
Responses to the Comments and Suggestions 1 

Reviewer 2:  2 

The authors produced a heat flux dataset based on a statistical neural network trained 3 

over model reanalyses and / or buoy data (I am not sure, it is not so clear to me after 4 

reading their manuscript). They compare their product to other products, and mostly 5 

find that their product performs better.  6 

Re: Thank you for your comments. We have carefully considered all your comments 7 

and suggestions and made corresponding point-by-point responses and revisions. 8 

Specifically, reviewer comments are shown in black, our responses in blue, and the 9 

corresponding revisions in the manuscript are highlighted in red. We hope that our 10 

responses and the revised manuscript would be satisfactory. 11 

 12 

There are strong chances that conceptually, this whole work would be no use, since the 13 

reanalyses used to train their network already provide the surface fluxes. Therefore, I 14 

really don’t see the point in producing what I would call a ‘statistical shortcut’ of an 15 

existing model.  16 

Re: Thank you for your comment. We would like to clarify that the target variables in 17 

our study are sourced from in-situ buoy observations, rather than from outputs provided 18 

by reanalysis products. Although the input features for our model include variables 19 

from reanalysis, the neural network is trained to reproduce observed air-sea turbulent 20 

heat fluxes, rather than merely replicating outputs of reanalysis. Accordingly, our 21 

approach should not be considered a “statistical shortcut” of existing models, but rather 22 

a methodology aimed at improving air-sea turbulent heat fluxes estimation by 23 

integrating observations with machine learning techniques. 24 

 25 



My interpretation of the context is that historically, global surface flux datasets were 26 

developed at a time when model reanalyses were not accurate enough. In this context, 27 

independent blended-analyses gathering various satellite sensor fields and sometimes 28 

model forecasts (for stability and / or near surface air temperature) could be helpful for 29 

documenting the heat budget and it is spatial variability. Nowadays, satellite sensor data 30 

as well as in situ observations are widely assimilated in models, which results -in my 31 

opinion- in an optimum mix between physics (equations in the models) and 32 

observations, in terms of surface heat fluxes. Therefore, I don’t see why independent 33 

flux products (which are not even an ounce independent from models, since they are 34 

trained on them) should be developed any longer, the reason for which I left this field. 35 

Re: Thank you for your comment. We respectfully note that we do not fully agree with 36 

the reviewer’s perspective. Currently, multiple global reanalysis products exist, and 37 

these products are still under development and not fully mature, which contrasts with 38 

the implication that additional independent flux products are unnecessary and that 39 

reanalysis represents an optimal mix between physics and observations. While we 40 

acknowledge that assimilating satellite data and in-situ observations into process-based 41 

models can improve the accuracy of air–sea turbulent heat fluxes simulations, it should 42 

be recognized that the accuracy of flux estimates is significantly influenced by the 43 

physical representation of air–sea exchange processes, model parameterizations, and 44 

biases in inputs. Therefore, assimilation alone does not necessarily guarantee high-45 

accuracy flux estimates, which partially explains the continued need for model 46 

development and optimization. 47 

With the rapid growth in the availability of flux observations, integrating machine 48 

learning models while fully accounting for the key physical and environmental factors 49 

influencing air–sea turbulent heat exchange has become an important approach for 50 

improving the accuracy and reliability of air–sea turbulent heat fluxes estimations. 51 

Indeed, in recent years, global estimations of carbon, water, and energy fluxes, ocean 52 

currents, and temperature/salinity fields using machine learning trained on in situ 53 



observations have become increasingly common (Chen et al., 2019; Cummins et al., 54 

2023; Cutolo et al., 2024; Ge et al.; Zhou et al., 2024). Moreover, AI-driven models 55 

such as AlphaFold have achieved breakthrough progress in protein structure prediction, 56 

illustrating the substantial potential of artificial intelligence (Jumper et al., 2021). Other 57 

notable examples include OpenAI’s GPT series in natural language understanding and 58 

generation, DeepMind’s AlphaZero in surpassing human performance in complex 59 

strategy games, and deep-learning–based climate model parameterization and Earth 60 

system prediction (Brown et al., 2020; Rasp et al., 2018; Silver et al., 2018). 61 

