
LakeBeD-US: a benchmark dataset for lake water quality time
series and vertical profiles
Bennett J. McAfee1, Aanish Pradhan2, Abhilash Neog2, Sepideh Fatemi2, Robert T. Hensley3, Mary
E. Lofton4, Anuj Karpatne2, Cayelan C. Carey4, and Paul C. Hanson1

1Center for Limnology, University of Wisconsin–Madison, Madison, WI 53706, USA
2Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
3National Ecological Observatory Network – Battelle, Boulder, CO 80301, USA
4Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA

Correspondence: Bennett J. McAfee (bennettjmcafee@gmail.com)

Abstract. Water quality in lakes is an emergent property of complex biotic and abiotic processes that differ across spatial and

temporal scales. Water quality is also a determinant of ecosystem services that lakes provide and thus is of great interest to

ecologists. Machine learning and other computer science techniques are increasingly being used to predict water quality dy-

namics as well as to gain a greater understanding of water quality patterns and controls. To benefit both the sciences of ecology

and computer science, we have created a benchmark dataset of lake water quality time series and vertical profiles. LakeBeD-5

US contains over 500 million unique observations of lake water quality collected by multiple long-term monitoring programs

across 17 water quality variables from 21 lakes in the United States. There are two published versions of LakeBeD-US: an

"Ecology Edition" published in the Environmental Data Initiative repository, and a "Computer Science Edition" published in

the Hugging Face repository. Each edition is formatted in a manner conducive to inquiries and analyses specific to each domain.

For ecologists, LakeBeD-US: Ecology Edition provides an opportunity to study the spatial and temporal dynamics of several10

lakes with varying water quality, ecosystem, and landscape characteristics. For computer scientists, LakeBeD-US: Computer

Science Edition acts as a benchmark dataset that enables the advancement of machine learning for water quality prediction.

1 Introduction

Water quality is a critical determinant of the ecosystem services provided by lakes (Keeler et al., 2012; Angradi et al., 2018).

Water quality varies across spatial and temporal scales (Hanson et al., 2006; Langman et al., 2010; Soranno et al., 2017) as a15

result of a variety of interacting physical and biological processes. For example, hypolimnetic anoxia (low oxygen) in lakes

reduces habitat for cold-water fish species (Arend et al., 2011; Jane et al., 2024). Anoxia can be fueled by the product of another

water quality problem, the formation of toxic phytoplankton blooms (Jane et al., 2021). Both of these water quality phenomena

emerge at the ecosystem scale as a consequence of multiple physical-biological interactions, driven by external nutrient loads

and weather conditions (Paerl and Huisman, 2009; Snortheim et al., 2017; Ladwig et al., 2021; Jane et al., 2021). While there20

is mechanistic understanding of how these water quality phenomena evolve for well-studied lake systems, predicting their

occurrence under scenarios of change or in large numbers of systems with sparse data remains challenging (Guo et al., 2021;
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Miller et al., 2023). To meet this challenge, we need scalable water quality models that are supported by observational data of

sufficient spatiotemporal resolution to reproduce key water quality dynamics (Ejigu, 2024; Varadharajan et al., 2022).

Knowledge-guided machine learning (KGML) has emerged as a powerful technique for incorporating both ecological knowl-25

edge and observational data within a model (Karpatne et al., 2017, 2024). By fusing machine learning with physical and eco-

logical principles, KGML has proven effective for assessing lake surface area change (Wander et al., 2024), modeling lake

temperature (Read et al., 2019; Daw et al., 2014; Ladwig et al., 2024; Chen et al., 2024b), phytoplankton (chlorophyll) fore-

casting (Lin et al., 2023; Chen et al., 2024a), and predicting lake phosphorus concentrations (Hanson et al., 2020). Thus, a

variety of modeling techniques within and beyond KGML are required to advance water quality understanding and prediction30

(Wai et al., 2022; Lofton et al., 2023). Creative approaches will likely spring from interdisciplinary collaborations of both lake

ecologists and computer scientists (Carey et al., 2019) and will need diverse, high volume, high quality observational data that

are easily accessible to researchers from multiple disciplines.

Predicting the evolution of water quality through time and space requires treating lakes as dynamical systems that operate

across many scales. The nature of research project design lends itself to focusing on either the temporal scale or the spatial35

scale, making studies that address both scales extensively somewhat rare (but see, Wilkinson et al., 2022; Zhao et al., 2023;

Meyer et al., 2024). Datasets that capture spatial gradients (Soranno et al., 2017; Pollard et al., 2018), temporal gradients

(Magnuson et al., 2006; Goodman et al., 2015), or both have been curated manually to produce harmonized derived products

(Read et al., 2017). Few examples of lake water quality data exist that harmonize both manually sampled and autonomously

sampled high-frequency data across key gradients in space and across decadal timescales.40

A benchmark dataset for lake water quality that has well-resolved temporal data spanning multiple variables would be

invaluable to both limnologists and computer scientists for simultaneously advancing both water quality modeling and KGML.

Benchmark datasets are curated and cleaned datasets used in computation-heavy fields to test new operational methods and

compare their performances (Peters et al., 2018). High-quality benchmark datasets are a significant effort to create (Sarkar et

al., 2020) but are of fundamental importance to the field of computer science (Li et al., 2024). Sarkar et al. (2020) and Weinstein45

et al. (2021) lay out many criteria for a quality benchmark dataset, which include the following.

– Relevance: Data must be well curated so as to be relevant for a specific phenomena. In this case, the dataset must contain

lake water quality data.

– Representativeness: Data should contain examples from many relevant areas so as to be representative of a global

distribution. In the case of water quality, this means data from lakes across geographic, trophic, and morphological50

gradients.

– Non-redundancy: The dataset should exclude duplicate data (i.e., every observation is unique).

– Experimentally verified: Data should be real observations, rather than generated from simulations. In the case of lake

water quality, this means that all data are collected in situ.
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– Scalability: The design of the dataset should allow for the methods tested to vary in complexity. This requires a set of55

reasonable evaluation criteria and transparent scoring.

– Reusability: Data should be open-source, freely available, and shared in a manner such that the dataset can be used for

other applications.

Benchmark datasets are becoming more prevalent in the field of ecology (e.g., Weinstein et al., 2021; Schür et al., 2023).

Ecological benchmark datasets are vital as environmental data, including water quality data, exhibit properties such as prevalent60

missing values and non-normal distributions (Helsel, 1987; Lim and Surbeck, 2011) that are not typically represented in

machine learning benchmark datasets. Benchmark datasets exist within the field of hydrology (e.g., Addor et al., 2017; Demir

et al., 2022) and some recent limnology datasets advertise machine learning as a potential application (e.g., Spaulding et al.,

2024), but benchmark datasets are rare in the field of limnology. This scarcity has caused some limnological studies to use

non-limnological benchmark datasets to test their machine learning methods (e.g., Kadkhodazadeh and Farzin, 2021).65

This paper introduces LakeBeD-US, a dataset of lake water quality time series and vertical profiles intended as a benchmark

for comparative methodological analysis for water quality modeling. LakeBeD-US harmonizes water quality data from long-

term water quality monitoring programs, including the North Temperate Lakes Long-Term Ecological Research program (NTL-

LTER), National Ecological Observatory Network (NEON), Niwot Ridge Long-Term Ecological Research program (NWT-

LTER), and the Carey Lab at Virginia Tech as part of the Virginia Reservoirs Long-Term Research in Environmental Biology70

(LTREB) site in collaboration with the Western Virginia Water Authority. To conform with the principles of FAIR (Findable,

Accessible, Interoperable, and Reusable) data (Wilkinson et al., 2016), the data are accessible via digital object identifiers

(DOIs), the contents are richly described in the metadata, and all provenance is documented for each data point. Data from

21 lakes are included. The group of lakes vary in size, geographic region, trophic status, and temporal coverage. LakeBeD-

US is published in two forms, each with a unique DOI: LakeBeD-US: Ecology Edition (LakeBeD-US-EE; McAfee et al.,75

2024) is published in the Environmental Data Initiative repository, which is a repository of primarily ecological data (Gries

et al., 2023). LakeBeD-US: Computer Science Edition (LakeBeD-US-CSE; Pradhan et al., 2024) is published in the Hugging

Face repository, which is used heavily by scientists developing and testing machine learning algorithms (Jain, 2022; Yang et

al., 2024). Both versions are published as Apache Parquet files, a space-efficient and programming language-independent file

type effective for storing time series data (Rangaraj et al., 2022). LakeBeD-US-CSE is derived from LakeBeD-US-EE with80

additional cleaning and reformatting described in Section 2 of this paper.

