
Responses to the Comments and Suggestions 1 

Reviewer 1:  2 

Summary and Merit: 3 

Global air-sea flux estimates are useful for understanding the transport of heat and water 4 

throughout the globe. With this dataset, the authors use a physics-constrained data-5 

driven method to generate a dataset at moderate resolution (0.25 degrees) from 1993-6 

2017. A key improvement is realistic representation of the ratio of SHF to LHF. While 7 

I think the work itself is a very interesting exercise and think this has strong potential 8 

to be a useful dataset, I do have a significant concern that I would like to see discussed. 9 

Re: Thank you for your commonts. We have carefully considered all your comments 10 

and suggestions and made corresponding point-by-point responses and revisions. 11 

Specifically, reviewer comments are shown in black, our responses in blue, and the 12 

corresponding revisions in the manuscript are highlighted in red. We hope that our 13 

responses and the revised manuscript would be satisfactory. 14 

 15 

Main comment: 16 

I am not entirely convinced that the training dataset has large enough spatial and 17 

temporal coverage for the neural network to accurately generalize and produce a 18 

product with global-scale coverage. In particular, from Figure 2, it looks like the 19 

training observations are disproportionately from the tropical ocean. Outside of the 20 

tropics, only the northeast Pacific and North Atlantic appear to have (visually) 21 

reasonable coverage. To evaluate performance on “unseen” locations, the authors 22 

employ spatial-informed cross validation. While this procedure demonstrates that 23 

predictions are reasonably accurate at the different spatial domains that are part of the 24 

training set, this does not indicate that predictions will be accurate in regions where 25 

there are not any existing data. For instance, there are many locations in the southern 26 



hemisphere presumably characterized by different dynamics than the locations in 27 

training dataset. The comparisons between basins presented later are also only 28 

reflective of the locations in Fig 2, I think. Of additional concern is that there are many 29 

variables used in training which likely have a relationship with air-sea fluxes that is 30 

very location-specific. 31 

I do appreciate that the authors attempt to address this issue with the above, but I don’t 32 

think this goes far enough. I also acknowledge that this is not an easy comment to 33 

address (i.e., more buoy measurements cannot be used if the buoys do not exist). But, I 34 

still think the discussion of this could be improved. One idea might be to perform an 35 

even more targeted form of cross-validation, e.g., removing one of the isolated locations 36 

from training to see how well the neural network performs— and use this to quantify 37 

uncertainty. E.g., Remove the single location south of Australia from training, and see 38 

how the NN performs for predictions of that location when only the others are used in 39 

training. The current Figures 3-5 lump data together from different regions, so it is not 40 

possible to determine how well performance is for the isolated locations. Such an 41 

approach could be repeated for other single isolated locations to get a generalized idea 42 

of uncertainty at several of the remote locations not included in training. There probably 43 

could be other ways to address it as well. But in any case, there needs to be some manner 44 

of disclaimer- the R values and RMSE shown represent performance at the locations 45 

used in training and do not necessarily indicate the same performance in a generalized 46 

global sense. 47 

Re: We appreciate the reviewer’s thoughtful and constructive comments regarding the 48 

limitations in spatial coverage of the training dataset and agree that, despite our use of 49 

spatial-informed cross validation, the current approach does not fully quantify 50 

performance in truly unseen regions. Additionally, we fully agree with the reviewer’s 51 

concern that the relationships between air-sea fluxes and the selected input variables 52 

may be location-specific due to regional dynamics. 53 



In response to the reviewer’s suggestion, we conducted an additional targeted cross-54 

validation focusing on isolated locations in the high-latitude Southern Hemisphere. 55 

Specifically, we selected two buoy sites [Southern Ocean Flux buoy from the Upper 56 

Ocean Processes Group (UOP) and Global Southern Ocean Station buoy from the 57 

Ocean Observatories Initiative (OOI)], which are geographically isolated from the rest 58 

of the training dataset. We removed the data from each of these locations from the 59 

training dataset in turn and evaluated the neural network’s performance at those sites. 60 