Collectively, these successes demonstrate that scientific research is increasingly 62 

embracing a “data-driven + AI-assisted”. In our view, flux estimation should be 63 

continuously improved by integrating emerging technologies in order to provide more 64 

accurate and reliable results. 65 

 66 

At best, the authors’ product will perform the same as model fields, which is obvious 67 

according to Figure 3 and 4 (compare ERA in panels d, to ‘BrTHF’ in panel i). Worse, 68 

there is one risk when aiming at getting the highest accuracy with artificial neural 69 

networks: overtraining. This could have been discussed in the manuscript. Please note 70 

that the proposed BrTHF product does not account for negative LHF values (Figure 4i).  71 

Re: Thank you for your comment. With regard to the concern that our product may not 72 

outperform reanalysis, Figures 3 and 4 show that BrTHF achieves substantial 73 

improvements over ERA5, with RMSE reductions of ~1 W/m2 (14%) for SHF and ~5 74 

W/m2 (16%) for LHF.  75 

To address the reviewer’s concern about potential overfitting, we implemented two 76 

measures to ensure the robustness and generalizability of our model. First, we employed 77 

a spatial 10-fold cross-validation, which provides a rigorous evaluation of model 78 

performance. Second, following the suggestions of another reviewer, we conducted 79 

targeted cross-validation by withholding two high-latitude buoy sites in the Southern 80 

Hemisphere, largely independent from the training dataset, as a validation set. As shown 81 



in Tables S4 and S5, BrTHF maintained higher accuracy than the other products and 82 

models, demonstrating its reliable generalization ability. 83 

Regarding negative LHF values, we note that small negative values remain in Figure 4 84 

(i), but their magnitudes are close to zero. This is mainly due to the uneven distribution 85 

of observations and the constraints applied to the BrTHF model, which prioritizes 86 

simultaneous high-accuracy estimation of SHF, LHF, and β. Consequently, the 87 

predicted range is compressed. We acknowledge this limitation and have discussed it 88 

in Section 3.5 of the original manuscript. 89 

 90 

The authors focus on the Bowen ratio, which is supposed to give more ‘consistency in 91 

physics’, I don’t even know how to define/name it as they do… I am not convinced at 92 

all. Technically, I think it is just a matter of optimizing their neural network 93 

configuration. 94 

Re: Thank you for your comment. Regarding “consistency in physics,” we would like 95 

to clarify that our main goal is to ensure that model outputs satisfy the physical 96 

relationship SHF/LHF = β. While this relationship can indeed be maintained in the 97 

reanalysis products highlighted by the reviewer, as shown in Figures 3–6, these 98 

reanalysis models cannot simultaneously provide SHF, LHF, and β with high accuracy. 99 

Conversely, using machine learning to model SHF, LHF, and β separately can achieve 100 

high accuracy for each variable individually, but such predictions do not necessarily 101 

preserve the physical relationship SHF/LHF = β. Therefore, our work emphasizes 102 

achieving both physical consistency (SHF/LHF = β) and high-accuracy estimation of 103 

all three variables, which demonstrates that our approach is not merely an optimization 104 

of the neural network configuration. 105 

 106 

To me, it seems that the authors have downloaded a lot of data and model fields, and 107 

that they desperately look for a way to add some value using these datasets. If so, I 108 



would rather encourage the authors to analyze what is inside and produce case analyses, 109 

statistical analyses. 110 

Re: Thank you for your comment. We would like to clarify that our study is not a simple 111 

aggregation of existing data. Instead, it aims to improve simultaneous estimation of 112 

SHF, LHF, and β through a physically-informed neural network—a novel approach 113 

beyond existing case studies or statistical analyses. The results demonstrate that BrTHF 114 

reduces both RMSE and bias of SHF and LHF compared to the existing state-of-the-art 115 

products. We believe this constitutes a meaningful contribution to the ongoing efforts 116 

in improving air–sea turbulent heat fluxes estimation. 117 

 118 

In this manuscript, the principal publications are not even cited, which I consider to be 119 

a lack of respect to authors that did a pioneering work more than twenty years before 120 

them!  121 

 Bourras, D., L. Eymard, & Liu, W. T. (2002). A neural network to estimate the 122 

latent heat flux over oceans from satellite observations, International Journal of 123 

