
Dear Referee,

We are grateful for the referee’s thoughtful, detailed comments. We have prepared detailed
responses to each comment and outlined the specific revisions that we will incorporate into the
manuscript in the revised submission. The major updates include: (i) a strict
GLODAPv2-WOD23-Argo de-duplication to ensure an independent validation set, with
figures and tables updated (Figs. R2-R5; Tables R1-R2); (ii) new Section 5.3 on hemispheric
seasonal cycles, quantifying deep-ocean amplitudes to 5902 m; (iii) new Section 5.4 with
latitude-depth transects at 160°W and 30°W showing means and multi-decadal trends; (iv)
the addition of comparisons with the Roach & Bindoff product; (v) clarified rationale for
including zonal/meridional velocities, the choice of six tree-based learners, and our two-stage
cross-validation design; and (vi) an explicit explanation of the 10 µmol kg-1 profile-level QC
rule with an illustrative example. A point-by-point reply follows below (referee comments in
italics, our responses in regular type).

On behalf of all authors, sincerely,

Mingyu Han, Yuntao Zhou

Shanghai Jiao Tong University



Comment 1:
L103-105: provide a quantitative definition of unrealistically high or low. Also, the arbitrary
exclusion of casts where any reading is below 10 µmol/kg would exclude areas of severe hypoxia
and low oxygenated waters. If the authors followed an established methodology, I would want to
see a reference to it. Otherwise, I would suggest their method to be at least partially reconsidered.
Response 1:
Thank you for pointing this out. We used an internal QC to set the threshold and applied it at the
profile level: a profile was discarded only if dissolved oxygen was < 10 µmol kg-1 at every
sampled depth. Profiles that never rise above this level are overwhelmingly associated with sensor
or unit-conversion problems (Fig. R1). In other words, the filter targeted profiles that were
uniformly hypoxic from surface to bottom.  With this clarification, the procedure does not remove
legitimate observations from oxygen minimum zones such as the eastern tropical Pacific or
Arabian Sea.

Figure R1. Example of a profile removed by the profile-level low-O2 filter.

Comment 2:
L110: what is the rationale behind the inclusion of zonal and meridional velocities as
environmental predictors for dissolved oxygen concentrations?
Response 2:
Thank you to the reviewer for this question. Zonal and meridional ocean currents (east-west and
north-south flows) help shape dissolved oxygen distributions by transporting water masses with
different oxygen levels. For example, eastward flows like the Equatorial Undercurrent deliver
oxygen-rich waters into low-oxygen zones, ventilating tropical oxygen minimum areas (Stramma
et al., 2010). Similarly, lateral currents form high-oxygen “tongues” across ocean basins, showing



that advection by zonal and meridional flows is a key driver of regional oxygen patterns (Brandt et
al., 2008). Including u and v velocity components as predictors thus captures the influence of
ocean circulation on oxygen variability (Busecke et al., 2019).
Other studies have also included horizontal velocity fields as input features when modeling or
mapping oceanic oxygen. For instance, Huang et al. (2023) incorporated reanalysis-based zonal
and meridional current velocities alongside other factors to reconstruct multidecadal dissolved
oxygen variability in the Indian Ocean, demonstrating that accounting for u and v improved the
reconstruction by capturing lateral oxygen transport (Huang et al., 2023). Similarly, Busecke et al.
(2019) found that accurately representing the Equatorial Undercurrent is essential for simulating
Pacific oxygen patterns, underscoring the benefit of including current velocities in oxygen
prediction models (Busecke et al., 2019).

Comment 3:
L145: I understand from L111 and the documentation of ORAS5 that the data is gridded at 0.25° x
0.25° resolution. Where is this 1° x 1° grid coming from?
Response 3:
ORAS5 is provided on a 0.25° mesh, but all predictors and targets in our reconstruction have to
share a common 1° × 1° grid for the training to be stable and for the results to be directly
comparable with other products such as WOA23 and GOBAI. We therefore down‑sampled the
ORAS5 data by simple averaging: for every 1° cell we calculated the mean of the 16 underlying
0.25° cells that fall inside it.