In addition, we calculated the model’s statistical metrics at the two sites under spatially-61 

informed cross-validation and made comparison with the performance under the 62 

targeted cross-validation. The resulting metrics help assess the model’s extrapolation 63 

capability in underrepresented regions. In the revised manuscript, details of this analysis 64 

have been added as follows in the sixth paragraph of Section 3.5 and presented in Tables 65 

S4–S7. 66 

“We applied a spatial 10-fold cross-validation, which provides a more generalized 67 

assessment than traditional random cross-validation, to evaluate the BrTHF model. 68 

However, it is important to acknowledge that the spatial distribution of the training 69 

dataset is inherently imbalanced, with a heavy concentration of observations in the 70 

Tropics and the Northern Hemisphere. In contrast, the Southern Hemisphere—71 

particularly the Southern Ocean—suffers from sparse or even missing observational 72 

coverage. Given that the environmental conditions in these underrepresented or data-73 

sparse regions may differ significantly from those captured in the training dataset, the 74 

selected input variables for the observations may lead to large uncertainty in the model's 75 

performance in these areas. To further assess the model’s ability to extrapolate to such 76 

regions, we conducted an additional targeted cross-validation. Specifically, we 77 

excluded stations from the Southern Ocean [i.e., Southern Ocean Flux Station (SOFS) 78 

and Global Southern Ocean Station (GSOS)] from the training dataset and used them 79 

solely for validation. Results presented in Tables S4 and S5 show that the BrTHF model 80 

achieved the best performance in terms of LHF and β at the SOFS with lower RMSE 81 



of 15.6 W/m2 and 0.73 and higher values of r of 0.96 and 0.34, respectively, while its 82 

SHF was slightly outperformed by ERA5 and the physics-free NN model. At the GSOS, 83 

BrTHF yielded more accurate estimates for SHF and β with RMSEs of 6.38 W/m2 and 84 

0.74 and values of r of 0.95 and 0.16, respectively, compared to other products, while 85 

its LHF was marginally less accurate than that of SeaFlux and the physics-free NN 86 

model. Moreover, under both spatially-informed cross-validation and targeted cross-87 

validation, the model demonstrates comparable accuracy at the two sites, as shown in 88 

Figures S4–S7. These findings suggest that BrTHF retains competitive accuracy of SHF, 89 

LHF and β even in regions entirely excluded from training, reflecting promising 90 

generalization.” 91 

Furthermore, we now include a disclaimer in the revised manuscript emphasizing that 92 

the reported R values and RMSE reflect model performance only at locations with 93 

available observation at the end of the sixth paragraph of Section 3.5. We hope these 94 

additions address the reviewer’s concerns and improve the clarity of model 95 

generalization. 96 

“While these results are encouraging, it is important to note that the validation remains 97 

limited to a small number of sites with available observations. Therefore, the reported 98 

r values and RMSE reflect model performance in these specific locations and do not 99 

necessarily guarantee similar accuracy in broader, unobserved ocean regions.” 100 

 101 

Line-by-line comments and suggestions: 102 

Title/abstract – It might be helpful to explicitly mention that these are bulk flux 103 

predictions 104 

Re: Thank you for your suggestion. We have revised the title (Bowen ratio-constrained 105 

global dataset of bulk air-sea turbulent heat fluxes from 1993 to 2017) and abstract to 106 

explicitly mention that the products are bulk flux predictions. 107 

 108 

L66 – typo seriously “imped” 109 



Re: Thank you for your comment. We have revised “imped” to “impeded”. 110 

 111 

L68 – change “ascribed” to “attributed” 112 

Re: Revised as suggested. 113 

 114 

L70-77 – I think this section should be more explicit on what the problems are with 115 

existing parameterizations 116 

Re: Thank you for your comment. We have revised and expanded the second paragraph 117 

of Section 1 to more explicitly highlight the deficiencies in existing parameterizations. 118 

