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Abstract 15 

Air-sea turbulent heat fluxes, including the sensible heat flux (SHF) and latent heat 16 

flux (LHF), along with the Bowen ratio (β, ratio of SHF to LHF), are crucial for 17 

understanding air-sea interaction and global energy and water budgets. However, the 18 

existing products, primarily developed using the semi-empirical bulk aerodynamic 19 

methods and data-driven machine learning approaches, are often weak in accuracy and 20 

physical rationality, due to the uncertainties in the environmental forcings and 21 

inappropriate parameterizations. In this study, we generated a global daily 0.25° product 22 

of air-sea turbulent heat fluxes using the Bowen ratio-constrained Neural Network (NN) 23 

model (referred to as the BrTHF model) that could coordinately estimate the SHF and 24 

LHF, along with the observations from 197 globally distributed buoys and multi-source 25 

remote sensing and reanalysis forcings. The spatial ten-fold cross-validation results 26 

showed that the BrTHF model, achieving root mean square errors of 6.05 W/m2, 23.67 27 

W/m2 and 0.22 and correlation coefficients of 0.93, 0.91 and 0.25 for the SHF, LHF and 28 

β, respectively, outperformed the physics-agnostic NN model and seven widely used 29 

air-sea turbulent heat flux products (including JOFURO3, IFREMER, SeaFlux, ERA5, 30 

MERRA2, OAFlux, and OHF). Furthermore, the inter-comparison of the spatial 31 

distribution of multi-year means, as well as intra-annual and inter-annual change 32 

patterns showed that the BrTHF product reliably simulated global SHF, LHF and β, in 33 

contrast to the machine learning-based OHF product that failed to replicate these 34 

patterns. The main advantage of the BrTHF model lies in its improved rationality of β 35 

estimates, successfully eliminating the outliers observed in the physics-agnostic NN 36 

model and the seven typical products. The improved SHF, LHF, and β estimates can 37 

allow for more accurate quantification of the global air-sea energy and water budgets, 38 

enhance our understanding of air-sea interaction, and improve projections of climate 39 

change under global warming. The 0.25° daily global product from 1993 to 2017 can 40 

be freely accessed from the National Tibetan Plateau Data Center (TPDC) 41 

[https://doi.org/10.11888/Atmos.tpdc.302578, Tang and Wang (2025)]. 42 
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1. Introduction 45 

Air-sea turbulent heat fluxes (THF), comprising the evaporative latent heat flux 46 

(LHF) and conductive sensible heat flux (SHF), play vital roles in the Earth's climate 47 

system by characterizing the exchange of energy and water between the ocean and 48 

atmosphere (Wild et al., 2014; Loeb et al., 2021; Fasullo et al., 2014). The ratio, 49 

commonly referred to as the Bowen Ratio (β = SHF/LHF), serves as a key indicator 50 

revealing the partitioning of water and energy over the ocean and atmosphere (Jo, 2002; 51 

Andreas et al., 2013; Liu and Yang, 2021). Accurate estimation of these three 52 

parameters is an essential prerequisite for advancing our understanding of  53 

atmosphere-sea interaction (Gentemann et al., 2020), improving the quantification of 54 

global water and energy budget (Zhang, 2023), and enhancing the predictability of 55 

extreme weather events (Yu, 2019). 56 

To map global air-sea turbulent heat fluxes, the semi-empirical bulk aerodynamic 57 

method, which establishes scaling relationships between flux and profiles of easily 58 

measured mean metrological quantities, such as near-surface gradients of humidity, 59 

temperature and wind (Yu, 2019), based on the Monin-Obukhov similarity theory 60 

(Monin and Obukhov, 1954), was developed and widely adopted as a primary approach. 61 

This method, for its ease of application, has been applied to generate tens of widely 62 

used products in the past few decades (Shie et al., 2009; Liman et al., 2018; Yu and 63 

Weller, 2007; Berry and Kent, 2011; Tomita et al., 2018; Crespo et al., 2019). However, 64 

there were huge discrepancies in the global and regional magnitude and patterns of SHF 65 

and LHF among these products, which seriously imped our understanding of the key 66 

process of the air-sea interaction and the global budget of water and energy (Bentamy 67 

et al., 2017; Tang et al., 2024; Yu, 2019). The discrepancies could be partly ascribed to 68 

the substantial uncertainties in the environmental forcings used to develop these 69 

products (Robertson et al., 2020) and the inappropriate parameterizations regarding 70 
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regional atmospheric stability and boundary layer dynamics, across diverse and 71 

complex environmental conditions (Brodeau et al., 2017; Jiang et al., 2024a; Jiang et 72 

al., 2024b; Yang et al., 2024). Furthermore, these problems contribute a lot to the biases 73 

in the SHF and LHF estimates which can even lead to the unphysical estimations of β, 74 

as Wang et al. (2024) reported. To better describe and comprehend the air-sea 75 

interaction and the energy and water budgets, the existing mode to produce global air-76 

sea turbulent heat fluxes needs improvement urgently.  77 

Machine learning techniques have been extensively applied in up-scaling in situ 78 

measurements of a single variable (e.g. soil moisture, roughness or temperature) to the 79 

globe (Wang et al., 2023; Peng et al., 2022; O and Orth, 2021; Nelson et al., 2024; Fu 80 

et al., 2023). These efforts highlight the great potential of machine learning for more 81 

accurate and consistent multivariate coordinated mapping (Karniadakis et al., 2021; 82 

Kashinath et al., 2021; Van Der Westhuizen et al., 2023; Wang et al., 2024). However, 83 

the application of machine learning in global mapping of air-sea turbulent heat fluxes 84 

remains limited. The only publicly available machine learning-based global air-sea 85 

turbulent heat fluxes product, released by the National Oceanic and Atmospheric 86 

Administration (NOAA) Ocean heat flux CDR (hereafter dubbed OHF), 87 

simultaneously modeled SHF and LHF using a Neural Network (NN) technique 88 

(Clayson and Brown, 2016). Although it performed well when validated against the 89 

observations from the tropical buoys, it failed to capture the regional characteristics, 90 

particularly in areas where air-sea turbulent heat exchange is intense (e.g. oceans with 91 

latitudes beyond 45° for SHF and subtropical highs for LHF) (Tang et al., 2024). 92 

Additionally, it exhibited different pattern of temporal evolution of global annual mean 93 

and opposite inter-annual trends at both regional and global scales to most widely-used 94 

physical model-based products, likely due to unreasonable construction of observation 95 

datasets [with data before and after 2007 coming from SeaFlux in-situ datasets and 96 