Comment 4:
L157: why did the authors decide to use six models in the ensemble? And why are all the
algorithms tree-based? Please explain further in the text.
Response 4:
Our ensemble contains six algorithms because they cover the full family of modern decision‑tree
learners. Random Forest represents classical bagging; Extremely Randomised Trees pushes the
same idea to maximum randomness; XGBoost, LightGBM and Histogram-based Gradient
Boosting all implement gradient boosting but with different split criteria and optimization tricks;
CatBoost adds ordered boosting to handle categorical/ordinal inputs. Because each learner builds
and regularizes its trees in a distinct way, their residual errors are only weakly correlated;
averaging them therefore reduces both bias and variance.
We kept the ensemble exclusively tree‑based because DO depends on non‑linear interactions
among various drivers, contains many missing values. All situations where decision trees excel
without demanding elaborate feature engineering. We tested neural networks during preliminary
experiments, but they delivered no consistent skill gain while complicating interpretability and
hyper‑parameter tuning. The six‑tree ensemble therefore offers the best balance of predictive
power and complementarity for a global DO reconstruction.

Comment 5:
L164-165: why did the authors include CatBoost in the ensemble if there are no categorical
features in the framework proposed (BEM-DOR)?
Response 5:



We appreciate the reviewer’s question. We keep CatBoost in the ensemble because its
ordered‑boosting scheme and symmetric trees often improve accuracy even on purely numerical
data; several recent environmental studies that contained no categorical predictors at all report a
clear gain from CatBoost. Chen et al. (2024) constructed an interpretable CatBoost model guided
by spectral morphological characteristics for remote sensing monitoring of Chl-a and TSS along
the coast of Fujian. Zhang et al. (2020) showed CatBoost outperforming generalized regression
neural network (GRNN) and random forests (RF) for reference‑evapotranspiration calculated from
continuous meteorological variables. Because CatBoost’s split selection, random strength and
ordered boosting differ from our other gradient‑boosting learners, its residual errors are weakly
correlated with theirs. So we retained it as a complementary component of the ensemble.

Comment 6:
L210: how were the hyperparameters to be tuned chosen? And how was the search range
identified / selected?
Response 6:
We tuned only the hyper‑parameters that govern a tree model’s effective capacity and
regularization, because these dominate performance while the remaining options have much
weaker leverage (Probst et al., 2019). For every algorithm we therefore searched over (i) the
“number of trees / iterations”, which controls variance reduction; (ii) “tree depth or leaf size”,
which balances model complexity against over‑fitting; (iii) a “learning‑rate or subsampling term”
to temper boosting; and (iv) the library‑specific shrinkage factors such as “l2_leaf_reg” (CatBoost)
or “l2_regularization” (Hist_GBT) that act as weight decay.
The hyper-parameters search ranges were chosen to coverage the values in recent large‑scale
environmental applications, while still being broad enough for Bayesian optimization to explore.
By searching inside those empirically established intervals we avoid wasting computation on
clearly unrealistic extremes while still giving Bayesian optimization enough room to find the best
spot for every model.

Comment 7:
L228: where would all predictions be missing? On land? Or at locations where no observations
are available in the validation split during cross-validation? Please clarify further.
Response 7:
The “locations where all predictions are missing” refer to ocean grid cells that contain no in‑situ
dissolved‑oxygen profiles in any of our three source datasets (CTD, OSD, Argo) over 1960–2023,
most of them lying in chronically under-sampled areas. At those cells the model still produces a
concentration estimate, but in the dynamic‑weighting step the local error term cannot be computed
because there is no collocated observation; in that situation we replace the data‑driven error with
the model’s prior cross‑validated RMSE. Thus the grid point is retained in the final field, yet its
ensemble weight is determined according to the model’s historical skill rather than a point‑specific
mismatch. Land points are masked much earlier in the pipeline and are not part of this discussion.

Comment 8:
L246-250: it is unclear to me how this temporal cross-validation differs from the cross-validation
done for hyperparameter tuning. First, I would like to have a more detailed explanation of what



years formed the test set and what the training set, as the expression provided in line 247 is not
clear. Additionally, I would like to see a detailed clarification of the differences between
hyperparameter-tuning cross-validation and temporal cross-validation and the rationale behind
cross-validating twice in model development.
Response 8:
The eight‑fold temporal cross‑validation works as a sliding “leave‑eight‑years‑out” scheme. For
fold f (f = 0…7) the test set is the year sequence {1960 + f + 8 k} with k = 0…7; that is, eight
calendar years spaced exactly eight years apart. For example, fold 0 tests on
1960 1968 1976 1984 1992 2000 2008 2016, fold 1 on 1961 1969 1977 … 2017, and so on until
fold 7. All remaining years constitute the training set in that fold, so every individual year is used
once for testing and seven times for training, and at no point does a model “see” future data when
predicting past years.
Hyper‑parameter tuning is a separate, inner procedure that we run only once. There we fix one
eight‑year block (1960 1968 … 2016) for training the optimizer and a different eight‑year block
(1967 1975 … 2023) for validation while exploring the search space. This limited split is sufficient
for finding learning‑rates, tree depths and similar settings and using fewer years keeps the
Bayesian search fast. After the best parameter set is locked in, we re‑train each model inside the
outer eight‑fold loop described above.