The revised text is as follows: 119 

“More explicitly, existing parameterizations often rely on simplified assumptions about 120 

atmospheric stability and boundary layer dynamics, which may not hold under diverse 121 

environmental conditions. For instance, most bulk algorithms are optimized for 122 

moderate wind regimes, resulting in degraded performance and increased uncertainty 123 

when applied under weak wind regimes (Brunke, 2002; Jiang et al., 2024). At very high 124 

wind speeds, however, observations show that the drag coefficient can decrease due to 125 

sea spray and whitecap formation, reducing effective surface roughness and potentially 126 

biasing flux estimates (Cai et al., 2025). In addition, simplifications in the treatment of 127 

sea surface skin temperature, saturation humidity, and air density in the 128 

parameterizations can also introduce substantial uncertainty (Brodeau et al., 2017). 129 

Together, these limitations can contribute a lot to the biases in the SHF and LHF 130 

estimates and can even lead to the unphysical estimations of β, as Wang et al. (2025) 131 

reported.” 132 

 133 

L78 – clarify what upscaling means in this context 134 

Re: Thank you for your valuable comment. In the revised manuscript, we have clarified 135 

what upscaling means in the third paragraph of Section 1 as follows: 136 



“Machine learning techniques have been extensively applied to upscale point-scale in-137 

situ measurements of a single variable (such as soil moisture, roughness, or temperature) 138 

into grid-scale global datasets (Wang et al., 2023; Peng et al., 2022; O and Orth, 2021; 139 

Nelson et al., 2024; Fu et al., 2023).” 140 

 141 

L93 – “patterns” 142 

Re: Thank you for pointing out our typo. We have revised “pattern” to “patterns”. 143 

 144 

L103 – I don’t understand what “their synergistic changes” refers to 145 

Re: Thank you for your comment. We apologize for the lack of clarity in the original 146 

manuscript and have revised the sentence as follows: 147 

“To improve the estimation of SHF, LHF, and β in a coordinative framework, we 148 

recently proposed an innovative Bowen ratio-informed data-driven model by 149 

considering the synergistic changes [on the one hand, ensuring physical consistency 150 

(i.e., SHF/LHF = β); on the other hand, achieving high-accuracy estimations of SHF, 151 

LHF, and β simultaneously] using a Random Forest (RF) technique (Wang et al., 2024).” 152 

 153 

L107 – ambiguous whether “this work” refers to the 2024 work or the present paper 154 

Re: Thank you for your comment. In the revised manuscript, we have specified that 155 

“this work” refers to Wang et al. (2024). 156 

 157 

L118 – “three fold” 158 

Re: Thank you for your comments. We have revised “three-folds” to “three fold”. 159 

 160 

L146-161 – I think these datasets should be listed in table form, not as a long paragraph. 161 

It would make this much easier to read. 162 

Re: Thank you for your suggestion. In the revised manuscript, we have reorganized 163 

those datasets into Table 1 to improve clarity and readability.  164 



 165 

L202 – By forcing variables, it might be helpful to clarify that this means variables used 166 

in training the neural network 167 

Re: Thank you for your valuable comment. By following the suggestions from you and 168 

reviewer 2, we have revised the title of Section 2.2.1 from “Forcing datasets” to 169 

“Learning datasets for training the neural network”. 170 

 171 

L214 – not sure it’s necessary to list these out in paragraph form. To be concise it might 172 

be better to simply refer to the relevant table. 173 

Re: Thank you for your suggestion. We would like to clarify that the information has 174 

already been summaried in the Table 1 in the original manuscript. Following your 175 

suggestion, we have removed the detailed dataset descriptions for conciseness. 176 

 177 

L276 – I am concerned that the relationships between air sea fluxes and these 11 178 

variables are not globally generalizable. 179 

Re: Thank you for your comment. Please refer to our comprehensive and detailed 180 

response to your Main Comment.  181 

 182 

L316 – Might be helpful to add a short explanation on why you chose these metrics 183 