2 Dataset components and assembly

The goal of LakeBeD-US is to feature data from a collection of well-observed lakes that showcase the varied morphological,

geographical, anthropological, and biological characteristics of environments across the United States. To do this, we leveraged

data collected by prominent long-term monitoring programs. The NTL-LTER sampling strategy focuses on heterogeneous lakes85

within the state of Wisconsin (Magnuson et al., 2006). NEON samples lakes across the continent, capturing additional climactic
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Figure 1. Locations and names of the 21 lakes included in LakeBeD-US. Lakes are monitored by the National Ecological Observatory

Network (NEON, blue), North Temperate Lakes Long-Term Ecological Research program (NTL-LTER, purple), Niwot Ridge Long-Term

Ecological Research program (NWT-LTER, pink), and the Carey Lab at Virginia Tech as part of the Virginia Reservoirs Long-Term Research

in Environmental Biology (LTREB) site in collaboration with the Western Virginia Water Authority (orange). More information about each

lake is included in Table 1.

and land-use gradients (Goodman et al., 2015). Green Lake 4 from the NWT-LTER was chosen as a representative of alpine

lakes in the dataset, as it has been monitored for many years (Bjarke et al., 2021). Falling Creek Reservoir and Beaverdam

Reservoir represent managed drinking water supply reservoirs (Carey et al., 2024) which may exhibit unique characteristics as

a result of their human influence. The degree to which the lakes in LakeBeD-US vary is discussed further in Section 3.90

The LakeBeD-US dataset is presented in two formats: an Ecology Edition (LakeBeD-US-EE; McAfee et al., 2024) and

a Computer Science Edition (LakeBeD-US-CSE; Pradhan et al., 2024). LakeBeD-US-EE is formatted to support analyses

of lake water quality by the limnology community, while LakeBeD-US-CSE is formatted for use with machine learning and

KGML methods. The Ecology Edition is presented in a long format, with each water quality variable sharing columns such that

variables of interest can be queried from the dataset using dplyr (Wickham et al., 2023) commands in R (R Core Team, 2023)95

and visualizing time series with common plotting tools like ggplot2 (Wickham, 2016) can be done efficiently. The Computer

Science Edition is presented in a wide format where each water quality variable is presented in its own column, enabling their

use as separate features in a machine learning model. More information about the two versions is presented in Table 2 and

discussed further in Section 2.2.2.
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Table 1. Characteristics of lakes included in LakeBeD-US. Location information is presented in Fig. 1.

Lake ID Lake Name Monitoring Program Elevation (m) Area (ha) Mean Depth (m) Maximum Depth (m)

AL Allequash Lake NTL-LTER 494.0 164.2 2.9 8

BARC Lake Barco NEON 27.0 12 2.1 6

BM Big Muskellunge Lake NTL-LTER 499.3 375.7 7.5 21.3

BVR Beaverdam Reservoir Virginia Reservoirs LTREB 584.3 39.4 3.4 14

CB Crystal Bog NTL-LTER 501.5 0.6 1.7 2.5

CR Crystal Lake NTL-LTER 500.5 37.5 11.4 20.4

CRAM Crampton Lake NEON 510.6 26 3.4 19

FCR Falling Creek Reservoir Virginia Reservoirs LTREB 507.6 12.1 2.5 9.3

FI Fish Lake NTL-LTER 262.1 80.4 6.6 18.9

GL4 Green Lake 4 NWT-LTER 3560.8 5.3 4.1 13

LIRO Little Rock Lake NEON 495.2 19 2.5 10

ME Lake Mendota NTL-LTER 259.0 3961.2 12.8 25.3

MO Lake Monona NTL-LTER 257.4 1372.5 8.2 22.5

PRLA Prairie Lake NEON 562.8 23 1.7 4

PRPO Prairie Pothole NEON 586.9 11 1.4 4

SP Sparkling Lake NTL-LTER 494.2 63.7 10.9 20

SUGG Lake Suggs NEON 28.7 31 1.3 3

TB Trout Bog NTL-LTER 493.5 1 5.6 7.9

TOOK Toolik Lake NEON 715.3 148 8.5 25

TR Trout Lake NTL-LTER 491.7 1583 14.6 35.7

WI Lake Wingra NTL-LTER 258.4 138.5 2.7 4

2.1 LakeBeD-US: Ecology Edition100

2.1.1 Source data harmonization

LakeBeD-US-EE was assembled by downloading the source data to R (version 4.3.3, R Core Team, 2023) using the "EDIutils"

(version 1.0.3, Smith, 2023) and "neonUtilities" (version 2.4.2, Lunch et al., 2024) packages. The data were harmonized using

the Tidyverse suite of packages (version 2.0.0, Wickham et al., 2019) before being exported to Parquet files with the "arrow"

package (version 15.0.1, Richardson et al., 2024). The code to download and harmonize the data was written to search the105

source repository for the most updated version of the source data prior to harmonization. The specific version of the source

data used is tracked in a separate table, listed in the code as the provenance object, that is manually checked for changes

before further use of LakeBeD-US-EE.

During harmonization into the LakeBeD-US-EE format, all measurements of the same variable were converted into com-

mon units. The only exception to this is chlorophyll a, which comes in two types of units that are not directly comparable110
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Table 2. Characteristics of the different formats of LakeBeD-US

Ecology Edition Computer Science Edition

– Long-format enables

querying of the data by

lake, variable, or quality

flag with dplyr com-

mands. Plot timeseries

of multiple variables in

ggplot2 with aesthetics

arguments

– Included R script gives a

tutorial on the use of Par-

quet files in R

– Complete data including

sources and quality flags

for manual data clean-

ing, allowing greater

flexibility for users with

limnology expertise.

– Wide-format en-

ables straightforward

machine-learning ap-

plication where each

variable acts as a feature

– Variables of different

dimensionality (Static:

vary by lake, 1D: vary

through time, 2D: vary

through time and depth)

are partitioned to allow

flexible model design

– Data are organized by

lake for transfer learning

experiments

– Duplicate observations

are removed but all

sources and quality flags

are retained

without additional analysis: Relative Fluorescence Units (RFU) and micrograms per liter (µg L−1). Most of the source data

related to nutrients or chemistry were already reported in either µg L−1 or milligrams per liter (mgL−1) which were straight-

forward to convert between. Data reported in molar units or microequivalents were converted to mass concentration units.

Photosynthetically active radiation (PAR) data reported in lux units were converted to micromole per square meter per second

(µmolm−2 s−1) using the full sunlight conversion factor of 0.0185 (Thimijan and Heins, 1983).115

2.1.2 Lake information table

The lake information table contains static attributes of the 21 lakes included in LakeBeD-US. These attributes include the mon-

itoring program, latitude, longitude, elevation above sea level, lake surface area, the mean and maximum depth, an estimated

hydrologic residence time, and any known manipulations of the lake performed by humans. These values were derived from

published literature listing the attributes of each lake (listed in Appendix B2). Mean depth values were calculated based on120
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available bathymetry information (Carey et al., 2022) when no values were reported in the literature. The hydrologic residence

times listed are estimates based on the range of times the lake exhibits (Flanagan et al., 2009; Gerling et al., 2014). An estimated

hydrologic residence time was available for all lakes except for Fish Lake (Dane County, WI), a closed-basin lake with no sur-

face water inflows or outflows. Elevations for each lake were obtained using the United States Geological Survey’s (USGS) The

National Map Bulk Point Query Service (United States Geological Survey, 2024). While there is uncertainty associated with125

the USGS 3D Elevation Program (Stoker and Miller, 2022), we found that elevation values captured the ecologically relevant

variation and matched closely many published values for the 21 lakes in LakeBeD-US. Sources for each specific attribute of a

lake are listed as comments in the source code compiling the attributes, and listed collectively in the provenance metadata of

LakeBeD-US-EE.

2.1.3 High and low frequency observations tables130

Observational data are compiled into two Parquet datasets: one representing data collected from a buoy-mounted sensor at a

relatively high temporal frequency and the other collected by hand at a relatively low temporal frequency. The high- and low-

frequency datasets use an identical format and can be easily merged if needed. However, there are many analytical considera-

tions that differ between these temporal frequencies, so they are provided separately for LakeBeD-US-EE. The low-frequency

observation table includes a larger suite of variables and at a greater number of discrete depths along the water column.135

Both the high- and low-frequency datasets are comprised of columns listing the source of a data point, date and time, the lake,

depth, water quality variable, unit, observed value, and data flag. The data are provided in a long format for ease of querying the

data by filtering with dplyr (Wickham et al., 2023) commands in R. All unit names were sourced from the QUDT (Quantities,

Units, Dimensions and Types) ontology (FAIRsharing.org, 2022), with the exception of RFU which is not included in the

ontology. Water quality variable names are defined in the metadata of both LakeBeD-US-EE and LakeBeD-US-CSE datasets.140

2.1.4 Data flagging

Each of the original data sources (listed in Appendix B1) has data quality flagging systems that have been maintained for

LakeBeD-US-EE (Table A3). We documented all of the data quality flags in the original data sources and assigned each

unique type of quality flag a number, aligning common types between each source. These numeric flags for LakeBeD-US are

documented in the included Flag Guide table (Fig. 3; Table A3). As data go through the harmonization workflow to be included145

in LakeBeD-US-EE, the original flag values are reassigned to align with the LakeBeD-US flag. There are 51 total unique flags

among all of the data sources that were included in LakeBeD-US. Some of the data sources contain flags that are not defined

in the metadata for those sources, in which case the data author was contacted and asked for a definition. Typically, these

flags were errors in data entry and filtered out of LakeBeD-US. The exact depths at which some of the early buoy-mounted

sensors were positioned were not documented and this institutional knowledge has been lost to time. Fortunately, documented150

protocols state that the sensors were mounted in the mixed surface layer of the lake. Thus, we have applied a depth value of

0.5 meters to those observations with the flag 52 attached. The design of the flagging system in LakeBeD-US allows for users
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to apply their own preferred level of uncertainty to their analysis. However, we suggest using the flags listed in Table 6 as

guidance.