Comment 9:
L275-294 (Sect. 3.2) and then 337-366 (Sect. 4.1): Did the authors make sure that the
observations they validate against in GLODAPv2 are not also included in the World Ocean
Database 2023? Otherwise, they might validate against the same observations they are using to
train the model. Similarly, the GOBAI-O2 product (Sharp et al., 2023) is built using GLODAPv2
observations as training data, and the product of Ito et al. (2024) is built on World Ocean
Database 2018 data. How did the authors ensure that their validation data were not included in
the training of these two models as well?
Response 9:
We appreciate the reviewer’s concern and fully agree that any overlap between GLODAP  v2 and
WOD23 would compromise an independent evaluation.  During revision we therefore examined
the two datasets profile-by-profile and did indeed find a small number of profiles that appear in
both collections, as illustrated in Figure  R2.  Although the duplicate profiles do not always share
exactly the same time-stamp or coordinates, because differences of a few kilometers or weeks are
common. We adopted a deliberately conservative filter: for every oxygen profile in GLODAP  v2
we searched the WOD23 CTD + OSD datasets for profiles that fall within ±1° in longitude, ±
1° in latitude, and the same calendar month. If such a profile existed we treated the two profiles
as duplicates and removed the GLODAPv2 profile from our validation pool.  After applying this
rule the original 56,480 GLODAPv2 profiles were reduced to 8,020. A manual spot-check
confirmed that no further spatial-temporal matches remain.  We therefore regard the filtered set as
an independent benchmark suitable for assessing our reconstruction, GOBAI and the Ito’s product.



Figure R2. Identification and removal of duplicate oxygen profiles between GLODAPv2 and OSD.
Red points mark profile locations for March 2007. a) before filtering, several GLODAPv2 profiles
(left) coincide with OSD profiles (right), indicating duplication in the two datasets. b) after
filtering, the filtered GLODAPv2 profiles (left) no longer overlaps with the remaining OSD profiles
(right), confirming that the duplicate-removal procedure successfully yields an independent
validation dataset.

Using the filtered GLODAPv2 dataset as the benchmark we repeated the comparison for all three
products; the updated numbers are summarized in Table R1. The picture hardly changes. Within
the GOBAI coverage our reconstruction still reduces RMSE by about 25 % relative to GOBAI, and
within the ITO coverage it cuts RMSE by roughly one-third compared with the Ito's product. It is
worth emphasizing that, as the reviewer notes, GLODAPv2 dataset (filtered or not) are part of
ITO’s original training pool, whereas the filtered GLODAPv2 dataset were never used to train our
model. Yet the independent scores remain better for our reconstruction than for ITO itself,
confirming that the advantage stems from the dynamic weight ensemble rather than from any
inadvertent familiarity with the validation data.

Table R1. Performance comparison on the filtered GLODAPv2
Product MAE RMSE R² ΔDO
Our
reconstruction
(full GLODAPv2)

5.959 13.669 0.982 0.101

GOBAI on
GLODAPv2

11.101 19.875 0.956 -0.971

Our
reconstruction in
GOBAI coverage

6.602 14.999 0.979 0.122

ITO on
GLODAPv2

13.415 22.958 0.951 -0.123

Our
reconstruction in

6.944 15.065 0.979 0.010



ITO coverage

Finally, we re-evaluated the ensemble and each single model against the filtered GLODAPv2
dataset (Table R2). As expected, every single model now performs noticeably worse: their MAE
rises from the earlier 5–9 µmol kg⁻¹ to 10–13 µmol kg⁻¹, RMSE rises from 11–14 to
18–20 µmol kg⁻¹, R² slips from about 0.97–0.98 to 0.96–0.967, and the ΔDO bias widens to values
between −0.5 and +0.9 µmol kg⁻¹. The deterioration is consistent with the removal of inadvertent
data-leakage, some of the original GLODAP profiles had been seen during training and therefore
gave the single models an artificially optimistic score. The dynamic weight ensemble also
performs worse, but far less dramatically, its RMSE grows by only about 3 µmol kg⁻¹ and R²
remains above 0.98. This resilience confirms the value of the adaptive weighting scheme: by
down-weighting locally weak learners and relying on the consensus of the remainder, the
ensemble maintains superior accuracy even when the test data are entirely independent of the
training set.