Re: Thank you for your suggestion. In the revised manuscript, we have added a brief 184 

explanation in the fourth paragraph of Section 2.4 as follows: 185 

“These metrics—BIAS, RMSE, and r—comprehensively evaluate model performance, 186 

representing systematic deviation, dispersion between observations and estimates, and 187 

the strength and direction of the linear relationship, respectively.” 188 

 189 

L363-383, Fig 5 – While performance in terms of RMSE is clearly improved as 190 

explained, depending on the application it might be considered a deficiency that BrTHF 191 

does not reproduce extreme values of Bowen ratio that we know exist from the 192 



observations (i.e. the distribution is not necessarily better represented than the other 193 

models). I think this needs to be explicitly discussed. 194 

Re: Thank you for your comment. We acknowledge that our model does not fully 195 

capture the extreme values of β, which is a deficiency to be addressed in future work. 196 

However, from Figure 5, we would like to clarify that, although our model predicts β 197 

within ±2—slightly narrower than the observed range of ±5, other models and products, 198 

while capable of reaching ±5, generate numerous β values far beyond the observed 199 

range (e.g., 5 to 500 or –5 to –500). The distribution of β predicted by the BrTHF model 200 

is overall relatively better aligned with the observations compared to other products and 201 

models. 202 

In short, although the BrTHF model slightly underestimates the extreme values of β, it 203 

avoids the occurrence of unrealistic outliers seen in other products, making it overall 204 

better aligned with observations. 205 

In the revised manuscript, we have now explicitly discussed this limitation of β in the 206 

eighth paragraph of Section 3.5 as follows:  207 

“While incorporating the constraint of β into the model effectively suppresses outliers, 208 

it also compresses the physically plausible range of β. As a result, the distribution of β 209 

shown in Figure 5(i) differs notably from other products and models, which may limit 210 

the product’s applicability for users interested in extreme β values. It is highlighted that 211 

although the BrTHF model slightly underestimates the extreme values of β, it avoids 212 

the occurrence of unrealistic outliers (e.g., 5 to 500 or –5 to –500) seen in other products, 213 

making it overall better aligned with observations. Moving forward, we aim to enhance 214 

the model’s ability to preserve physically plausible extremes while maintaining 215 

robustness against outliers in future updates. 216 

 217 

L400+ - I think it might be useful to compare the performance by basin to the amount 218 

of data coverage between basins. This might help explain why the model performed the 219 

way it did. 220 



Re: Thank you for your suggestion. As recommended, we evaluated several indicators 221 

of the data coverage across ocean basins, including number of buoys, number of 222 

samples, buoy density, sample desity, nearest neighbor distance (NND, the distance 223 

between a given point and its closest neighboring point) and standard deviation of NND 224 

in Table S6. By computing NND for all sample points and then calculating the mean 225 

and standard deviation, we can characterize the density and spatial uniformity of the 226 

point distribution. In general, a higher mean indicates a sparser distribution, whereas a 227 

higher standard deviation reflects greater spatial heterogeneity. 228 

These indicators were then used to represent data coverage across basins and, in 229 

combination, to compare model performance among different ocean basins. In the 230 

revised manuscript, the relevant findings have been incorporated into the fifth 231 

paragraph of Section 3.5 as follows: 232 

“Based on Figure 2 and Table S6, we observe that the spatial coverage of observations 233 

varies across different ocean regions: the Northern Hemisphere generally has higher 234 

coverage than the Southern Hemisphere, with the Northern Pacific Ocean exhibiting 235 

the highest coverage, while the Arctic Ocean shows the lowest. Comparing spatial 236 

coverage with accuracy metrics reveals a more complex relationship between model 237 

performance and data coverage. Specifically, the values of r tend to be lower in regions 238 

with lower coverage — a pattern consistent across SHF, LHF, and β. However, RMSE 239 

