed 270 Tmol decade-1. Even the Arctic481
accelerates from near zero to 95 Tmol decade-1. The fastest deoxygenation occurs in the Arctic482
Ocean and the North Atlantic, with both basins experiencing roughly 15 times increases in oxygen483
loss. In the Arctic Ocean, rising temperatures have reduced oxygen solubility (Matear et al., 2003),484
while accelerated sea-ice melt since the 2010s has freshened surface waters, strengthened485
stratification, and suppressed deep-to-surface exchange (Solomon et al., 2021; Farmer et al.,486
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2021). Tropical areas also show a marked uptick in recent deoxygenation, likely driven by487
enhanced stratification, reduced mid-water ventilation and increased oxygen consumption for488
organic matter decomposition (Stramma et al., 2008; Schmidtko et al., 2017; Breitburg et al.,489
2018).490

491

6 Conclusion and discussion492

Our study generates the first global 1°×1° monthly DO dataset from 1960 to 2023 that493
extends to nearly 6 000 m depth, achieved through the BEM-DOR (Bayesian Ensemble494
Machine-learning Dissolved Oxygen Reconstruction) framework. BEM-DOR integrates six tree495
based learners: Random Forest, XGBoost, LightGBM, CatBoost, ERT and Hist_GBT. These models496
are optimized using by Bayesian optimization and combined via dynamic weighting. Our497
ensemble moves well beyond simpler blends and applies soft weighting that combines each498
model’s global cross-validation skill with local error performance, allowing the best-performing499
learner to dominate regionally and depth-wise while down-weighting those with larger local500
biases. As a result, our reconstruction achieves lower MAE and RMSE on GLODAPv2 and WOA501
comparisons, better resolves sharp oxycline features and deep ocean signals, and by integrating502
diverse model architectures with auxiliary environmental factors captures spatial and vertical DO503
variability more faithfully than fixed-weight or single-model approaches.504
The vertical deoxygenation profile reveals accelerating oxygen loss between 150 and 200m at505
rates around -0.14 μmol kg-1 yr-1, while surface declines remain modest (-0.06 μmol kg-1 yr-1).506
Since 2010, basin-scale trends show dramatic acceleration, particularly in the North Atlantic and507
Arctic Ocean, consistent with observations of rising temperature, strengthening stratification508
(Matear et al., 2003; Solomon et al., 2021; Farmer et al., 2021).509
We note several limitations and avenues for improvement. The 1 ° × 1 ° grid smooths510
small-scale features such as narrow boundary currents. Also, sensor biases in BGC-Argo still511
propagate into our training data, especially around steep oxyclines (Bittig et al., 2017; Bittig et al.,512
2018; Gouretski et al., 2024). Future work should incorporate more precisely calibrated Argo data513
and finer regional grids.514
Overall, our dataset offers a unified, long-term view of ocean deoxygenation from surface to515
abyss and, by extending coverage into the bathypelagic realm, fills a critical observational void516
that enables studies of deep-ocean oxygen dynamics. Packaged in NetCDF with documented517
uncertainties, it provides a benchmark for Earth system models and a foundation for impact518
studies on marine habitats and biogeochemical cycles, and invites the community to explore519
trends, calibrate models and guide policy on ocean health under climate change.520

521

Data Availability522

The reconstructed global monthly dissolved oxygen dataset produced in this study is publicly523
available in CF-compliant NetCDF format via Zenodo at524
https://doi.org/10.5281/zenodo.15361819 (Han et al., 2025) under a Creative Commons525
Attribution 4.0 license. Source DO profile observations were obtained from the International Argo526
Program and the national programs that contribute to Argo (https://argo.ucsd.edu), the World527
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Ocean Database (WOD) maintained by the U.S. National Oceanic and Atmospheric Administration528
(NOAA; https://www.ncei.noaa.gov/products/world-ocean-database), and the Global Ocean Data529
Analysis Project version 2 (GLODAPv2). Environmental predictor fields were drawn from the530
ORAS5 ocean reanalysis provided by the European Centre for Medium-Range Weather Forecasts531
(ECMWF; https://cds.climate.copernicus.eu/datasets/reanalysis-oras5).532
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