2.2 LakeBeD-US: Computer Science Edition155

2.2.1 Transformation from LakeBeD-US-EE

LakeBeD-US-CSE was transformed from the observational data and lake attribute information of LakeBeD-US-EE. The origi-

nal data were loaded with Python (version 3.12.4, Van Rossum and Drake, 2009) and transformed using pandas (version 2.2.2,

The pandas development team, 2024; McKinney, 2010) and NumPy (version 2.1.1, Harris et al., 2020). Since the original

data files were stored as Parquet files, additional dependencies such as fastparquet (version 2024.5.0, Durant and Augsperger,160

2024) and PyArrow (version 17.0.0, Apache Arrow Developers, 2024) were required for pandas. The transformation pro-

cess consisted of five major components: flag imputation, data cleaning, variable renaming, deduplication and pivoting. The

harmonization workflow is visualized in Fig. 2 and the steps taken in each component are outlined below:

1. Flag Imputation: Observations with missing values for flag were assumed to be accurate observations and imputed

with a flag value of "0".165

2. Data Cleaning: Some observations of 2D variables were assigned depth values of "-99" to indicate an integrated (i.e.,

taken from multiple depths simultaneously) observation. We omit those observations as they are not directly comparable

to discrete-depth observations. It should be noted that several observations contain negative values for depth close to

zero (on the order of −10−3 to −10−7 meters) but are correct observations. Such observations come from artificial

reservoirs where the water level fluctuates greatly. As such, the depths for those observations need to be calculated from170

the reference surface level leading to some error in the depth measurement. It is permissible to round these values to zero

if needed for simplification.

3. Variable Renaming: The units column of the observational data in LakeBeD-US-EE was omitted in favor of listing

the units in the metadata. However, chlorophyll a (chla) is reported in both RFU and µg L−1 in the Ecology Edition.

We separate this single variable with two units into chla_rfu and chla_ugl to distinguish between the two possible175

units of measurement for chlorophyll a.

4. Deduplication: The spatiotemporal nature of the data combined with flag values creates a bifurcation structure in the

one-dimensional (1D, i.e., varying over time) variables and a trifurcation structure in the two-dimensional (2D, i.e.,

varying over time and depth) variables (see Section 2.2.2 for more information on variable types). A 1D observation can

be indexed by datetime and flag, and a 2D observation can be indexed by datetime, depth and flag. Multiple180

observations could be present at a given index. We combine multiple observations at an index into a single observation

by calculating the median.
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5. Pivoting: LakeBeD-US-EE is distributed in a "long" format where different variables are stored as a single column. This

format was converted into a wide-format with tabular data where each variable has its own column. For 1D variables,

datetime and flag were used as pivot indices, variable was used to denote the different resulting columns for185

the variables, and observation was used to populate the columns with values. Pivoting of the 2D data was performed

identically except for the pivot indices where datetime, depth and flag were used.

2.2.2 File structure and components

LakeBeD-US-CSE has a nested file structure as shown in Fig. 3. High- and low-frequency observational data are divided

into two folders, each containing sub-folders for different lakes. Each lake’s folder contains two tables: 1D variables and 2D190

variables. The lake information table from LakeBeD-US-EE is carried over to LakeBeD-US-CSE as a CSV (comma separated

value) file, while the 1D and 2D variable data are stored as Parquet files within the nested file structure. Static covariates are

the lake attributes that generally remain constant over time, derived from the lake information table in LakeBeD-US-EE. 1D

variables have a temporal component but no depth information. Secchi depth is a standard 1D variable as it varies throughout

time but is an attribute of the whole water column and thus cannot be sampled in a depth-discrete way. 2D variables vary by195

time and by depth, and each sample is depth-discrete. Quality flags are retained through the flag column of the 1D and 2D

variable tables.

Ecologists and computer scientists have different analytical approaches and thus different data structures are preferred when

working with spatiotemporal data. Ecologists benefit from a long format because this file structure is well suited for aggregated

statistics and complex data visualization. The long format also doesn’t require the explicit storage of missing data. Computer200

scientists, on the other hand, benefit from a wide format due to its compatibility with machine learning workflows. At a high

level, machine learning algorithms implemented in popular libraries and frameworks (e.g., NumPy, PyTorch, scikit-learn and

TensorFlow) expect data formatted in the wide format. At a low level, specialized hardware like graphical processing units

and tensor processing units, on which these libraries and frameworks are run, are optimized to operate on vector, matrix and

tensor data structures. The wide format lends itself nicely to storage in these formats. Furthermore, wide-format data are often205

optimized for storage and querying in data systems to enhance computational performance when working with large datasets.

Lastly, having all variables in separate columns makes it easier to perform feature selection, engineering, and scaling, which

are critical steps in preparing data for machine learning models.

2.3 Assessment and usage of data

To better understand the characteristics of LakeBeD-US, we showcase here the content of LakeBeD-US-EE. Data were loaded210

into R using the "arrow" package and then queried using "dplyr" (version 1.1.4, Wickham et al., 2023). Visualization made

use of the "ggplot2" (version 3.5.1, Wickham, 2016), "ggrepel" (version 0.9.5, Slowikowski, 2024), "gridExtra" (version 2.3,

Auguie, 2017), "cowplot" (version 1.1.3, Wilke, 2024), "maps" (version 3.4.2, Becker et al., 2023) and "mapdata" (version

2.3.1, Becker et al., 2022) libraries.

9



National Ecological 

Observatory Network

Environmental Data 

Initiative

Data harmonization

Flag harmonization

Published lake 

attributes

Data entry

High- and low-

frequency observation 

tables (long format)

Lake information table

LakeBeD-US: Ecology 

Edition

Flag imputation, 

data cleaning, 

variable renaming

Pivoting to wide 

format

2D variables (vary by 

time and depth) tables

Deduplication

1D variables (vary by 

time) tables

LakeBeD-US: 

Computer Science 

Edition

Figure 2. Harmonization workflow for LakeBeD-US. Boxes represent states of data and corner-snipped parallelograms represent processes.

Grey boxes represent published products and sources of published products.
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Figure 3. Structure of LakeBeD-US-EE and LakeBeD-US-CSE. Arrows indicate folder contents (e.g. LakeBeD-US-EE contains High- and

Low-Frequency folders that each contain an observational data table). Purple connectors indicate common columns by which to link tables.

LakeBeD-US-CSE contains High- and Low-Frequency Folders that each contain seperate folders seperating data from each lake. Each lake

folder contains its own static covariate, 2D varables, and 1D variables tables.

3 Ecology Edition: dataset characteristics215

3.1 Spatial and temporal extent

While a majority of the lakes included in LakeBeD-US are north temperate lakes in the state of Wisconsin (Fig. 1), geographic

variation is well represented in the dataset alongside other attributes. Toolik Lake is located in the North Slope Borough, Alaska

and is the furthest northwest of any lake in the dataset (Fig. 1), representing an arctic system. In contrast, Lake Suggs and Lake

Barco in Putman County, Florida represent the southeastern-most lakes and are located in a subtropical climate. Suggs and220

Barco also represent two of the polymictic lakes in the dataset alongside Prairie Lake (Stutsman County, ND), Prairie Pothole

(Stutsman County, ND), Lake Wingra (Dane County, WI), and Green Lake 4 (Boulder County, CO) (Preston et al., 2016;

Thomas et al., 2023; Lottig and Dugan, 2024). All other lakes in the dataset are dimictic (Gerling et al., 2014; Thomas et al.,

2023; Lottig and Dugan, 2024). Green Lake 4 represents the highest altitude lake in LakeBeD-US, with an elevation of over

3500 meters above sea level, a stark contrast to Lakes Suggs and Barco at approximately 27 meters (United States Geological225
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Figure 4. Temporal Distribution of observations in LakeBeD-US-EE. Colors represent categories of variables.

Survey, 2024). Falling Creek Reservoir and Beaverdam Reservoir are drinking water reservoirs and thus experience a unique

set of human manipulations and impacts despite being in a relatively undisturbed forested watershed (Gerling et al., 2014). This

provides a potential comparison to the lakes of the NTL-LTER in Wisconsin which have urban and agricultural catchments in

the Madison area (Dane County) and relatively undisturbed forested catchments in Vilas County (Magnuson et al., 1997).