ICOADS (International Comprehensive Ocean-Atmosphere Data Set) datasets, 97 

respectively]. Furthermore, the product likely suffers from unphysical estimates of the 98 
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β due to neglecting the interrelations among SHF, LHF and β during the model 99 

construction.  100 

To improve the estimation of SHF, LHF, and β in a coordinative framework, we 101 

recently proposed an innovative Bowen ratio-informed data-driven model by 102 

considering their synergistic changes using a Random Forest (RF) technique (Wang et 103 

al., 2024). Validation against hourly high-quality eddy covariance (EC) flux 104 

measurements from 53 historical cruises demonstrated the model’s superior 105 

performance, achieving high accuracy in estimating SHF, LHF, and β, with results that 106 

are physically consistent. This work highlights the feasibility of simultaneously 107 

estimating SHF, LHF, and β with high accuracy using machine learning techniques, 108 

offering strong potential for global mapping that aligns with physical consistency. 109 

However, due to limited availability of EC flux measurements (characterized by sparse 110 

spatio-temporal distributions), the application of the model for global mapping remains 111 

constrained. Buoy-based flux observations provide a viable alternative. Although less 112 

reliable than EC-based flux measurements, buoy data offer globally representative flux 113 

samples with adequate volume and acceptable accuracy, which have been widely used 114 

to evaluate the performance of global products (Bentamy et al., 2017; Tang et al., 2024; 115 

Weller et al., 2022; Zhou et al., 2020) and support global modeling (Chen et al., 2020a) 116 

and analysis (Song et al., 2024; Yan et al., 2024).  117 

The primary objectives of this study are three-folds: (1) to develop an innovative  118 

Bowen ratio-constrained model for improving the air-sea SHF, LHF and β estimates 119 

(referred to as the BrTHF model hereafter) using the machine learning technique and 120 

global buoy-based air-sea turbulent heat fluxes observations; (2) to demonstrate the 121 

superiority of the model through an inter-comparison with seven widely used global 122 

products and the estimates from the physics-free machine learning-based model; (3) to 123 

produce a global daily 0.25° dataset based on the BrTHF model over ice-free oceans 124 

covering the period from 1993 to 2017. The flux observations from 197 global 125 

distributed buoys, along with multi-source satellite-based and reanalysis-based forcings, 126 
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were collected to construct the models and further produce the global air-sea turbulent 127 

heat fluxes dataset. The accuracy and spatio-temporal patterns of the SHF, LHF and β 128 

estimates were inter-compared with seven widely used products, including the remote 129 

sensing-based JOFURO v3, IFREMER v4.1 and SeaFlux v3, as well as reanalysis-130 

based ERA5 and MERRA2, hybrid-based OAFlux v3 and machine learning-based 131 

OHF v2 products. 132 

2. Data and Methods 133 

The following sub-sections provide an overview of the development of the BrTHF 134 

product, detailing the construction of air-sea turbulent heat fluxes observation datasets, 135 

forcing datasets and the BrTHF model, as well as the evaluation strategies used in this 136 

study, as indicated in Figure 1. 137 

 138 

Figure 1. flowchart of the generation of a global product of air-sea SHF, LHF and β by the 139 

BrTHF model  140 

2.1 Air-sea turbulent heat fluxes observation datasets 141 

To obtain the buoy-derived air-sea turbulent heat fluxes observations, the hourly 142 

or sub-hourly oceanic and atmospheric measurements including sea surface 143 

temperature (Ts), sea surface air temperature (Ta), sea surface wind speed (WS) and 144 

relative humidity (RH) were firstly collected at 267 buoys covering a variety of ocean 145 
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basins from 13 organizations or networks, namely 67 buoys from the Tropical 146 

Atmosphere Ocean/Triangle Trans-Ocean (TAO/TRITON) Buoy Network in the 147 

Pacific, 20 buoys from the Prediction and Research Moored Array (PIRATA) in the 148 

Atlantic, 23 buoys from the Research Moored Array for African-Asian-Australian 149 

Monsoon Analysis and Prediction (RAMA) in the Indian Ocean, 73 buoys from 150 

National Data Buoy Center (NDBC) around the coasts of the United States, 19 buoys 151 

from Copernicus Marine In Situ Thematic Centre (TAC) nearby the coasts of Europe, 152 

23 buoys from Upper Ocean Processes (UOP) Group around the low-latitude oceans 153 

like the Bay of Bengal, 3 buoys from the Ocean Climate Stations Project (OCS) in the 154 

mid-latitudes like the Kuroshio Extension, 24 buoys from Korea Meteorological 155 

Administration (KOREA) nearby the Korean Peninsula, 6 buoys from Ocean 156 

Observatories Initiative (OOI) in the high latitude sea area like the Argentine Basin, 2 157 

buoys from Alaska Ocean Observing System (AOOS) in the Arctic Ocean, 1 buoy of 158 

JKEO nearby Japanese Ocean, 6 buoys from Irish Weather Buoy Network around 159 

British waters, and 1 buoy from Icelandic Meteorological Office (IMO) nearby the 160 

Iceland Sea (Iceland) (Petersen, 2017). For certain buoys lacking RH measurements 161 

[e.g. buoys from NDBC (National Data Buoy Center) provided dew point temperature 162 

(DEW) rather than RH], we computed RH using DEW and Ta via formula (1).  163 
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To ensure the quality of the measurements, we filtered the records based on the 165 

quality control recommendations provided by the data providers. Further refinement 166 

was also made by removing the questionable values that exceeded three standard 167 

deviations (3σ) for each variable at individual buoys.  168 

Once the data was cleaned, daily mean aggregation was applied to the oceanic and 169 

atmospheric measurements. Given the varying temporal resolutions of the 170 

measurements (e.g. NDBC provided hourly observations before 2005 and 10-min 171 

observations thereafter), we only retained the daily mean data when the fraction of the 172 
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valid hourly or sub-hourly observations exceeded 80% on a given day. 173 

After the above mentioned data preprocessing, the daily buoy-derived air-sea 174 

turbulent heat fluxes (SHF and LHF) observations were then calculated using the daily 175 

oceanic and atmospheric measurements combined with the version 3.5 of Coupled 176 