does not follow this trend. For SHF and β, RMSEs in the Northern Hemisphere are 240 

generally higher than those in the Southern Hemisphere. Similarly, for LHF, RMSEs 241 

are higher in the Northern Hemisphere except in the Indian Ocean, where the pattern 242 

differs.” 243 

 244 

Fig 7 – I would recommend to use a color other than blue for the second and third 245 

columns. As is, it is confusing that dark blue = poor performance in column 1, but dark 246 

blue = good performance in columns 2 and 3. 247 



I also think it should be very clear that the basins here just represent the buoy locations 248 

that are available in those basins; not uniform coverage in them. 249 

Re: Thank you for your suggestion. In the revised manuscript, we updated the color 250 

schemes in the second and third columns to a diverging colormap for more consistent 251 

interpretation. We also clarified in the caption of the Figure 7 that the displayed ocean 252 

basins only reflect the locations of available buoy observations rather than uniform 253 

coverage as follows: 254 

“It should be noted that the statistical metrics for each ocean basin were calculated using 255 

observations from the available buoys within the corresponding basin.” 256 

 257 



Figure 7. Heatmaps of BIAS, RMSE and r metrics for the validation of estimated daily SHF 258 

(a - c), LHF (b - e), β (f - i) and β (-5 ≤ β ≤ 5, j - l) from the BrTHF model, the physics-free NN 259 

models and the seven products against the in-situ observations across different ocean basins. 260 

It should be noted that the statistical metrics for each ocean basin were calculated using 261 

observations from the available buoys within the corresponding basin  262 

 263 

L448-449 – That looks true for all datasets, not just BrTHF from Figure 8. I would 264 

recommend to clarify.  265 

Re: Thank you for your comment. We agree that the less pronounced peak in SHF and 266 

β compared to LHF is observed across all products in Figure 8, not just BrTHF. The 267 

sentence has been revised to clarify this seasonal pattern. 268 

 269 

Fig 8-9 – Is there a measure of uncertainty in these long-term averages that could be 270 

included on the plots? 271 

Re: Thank you for your suggestion. We chose the commonly used standard deviation 272 

to represent uncertainty of the long-term averages and have added it to Figures 8 and 9 273 

as follows: 274 



 275 

Figure 8. Intra-annual cycles of area-weighted global monthly mean of SHF (a), LHF (b) and 276 

β (c) from the eight products from 1993 to 2017. The shaded areas indicate ±1 standard 277 

deviation around the mean. 278 



 279 

Figure 9. Inter-annual evolution of area-weighted global mean SHF (a - b), LHF (c - d) and β 280 

(e - f) from 1993 to 2017. The trends were calculated based on the Sen’s slope method. The * 281 

in the sub-figures (b, d and f) represent the trend passed the Mann-Kendall significant test (p 282 

< 0.05). The shaded areas indicate ±1 standard deviation around the mean. 283 

 284 

L472 – “rest of the products” 285 

Re: Thank you for your suggestion. We have revised “the rest five products” to “rest of 286 

the products”. 287 

 288 

L482-483 – I would recommend to speculate on what regions/mechanism may have 289 

caused this positive trend, as it differs from the other products. 290 

Re: Thank you for your comment. As shown in Figure 9, the differences between trends 291 

in SHF and LHF from BrTHF product were relatively lower than those from other 292 

products. In contrast, except for MERRA2, other products show a stronger increasing 293 

trend in LHF than in SHF (e.g., IFREMER, SeaFlux, and ERA5), or an increasing trend 294 



in LHF accompanied by a decreasing trend in SHF (e.g., JOFURO3, OAFlux, and 295 

OHF). This is likely the cause of the different β trend in BrTHF (weakly positive, close 296 

to zero, and not statistically significant), and such differences can be further attributed 297 

to disparities in the accuracy of SHF, LHF, and β among the products. Considering that 298 

our validation results indicate higher overall accuracy of BrTHF product, the β trend in 299 