An overview of the temporal characteristics of observational data in LakeBeD-US is given in Table 3 and Fig. 4. The230

minimum time range of observed values for any lake in the dataset is five years, while seven NTL-LTER lakes have over 40

years of data. High-frequency data collection began between 2003 and 2006 for select NTL-LTER lakes, while the majority

of high-frequency data collected comes from NEON starting in 2017. The Virginia Reservoirs LTREB and NWT-LTER high-

frequency sensors were launched in 2013 and 2018, respectively. The longer-running high frequency programs measure fewer

water quality variables (typically temperature, dissolved oxygen, and PAR) relative to the newer programs that have many235

additional variables including NO3, fluorescent dissolved organic matter (fDOM), and chlorophyll a. Observations are also

not distributed evenly throughout the year. Observations from May through October, half the year during the ice-free season in

temperate regions, make up 76.4% of the total number of observations in the dataset. However, there are observations present

during winter months from lakes that do not freeze and from limited under-ice observations (e.g., Lottig, 2022).

The number of depths available for each variable in each lake at low- and high-frequencies are given by Tables 4 and 5. The240

number of depths sampled and at what intervals they are sampled is highly dependent on the water quality parameter being

measured. Among the manually sampled data, variables that can be measured via a sonde cast (e.g., water temperature and

dissolved oxygen) are generally captured at a high spatial resolution with intervals of every 0.5 or 1 meter depending on the

depth of the lake. Variables that are much more expensive or difficult to measure, such as dissolved nutrients, are generally

measured at a much lower spatial resolution, sometimes only capturing the surface waters. Spatial resolution of high frequency245
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Table 3. Availability of observations by lake in LakeBeD-US-EE. Counts for number of observations include all depths.

Lake

ID
Lake Name

Low Fre-

quency

Variables

Low Fre-

quency

Observa-

tions

Low Frequency

Time Series

High Fre-

quency

Variables

High Fre-

quency

Observa-

tions

High Frequency

Time Series

AL Allequash Lake 12 31546 1981-2022

BARC Lake Barco 11 2991 2014-2022 6 31836265 2017-2023

BM Big Muskellunge Lake 12 56262 1981-2022

BVR Beaverdam Reservoir 11 11477 2013-2023 5 5186155 2013-2024

CB Crystal Bog 12 16471 1981-2022 3 41784342 2005-2022

CR Crystal Lake 12 59176 1981-2022

CRAM Crampton Lake 11 5877 2015-2022 6 16938998 2017-2023

FCR Falling Creek Reservoir 11 23963 2013-2023 7 6641501 2013-2024

FI Fish Lake 12 27045 1996-2022

GL4 Green Lake 4 12 5331 1998-2023 4 1013065 2018-2023

LIRO Little Rock Lake 11 2856 2017-2022 6 18890971 2017-2023

ME Lake Mendota 13 37756 1995-2022 6 122268124 2006-2023

MO Lake Monona 12 31294 1995-2022

PRLA Prairie Lake 11 2043 2014-2022 6 13331185 2017-2023

PRPO Prairie Pothole 11 1586 2014-2022 6 12717778 2017-2023

SP Sparkling Lake 12 55010 1981-2022 3 68603864 2004-2022

SUGG Lake Suggs 11 1317 2014-2022 6 23744154 2017-2023

TB Trout Bog 12 29337 1981-2022 3 77620538 2003-2022

TOOK Toolik Lake 11 4365 2016-2022 6 6267990 2017-2023

TR Trout Lake 12 77402 1981-2022 3 62471497 2004-2023

WI Lake Wingra 12 8293 1996-2022

measurements varies by the monitoring institution, with some lakes focusing primarily on the surface waters while others

capture a greater number of depths.

3.2 Water quality characteristics

The distributions of select lake attributes and water quality variables are given in Fig. 5 and Fig. 6. A wide range of lakes

are present in LakeBeD-US in terms of surface area, depth, and indicators of trophic status. Of note, water quality variables250

often follow a non-normal distribution (Helsel, 1987; Lim and Surbeck, 2011), and LakeBeD-US is no exception (Fig. 6). This

skewness is characteristic of environmental data, and should be considered by users of the dataset.
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Table 4. Number of depths, rounded to 0.5m, with more than 200 observations measured at a high frequency for each variable in each lake.

Lake Name Chl a DO fDOM Inflow NO3 PAR Phycocyanin Temp

BARC 9 9 9 1 2 7

BVR 3 25 3 1 25

CB 3 4 7

CRAM 12 12 12 1 2 10

FCR 1 21 1 1 1 1 21

GL4 2 7 2 19

LIRO 12 12 12 1 2 10

ME 1 1 1 2 1 29

PRLA 4 4 4 1 2 5

PRPO 3 3 3 1 2 3

SP 1 1 31

SUGG 5 5 5 1 2 3

TB 3 2 17

TOOK 17 17 17 1 2 10

TR 1 1 42

4 Benchmark task

4.1 Computer Science Edition benchmark

In this section, we develop a machine learning model to predict the daily median dissolved oxygen concentration (do) and255

water temperature (temp) in Lake Mendota to showcase the utility and applicability of LakeBeD-US-CSE for the machine

learning task of multivariate time series prediction.

4.1.1 Data selection

LakeBeD-US-CSE provides two datasets for Lake Mendota: low-frequency and high-frequency. Both temporal frequencies

were considered in this benchmark. Observations from the low- and high-frequency datasets with the flag codes indicated in260

Table 6 were selected for use in the benchmarking task.

While LakeBeD-US features data from across many discrete depths through time, we considered data across a single depth

of Lake Mendota to simplify the benchmark. This required considering the percentage of missing values at each depth that

the low- and high-frequency datasets reported. With the exception of water temperature, all high-frequency variables were

measured only at a depth of 1 meter. Similarly, the low-frequency data reported large percentages (>85-90%) of missing265

values for all variables across all depths. Among all variables reported in the datasets, we selected chlorophyll a (chla_rfu),
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Table 5. Number of depths, rounded to 0.5m, with more than 2 observations manually sampled for each variable in each lake. Secchi depth

is 1D variable measured in all lakes that is not shown in this table.

Lake ID NH4 Chl a DIC DOC DO DRP Inflow NO3 NO2 NO2+NO3 POC PAR TN TP Temp

AL 10 11 6 6 9 8 10 17 6 9 11

BARC 1 1 1 1 13 1 1 1 1 13

BM 18 17 14 14 21 16 19 22 14 15 22

BVR 10 10 12 26 12 12 1 12 12 26

CB 5 4 2 2 6 5 5 7 2 3 6

CR 18 15 14 14 21 17 19 22 13 16 21

CRAM 1 1 1 1 36 1 1 1 1 36

FCR 6 10 13 22 13 13 1 13 13 22

FI 10 13 10 10 44 5 10 23 10 10 44

GL4 5 5 5 20 16 3 12 3 3 16

LIRO 1 1 1 1 18 1 1 1 1 18

ME 14 8 13 15 49 12 14 5 25 14 15 49

MO 11 8 12 12 45 11 11 21 11 12 45

PRLA 1 2 1 1 7 1 1 1 1 7

PRPO 1 1 1 1 5 1 1 1 1 6

SP 18 16 14 14 20 18 20 21 14 15 21

SUGG 1 2 1 1 4 1 1 1 1 4

TB 10 9 8 8 9 8 10 15 8 8 10

TOOK 1 1 1 1 43 1 1 1 1 1 43

TR 24 32 18 18 37 17 28 30 18 20 37

WI 2 4 2 2 9 2 2 5 2 2 9

photosynthetic active radiation (par) and phycocyanin (phyco) from the datasets to be used as covariates due to the high

number of observations present for these variables in the high-frequency data.

4.1.2 Data wrangling

The following steps were taken to prepare the data for modeling:270

1. Timescale Standardization: The timescales of the low- and high-frequency datasets were discontinuous, containing

large multi-day gaps in the time series. We created two uniform time series with no discontinuities at the resolution

that was permitted by each dataset: daily resolution for the low-frequency data and minutely resolution for the high-

frequency data from the earliest to the most recent datetimes in both datasets. The new low-frequency dataset’s timescale

spanned from 9 May 1995 to 1 November 2022 while the new high-frequency dataset’s timescale spanned from 28 June275
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Figure 5. Lakes plotted within gradients of: a) Surface area in hectares compared to the maximum depth of the lake in meters. Points

and labels are colored according to the mean summertime Secchi depth in meters. b) Mean summertime surface total phosphorus (TP)

concentration in micrograms per liter compared to the mean summertime surface dissolved organic carbon (DOC) concentration in milligrams

per liter. Points and labels are colored according to the mean summertime surface concentration of dissolved inorganic carbon (DIC) in

milligrams per liter. Green Lake 4 (GL4) has no observational data for DIC. The surface is defined as the minimum depth sampled for the

given time period, which was always within the surface mixed layer of the lake. Summer is defined as the months of June, July, and August.

2006 02:31:00 LT to 19 November 2023 15:26:00 LT. This step was critical to providing a more accurate value for the

percentage of missing data.