Ocean-Atmosphere Response Experiment (COARE3.5) model (Edson, 2013) 177 

(available at https://zenodo.org/record/5110991). Following the air-sea turbulent heat 178 

fluxes computations, we further made a quality control on the derived SHF and LHF 179 

observations to exclude the abnormal records, by filtering the observations based on 180 

the range of daily β values determined from seven widely-used flux products. 181 

Specifically, we calculated the cumulative distribution of daily β for each product and 182 

their ensemble (across all products). The medians of the 1st and 99th percentiles, 183 

approximately -5 and 5, respectively, were selected as the minimum and maximum of 184 

valid daily β, as shown in Figure S1. In total, this study compiled 463,585 observations 185 

of valid daily air-sea turbulent heat flux from 197 buoy stations (Figure 2 and Table S1) 186 

in the Arctic Ocean, Pacific Ocean, Atlantic Ocean and Indian Ocean.  187 

 188 

Figure 2. Geographic locations of 197 buoy sites from 12 organizations or networks involved 189 

in this analysis including TAO/TRITON, PIRATA, RAMA, NDBC, TAC, UOP, OOI, AOOS, 190 

KOREA, OCS, JKEO and IMO. The boundaries of global land and open oceans were sourced 191 

from the Natural Earth dataset (https://www.naturalearthdata.com/downloads/) and the 192 

Global Oceans and Seas dataset (https://www.marineregions.org/sources.php), respectively. 193 

Abbreviations MR refers to the Mediterranean Region. It should be noted that the Caspian 194 

Sea was not included within the boundaries of the open oceans and is shown in white. 195 
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Finally, the quality-controlled observations were collected to train and validate the 196 

BrTHF model. Note that the COARE-based observations at the buoy stations have 197 

already widely applied as a benchmark for global air-sea turbulent heat flux product 198 

development and evaluation (Bentamy et al., 2017; Chen et al., 2020b; Tang et al., 2024; 199 

Weller et al., 2022) 200 

2.2 Forcing datasets and state-of-the-art products 201 

2.2.1 Forcing datasets 202 

Forcing variables were carefully selected based on their potential impacts on the 203 

variations of the air-sea turbulent heat fluxes (Grist et al., 2016; Kudryavtsev et al., 204 

2014; Myslenkov et al., 2021; Song, 2020, 2021; Yan et al., 2024) to conduct the feature 205 

selection (see section 2.3.1). These variables include Ta, sea surface air specific 206 

humidity (Qa), Mean Sea Level Pressure (SLP), Downward Long Wave Radiation Flux 207 

(LW), Downward Short Wave Radiation Flux (SW), Ts, sea surface specific humidity 208 

(Qs), Absolute Dynamic Topography (ADT), Sea Level Anomaly (SLA), Sea Surface 209 

Salinity (SSS), Sea Surface Density (SSD), Ocean Mixed Layer Current Velocity (CS), 210 

WS, Significant Wave Height (SWH), Wave period (Tp), as well as gradient of 211 

temperature (diffT) calculated using the Ts and Ta, and gradient of humidity (diffQ) 212 

calculated using the Qs and Qa.  213 

Datasets of these forcing variables were collected from the following sources 214 

(Table 1): the daily 0.25° ERA5 meteorology dataset (providing Ta, Qa, SLP, LW and 215 

SW) (Hersbach et al., 2020) from the European Centre for Medium-Range Weather 216 

Forecasts (ECMWF) Climate Data Store (CDS), the daily 0.25° the Optimum 217 

Interpolation Sea Surface Temperature (OISST) dataset (Ts and Qs) (Huang et al., 2021), 218 

the daily 0.25° Global Ocean Gridded L4 Sea Surface Heights And Derived Variables 219 

Reprocessed 1993 Ongoing (SSH) dataset (ADT and SLA), daily 0.125° Multi 220 

Observation Global Ocean Sea Surface Salinity and Sea Surface Density (MOGOSD) 221 

dataset (SSS and SSD) and 3-hour 0.2° Global Ocean Waves (GOW) Reanalysis dataset 222 

(SWH and Tp) from the Copernicus Marine Environmental Monitoring Service 223 
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(CEMES), the daily 0.25° Ocean Surface Current Analysis Real-time (OSCAR) dataset 224 

(CS) (Bonjean and Lagerloef, 2002) from the Physical Oceanography Distributed 225 

Active Archive Center of the National Aeronautics and Space Administration (NASA) 226 

Jet Propulsion Laboratory (JPL), the 6-hour 0.25° Cross-Calibrated Multi-Platform 227 

(CCMP) wind vector analysis dataset (WS) from the Remote Sensing Systems (RSS). 228 

The MOGOSD and GOW datasets were spatially resampled to a 0.25° resolution 229 

using mean aggregation, while temporal mean aggregation to daily values was applied 230 

to the GOW (originally at 3-hour resolution) and CCMP (6-hour resolution) datasets. 231 

Additionally, a daily ERA5 sea-ice mask was applied to the datasets to mitigate the 232 

impact of sea ice. 233 

2.2.2 State-of-the-art products for inter-comparison 234 

Seven widely used air-sea turbulent heat fluxes products, involving remote 235 

sensing-based JOFURO3, IFREMER and SeaFlux, as well as reanalysis-based ERA5 236 

and MERRA2, hybrid-based OAFlux and machine learning-based OHF products were 237 

selected for inter-comparison.  238 

The remote sensing-based JOFURO3, IFREMER, and SeaFlux products were 239 

developed by the Japanese Ocean Flux Data Sets under the Remote Sensing 240 

Observations (J-OFURO) research project, the Institute Français de Recherche pour 241 

l’Exploitation de la Mer (IFREMER), and the NASA Global Hydrology Resource 242 

Center (GHRC) Distributed Active Archive Center (DAAC), respectively. The 243 

reanalysis-based ERA5 and MERRA2 products were developed by the ECMWF and 244 

NASA Global Modeling and Assimilation Office (GMAO), respectively. The hybrid-245 

based OAFlux and machine learning-based OHF products were developed or published 246 

by the Woods Hole Oceanographic Institution (WHOI) and NOAA Ocean Surface 247 

Bundle (OSB) Climate Data Record (CDR), respectively.  248 

With the exception of the OHF product calculating SHF and LHF simultaneously 249 

using a NN model without a constraint, all other products employed bulk aerodynamic 250 

methods to estimate SHF and LHF. The JOFURO3, IFREMER, and OAFlux products 251 
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used the COARE3.0 model, while the SeaFlux used the COARE3.5 model. Differently, 252 

the ERA5 adopted the bulk aerodynamic method used by the ECMWF, and the 253 

MERRA2 used the method by the GEOS. These products provide SHF and LHF 254 

estimates at a 0.25° spatial resolution, except for the MERRA2 (0.5°×0.625°) and 255 

OAFlux (1°). Additionally, most products provide daily SHF and LHF estimates, while 256 

only the OHF product provide estimates at a 3-hour interval. For further inter-257 

comparison, the daily mean aggregation was applied to the OHF products. More details 258 

about the seven products can be found in the review of Tang et al. (2024).  259 
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2.3 Construction of the BrTHF model 265 