Remote Sensing, 23(12), 2405-2423. doi: 124 

http://doi.org/10.1080/01431160110070825 125 

 Bourras, D., Liu, W. T., Eymard, L., & Tang, W. (2003). Evaluation of Latent Heat 126 

Flux Fields from Satellites and Models during SEMAPHORE, Journal of Applied 127 

Meteorology, 42(2), 227-239. doi: https://doi.org/10.1175/1520-128 

0450(2003)0422.0.CO;2 129 

 Bourras, D. (2006). Comparison of Five Satellite-Derived Latent Heat Flux 130 

Products to Moored Buoy Data, Journal of Climate, 19(24), 6291-6313. doi: 131 

https://doi.org/10.1175/JCLI3977.1 132 

 Bourras, D., Reverdin, G., Caniaux, G., & Belamari, S. (2007). A Nonlinear 133 

Statistical Model of Turbulent Fluxes, Monthly Weather Review, 135(3), 1077-134 

1089. doi: https://doi.org/10.1175/MWR3335.1 135 



Re: Thank you for your comment. We fully acknowledge and respect the contributions 136 

of the pioneering studies, and in the revised manuscript, we have now carefully revised 137 

the manuscript to include appropriate citations to these important references. We thank 138 

the reviewer for pointing this out. 139 

 140 

Some comments for the introduction:  141 

-L46 ‘the evaporative latent heat flux’: the term ‘evaporative’ is not appropriate in this 142 

sentence  143 

Re: Thank you for your comment. We have removed the redundant term “evaporative” 144 

and now simply use “latent heat flux” for clarity. 145 

 146 

-L47 ‘the conductive sensible heat flux’: wrong, it is convection, not conduction, except 147 

in the first microns above the water surface  148 

Re: Thank you for your comment. We sincerely apologize for the typo and have 149 

corrected the relevant description accordingly. 150 

 151 

-L51 ‘the Bowen ratio…revealing the partitioning of water and energy over the ocean 152 

and atmosphere’: this sentence does not make any sense, and it is not helpful, in addition 153 

to what the definition of the Bowen ratio is common knowledge in this field  154 

Re: Thank you for your comment. In the revised manuscript, we have removed the 155 

related description and now provide the definition of the β upon its first appearance. 156 

 157 

-L52-L54: ‘Accurate estimation of these three parameters is an essential prerequisite 158 

for advancing our understanding of atmosphere-sea interaction’… I don’t see why the 159 

Bowen ratio would be key, and the fluxes as well as the Bowen ratio are not ‘parameters’ 160 

but ‘variables’, in this context  161 

Re: Thank you for your comment. We agree that the use of the term “parameters” in 162 

this context could be misleading, and we have revised it to “SHF, LHF and their ratio—163 



the Bowen ratio (β = SHF/LHF)”. We also acknowledge the reviewer’s concern 164 

regarding the role of β. We would like to clarify that while SHF and LHF individually 165 

describe the components of turbulent heat fluxes, β provides additional insight into their 166 

relative partitioning at the air–sea interface. This ratio not only captures differences in 167 

climate regimes (e.g., large β in cold and dry regions such as the subpolar North Atlantic, 168 

and small β in tropical and subtropical oceans), but also reflects the synergistic 169 

variations between SHF and LHF (e.g., both SHF and LHF may increase while β 170 

remains unchanged), which cannot be inferred from either flux alone. Therefore, we 171 

consider β to be an essential variable for advancing the understanding of atmosphere–172 

ocean interactions. 173 

 174 

-L57-L61: ‘To map global air-sea... as developed and widely adopted as a primary 175 

approach’. This sentence is nonsense. The Monin-Obukhov (1954) similarity theory 176 

was not developed for that, and I am not aware of any ‘primary approach’  177 

Re: Thank you for your comment. We agree that the Monin–Obukhov similarity theory 178 

was not originally developed for mapping global air–sea fluxes, and it is not accurate 179 

to describe it as a ‘primary approach’ in this context. In the revised manuscript, we have 180 

revised the sentence to more appropriately reflect its role as a theoretical foundation 181 

widely used in flux parameterization schemes in the second paragraph of Section 1 as 182 

follows: 183 

“To estimate global air–sea turbulent heat fluxes, the semi-empirical bulk aerodynamic 184 

method was developed based on the Monin–Obukhov similarity theory (Monin and 185 

Obukhov, 1954). It establishes scaling relationships between fluxes and near-surface 186 

meteorological variables such as wind speed, humidity, and temperature (Yu, 2019).” 187 