2. Data Harmonization: To mitigate the issue of high percentages of missing observations, the low- and high-frequency

datasets were merged into a single dataset. Since the low-frequency dataset begins in 1995, as opposed to the high-

frequency dataset which begins in 2006, the resulting harmonized dataset had an even larger percentage of missing280

values. From this merged dataset, we selected only the observations recorded since the start of the high-frequency dataset

to minimize the amount of imputation that would be required.

3. Downsampling and Aggregation: The harmonized dataset was downsampled to a daily resolution by calculating the

median value within each day.

4. Splitting and Sliding Window Sampling: The data was split 80%-10%-10% chronologically into a training-validation-285

testing split. The training split was standardized (Z-score normalized) and the standardization parameters were applied

to the validation and testing splits. After standardization, windowed samples were generated for each split. A windowed

sample consists of 21 days of observations of all features (chla_rfu, par, phyco, do, temp) as inputs, referred to

as a "lookback window", and the subsequent 14 days of do and temp as targets, referred to as a "horizon window". For
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Figure 6. Distributions of observed values for dissolved inorganic carbon (DIC), dissolved oxygen concentration (DO), dissolved organic

carbon (DOC), Secchi depth, temperature, total nitrogen concentration (TN), and total phosphorus concentration (TP) across all observations,

after QA/QC, of all lakes in LakeBeD-US-EE.

Table 6. Acceptable flag codes for selected data used in the LakeBeD-US-CSE benchmark. Not all the flag codes listed are relevant to the

variables used in the benchmark task, but all are flags we would consider acceptable within QA/QC steps for most tasks using LakeBeD-US.

Flag Description

0 No flag

5 Average of duplicate analyses

10 Nonstandard methods

19 Value below detection limit; set to zero

23 Negative value set to zero

25 Sensor was off during part of the averaged period

32 Date is accurate but time is inaccurate

43 Sample run using NPOC (non-purgeable organic

carbon) method due to high inorganic carbon val-

ues

47 Flagged with no explanation

51 Secchi depth hit bottom (calculated for NEON

Lakes only)

52 Unknown depth near surface. Labeled as 0.5m
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Table 7. Start and end dates of each lookback and horizon window for the first and last samples in each split.

Split Sample Window Start Date End Date

Training

First
Lookback 2006-06-28 2006-07-18

Horizon 2006-07-19 2006-08-01

Last
Lookback 2020-04-23 2020-05-13

Horizon 2020-05-14 2020-05-27

Validation

First
Lookback 2020-05-28 2020-06-17

Horizon 2020-06-18 2020-07-01

Last
Lookback 2022-01-18 2022-02-07

Horizon 2022-02-08 2022-02-21

Testing

First
Lookback 2022-02-22 2022-03-14

Horizon 2022-03-15 2022-03-28

Last
Lookback 2023-10-16 2023-11-05

Horizon 2023-11-06 2023-11-19

Table 8. Percentage of missing values per variable in each split.

Split
Percentage of Missing Values

chla_rfu par phyco do temp

Training 49.636 81.527 51.977 54.131 43.97

Validation 39.055 35.433 3.850 38.898 34.646

Testing 32.390 42.610 32.390 30.818 32.075

example, if we considered the observations of all features from January 1st to January 21st as the lookback window, the290

do and temp observations from January 22nd to February 4th would be the horizon window. The subsequent sample

would be formed by "sliding the (lookback and horizon) window" by one day into the future (i.e. the second sample’s

lookback window would span January 2nd to January 22nd and the horizon window would span from January 23rd to

February 5th). The sampling was carried out such that the horizon window of the last sample would not extend farther

than the end of each respective split to avoid data leakage between splits. The start and end dates of the lookback and295

horizon window of the first and last sample in each split are given in Table 7.

5. Imputation: Prior to windowed sampling, the percentages of missing values for each split were calculated. These values

are listed in Table 8.

The missing values in the input lookback windows for each split were imputed using the Self-Attention-based Imputa-

tion for Time Series (SAITS) method (Du et al., 2023). Traditional imputation techniques, such as spline interpolation300
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Table 9. SAITS imputation model hyperparameters.

Hyperparameter Value

Sequence length 21

Number of features 5

Number of layers in the 1st and 2nd DMSA blocks 2

Model embedding dimensionality 256

Multi-head DMSA mechanism headcount 4

DMSA mechanism key and query dimensionality 64

DMSA mechanism value dimensionality 64

Feed-forward layer dimensionality 128

Fully-connected layer dropout rate 0.1

Epochs 50

Batch size 32

and k-nearest neighbors, often rely on assumptions about simple relationships between adjacent data points. In contrast,

SAITS leverages a self-attention mechanism to identify and emphasize relevant information across the entire dataset,

even when pertinent data points are temporally distant. This approach allows SAITS to effectively capture complex

temporal patterns and inter-variable relationships. During training, SAITS introduces artificial missing values into the

dataset and attempts to impute them. By minimizing the discrepancy between its imputations and the original values,305

SAITS learns to accurately reconstruct missing data, resulting in more reliable and comprehensive datasets for analysis.

A SAITS model was trained on the windowed samples from the training split using the hyperparameters specified in

Table 9 and applied on the input lookback windows of the training, validation and testing splits. Since no ground truth

for the dataset was present, the quality of the imputation could not be empirically measured and instead was inferred310

through the predictive skill of the model. The target horizon windows were not imputed because it would have been

difficult to identify if strong performance of the model was a result of a good model or an overly simplistic imputation

(e.g., a simple horizontal line).

4.1.3 Modeling

The components of the modeling process used for our benchmark are outlined below. All modeling was conducted using315

PyTorch (Paszke et al., 2019).

– Model Architecture: A sequence-to-sequence (seq2seq) long short-term memory recurrent neural network (LSTM-

RNN) was constructed to predict dissolved oxygen concentration and water temperature. Seq2seq modeling arose from

the field of natural language processing, specifically neural machine translation (NMT; Cho et al., 2014; Sutskever et al.,
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2014). In NMT, given an input sentence in one language, we wish to translate the sentence to another language, using a320

neural network, such that the translation has semantic meaning and obeys syntax of the target language. Observations in

a time series, like words in a sentence, have an inherent temporal ordering. Thus, the problem of time series prediction

conveniently lends itself to this modeling paradigm.

A seq2seq model follows an autoencoder architecture, comprising two main components: an encoder and a decoder. The

encoder is built on an LSTM-RNN. It processes the input data in a sequential manner, mapping the input to a high-325

dimensional vector, called a "hidden state", at each timestep of the input. This hidden state exists in a latent feature

space (also referred to as embedding space) which can abstractly be thought of as a summary of the input sequence

up to that moment in time. When the encoder has encoded the final timestep of the input sequence into a hidden state,

the final hidden state vector now contains a summary of the entire input time series. This final hidden state is referred

to as a "context vector" that encapsulates the critical information of the sequence in a compressed form. The decoder,330

another LSTM-RNN, uses this context vector as a foundation to generate the desired target sequence. Operating in an

autoregressive manner, the decoder predicts each timestep in the future sequence, feeding each prediction back as input

to inform the next. This autoregressive process continues until the full sequence in the prediction window is generated.

– Training Strategy

– Cost Function: The parameters of the model were trained by minimizing the the root mean square error (RMSE)335

between the predicted target horizon window and the observed horizon window. Since the target horizon windows

in each sample were not imputed, a masked loss computation was employed. In situations where the observed hori-

zon window contained missing observations, the error was only computed between observations that were jointly

present in the prediction and the observed horizon window. If the horizon window contained no observations, then

the sample was omitted from the error computation. The RMSE cost function was minimized using the Adaptive340

Moment Estimation (AdaM) optimizer and a "Reduce Learning Rate on Plateau" learning rate scheduler. Learning

rate scheduling is a technique to adaptively adjust the learning rate during training based on the model’s perfor-

mance on the validation split. The core idea is to reduce the learning rate when progress stalls, helping the model

to escape saddle points or local minima in the cost landscape, thereby potentially achieving a better final result.

– Regularization: We leveraged early stopping and weight decay regularization. Early stopping is a regularization345

technique that mitigates overfitting of the model by monitoring the performance on the validation split. If the

validation cost starts to increase over time, the model halts the training process. Weight decay is a regularization

technique that operates by subtracting a fraction of the previous weights when updating the weights during training,

effectively making the weights smaller over time. This subtraction of a portion of the existing weights ensures that

during each iteration of training, the model’s parameters are nudged towards smaller values.350
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Table 10. Final model architecture and learning hyperparameters.

Hyperparameter Value

Hidden state dimensionality 8

Encoder recurrent layers 1

Decoder recurrent layers 1

Batch size 32

Epochs 100

Initial Learning Rate 8.799× 10−4

Learning rate decay factor 0.1

Learning rate scheduler patience 3 epochs

Learning rate scheduler threshold 1× 10−4

Weight Decay 3.0187× 10−4

Early stopping patience 5 epochs

Table 11. Model performance on each data split as measured with standardized RMSE across five trials.

Split RMSE

Training 0.44± 0.02

Validation 0.42± 0.02

Testing 0.36± 0.01

– Hyperparameter Selection: Model architecture and learning hyperparameters were optimally chosen using the "Tree-

structured Parzen Estimator" algorithm in the Optuna library by minimizing the validation cost over 50 trials (Akiba et

al., 2019). The final hyperparameters are given in Table 10.