2.3.1 Feature selection 266 

The study employed a random forest (RF) model to evaluate the importance scores 267 

of 17 oceanic and atmospheric forcing variables (with datasets collected in Section 2.2) 268 

for target variables (SHF and LHF), aiming to filter out less influential variables. As 269 

shown in Table S2, the variable importance assessment revealed that diffT and diffQ 270 

showed the highest importance score (71.56% and 49.93%) for SHF and LHF 271 

modelling, respectively; additionally, WS exhibited the second highest importance for 272 

both SHF (10.19%) and LHF (27.59%) modelling. Building upon the importance 273 

evaluation and through careful screening of highly correlated variables, we ultimately 274 

selected 11 key environmental features for subsequent air-sea turbulent heat fluxes 275 

modelling including SLP, LW, SW, SSS, ADT, CS, WS, SWH, Tp, diffQ, and diffT. 276 

2.3.1 Model construction and optimization 277 

We selected the NN technique to build the BrTHF model due to its strong ability 278 

to capture the complex nonlinear relationships between the multiple-inputs and 279 

multiple-target variables with high accuracy (Zhou et al., 2024; Fu et al., 2023; 280 

Cummins et al., 2023; Cummins et al., 2024). Additionally, the technique enables the 281 

seamless integration of physical constraints, improving the reasonableness of the results 282 

(Zhou et al., 2024; Zhao et al., 2019; Shang et al., 2023). 283 

In order to estimate the SHF and LHF with high accuracy in a physics-consistency 284 

framework, the β (= SHF/LHF) physical constraint was incorporated into the NN model 285 

using the customed multiple-objects (SHF, LHF and β) loss function as follows:  286 

 LHFSHFa b cLoss Loss Loss Loss      (2) 287 

LossSHF, LossLHF and Lossβ represent the Mean Squared Error (MSE) of SHF, LHF and 288 

β, respectively. They were weighted using the factors of a (SHF), b (LHF) and c (β) to 289 

balance the different magnitudes of loss during optimization. To prevent potential 290 

gradient explosion during model training, predicted β [SHF’/LHF’, calculated using the 291 

predicted SHF (SHF’) and LHF (LHF’)] values were clipped within the observed range 292 
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of β (from -5 to 5) during training: 293 
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Finally, after optimization, the final weights (a, b and c) for SHF, LHF, and β were 296 

set to 5, 1, and 250, respectively. The model was constructed consisting of one input 297 

layer, three hidden layers, two BatchNormalization layers, and one output layer using 298 

the Python TensorFlow library. The number of neurons in the three hidden layers were 299 

32, 64, and 16, respectively and the activation function of Leaky Rectified linear unit 300 

(ReLU) was used throughout the model. 301 

To illustrate the superiority of the BrTHF model in terms of accuracy and physical 302 

consistency, another physics-free NN models, trained without integrating the β 303 

constraint, were also constructed to predict SHF and LHF separately for further 304 

comparison, where β was calculated to be SHF/LHF. 305 

2.4 Evaluation strategy 306 

A spatial 10-fold cross-validation was employed to assess the performances of the 307 

BrTHF model for estimating air-sea SHF, LHF and β. Compared to the traditional 10-308 

fold cross-validation, which randomly split all samples into ten folds and thus may 309 

result in overlapping spatial samples between training and validating datasets, the 310 

spatial 10-fold cross-validation were conducted in a relatively independent spatial 311 

distribution and can provide a more generalized and convincing evaluation. 312 

Specifically, first, all buoy sites were randomly split into ten folds. Then, each fold 313 

was in succession selected as the validation dataset and the rest of ten folds was used 314 

as the training dataset.  315 

The metrics used to evaluate the performance of the models include: (1) the mean 316 

bias error (BIAS); (2) the root mean squared error (RMSE); (3) the correlation 317 

coefficient (r): 318 
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where n is the number of samples, ˆ iy and iy are the estimated value and reference 322 

truth, ŷ  and y  are the mean of ˆ iy  and iy , respectively.  323 

 324 

3. Results and discussion 325 

3.1 Spatial ten-fold cross-validation of the models 326 

3.1.1 Overall accuracy  327 

Figures 3, 4 and 5 present the normalized scatter density plots of the estimated 328 

daily SHF, LHF and β from the BrTHF and physics-free NN models, as well as the 329 

seven air-sea turbulent heat fluxes products against the observations obtained from 197 330 

global distributed buoys by the spatial ten-fold cross-validation strategy.  331 

Most models and products showed data distributions closely aligned with the 332 

observed SHF, with the majority of samples clustered around the 1:1 line. The BrTHF 333 

model slightly overestimated SHF with a BIAS of 0.09 W/m², whereas the physics-free 334 

NN models, ERA5 and IFREMER products showed more pronounced overestimations 335 

(from 0.42 W/m2 to 4.05 W/m2). In contrast, the rest five products exhibited notable 336 

underestimations (from -3.44 W/m2 to -0.41 W/m2). As illustrated in Figure 6, the 337 

variability of estimated SHF from the BrTHF and the physics-free NN models and 338 

ERA5 product closely matched the observed SHF, all with a Standard Deviation (STD) 339 

of approximately 16 W/m2. Notably, the BrTHF model achieved the lowest RMSE 340 

(6.05 W/m2), outperforming both the physics-free NN models (6.29 W/m2) and the 341 

seven air-sea turbulent heat flux products (ranging up to 12.34 W/m2 for OHF). 342 

Additionally, the BrTHF model combined with the physics-free NN models yielded the 343 

highest values of r (0.93), surpassing all seven other products. In summary, the BrTHF 344 
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model showed overall the best performance in estimating SHF among all the models 345 

and products. 346 

 347 

Figure 3. Normalized scatter density plots of estimated SHF from the BrTHF model, the 348 

physics-free NN models and seven air-sea turbulent heat fluxes products against the observed 349 

SHF obtained from 197 global distributed buoys. 350 

For LHF, similar to the results for SHF, the BrTHF model also demonstrated the 351 

best agreement with observations, achieving the lowest RMSE (23.67 W/m2) and the 352 

highest value of r (0.91). Compared to the physics-free NN models and seven products, 353 

the BrTHF model reduced RMSE by 2.05 W/m2 (physics-free NN models) to 12.38 354 

W/m2 (OHF) and improved r by 0.01 (physics-free NN model) to 0.1 (OHF). 355 
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Additionally, the BrTHF model showed a slight overestimation of LHF (BIAS = 0.14 356 