our product may be reasonable. Nevertheless, the reliability of long-term trends 300 

ultimately requires further observational data to determine which product provides the 301 

most accurate representation. 302 

In the revised manuscript, we have clarified the possible reason in the third paragraph 303 

of Section 3.2 as follows: 304 

“However, the BrTHF product exhibited a weak positive trend, which may be attributed 305 

to the relatively smaller differences between the SHF and LHF trends in BrTHF 306 

compared to those in other products.” 307 

 308 

Sec 3.3 – This section implies that performance between BrTHF and Seaflux-ERA5 is 309 

similar, even in regard to Bowen ratio which earlier seemed to be the point of significant 310 

improvement for BrTHF. Please comment on this. 311 

Re: Thank you for your comment. We would like to clarify that the large-scale spatial 312 

patterns of air-sea turbulent heat fluxes are primarily shaped by atmospheric circulation 313 

and sea surface properties (e.g., sea surface temperature, and salinity), which result in 314 

broadly similar spatial structures across different products as the reviewer pointed out. 315 

However, notable differences remain as shown in the difference maps (first and second 316 

rows, fourth column) and scatter plots (fourth row, first and second columns) of Figures 317 

10-12. For instance, BrTHF shows significantly higher SHF values in the high-latitude 318 

Northern Hemisphere compared to SeaFlux, with greater dispersion in the scatter plots. 319 

These spatial and statistical differences reflect the improvements achieved by our model 320 

and have been described in Section 3.3 of the original manuscript. 321 



In the revised manuscript, we have added a discussion in Section 3.3, third paragraph, 322 

to clarify the potential explanation as follows: 323 

“In addition, the OHF product did not reproduce similar large-scale spatial patterns of 324 

air–sea turbulent heat fluxes observed in BrTHF, ERA5, and SeaFlux, which are 325 

primarily shaped by atmospheric circulation and sea surface properties (e.g., sea surface 326 

temperature and salinity).” 327 

 328 

Fig 13 – It’s a bit confusing that the labels on the color bar are below the plots on the 329 

left. It might be more intuitive to add a title above each subplot rather than a colorbar 330 

label. 331 

Re: Thank you for your suggestion. In the revised manuscript, we have moved the labels 332 

to the top-left corner of each subplot in Figure 13 to improve readability and make the 333 

figure more intuitive. 334 

 335 

Figure 13. Spatial maps of inter-annual trends for SHF (a), LHF (c), and β (e) from the BrTHF 336 

product for the period 1993 to 2017. The trends were calculated using the Sen’s slope method. 337 

Dotted areas indicate oceans where the p-value of the Mann-Kendall significance test is less 338 



than 0.05. Panels (b), (d) and (f) represent the inter-annual trends of zonal annual averages 339 

for SHF, LHF and β, respectively. 340 

 341 

L553-555 – Do we trust these results, considering that there was significant uncertainty 342 

at high latitudes (and the NN was trained on few observations from high latitudes)? 343 

Could this be an artifact of the training data/procedure? 344 

Re: Thank you for your comment. Due to the scarcity of long-term observations in high-345 

latitude oceans, we assessed the reliability of simulated trends of BrTHF in these 346 

regions by comparing them with the corresponding trends from seven widely used 347 

products. As shown in Figures S2–S4, in these high-latitude regions, the trends 348 

simulated by the BrTHF are largely consistent with those of most other products—for 349 

example, SHF exhibits a pronounced increase in the Kara Sea, Gulf Stream, Baffin Bay, 350 

Brazil Current, Sea of Okhotsk, and Sea of Japan, with differences mainly in magnitude. 351 