Table R2. Comparison of Ensemble and Single Models on the filtered GLODAPv2
Model MAE (μmol kg⁻¹) RMSE (μmol kg⁻¹) R² ΔDO (μmol kg⁻¹)
Ensemble 5.959 13.669 0.982 0.101
Ensemble(static
weight=1)

10.327 18.195 0.967 0.219

RF 10.306 18.370 0.967 -0.011
XGBoost 11.440 19.420 0.963 0.323
ERT 10.668 18.808 0.965 -0.501
LightGBM 11.215 18.809 0.965 0.730
Hist_GBT 12.195 20.030 0.960 0.361
CatBoost 12.593 20.072 0.960 0.963

Comment 10:
L338: could the authors please provide a detailed description of how the comparison was
performed, as it is unclear in the text?
Response 10:
We thank the reviewer for asking how the comparison was performed.  We first converted the
GLODAPv2 data (after removing profiles duplicated in WOD23) to the grid of the product being
evaluated: all observations within the cell were averaged, producing a monthly 1°  × 1°  field
on that product’s native depth levels and time span. In the first row we used the full extent of our
reconstruction, global 1° grid, 75 standard depths 0-5902  m, January  1960 to December  2023,
and then computed RMSE, MAE, R² and ΔDO between our reconstruction and the gridded
GLODAPv2 field at every cell before averaging the metric over all cells.  For the second row we
repeated the procedure on the GOBAI grid (1° but limited to -64.5°-79.5°, 58 depths 0-2000 
m, 2004-2022) and compared GOBAI to the co-located GLODAPv2 means.  The third row uses
the same GOBAI mask but our own reconstruction values, restricted to the depths (54 levels
0-1945 m) and period covered by GOBAI, against the corresponding GLODAPv2 cells. Similarly,
the fourth row regrids GLODAPv2 onto the ITO grid (global 1°, 20 levels 0-1000 m, 1965-2020)
and evaluates ITO's product; the fifth row applies the same ITO mask to our reconstruction (47
depths 0-1045 m, 1965-2020) before calculating the metrics.



Comment 11:
L368: why do the authors not include the product of Roach & Bindoff (2023) in their comparison
in Sects. 4.2 and 4.3, especially as that product is available up to depths of 6800 m?
Response 11:
We thank the reviewer for bringing the Roach & Bindoff (2023) dataset to our attention. Our
original comparison focused on products that share the same spatial and temporal resolution as
ours (global 1° × 1° grids, monthly data), hence the choice of GOBAI and the Ito's
product. Roach & Bindoff provide annual means only, so at the proposal stage we set it aside to
avoid mixing temporal resolutions. Nevertheless, we recognize the value of their deep‑reaching
(to 6800 m) atlas and have now repeated the Section 4.2 and 4.3 comparisons using their data.
Figure R3 compares the 1965-2022 mean profiles down to 1000  m, while Figure  R3 extends the
view to 7000  m. In the upper 50m our reconstruction and the Roach &  Bindoff (RB) show
almost the same curve, both lying closer to the WOA23 reference than the ITO's product.
Between roughly 100 and 400 m RB fits WOA23 more tightly, whereas from 400 m to about 1000 
m our line converges on the WOA23 profile and sits slightly inside the RB-WOA23 envelope. In
the intermediate and deep layers (1000-3500 m) the three products are nearly indistinguishable,
but below 3500 m the RB curve remains fractionally nearer to WOA23.

Figure R3. Global mean vertical profiles of different dissolved oxygen products (1965–2022).
Solid lines show our reconstruction (blue), Roach & Bindoff’s reconstruction (purple), ITO’s
reconstruction (orange) and WOA23 climatology (yellow), plotted from the surface down to 1000
m.



Figure R4. Global mean vertical profiles of different dissolved oxygen products (1965–2022).
Solid lines show our reconstruction (blue), Roach & Bindoff’s reconstruction (purple), ITO’s
reconstruction (orange) and WOA23 climatology (yellow), plotted from the surface down to 7000
m.