4.1.4 Results

The learning curve shown in Fig. 7a shows the performance of the model on the training and validation splits at each epoch355

in the training process while the learning rate schedule in Fig. 7b shows the reduction in the learning rate of the model until

convergence. The final standardized RMSE of the model on each data split is presented in Table 11.

The predictions for dissolved oxygen concentration and water temperature for the training, validation and testing splits are

shown in Fig. 8. For a given split, after the 21st day in the window, a 14-day ahead series of predictions is generated on each

day. This results in multiple, potentially up to 14, overlapping predictions for a single day. We consolidated these overlapping360

predictions by calculating the median predicted value for each day across all predictions. This yields a single, continuous series

of predictions for an entire split’s timeline. The predictions shown in Fig. 8 were obtained by continuous predictions from each

trial in each split. The confidence interval was generated by taking the minimum and maximum values for each datetime across
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Figure 7. Training cost, validation cost, and learning rate of machine learning benchmark. The cost, a measure of model error, for the training

(a) and validation (b) splits is shown as a function of the number of epochs. The learning rate, or amount of change between iterations of the

model in response to error, is shown (c). Five trials are shown in different colors.

Table 12. Mean masked, unstandardized RMSE and standard deviation between the continuous timeseries predictions and observed values

for each split across all trials. Dissolved oxygen (do) is reported in milligrams per liter and water temperature (temp) is reported in degrees

Celsius.

Variable
RMSE

Training Validation Testing

do 1.59± 0.05 1.61± 0.19 1.40± 0.09

temp 3.44± 0.08 3.65± 0.22 3.78± 0.12

each continuous series of predictions. Table 12 shows the unstandardized RMSE between the continuous predictions from each

trial and the observed dissolved oxygen concentration and water temperature across the entire time series within each split.365

4.1.5 Benchmark task discussion

With our benchmark task, we showcase the applicability of LakeBeD-US to multivariate timeseries prediction of two water

quality variables. Our machine learning model performed comparably to existing process-based models for the purpose of

predicting dissolved oxygen concentration. In predicting the dissolved oxygen concentration of the surface of Lake Mendota,

an iteration of the GLM-AED2 model (Hipsey et al., 2019) calibrated by Ladwig et al. (2021) reported a RMSE of 2.77370

mgL−1 and a model constructed by Hanson et al. (2023) reported an RMSE of 1.45 mgL−1. Our model predicted dissolved

oxygen in the testing dataset with an RMSE of 1.40 mgL−1 (Table 12), which is comparable to the aforementioned process-
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Figure 8. Machine learning model predictions of surface water dissolved oxygen and temperature. Observed (red) and predicted (blue)

dissolved oxygen (a, c, e) and temperature (b, d, f) are shown. Training (a, b), validation (c, d), and testing (e, f) splits are shown. The grey

shaded areas represent the confidence intervals.

based water quality models. When predicting temperature our model did not perform as well as the process-based models

that reported RMSE values in the range of 1.30°C, less then half our machine-learning model’s error (Table 12). While the

predictions generated by our model have room for improvement, they showcase that LakeBeD-US-CSE can be used to create375

water quality models with machine learning. Water temperature in particular is a variable that has been shown to be a useful

tool for comparison of model performance in ecological tasks (Read et al., 2019).

5 Discussion

In this paper, we introduce LakeBeD-US: a dataset designed to foster the advancement of machine learning technologies

in ecological applications. By combining spatially and temporally extensive datasets, we offer a dataset that can be used in380
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benchmarking tasks that address the scales of variability in the drivers of lake water quality. LakeBeD-US is compatible with

ecological analysis, novel computer science methodologies, or both through the interdisciplinary paradigm of KGML.

5.1 Limitations and considerations for use of LakeBeD-US

LakeBeD-US is not a representative sample of the water quality gradients found in lakes of the world (Verpoorter et al., 2014;

Messager et al., 2016), but it is representative of water quality data that are available. Limnological sampling efforts tend to385

favor large, easily accessible lakes that are used more frequently for their natural resources, and most samples are taken during

the ice-free season (Stanley et al., 2019). A majority of the observations in LakeBeD-US represent the ice-free season (Fig. 4)

and 13 of the 21 lakes included in the dataset are located within the state of Wisconsin (Fig. 1), with the most well-observed

lake being the large, eutrophic, and heavily utilized Lake Mendota (Table 3). Despite this, LakeBeD-US still captures a variety

of lake characteristics and geographic locations that enable users to investigate those attributes’ relationship with water quality390

dynamics (Fig. 5).

LakeBeD-US does not account for methodological or equipment differences among its datasets. Sensors and laboratory

procedures change over time and between monitoring institutions, which is information not present in LakeBeD-US, but is

present in the source datasets (listed in Appendix B1). The harmonization procedure of LakeBeD-US assumes the accuracy

and precision of the observed value of the source data, excepting any quality flags that have been applied to the data. Potential395

methodological differences should be investigated when encountering any unexplained changes in water quality trends present

in LakeBeD-US, particularly with data that use RFU.

The observed water quality variables exhibit a heavy skewness that is common among of data of its kind (Fig. 6; Helsel,

1987; Lim and Surbeck, 2011). Considerations should be taken when analyzing or using this data to limit the effect of this

skewness, as omitting flagged values or outliers may not be enough (Virro et al., 2021). Transformations may need to be400

applied to the data before use, such as the standardization applied in the benchmark task of this paper.

Unlike many benchmark datasets, LakeBeD-US contains numerous missing values. This is a problem typical of environ-

mental data. Fortunately, the handling of missing values in environmental data by machine learning algorithms is an active area

of research (Rodríguez et al., 2021), and LakeBeD-US can act as a testing ground for developing novel methods.

5.2 LakeBeD-US for ecological applications405

The LakeBeD-US dataset has numerous applications for studying lake water quality. Previous studies using its source data

have provided insights into many of the drivers and dynamics of water quality (e.g., Hanson et al., 2006; Ladwig et al., 2021;

Thomas et al., 2023). The cross-region synthesis of LakeBeD-US offers new opportunities to further advance our understanding

of these dynamics. For instance, high-frequency data can be used to assess the impact of pulse disturbances, such as heatwaves

or storms, on water quality across geographic or trophic gradients. Similarly, high-frequency chlorophyll data can offer insights410

into the prevalence of algal blooms in different regions. The long-term monitoring data within LakeBeD-US is essential for ex-

amining changes in trophic state across decades. These insights can emerge from both direct data analysis and the development

of lake water quality models.
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5.3 LakeBeD-US as a machine learning benchmark

The benchmarking task in Section 4 is a straightforward example of how machine learning can be applied to lake water415

quality prediction using LakeBeD-US-CSE. The machine learning model performed comparably to many existing process-

based models when predicting dissolved oxygen concentration and temperature in Lake Mendota’s surface waters (Section

4.1.5; Hanson et al., 2023; Ladwig et al., 2021). This showcases the applicability of machine learning to ecological problems,

and the error in the model showcases the utility of LakeBeD-US as a benchmark dataset. Machine learning algorithms other

than the LSTM-RNN used here may have a different performance for this task, an understanding of which is a vital part of420

the model selection process in ecological studies. The variety of lakes in LakeBeD-US enables future studies to investigate

the performance of machine learning, mechanistic, and hybrid knowledge-guided machine learning models when making

predictions across multiple lakes, trophic statuses, or temporal frequencies.

LakeBeD-US was assembled as part of an effort to advance the science of knowledge-guided machine learning (KGML)

in ecological applications. There are many potential uses of the dataset for investigating water quality dynamics using these425

techniques. Transfer learning is the use of a machine learning model trained on a number of source tasks applied to a new

target task with limited data (Karpatne et al., 2024), which is a method that has been applied to lakes (Willard et al., 2021).

LakeBeD-US features a varied selection of lakes, making it suitable for the application of transfer learning methods for lake

systems. Building upon this idea of transfer learning, there has been recent advancement in the application of foundation

models to environmental data, which can be pre-trained on a broad, heterogeneous dataset and then fine-tuned on a more430

specific dataset to a given task (Lacoste et al., 2023; Nguyen et al., 2023; Karpatne et al., 2024). LakeBeD-US may prove

useful in the application of foundation models, or other KGML methods (e.g., modular compositional learning; Ladwig et al.,

2024) to water quality.

5.4 Potential for the expansion of LakeBeD-US

While the number of lakes in LakeBeD-US is modest relative to national- or global-scale studies (e.g., Soranno et al., 2017;435

Solomon et al., 2013), the frequency and duration of its data provide unique opportunities for expanding scientific under-

standing of aquatic ecosystem dynamics. Ensuring that long-term water quality datasets meet the rigorous requirements for

LakeBeD-US requires working with the scientists and organizations who collect the data. This will have the added benefit

of involving more lake ecologists in water quality modeling endeavors (Hanson et al., 2016). The Global Lake Ecological

Observatory Network (GLEON) is an example of this type of community involvement in data collection, harmonization, and440

analysis (Weathers et al., 2013; Hamilton et al., 2015).