 188 

-L58: ‘easily’: I don’t see why it would be ‘easy’ to measure mean meteorological 189 

quantities, it is rather complicated, just try to get a reliable information with two 190 

thermometers mounted close to each other on a ship or on a buoy, it is a real challenge. 191 



In addition, this includes SST, which is not a meteorological variable, strictly speaking  192 

Re: Thank you for your comment. We apologize for the inappropriate wording and 193 

have made the corresponding corrections in the manuscript. We also acknowledge that 194 

including sea surface temperature (SST) in this context was misleading, and we have 195 

now corrected this accordingly. 196 

 197 

-L59: ‘metrological’: Wrong, I think the authors mean ‘meteorological’  198 

Re: Thank you for your comment. We have revised “metrological” to “meteorological”. 199 

 200 

After reading this one and half paragraph I have noted so many inaccuracies and / or 201 

wrong statements, that I don’t feel compelled to review in detail the rest of the 202 

manuscript. This manuscript looks like a science paper, but from far. To me, it is way 203 

too weak to be published.  204 

Re: We sincerely appreciate the reviewer’s feedback. We fully acknowledge the 205 

concerns raised regarding inaccurate statements in the manuscript, and have carefully 206 

considered all comments, undertaking substantial revisions to address these issues. At 207 

the same time, we have incorporated the constructive suggestions and comments 208 

provided by another reviewer, which have further enhanced the clarity, rigor, and 209 

overall quality of the manuscript. We believe that, following these revisions, the 210 

manuscript now presents meaningful and valuable scientific contributions. 211 

 212 

Other comments, maybe not in order of line numbering:  213 

-The manuscript is unnecessarily long, difficult to read. It contains unnecessary 214 

acronyms such as THF, and it contains unnecessary equations, such as the equation 1 215 

that relates the relative humidity to the dew point temperature, which is common 216 

knowledge  217 

Re: Thank you for your comment. In the revised manuscript, we have removed the 218 

unnecessary acronyms and equations for conciseness. 219 



 220 

-Figure 1 is unclear  221 

Re: Thank you for your comment. We have reorganized the flowchart to improve its 222 

readability, as shown below: 223 

 224 

Figure 1. flowchart of the generation of a global product of air-sea SHF, LHF and β by the 225 

BrTHF model  226 

 227 

-Figure 5 is statistically pointless  228 

Re: Thank you for your comment. We would like to clarify that the main purpose of 229 

Figure 5 is to present and compare the distribution of β estimates from our model and 230 

other products against observations. The highlighting of outliers in the Figure 5 is 231 

intended to demonstrate that our model effectively avoids the outliers found in other 232 

models and products. Additionally, since each panel shows two modes (with and 233 

without outliers), to maintain the figure’s clarity and avoid redundancy, detailed 234 

statistical information can be found in Table S2 and Figure 6. To prevent any 235 

misunderstanding, we have added an explanation in the caption of Figure 5 in the 236 

revised manuscript: 237 



“Figure 5. Same as Figure 3 but for β. The samples out of the ranges of observed β (-5 ≤ β ≤ 5) 238 

were colored in blue, orange, green, red, purple, brown, pink and gray for JOFURO3, 239 

IFREMER, SeaFlux, ERA5, MERRA2, OAFlux, OHF products and the physics-free NN 240 

models, respectively. The corresponding statistical metrics can be found in Table S3 and 241 

Figure 6.” 242 

 243 

-At several locations in the manuscript, the terminology used may be considered as 244 

misleading, such as L122 where they mention ‘the superiority of the model’. In this 245 

sentence, ‘model’ is ambiguous because it does not refer to a meteorological model or 246 

a physical model of any kind, but rather to a statistical model. At L136, there is also a 247 

reference to the ‘BrTHF model’  248 

Re: Thank you for your comment. We agree that the term "model" may be ambiguous 249 

without clarification. In our original manuscript, we referred to the BrTHF model as "a 250 