We have also extended Section 4.3 by mapping the dissolved oxygen anomalies of the RB’s
dataset relative to WOA23 climatology at 10, 30, 200 and 700 m (Fig. R5). Across all four levels
the RB product exhibits broader, more coherent patches of ±10 µmol kg⁻¹ than either our
reconstruction or the ITO's product, whose departures from WOA23 remain mostly within
±5 µmol kg⁻¹. At present we cannot say whether these stronger spatial contrasts reflect genuine
signal retained by the annual RB averaging or arise from methodological differences: our product,
ITO and WOA23 are all produced on native 1° × 1° grids, whereas RB’s dataset results from
post‑processing a finer mesh into 1° cells by simple grid averaging, a step that may aggravate
regional offsets.



Figure R5. Maps of dissolved oxygen anomalies relative to WOA23 climatology at four depths
(10 m, 30 m, 200 m and 700 m). (a,c,e,g) Left panels show the difference between WOA23 and
our reconstruction; (b,d,f,h) middle panels show the difference between WOA23 and ITO’s
reconstruction at the same depth and time period; (i,j,k,l) right panels show the difference
between WOA23 and RB’s dataset at the same depth and time period. White areas indicate
near-zero bias, while reds and blues denote positive and negative offsets, respectively (±15
µmol kg-¹).

Comment 12:
L377-384: the exact difference between the lines is hard to quantify from the graph, but the
authors claim that the difference between their work / WOA2023 and Ito is 2-5 umol/kg between
800-1000m when the lines seem to overlap. At the same time, they say that the difference between
their study and WOA23 is 2-3 umol/kg at deeper depths down to 5902 m, while the graph clearly
shows the lines diverging. This paragraph needs to be revised and the discrepancy in analytical
interpretation addressed.
Response 12:
We appreciate the reviewer’s careful reading. We have now replaced the qualitative phrases with
the exact numerical differences reported below so that the description matches the figure.
Between about 800 and 1000m the oxygen profiles are in very close agreement (Figure R3). For
ITO versus WOA23 the discrepancy is 0.1 µmol kg⁻¹ at 800 m, 0.4 µmol kg⁻¹ at 900 m and
0.6 µmol kg⁻¹ at 1000 m. Our reconstruction diverges by 0.4 µmol kg⁻¹ at 857 m and becomes
indistinguishable from WOA23 (≤ 0.1 µmol kg⁻¹) at 947 m. Both products therefore track the
reference climatology to well within 1 µmol kg⁻¹ throughout this depth range.
Below 2000m the separation grows slowly (Figure R4). From 2100 to 3900 m our field is
0.5–0.7 µmol kg⁻¹ lower than WOA23, with the same offset persisting to about 5000m. Deeper
than 5000 m the gap widens to just over 2 µmol kg⁻¹, but observations are extremely sparse at
those depths, so the difference mainly highlights the uncertainty of any gridded product rather



than demonstrating that either data set is definitively closer to the truth.

Comment 13:
L417-429 (Sect. 5.1): this section does not add much to what is already known from a scientific
perspective about large scale dissolved oxygen distribution. I suggest the authors delve deeper
into some specific features of the data product that are novel compared to what is already
available in the literature to provide additional evidence of why their data product is valuable.
L436-464 (Sect. 5.2): similarly to the section (and comment) above, Sect. 5.2 only provides rather
general and already well-known descriptions of the variations of mean dissolved oxygen
concentrations throughout the water column. Additionally, the mean dissolved oxygen
concentration profile in Fuigure 5 is the same as the one plohed in Figure 2.
Response 13:
We thank the reviewer for highlighting the need for new science beyond a reprise of known
patterns, in response we have added Sections 5.3 and 5.4. Section 5.3 presents a hemispheric
seasonal analysis (Fig. R6). In the surface layer (0–100 m) the phase-opposed seasonal cycle in
the two hemispheres reflects the WOA23 reference almost exactly, demonstrating that the
ensemble retains the typical ventilation signal without relying on WOA as a predictor. Because
the reconstruction extends to 5902 m, we can for the first time quantify the seasonal amplitude
of deep-ocean oxygen: it is everywhere below 0.1 µmol kg⁻¹ between 1516 and 5902 m, a depth
range not covered by GOBAI or ITO. This virtual absence of seasonality provides a new
observational constraint on abyssal ventilation and on biogeochemical modelling of tropical and
polar deep waters.