W/m2), lower than that of the SeaFlux, MERRA2, and ERA5 products. In contrast, the 357 

remaining products (JOFURO3, IFREMER, OAFlux, and OHF), along with the 358 

physics-free NN models, underestimated LHF, with the BIAS values ranging from -359 

10.19 W/m2 (OHF) to -1.61 W/m2 (JOFURO3). 360 

 361 

Figure 4. Same as Figure 3 but for LHF. 362 

The BrTHF model exhibited a significantly different distribution of β compared to 363 

the physics-free NN models and the seven products, as shown in Figure 5. The β 364 

estimates from the BrTHF model consistently fell within the observed range of -5 to 5, 365 

while the physics-free NN model and the seven products occasionally produced 366 
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estimates outside this range. Specifically, approximately 0.9% of β estimates from both 367 

the physics-free NN model and the seven products were out of range. The extreme 368 

positive and negative β estimates were found in the OHF (β = 14997) and physics-free 369 

NN models (β = -25703) products, respectively. The abnormal β estimates significantly 370 

impacted the accuracy of the physics-free NN models and the seven products as Figure 371 

6 indicated. When excluding the abnormal β samples from the physics-free NN models 372 

and seven products, the RMSEs ranged from 0.17 (physics-free NN models and 373 

SeaFlux) and 0.26 (OHF), with values of r ranging from 0.13 (OHF) to 0.46 374 

(IFREMER), as shown in Figure 6 and Table S3. However, when all estimates were 375 

considered, the performances of these model and products deteriorated sharply, with 376 

RMSEs rising from 0.87 (SeaFlux) to 39.21 (physics-free NN models), and values of r 377 

dropping from 0.06 (SeaFlux) to 0 (JOFURO3, MERRA2 and OHF). In contrast, the 378 

BrTHF model maintained robust outperformance, with the lowest RMSEs of 0.22 and 379 

0.15, and higher r values of 0.25 and 0.43, both before and after removing the abnormal 380 

β samples from the physics-free NN models and the seven products. Notably, the BIAS 381 

values remained stable (ranging from -0.04 to 0.04) for all models and products, 382 

regardless of whether the abnormal samples were excluded. 383 
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 384 

Figure 5. Same as figure 3 but for β. The samples out of the ranges of observed β (-5 ≤ β ≤ -5) 385 

were colored in blue, orange, green, red, purple, brown, pink and gray for JOFURO3, 386 

IFRMER, SeaFlux, ERA5, MERRA2, OAFlux, OHF products and the physics-free NN models, 387 

respectively. 388 
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 389 

Figure 6. Taylor diagrams of the validation of estimated daily SHF (a), LHF (b), β (c) and β (-390 

5 ≤ β ≤ 5, d) from the BrTHF model, the physics-free NN models and the seven products against 391 

the in-situ observations. 392 

 393 

3.1.2 Accuracies across oceans 394 

To better understand the accuracy of SHF, LHF and β estimates from the BrTHF 395 

and physics-free NN models, as well as the seven products in different oceans, we 396 

conducted an additional evaluation by categorizing the observations according to the 397 

belonging ocean basins, as shown in Figure 7. The major ocean boundaries, obtained 398 

from Marine Regions (https://www.marineregions.org/), were used to define the ocean 399 
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basins, which include the Arctic Ocean, South Pacific Ocean, North Pacific Ocean, 400 

South Atlantic Ocean, North Atlantic Ocean, and Indian Ocean. 401 

For SHF, the BrTHF model exhibited overestimations in the South Pacific Ocean, 402 

North Atlantic Ocean, and Indian Ocean, while it underestimated SHF in the remaining 403 

three ocean basins. The values of BIAS ranged from -4.57 W/m2 in the Arctic Ocean to 404 

0.49 W/m2 in the North Atlantic Ocean. Furthermore, the BrTHF achieved the lowest 405 

RMSEs in most ocean basins, ranging from 3.84 W/m2 in the South Atlantic Ocean to 406 

7.72 W/m2 in the North Atlantic Ocean, except in the Arctic Ocean where the RMSE of 407 

13.59 W/m2 were higher than those of the ERA5 (12.5 W/m2) and MERRA2 (13.46 408 

W/m2) products, as shown in Figure 7(b). Correlation analysis also demonstrated the 409 

robust performance of the BrTHF model in estimating SHF, with values of r exceeding 410 

0.89 in most ocean basins, except those ocean basins in the South Hemisphere (ranging 411 

from 0.71 to 0.79) where the values of r for all models and products reduced. 412 

For LHF, the values of BIAS of the BrTHF model ranged from -4.15 W/m2 in the 413 

Arctic Ocean to 1.19 W/m2 in the North Pacific Ocean. In comparison, the BrTHF 414 

model showed more pronounced underestimations in the Arctic Ocean and Indian 415 

Ocean. Additionally, the BrTHF model outperformed the physics-free NN models and 416 

the seven products across most ocean basins, achieving the lowest RMSEs (ranging 417 

from 17.06 W/m2 in the Arctic Ocean to 28.20 W/m2 in the North Atlantic Ocean) and 418 

the highest values of r (ranging from 0.83 in the Indian Ocean to 0.94 in the North 419 

Atlantic Ocean) except for the Arctic Ocean where the value of r was 0.01 less than the 420 

physics-free NN models and the RMSE were 2.45 W/m2, 3.25 W/m2 and 1.84 W/m2 421 

higher than the ERA5 and MERRA2 products and the physics-free NN models, 422 

respectively. 423 

The BrTHF model consistently performed better in estimating β across most ocean 424 

basins, both before and after removing the abnormal β samples that deviated from the 425 

observed range (-5 ≤ β ≤ 5). In contrast, the physics-free NN models and the seven 426 

products did not perform as well. Specifically, the BrTHF model exhibited the lowest 427 
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RMSEs in almost all ocean basins except in the South Atlantic Ocean after removing β 428 

outliers. Moreover, in terms of correlation analysis, the BrTHF model achieved higher 429 

values of r in most ocean basins before and after the removal of abnormal β samples, 430 

among all models and products. 431 

 432 

Figure 7. Heatmaps of BIAS, RMSE and r metrics for the validation of estimated daily SHF 433 

(a - c), LHF (b - e), β (f - i) and β (-5 ≤ β ≤ 5, j - l) from the BrTHF model, the physics-free NN 434 

models and the seven products against the in-situ observations across different ocean basins. 435 

 436 
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3.2 Temporal variations in SHF, LHF and β 437 

After spatial ten-fold cross-validation, we produced the daily 0.25° global air-sea 438 

turbulent heat fluxes products from 1993 to 2017 using a combination of the BrTHF 439 

model and forcing datasets, and further made a comparison of the temporal variation 440 