Given that these products are developed based on physically well-founded models, we 352 

consider the trends simulated by our product to be reliable.  353 

In the revised manuscript, we have added a discussion about the reliability of simulated 354 

trends in the fourth paragraph of Section 3.5 as follows: 355 

“The generalization capability of the model can also affect the accuracy of simulated 356 

long-term trends. In Figure 13, we present the spatial distributions of long-term trends 357 

for SHF, LHF, and β simulated by the BrTHF product. Considering the scarcity of 358 

training data in high-latitude oceans, the simulated long-term trends in these regions 359 

may be associated with larger uncertainties. However, due to the lack of long-term 360 

observations in high-latitude oceans, we cannot validate the simulated trends using 361 

observational records as done in previous studies for mid- and low-latitude regions 362 

(Tang et al., 2024; Weller et al., 2022). To address this, we examined the spatial 363 

distribution of long-term trends from the other seven widely used products. Specifically, 364 

in these high-latitude regions, the trends simulated by the BrTHF are largely consistent 365 

with those of most other products—for example, SHF exhibits a pronounced increase 366 



in the Kara Sea, Gulf Stream, Baffin Bay, Brazil Current, Sea of Okhotsk, and Sea of 367 

Japan, with differences mainly in magnitude.” 368 

 369 

L588 – “custom” 370 

Re: Thank you for your comment. We have revised “customed” to “custom”. 371 

 372 

L590 – I’m unconvinced that the absence of outliers is an improvement, since outliers 373 

exist in the observations. Please comment on this. 374 

Re: Thank you for your comment. We acknowledge that outliers do exist in 375 

observations; however, many of the outliers are likely caused by measurement errors. 376 

Considering that such outliers can severely impede model training and evaluation, we 377 

deemed it necessary to constrain the β in a reasonable range to enable simultaneous 378 

high-accuracy estimation of SHF, LHF, and β.  379 

Specifically, we calculated the cumulative distribution of daily β for each product and 380 

their ensemble (across all products). The medians of the 1st and 99th percentiles, 381 

approximately -5 and 5, respectively, were selected as the minimum and maximum of 382 

valid daily β, as shown in Figure S1. We did not derive the constraints of β directly from 383 

observations, primarily because the limited spatial coverage of observations may not 384 

provide a range that is generally applicable across all ocean basins. While simulated 385 

data offer global representativeness, they may also contain outliers. Therefore, we 386 

manually set a reasonable β range based on the 1st -99th percentiles (in ascending order), 387 

as already presented in the fifth paragraph of Section 2.1. This range provides a robust 388 

basis for model development, ensuring that SHF, LHF, and β can be jointly estimated 389 

with high accuracy. 390 

In the revised manuscript, we have clarified the importance of absence of β outliers in 391 

the fifth paragraph of Section 2.1 as follows: 392 

“Although outliers exist in observations, some are likely caused by measurement errors. 393 

Considering that such outliers can severely impede model training and evaluation, it 394 



was necessary to constrain β within a reasonable range to enable simultaneous high-395 

accuracy estimation of SHF, LHF, and β.” 396 

 397 

L609-618 – I’m not sure that this isn’t also true for the present dataset based on looking 398 

at Figure 2 399 

Re: Thank you for your comment. This issue appears closely related to model 400 

generalization and has been discussed in detail in the Main Comment. 401 

 402 

L666 – Performance in terms of SHF/LHF did not clearly look superior based on the 403 

plots. Please clarify that the largest improvement is in Bowen ratio. 404 

Re: Thank you for your comment. In the revised manuscript, we have clarified that the 405 

most significant improvement achieved by the BrTHF model is in the estimation of the 406 

β, while its performance in estimating SHF and LHF is generally comparable to or 407 

slightly better than other models and products in the second paragraph of Section 5 as 408 

follows: 409 

“The BrTHF model demonstrated the most significant improvement in estimating the 410 

β, while its performance in estimating SHF and LHF was generally comparable to or 411 

slightly better than that of the physics-free NN models and the seven widely used air-412 

sea turbulent heat products (including the JOFURO3, IFREMER, SeaFlux, ERA5, 413 

MERRA2, OAFlux and OHF products).” 414 

 415 
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