Bowen ratio-constrained model using the machine learning technique," which 251 

implicitly indicates that it is a statistical model. However, to avoid potential ambiguity 252 

for readers, we have revised the first appearance of the BrTHF model to clearly state 253 

that it is a “Bowen ratio-constrained statistical model using the machine learning 254 

technique”. We continue to use the term “BrTHF model” throughout the manuscript for 255 

readability. Additionally, we have revised the sentence to specify that we are referring 256 

to the statistical model developed in this study. 257 

 258 

-In the same fashion, section 2.2 is entitled ‘forcing datasets’, which I think also adds 259 

to the confusion, because forcing is usually used by ocean modelers. Here, it should be 260 

‘learning’, which term is widely used in the field of multilayer perceptrons  261 

Re: Thank you for your comment. We have revised the title of Section 2.2 to “Learning 262 

datasets for training the neural network” and updated related terminology throughout 263 

the manuscript. 264 

 265 



-In section 2.2, I could not easily understand whether only model analyses were used 266 

for the learning (which I think), or if it is a mix with buoy data. 267 

Re: Thank you for your comment. We would like to clarify that in our neural network 268 

framework, model analyses were used as input features, while buoy-based SHF and 269 

LHF observations served as the target variables for training. Accordingly, we have 270 

revised the relevant descriptions in the second paragraph of Section 2.2.1 to improve 271 

clarity as follows: 272 

“Datasets of these learning variables used as input features for training the neural 273 

network were collected from multiple publicly available sources, as summarized in 274 

Table 2 and were used as the input features for training the neural network.” 275 

 276 

-L112-L113 and L104: the authors mention several times the EC fluxes are high quality 277 

compared to bulk estimates, which denotes a complete lack of knowledge in this field. 278 

EC fluxes are very difficult to obtain at sea because of platform motion and airflow 279 

distortion, even at turbulent scales. To get more insights, the authours should consider 280 

reading the following references, for example: 281 

 Bourras, D., Weill, A., Caniaux, G., Eymard, L., Bourlès, B., Letourneur, S., 282 

Legain, D., Key, E., Baudin, F., Piguet, Traullé, O., Bouhours, G., Sinardet, G., 283 

Barrié, J., Vinson, J.-P., Boutet, F., Berthod, C., & Clémençon, A. (2009). Turbulent 284 

air-sea fluxes in the Gulf of Guinea during the AMMA Experiment, J. Geophys. 285 

Res., 114, C04014. doi: https://doi.org/10.1029/2008JC004951 286 

 Bourras, D., Cambra, R., Marié, L., Bouin, M.-N., Baggio, L., Branger, Beghoura, 287 

H., Reverdin, G., Dewitte, B., Paulmier, A., Maes, C., Ardhuin, F., Pairaud, I., 288 

Fraunié, P., Luneau, C., & Hauser, D. (2019). Air-sea turbulent fluxes from a wave-289 

following platform during six experiments at sea, J. Geophys. Res., 124, 4290–290 

4321. doi: https://doi.org/10.1029/2018JC014803  291 

Re: Thank you for your comment. We would like to clarify that our reference to EC 292 

fluxes as “high quality” was intended to emphasize their value as direct measurements 293 



of turbulent heat fluxes, rather than to suggest that they are easy to obtain. We fully 294 

acknowledge that EC measurements at sea are challenging due to platform motion and 295 

airflow distortion, even at turbulent scales. In the revised manuscript, to avoid possible 296 

misinterpretation, we have removed the wording describing EC fluxes as “high quality” 297 

and have revised similar statements elsewhere in the manuscript. Furthermore, we have 298 

carefully reviewed the literature recommended by the reviewer and added these 299 

references in the fifth paragraph of Section 1 to highlight the challenges of obtaining 300 

EC measurements over the ocean as follows: 301 

“However, since EC observations are difficult to obtain at sea due to platform motion 302 

and airflow distortion (Bourras et al., 2019; Bourras et al., 2009)—their limited spatio-303 

temporal coverage constrains the application of the model for global mapping.” 304 

 305 
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