(in this section), spatial distribution (in Section 3.3) and annual trend (in Section 3.4) 441 

of SHF, LHF and β estimates from the BrTHF product and those with the seven state-442 

of-the-art global products. The selected period (from 1993 to 2017) was determined by 443 

the overlapping availability of input forcing datasets. 444 

Figure 8 illustrates the monthly area-weighted global means of SHF, LHF and β 445 

from 1993 to 2017 for the BrTHF product and seven state-of-the-art products. The 446 

BrTHF product exhibited similar bimodal patterns for SHF, LHF and β as the seven 447 

products, with peaks in December-January and May-June-July-August. However, the 448 

peak in May-June-July-August was less pronounced for SHF and β compared to that 449 

for LHF. The monthly area-weighted global means of SHF and β from the BrTHF 450 

product were higher than those of most products, except for the MERRA2 product in 451 

January, February, March, April, July, August and September, and the IFREMER 452 

product in all months. For LHF, the BrTHF showed lower values than the ERA5 and 453 

MERRA2 products across all months. Notably, the patterns of SHF and β from the OHF 454 

product, with the highest peak occurring in August and smoother intra-annual cycles, 455 

differed from those of the corresponding BrTHF product and the other six products 456 

developed using the bulk aerodynamic methods. 457 
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 458 

Figure 8. Intra-annual cycles of area-weighted global monthly mean of SHF (a), LHF (b) and 459 

β (c) from the eight products from 1993 to 2017. 460 

Figure 9 presents the temporal evolution of the area-weighted annual global mean 461 

of SHF, LHF and β from 1993 to 2017 for the eight products for the ice-free oceans. 462 

The global mean annual SHF of the BrTHF product was 12.7 W/m2, which was close 463 

to those of SeaFlux (11.6 W/m2), OAFlux (10.6 W/m2), MERRA2 (13 W/m2) and 464 

ERA5 (12.4 W/m2), whereas significantly lower than that of IFREMER (18.8 W/m2) 465 

and higher than those of JOFURO3 (7.5 W/m2) and OHF (5.6 W/m2). Meanwhile, the 466 

BrTHF product exhibited significant largest growth of SHF with the trend of 0.04 467 

W/(m2·year) among all eight products, and showed similar temporal evolution as 468 

SeaFlux, MERRA2, ERA5 and OAFlux during the period from 1993 to 2017. As for 469 

LHF, the BrTHF exhibited a larger global mean annual value of 106.2 W/m2, which 470 

was close to those of the ERA5(107.3 W/m2) and MERRA2 (108.3 W/m2), and it was 471 

significantly higher than the rest five products. Moreover, the growth of the BrTHF 472 

LHF was significant with a trend of 0.33 W/(m2·year), which was lower than the 473 
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IFREMER but higher than the OAFlux, MERRA2, OHF, ERA5, JOFURO3 and 474 

SeaFlux, ranging from -0.14 W/(m2·year) to 0.4 W/(m2·year). Note that only the 475 

OAFlux product showed negative trend of LHF from 1993 to 2017. For β, the BrTHF 476 

showed a similar temporal pattern to that of SHF, and most products concentrated 477 

within the narrow range of 0.11 to 0.12 for the annual values. The magnitude of annual 478 

β of the BrTHF was about 0.11, which was close to the OAFlux, SeaFlux, MERRA2 479 

and ERA5, but significantly lower than the IFREMER and higher than the JOFURO3 480 

and OHF. Moreover, in contrast to the significant increasing trends of LHF and SHF, 481 

negative of trends of β were shown for most products. However, the BrTHF product 482 

exhibited a weak positive trend.  483 

 484 

Figure 9. Inter-annual evolution of area-weighted global mean SHF (a - b), LHF (c - d) and β 485 

(e - f) from 1993 to 2017. The trends were calculated based on the Sen’s slope method. The * 486 

in the sub-figures (b, d and f) represent the trend passed the Mann-Kendall significant test (p 487 

< 0.05). 488 

 489 
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3.3 Inter-comparison of the spatial pattern 490 

We selected three representative products including the (reanalysis-based) ERA5, 491 

(remote sensing-based) SeaFlux, and (the only publicly available machine learning-492 

based) OHF products to evaluate the BrTHF product's ability in simulating global air-493 

sea turbulent heat fluxes (SHF, LHF, and β) from 1993 to 2017. These products were 494 

chosen because they demonstrated relatively high accuracy within their respective 495 

categories (as shown in Section 3.1) and shared the same 0.25° spatial resolution with 496 

the BrTHF product. 497 

Figure 10 presents the spatial distribution of multi-year mean of SHF from the 498 

SeaFlux, ERA5, BrTHF, and OHF products, along with their cross-comparisons. 499 

Overall, the BrTHF product exhibited strong consistency with ERA5 and SeaFlux 500 

products, with values of r exceeding 0.88, which was significantly higher than the 501 

consistency between SeaFlux and OHF (r = 0.33) and between ERA5 and OHF (r = 502 

0.37). Spatially, the BrTHF, SeaFlux and ERA5 products all showed higher SHF (over 503 

50 W/m2) in the Western Boundary Currents (WBCs, e.g. Kuroshio, Gulf Stream, Brazil 504 

Current and Agulhas Current) regions, whereas OHF product yielded much lower SHF 505 

(~25 W/m2). Additionally, the former three products captured pronounced SHF 506 

gradients in the Southern Ocean, features that were absent in OHF product. SHF 507 

differences between BrTHF and SeaFlux/ERA5 remained within ±10 W/m2 in most 508 

oceans. The BrTHF product exhibited slightly higher SHF values than SeaFlux in the 509 

Northern Hemisphere, whereas in the Southern Hemisphere—particularly over the 510 

Southern Ocean—the BrTHF showed relatively lower SHF. Compared to the ERA5 511 

product, the BrTHF product yielded lower SHF in the equatorial zone, subtropical high-512 

pressure regions and the Southern Ocean, but higher SHF in other areas, particularly in 513 

the North Pacific and the southern Indian Ocean. 514 
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 515 

Figure 10. Inter-comparison of the spatial distributions of multi-year means of SHF among 516 

the SeaFlux, ERA5, OHF and BrTHF products from 1993 to 2017.   517 

For LHF, the BrTHF and the selected three products exhibited more close spatial 518 

distribution patterns, with the values of r exceeding 0.98, compared to the results for 519 

the SHF, as shown in Figure 11. The higher LHF (over 150 W/m2) primarily occurred 520 

around the regions of WBCs and the sub-tropic highs, while lower LHF (below 50 521 