Figure R6. Hemispheric mean climatological seasonal cycle of dissolved-oxygen anomalies.
Monthly anomalies are averaged over the Northern Hemisphere (left) and Southern Hemisphere
(right). Solid curves show the present reconstruction for three depth ranges: 0–97 m (blue), 97
–1516 m (orange), and 1516–5920 m (yellow). Dashed curves give the WOA23 climatology for
the 0–100 m and 100–1500 m.

Figure R7 presents January and July sections along 160° W. The mean panels highlight the
classic pattern of high-oxygen polar waters, a broad equatorial minimum and weak vertical
gradients below about 2000m. The trend panels reveal a coherent de-oxygenation signal
confined to the upper 1000m: losses reach –0.5 µmol kg⁻¹ yr⁻¹ in the sub-polar Southern Ocean



and in the mid-latitude North Pacific, while the equatorial region shows only weak changes.
Below roughly 2000 m the trends collapse to near-zero, indicating that deep Pacific oxygen has
remained effectively stable over 1960–2023. Comparison of January and July sections shows no
systematic shift in the sign or magnitude of the trends, suggesting that long-term changes
dominate and any seasonality is secondary along this longitude.

Figure R7. Latitude–depth sections of dissolved oxygen at 160 °W. Left column: climatological
mean concentration (µmol kg⁻¹) for January (top) and July (bottom). Right column: linear trend
over 1960–2023 (µmol kg⁻¹ yr⁻¹) for the same months; grey X marks denote grid cells where the
trend is not significant at the 95 % level.

Figure R8 shows the January and July sections along 30 °W, the approximate mid-Atlantic
meridian. A pronounced oxygen increase of +0.3 to +0.5 µmol kg⁻¹ yr⁻¹ occupies the upper
1200 m of the mid-latitude North Atlantic (40–60 °N). South of about 40 °S the upper 1000m
exhibits a broad de-oxygenation region, −0.1 to −0.3 µmol kg⁻¹ yr⁻¹. As in the Pacific section,
trends below 2000 m are essentially zero, indicating that abyssal Atlantic oxygen has remained
stable from 1960 to 2023. The January and July panels are nearly identical, just like the Pacific
section.

Figure R8. Latitude–depth sections of dissolved oxygen at 30 °W. Left column: climatological
mean concentration (µmol kg⁻¹) for January (top) and July (bottom). Right column: linear trend
over 1960–2023 (µmol kg⁻¹ yr⁻¹) for the same months; grey X marks denote grid cells where the
trend is not significant at the 95 % level.

Comment 14:
Dataset in netcdf format: the values of ‘time’ and ‘depth’ seem to be decoded incorrectly in



the final version of the file. Time is only reported as timesteps (0 to 767; without any decodable
information on month or year). When opening the file in ‘ncview’ , depth is only readable as
depth level (1 to 74, without any information on the depth value in meters). Lastly, latitude,
longitude and depth are included in the dataset as variables instead of coordinates.
Response 14:
Time is a coordinate variable (its name matches the dimension) with the units “months since
1960-01-01 00:00:00”. The numeric values therefore run 0 … 767. Depth is likewise a coordinate
variable with units m; the values are the true layer depths (0 m, 10 m, … 5902 m). Latitude and
longitude appear under “Variables” because netCDF lists every 1-D coordinate there, but their
names equal the dimensions (lat, lon), so they are valid CF coordinate variables. In short, the
coordinates are correctly encoded; the issue is a viewer limitation rather than a decoding error.
For reproducibility, here is a minimal MATLAB snippet that reads the file:
ncdisp('DO_Reconstruction_1960-2023.nc')
ncinfo('DO_Reconstruction_1960-2023.nc')
DO_Reconstruction = ncread('DO_Reconstruction_1960-2023.nc','DO_Reconstruction');
Longitude = ncread('DO_Reconstruction_1960-2023.nc','Longitude');
Latitude = ncread('DO_Reconstruction_1960-2023.nc','Latitude');
Depth = ncread('DO_Reconstruction_1960-2023.nc','Depth');

Technical corrections
Response 15:
Thank you for the careful technical corrections. We have implemented every suggested change
and double-checked the manuscript. Your detailed remarks have improved the clarity and
accuracy of the manuscript.
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