Updates to include more data, more lakes, and more water quality variables are possible and collaboration in the creation of

new additions to LakeBeD-US is encouraged. The data provenance and versioning tools of the Environmental Data Initiative

and Hugging Face repositories make it possible for specific versions of both LakeBeD-US-EE and LakeBeD-US-CSE to be

referenced in future studies. The source code to harmonize LakeBeD-US-EE searches the source repository for the latest445

release of the source data, enabling new updates to the existing sources to be integrated seamlessly, as long as major format
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changes in the source data do not occur. Adding new data sources to LakeBeD-US-EE is possible, requiring that a new R script

to download and harmonize the observational data be written, and the Data_Controller.R and Lake_Info.R files in the source

code be updated accordingly. LakeBeD-US-EE’s use of the Parquet format allows for additions to the dataset without having to

rewrite the entirety of the dataset’s files. LakeBeD-US-CSE is created dynamically based on the content of LakeBeD-US-EE,450

allowing for parity between the two versions. Stewards of long-term water quality monitoring data are encouraged to become

contributors to LakeBeD-US through the creation of modular additions to the Parquet dataset. These modules would emulate

the design of LakeBeD-US-EE, namely the R scripts to format the data and write it to Parquet files, meaning that users of the

data could seamlessly add the contents of any community-made module to the base LakeBeD-US-EE data. There would then

be potential for integration of the data modules into the base LakeBeD-US in future revisions if that collaboration is desired.455

6 Conclusions

LakeBeD-US is a dataset of lake water quality observations combining high- and low- frequency observations from 21 lakes

across the United States collected by different monitoring institutions for the intention of AI benchmarking. This dataset is one

of the first of its kind to capture water quality at a high spatial and temporal resolution in the selected lakes and be available

in formats conducive to both ecological analyses and novel computer and data science approaches. As a benchmark dataset,460

LakeBeD-US was designed to be used to advance the science of knowledge-guided machine learning and foster collaboration

between ecologists and computer scientists.

There are many planned and potential uses for LakeBeD-US. As a benchmark dataset designed with machine learning in

mind, LakeBeD-US offers an opportunity to test and compare new machine learning methodologies in an ecological context.

Aspects of LakeBeD-US such as data skewness and missing values are prevalent in environmental data and this dataset offers465

opportunities for the scientific community to investigate methods for mitigating these issues for machine learning models. This

collection of data is also valuable for the investigation of water quality dynamics using statistical or mechanistic models. These

advances in water quality modeling, prediction, and forecasting are vital in creating a greater understanding of aquatic systems

and informing more thoughtful utilization of aquatic resources.

Code and data availability. LakeBeD-US: Ecology Edition is available in the Environmental Data Initiative repository (https://doi.org/10.470

6073/pasta/c56a204a65483790f6277de4896d7140; McAfee et al., 2024). LakeBeD-US: Computer Science Edition is available in the Hug-

ging Face repository (http://doi.org/10.57967/hf/3771; Pradhan et al., 2024).

Appendix A: Table and Variable Metadata
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Table A1. LakeBeD-US: Ecology Edition Lake Information table metadata

Column Description Data type

lake_id Identifier for a lake, common with the observational data String

lake_name Common name for a lake String

institution Monitoring institution responsible for collecting data on a lake. String

latitude Latitude of the deep hole of a lake in decimal degrees Double

longitude Longitude of the deep hole of a lake in decimal degrees Double

elevation_m Elevation of the lake in meters, determined by the USGS The National Map Bulk Point

Query Service

Double

area_ha Surface area of the lake in hectares Double

mean_depth_m Mean depth of the lake in meters, calculated as surface area / volume Double

max_depth_m Maximum depth at the deep hole in meters Double

residence_time_yr Hydrologic residence time of a lake in years. Values are general as residence time varies

temporally.

Double

known_manipulations List of known manipulations of the lake enacted by humans. String

Table A2. LakeBeD-US: Ecology Edition High and Low frequency observation tables metadata

Column Description Data type

source Source of a specific data point, in the form [repository, either EDI or NEON] [identifier in repository] String

datetime Date and time of observation Timestamp

lake_id Code identifying a lake, matching with the lake information table String

depth Depth of observation in meters Double

variable Variable observed. One of chla (chlorophyll a), do (dissolved oxygen), fdom (flourescent dissolved

organic matter), temp (temperature), phyco (phycocyanin), tp (total phosphorus), drp (dissolved

reactive phosphorus), tn (total nitrogen), no2 (nitirite), no3 (nitrate), no3no2 (combined nitrite and

nitrate), nh4 (ammonium), dic (dissolved inorganic carbon), doc (dissolved organic carbon), poc

(particulate organic carbon), par (photosynthetically active radiation), secchi (Secchi depth), or

inflow (discharge rate into lake)

String

unit Unit of observation. One of RFU (Relative Fluorescence Units), MicroGM-PER-L (micrograms per

liter), MilliGM-PER-L (milligrams per liter), DEG_C (degrees Celcius), MicroMOL-PER-M2-SEC

(micromoles per meters squared per second), M (meters), or M3-PER-SEC (cubic meters per second)

String

observation value of observation Double

flag Quality code of observation. See the flag guide for details. Integer
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Table A3. LakeBeD-US: Ecology Edition Flag Guide table metadata. Citations for source datasets can be found in Appendix B1. Each row

of the Flag Guide table corresponds to a definition, where common definitions between flags of data sources are aligned.

Column Description Source Datasets

LakeBeD-US Flag Quality flag used in LakeBeD-US

LakeBeD-US Definition Definition for quality flag used in LakeBeD-US

NTL HF Flag Quality flag used in high-frequency datasets from NTL-LTER Magnuson et al. (2023c-h,

2024b-e)NTL HF Definition Definition for quality flag used in high-frequency datasets from NTL-LTER

NTL LF Flag Quality flag used in manually sampled datasets from NTL-LTER Magnuson et al. (2023a-b,

2023i-j, 2024a)NTL LF Definition Definition for quality flag used in manually sampled datasets from NTL-LTER

VR-LTREB HF Flag Quality flag used in the high-frequency conductivity, temperature, and depth

(CTD) dataset from Virginia Reservoirs LTREB
Carey et al. (2024d)

VR-LTREB HF Definition Definition for quality flag used in the high-frequency conductivity, temperature,

and depth (CTD) dataset from Virginia Reservoirs LTREB

VR-LTREB Inflows Flag Quality flag used in the inflow dataset from Virginia Reservoirs LTREB
Carey et al. (2024b)

VR-LTREB Inflows Definition Definition for quality flag used in the inflow dataset from Virginia Reservoirs

LTREB

VR-LTREB Catwalk Flag Quality flag used in the high-frequency Falling Creek Reservoir water quality

dataset from Virginia Reservoirs LTREB
Carey et al. (2024e-f)

VR-LTREB Catwalk Definition Definition for quality flag used in the high-frequency Falling Creek Reservoir

water quality dataset from Virginia Reservoirs LTREB

VR-LTREB Water Chem Flag Quality flag used in water chemistry dataset from Virginia Reservoirs LTREB
Carey et al. (2024g)

VR-LTREB Water Chem Definition Definition for quality flag used in water chemistry dataset from Virginia Reser-

voirs LTREB

VR-LTREB Secchi Time Flag Quality flag used for Secchi data from Virginia Reservoirs LTREB
Carey et al. (2024a)

VR-LTREB Secchi Time Definition Definition for quality flag used in Secchi data from Virginia Reservoirs LTREB

VR-LTREB Secchi/YSI Flag Quality flag used in the sondecast dataset from Virginia Reservoirs LTREB
Carey et al. (2024a)

VR-LTREB Secchi/YSI Definition Definition for quality flag used in sondecast dataset from Virginia Reservoirs

LTREB

VR-LTREB Chla Flag Quality flag used in the filtered chlorophyll a dataset from Virginia Reservoirs

LTREB
Carey et al. (2024c)

VR-LTREB Chla Definition Definition for quality flag used in the filtered chlorophyll a dataset from Virginia

Reservoirs LTREB

NWT WQ Flag Quality flag used in water quality datasets from NWT-LTER
McKnight et al. (2021, 2023)

NWT WQ Definition Definition for quality flag used in water quality datasets from NWT-LTER

NWT HF Flag Quality flag used in high-frequency datasets from NWT-LTER
Johnson et al. (2024a-d)

NWT HF Definition Definition for quality flag used in high-frequency datasets from NWT-LTER

NEON Flag Quality flag used in NEON datasets
NEON (2024a*-f, 2024h-i)

NEON Definition Definition for quality flag used in NEON datasets

*LakeBeD-US lists the maximum depth of a lake for Secchi depth when the Secchi depth hits the bottom. Secchi data from NEON (2024a) lists when the disk hits the lake bottom,

and the maximum depth measured, but reports a missing value for Secchi when this happens. In these cases, LakeBeD-US lists the maximum depth as the Secchi depth and applies a

flag indicating this substitution was made. This flag does not originate from NEON (2024a).
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Table A4. Metadata for LakeBeD-US: Computer Science Edition. All possible columns from the high- and low-frequency datasets and 1D

and 2D variables are listed.