W/m2) appeared in the Eastern Equatorial Pacific and Atlantic Warm Tongue and the 522 

oceans with latitudes higher than 45°. The spatial distribution of LHF in the BrTHF 523 

product generally agreed better with that of the ERA5 product, though the BrTHF 524 

showed significantly lower LHF in sub-tropic highs. Additionally, the BrTHF exhibited 525 

relatively lower LHF than the ERA5 over the Southern Ocean and the central North 526 

Atlantic. Compared to the SeaFlux, the BrTHF yielded slightly higher LHF in most 527 

oceans except the Southern Ocean and equatorial zones. 528 
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 529 

Figure 11. Same as Figure 10 but for LHF. 530 

For β, the BrTHF product demonstrated strong spatial correlation with the ERA5 531 

and SeaFlux in multi-year mean distributions, with values of r exceeding 0.81. In 532 

contrast, the OHF showed markedly a different spatial pattern of β, exhibiting negative 533 

correlations when compared to the rest of three products. Spatially, the BrTHF product's 534 

β distribution aligned more closely with the SeaFlux, both displaying higher β (up to 1) 535 

in high-latitude oceans particularly in the Northern Hemisphere and the similar 536 

wavelike textures of β over the Southern Ocean's Antarctic Circumpolar Current zone. 537 

The differences between the BrTHF and OHF products were more evident. Specifically, 538 

the BrTHF product showed overall overestimation of β in the oceans where latitudes 539 

were larger than 45° compared to the OHF product.  540 
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 541 

Figure 12. Same as Figure 10 but for β. 542 

 543 

3.4 Spatial pattern of trends in SHF, LHF and β from the BrTHF product 544 

Figure 13 illustrates the spatial distribution of inter-annual trends of SHF, LHF and 545 

β in the BrTHF product from 1993 to 2017. The SHF showed increasing trends across 546 

71.4% of the oceans, with statistically significant increases in 26.2% of regions. In 547 

contrast, decreasing trends were observed in 28.6% of the oceans, with only 3% 548 

showing significant reductions. Overall, the trends of zonal annual averages of SHF 549 

remained stable between the 60°N to 45°S, with significant increases occurring 550 

southward and decreases northward. Specifically, moderate increases (~0.2 W/(m2 551 

year)) dominated between 45°N and 45°S, while more pronounced increases (>0.8 552 

W/(m2 year)) were observed in high-latitude oceans, including the Kara Sea, Gulf 553 

Stream, Baffin Bay, Brazil Current, Sea of Okhotsk, and Sea of Japan. Notable 554 

decreases (< -0.8 W/(m2 year)) were concentrated in the Barents Sea and the central 555 

North Atlantic.  556 

The LHF exhibited markedly different characteristics of the spatial distribution, 557 

with 87.5% of oceans showing increasing trends (38.9% were significant), versus 12.5% 558 

decreasing (0.7% were significant). In contrast to those of the SHF, the trends of zonal 559 
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annual averages for LHF weakened poleward from the oceans of Equator. The 560 

substantial increases (>0.6 W/m2/year) occurred in the oceans between 45°N to 45°S, 561 

particularly in the Gulf Stream, Brazil Current, and Agulhas Current systems, while 562 

notable decreases (lower than -0.3 W/m2/year) were observed in the central North 563 

Atlantic and Kuroshio extension regions.  564 

For β, approximately 53% of the oceans showed increasing trends, with 12.2% of 565 

these being statistically significant. Conversely, about 47% of the oceans showed 566 

decreasing trends, with 9.8% being significant. Most oceans between 45°N to 45°S 567 

exhibited near-zero trends, while significant trends were concentrated in the high-568 

latitude oceans. Notable increases were found in Baffin Bay, Kara Sea, and the Southern 569 

Ocean, while decreases were observed in the Barents Sea and the Southern Ocean near 570 

South America.  571 

 572 

Figure 13. Spatial maps of inter-annual trends for SHF (a), LHF (c), and β (e) from the BrTHF 573 

product for the period 1993 to 2017. The trends were calculated using the Sen’s slope method. 574 

Dotted areas indicate oceans where the p-value of the Mann-Kendall significance test is less 575 

than 0.05. Panels (b), (d) and (f) represent the inter-annual trends of zonal annual averages 576 

for SHF, LHF and β, respectively. 577 
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3.5 Discussion 578 

Advancing our understanding of the air-sea interaction and achieving the global 579 

closure of the ocean surface energy budget require accurate global-scale simulations of 580 

air-sea turbulent heat fluxes (Yu, 2019). Existing global air-sea turbulent heat fluxes 581 

products, primarily generated using the semi-empirical bulk aerodynamic methods and 582 

data-driven machine learning approach, are often weak in accuracy and physical 583 

rationality, arising from uncertainties in environmental forcings and inappropriate 584 

parameterizations (Brodeau et al., 2017; Jiang et al., 2024a; Wang et al., 2024). To 585 

improve the simulation of the global air-sea turbulent heat fluxes, this study presents 586 

the BrTHF product, generated using a Bowen ratio-constrained NN technique with a 587 

customed multiple-objective loss function, as well as observations from 197 globally 588 

distributed buoys along with multi-source remote sensing and reanalysis forcings. 589 

The primary advantage of the BrTHF product is the absence of outliers in the 590 

estimation of β. Unlike the approach of our previous study (Wang et al., 2024), which 591 

simultaneously predicted SHF, LHF and β in the constructed RF model, this study 592 

employed an NN model constrained by the Bowen ratio to jointly estimate SHF and  593 

LHF. The new approach avoided the issue of selection of β derived from either the 594 

calculated β [βcal equals predicted SHF (SHFpre) divided by predicted LHF (LHFpre)] or 595 

the predicted β (βpre), as reported by Wang et al. (2024). Furthermore, the customed loss 596 

function in our new approach provides a flexible approach to adjust the weights of SHF, 597 

LHF, and β, allowing the model to balance attention among these variables. As a result, 598 

the accuracy of SHF, LHF, and β from our newly developed BrTHF model 599 

outperformed that of the mainstream air-sea turbulent heat fluxes products and the 600 

physics-free NN models on both global and regional scales. In contrast, the accuracy of 601 

SHF and LHF in the model constructed by Wang et al. (2024) was somewhat marginally 602 

lower than that of the physics-free RF model. 603 

The machine learning-based OHF product demonstrated significantly poorer 604 

performance in estimating SHF and LHF, with higher RMSEs and lower values of r, as 605 
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shown in Figure 6, compared to the remote sensing-, reanalysis-, and hybrid-based 606 

products developed using the bulk aerodynamic methods. This finding contrasted with 607 

the results of Tang et al. (2024), who reported the superior performance of the OHF 608 

product. The discrepancy could primarily be attributed to the different spatial 609 

representativeness of the observation datasets used by Tang et al. (2024), which were 610 

primarily collected from the buoys between 30°N and 30°S. Moreover, as shown in 611 