Column Name Description/Water Quality Variable Units Dimensionality

datetime Time of the observation in the lake’s local time

flag Quality flag for the observed value

depth Depth of the observed value m

chla_rfu Chlorophyll a RFU 2D

chla_ugl Chlorophyll a µg L−1 2D

do Dissolved oxygen mgL−1 2D

fdom Flourescent dissolved organic matter RFU 2D

temp Temperature °C 2D

phyco Phycocyanin RFU 2D

tp Total phosphorus µg L−1 2D

drp Dissolved reactive phosphorus µg L−1 2D

tn Total nitrogen µg L−1 2D

no2 Nitrite as nitrogen (NO2-N) µg L−1 2D

no3 Nitrate as nitrogen (NO3-N) µg L−1 2D

no3no2 Combined nitrite and nitrate as nitrogen (NO2+NO3-N) µg L−1 2D

nh4 Ammonium as nitrogen (NH4-N) µg L−1 2D

dic Dissolved inorganic carbon mgL−1 2D

doc Dissolved organic carbon mgL−1 2D

poc Particulate organic carbon mgL−1 2D

par Photosynthetically active radiation (light) µmolm−2 s−1 2D

secchi Secchi depth m 1D

inflow Surface water inflow into the lake ms−1 1D
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Appendix B: Citations for data used in LakeBeD-US

B1 Observational data sources475

Carey, C. C., Breef-Pilz, A., Wander, H. L., Delany, A. D., Haynie, G. K., Keverline, R. L., Kricheldorf, M. K., and Tipper,

E. M.: Secchi depth data and discrete depth profiles of water temperature, dissolved oxygen, conductivity, specific conduc-

tance, photosynthetic active radiation, oxidation-reduction potential, and pH for Beaverdam Reservoir, Carvins Cove Reser-

voir, Falling Creek Reservoir, Gatewood Reservoir, and Spring Hollow Reservoir in southwestern Virginia, USA 2013-2023

(12), Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/6c27a31ed56662c13016307d0bb99986, 2024a.480

Carey, C. C., Breef-Pilz, A., and Delany, A. D.: Discharge time series for the primary inflow tributary entering Falling

Creek Reservoir, Vinton, Virginia, USA 2013-2023 (12), Environmental Data Initiative [data set], https://doi.org/10.6073/

pasta/510534cd94e9cba40e2b0173e784c2b8, 2024b.

Carey, C. C., Breef-Pilz, A., Hoffman, K. K., Niederlehner, B. R., Haynie, G., Keverline, R., Kricheldorf, M., and Tipper,

E.: Filtered chlorophyll a time series for Beaverdam Reservoir, Carvins Cove Reservoir, Claytor Lake, Falling Creek Reser-485

voir, Gatewood Reservoir, Smith Mountain Lake, Spring Hollow Reservoir in southwestern Virginia, and Lake Sunapee in

Sunapee, New Hampshire, USA during 2014-2023 (4), Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/

bdea148e951b2dd11c74b51854c3aab5, 2024c.

Carey, C. C., Lewis, A. S. L., and Breef-Pilz, A.: Time series of high-frequency profiles of depth, temperature, dissolved oxy-

gen, conductivity, specific conductance, chlorophyll a, turbidity, pH, oxidation-reduction potential, photosynthetically active490

radiation, colored dissolved organic matter, phycocyanin, phycoerythrin, and descent rate for Beaverdam Reservoir, Carvins

Cove Reservoir, Falling Creek Reservoir, Gatewood Reservoir, and Spring Hollow Reservoir in southwestern Virginia, USA

2013-2023 (14), Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/b406e9a104dafb1b91e1ad85a19384db,

2024d.

Carey, C. C., Breef-Pilz, A., Delany, A. D., Hounshell, A. G., Lewis, A. S. L., Wander, H. L., Haynie, G., Kricheldorf, M., and495

Tipper, E.: Time series of high-frequency sensor data measuring water temperature, dissolved oxygen, conductivity, specific

conductance, total dissolved solids, chlorophyll a, phycocyanin, fluorescent dissolved organic matter, turbidity at discrete

depths, and water level in Beaverdam Reservoir, Virginia, USA in 2009-2023 (4), Environmental Data Initiative [data set],

https://doi.org/10.6073/pasta/31bb6047e0ac367c60a61884338799c4, 2024e.

Carey, C. C., Breef-Pilz, A., Daneshmand, V., Delany, A. D., and Thomas, R. Q.: Time series of high-frequency500

sensor data measuring water temperature, dissolved oxygen, pressure, conductivity, specific conductance, total dissolved

solids, chlorophyll a, phycocyanin, fluorescent dissolved organic matter, and turbidity at discrete depths in Falling

Creek Reservoir, Virginia, USA in 2018-2023 (8), Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/

7541e8d297850be7c613d116156735a9, 2024f.

Carey, C. C., Howard, D. W., Hoffman, K. K., Wander, H. L., Breef-Pilz, A., Niederlehner, B. R., Haynie, G., Keverline, R.,505

Kricheldorf, M., and Tipper, E.: Water chemistry time series for Beaverdam Reservoir, Carvins Cove Reservoir, Falling Creek
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Reservoir, Gatewood Reservoir, and Spring Hollow Reservoir in southwestern Virginia, USA 2013-2023 (12), Environmental

Data Initiative [data set], https://doi.org/10.6073/pasta/7d7fdc5081ed5211651f86862e8b2b1e, 2024g.

Hart, J., Dugan, H., Carey, C., Stanley, E., and Hanson, P.: Lake Mendota Carbon and Greenhouse Gas Measure-

ments at North Temperate Lakes LTER 2016 (22), Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/510

a2b38bc23fb0061e64ae76bbdec656fd, 2022.

Johnson, P., Yevak, S., Dykema, S., and Loria, K.: Chlorophyll-a data for the Green Lake 4 buoy, 2018 - ongoing. (5),

Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/2b90eb17f06898359280f68ce140ef47, 2024a.

Johnson, P. T. J., Yevak, S. E., Dykema, S., and Loria, K. A.: Dissolved oxygen data for the Green Lake 4 buoy, 2018

- ongoing. (6), Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/ded48fa1e3851adcd78b744e3d5b49de,515

2024b.

Johnson, P., Yevak, S., Dykema, S., and Loria, K.: PAR data for the Green Lake 4 buoy, 2018 - ongoing. (5), Environmental

Data Initiative [data set], https://doi.org/10.6073/pasta/cd2a197b4297259428d67c97d32f25b4, 2024c.

Johnson, P., Yevak, S., Dykema, S., and Loria, K.: Temperature data for the Green Lake 4 buoy, 2018 - ongoing. (5),

Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/5d1c305fda142f2af462dcdbf77b33ab, 2024d.520

Lottig, N.: High Frequency Under-Ice Water Temperature Buoy Data - Crystal Bog, Trout Bog, and Lake

Mendota, Wisconsin, USA 2016-2020 (3), Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/

ad192ce8fbe8175619d6a41aa2f72294, 2022.

Magnuson, J. J., Carpenter, S. R., and Stanley, E. H.: North Temperate Lakes LTER: Chemical Limnology of Primary Study

Lakes: Nutrients, pH and Carbon 1981 - current (60), Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/525

325232e6e4cd1ce04025fa5674f7b782, 2023a.

Magnuson, J. J., Carpenter, S. R., and Stanley, E. H.: North Temperate Lakes LTER: Chlorophyll - Trout Lake Area 1981

- current (32), Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/4a110bd6534525f96aa90348a1871f86,

2023b.

Magnuson, J. J., Carpenter, S. R., and Stanley, E. H.: North Temperate Lakes LTER: High Frequency Meteorological and530

Dissolved Oxygen Data - Sparkling Lake Raft 1989 - current (34), Environmental Data Initiative [data set], https://doi.org/10.

6073/pasta/9d054e35fb0b8d3a36b49b5e7a35f48f, 2023c.

Magnuson, J. J., Carpenter, S. R., and Stanley, E. H.: North Temperate Lakes LTER: High Frequency Meteorological and

Metabolism Data - Crystal Bog Buoy 2005 - present (14), Environmental Data Initiative [data set], https://doi.org/10.6073/

pasta/aa8d03b297cc86aaab404e4d25179a1a, 2023d.535

Magnuson, J. J., Carpenter, S. R., and Stanley, E. H.: North Temperate Lakes LTER: High Frequency Meteorological and

Metabolism Data - Trout Bog Buoy 2003 - present (26), Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/

6a281ee14843e7f80fff07e31d6e9cb0, 2023e.

Magnuson, J. J., Carpenter, S. R., and Stanley, E. H.: North Temperate Lakes LTER: High Frequency Water Tempera-

ture Data - Crystal Bog Buoy 2005 - current (10), Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/540

800e42bf5421eb3d601a07245ff5750e, 2023f.
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