Figure 7, the accuracy of the OHF product degraded notably in high-latitude ocean 612 

basins, particularly in the North Atlantic Ocean. This accuracy degradation may be due 613 

to the limitation of the observation datasets used to train the model of the OHF product, 614 

where different sources of datasets were integrated, i.e. the SeaFlux in-situ dataset 615 

(before 2007) and the ICOADS in-situ dataset (after 2007). Specially, the ICOADS in-616 

situ datasets, commonly used for developing products at monthly or lower frequency 617 

scales (Berry and Kent, 2011; Gulev et al., 2013), suffered from sparse distribution and 618 

insufficient volume for developing the original 3-hour OHF product. Besides, the model 619 

of the OHF product was trained by randomly splitting all observations into training, 620 

validation, and test sets, which likely resulted in data dependencies across these sets, 621 

weakening the model's transferability. These problems together contributed to the 622 

poorer performance of the OHF product, including worse accuracy, overall negative 623 

spatial trends in high-latitude oceans such as the Southern Ocean, as Tang et al. (2024) 624 

reported, and an overall underestimation of the multi-year mean, especially in the 625 

Western Boundary Currents (WBCs) where the air-sea exchange is intense.  626 

The BrTHF product also has some limitations. First, due to the lack of an explicitly 627 

defined reasonable range for daily β, the constraint of β used in this study was derived 628 

from the daily β global distribution in the seven widely used global products. Although 629 

the results demonstrated significant improvements in the accuracy and physical 630 

consistency of SHF, LHF, and β estimates from the BrTHF model compared to those 631 

from the physics-free NN models and the seven products, there remains room for 632 

improvement once a more reasonable range for daily β is established. Secondly, the 633 
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estimated SHF and LHF values exhibited a narrower distribution compared to the 634 

observations. This issue possibly stems from the uncertainty of the BrTHF model that 635 

was constructed from the uneven distribution of SHF and LHF in the observation 636 

datasets, which contain a low proportion of extreme samples, especially negative LHF 637 

values. Moreover, due to the insufficient observations, validation in high-latitude 638 

oceans, especially in the Southern Ocean, was limited. To address these problems, more 639 

experiments are highly recommended to collect observations covering more regions of 640 

oceans with better spatial and temporal representativeness, which could further enhance 641 

the product. 642 

The BrTHF model demonstrated the feasibility and potential of jointly estimating 643 

multiple interrelated air-sea variables through a machine learning model that 644 

incorporates appropriate physical constraints to account for their interrelations. In the 645 

future, the predicted variables in the BrTHF model could be expanded to include 646 

surface radiation, heat storage, and precipitation over the ocean, by integrating the 647 

physical mechanisms of energy and water exchange. This would allow for the 648 

collaborative optimization of estimates across all components of the air-sea energy and 649 

water budgets, potentially contributing to achieving global closure of the air-sea energy 650 

and water budgets. 651 

 652 

4. Data and code availability 653 

The daily 0.25° BrTHF product, consisting of SHF and LHF estimates from 1993 654 

to 2017, can be freely accessed from the National Tibetan Plateau Data Center (TPDC) 655 

[https://doi.org/10.11888/Atmos.tpdc.302578, Tang and Wang (2025)]. The code for 656 

developing the product can be found on the GitHub platform 657 

(https://github.com/zhezhe1996/BrTHF). 658 

 659 

5. Summary and Conclusion 660 

In this study, we generated a daily 0.25° air-sea turbulent heat fluxes product for 661 
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the period 1993 to 2017 using our developed BrTHF model and multi-source remote 662 

sensing and reanalysis data. A comprehensive validation was performed against 663 

observations from 197 buoys and inter-comparisons were made with seven 664 

representative gridded products. The key findings are as follows: 665 

The BrTHF model demonstrated superior accuracy in estimating SHF, LHF and β 666 

compared to the physics-free NN models and the seven widely used air-sea turbulent 667 

heat products (including the JOFURO3, IFREMER, SeaFlux, ERA5, MERRA2, 668 

OAFlux and OHF products). Through the spatial ten-fold cross-validation against the 669 

observations from the 197 buoys, the BrTHF model achieved RMSEs of 6.05 W/m2 for 670 

SHF, 23.67 W/m2 for LHF and 0.22 for β, and showed values of r of 0.93, 0.91, and 671 

0.25 for SHF, LHF, and β, respectively. Additionally, The BrTHF model performed 672 

better in evaluations across six major ocean basins, with lower RMSEs and higher 673 

values of r, in comparison to the physics-free NN models and the seven products. 674 

Notably, the BrTHF model significantly improved the rationality of β estimates, 675 

successfully eliminating the outliers observed in both the physics-free NN models and 676 

the seven products. Furthermore, the global distributions for SHF, LHF, and β from the 677 

BrTHF product closely matched those of the physically-based ERA5 and SeaFlux 678 

products. The global mean annual estimates of SHF, LHF, and β from the BrTHF 679 

product from 1993 to 2017 were 12.7 W/m2, 106.2 W/m2 and 0.11, respectively, all 680 

within the ranges of the seven products. The BrTHF product exhibited similar intra-681 

annual cycles for SHF, LHF and β, with bimodal patterns featuring lower and higher 682 

peaks in May-June-July-August and December-January, respectively, which was 683 

consistent with the results of the seven state-of-the-art products. Additionally, the 684 

BrTHF product exhibited significant increasing trends for global SHF and LHF, with 685 

rates of 0.04 W/(m2 year) and 0.33 W/(m2 year), respectively, which were consistent to 686 

most of the seven products. In contrast, the BrTHF product displayed weak growth in 687 

β, with a trend approaching 0, which were opposite to the results of the seven products 688 

except for the MERRA2 product. The increasing (significant increasing) trends 689 
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dominated the oceans, with areas of 71.4% (26.2%) for SHF, 87.5% (38.9%) for LHF, 690 

53% (12.2%) for β in the BrTHF product.  691 

The BrTHF product shows significant advantages in the accuracy and rationality 692 

of estimates for key parameters (SHF, LHF, and β) related to air-sea interaction and the 693 

global energy and water budgets compared to the existing products. It holds great 694 

potential for quantifying the global air-sea energy and water budgets, enhancing our 695 

understanding of the air-sea interaction, and projecting climate change under global 696 

warming. 697 
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