
Response to Comments of Referee #2 

Thank you for the instructive and constructive comments for our paper. Those comments are very 

helpful for and serve as significant guidance for our research. We have studied the comments carefully 

and revised our manuscript accordingly. The changes in our manuscript are highlighted in red. The 

point-to-point responses to your questions/comments are listed as follows.  

 

Comments to the Author: 

This manuscript introduces the BRIGHT dataset, which is the first open building damage assessment 

dataset with global coverage, multi-hazard scenarios, multimodal imagery (Optical and SAR), and sub-

meter resolution. The paper systematically describes data collection, annotation, and quality control 

methods, and validates the dataset with multiple deep learning models, including cross-disaster 

transfer (zero-shot and one-shot), semi-supervised, and unsupervised approaches. The dataset 

demonstrates clear novelty and practical value, and it is of significant importance for advancing 

research and applications in disaster emergency response, remote sensing, and artificial intelligence. 

Generally, the paper is well structured, logically clear, with detailed results and strong value in terms 

of data sharing. Although the manuscript is rich in content, there are still details that require 

improvement, and I recommend appropriate revisions. 

Response: We really appreciate your spot-on summary of our manuscript and such a positive 

endorsement of our work. Our responses to your valuable comments and suggestions are itemized 

below.  

 

 

Q1: The explanation of annotation consistency and reliability remains insufficient. Although the 

authors state that the data annotations were obtained from multiple institutions such as Copernicus 

EMS, UNOSAT, and FEMA and then refined manually, there may be inconsistencies in how different 

institutions define “damaged” and “destroyed”. This could affect the consistency of annotations across 

disaster scenarios. It is therefore necessary to further elaborate on the process of unifying annotations, 

provide more detail on the manual refinement procedures.  

R1: We sincerely thank the reviewer for raising this crucial point. Ensuring annotation consistency 

across different data sources and disaster types is paramount for the reliability of BRIGHT as a 

benchmark dataset, and we appreciate the opportunity to elaborate on our rigorous unification and 

refinement process.  

Our approach was a multi-stage process designed specifically to address the potential 

inconsistencies the reviewer has identified:  



First, we recognized that the source agencies, while conceptually aligned, use slightly different 

grading scales. To address this, we established a single, standardized three-tier classification scheme 

for all events in BRIGHT: Intact (1), Damaged (2), and Destroyed (3), with clear definitions provided in 

Table 3 of our manuscript. This scheme served as the universal target for all incoming annotations. 

Secondly, the reviewer correctly notes that the exact terminology and number of damage tiers can 

differ between agencies. However, their underlying definitions for EO-based damage assessment are 

conceptually consistent. All agencies grade damage based on visually verifiable structural failure. This 

conceptual alignment provided a solid foundation for our initial, rule-based mapping. The “Destroyed” 

category was the most consistent. Labels such as “Destroyed”, “Collapsed”, or “Completely Damaged” 

from all sources were directly mapped to our Destroyed (3) class. For partial damage, we aggregated 

multiple intermediate tiers. Labels like “Severe Damage”, “Major Damage”, “Highly Damaged”, or 

“Moderately Damaged” were all mapped to our single Damaged (2) class. This conservative 

aggregation ensures that our “Damaged” category represents significant, visually verifiable structural 

harm.  

Recognizing that subtle inconsistencies could persist even after the rule-based mapping, the most 

critical stage of our process was a comprehensive manual review and refinement. This final, expert-led 

stage served as the ultimate guarantor of consistency, ensuring that every annotation conforms to our 

unified standard. This procedure, conducted using tools like Google Earth Pro, involved:  

 Correction of Inconsistencies: Our experts meticulously compared pre- and post-disaster VHR 

optical imagery for each annotation point to identify and correct discrepancies between the 

source label and the visual evidence.  

 Harmonization of Ambiguous Labels: We paid special attention to ambiguous source labels, such 

as “Possibly Damaged”. In these cases, if clear structural damage was not evident upon visual 

inspection, we adopted a conservative approach and re-classified the building as “Intact” to 

ensure a high confidence “Damaged” class.  

 Disaggregation of Area-Based Labels: Crucially, we identified and re-processed all area-based 

damage annotations (i.e., where an entire block or neighborhood was assigned a single damage 

category). Our team manually disaggregated these coarse labels, assigning a precise, building-

wise (point-level) damage label to each individual structure within the area. This step was vital 

for ensuring instance-level consistency and granularity across the entire dataset.  

Through this systematic process of standardization, mapping, and exhaustive expert-led refinement, 

we have made every effort to harmonize the annotations and ensure that the final labels in BRIGHT 

are as consistent and reliable as possible. We have now added these details to the manuscript to make 

our process more transparent.  

Here, we show the revised part below for your convenience.  



 

 

 

Q2: The treatment of class imbalance is not sufficient. Figure 5(d) shows that intact buildings account 

for over 80%, while destroyed buildings account for less than 7%. This severe imbalance directly affects 

the accuracy of recognizing destroyed classes. Although the authors employed the Lovasz loss function 

to partially alleviate the issue, this is still not enough to solve the problem. Is this imbalance one of the 

reasons for the relatively low performance of the subsequent experimental results?  

R2: We thank the reviewer for this insightful question. The reviewer has astutely identified one of the 

most significant and inherent challenges in the task of automated building damage assessment. 

First, we would like to clarify that this severe class imbalance is not a unique artifact of our dataset 

but rather a common characteristic of real-world post-disaster data. Disasters, even when severe, 

typically damage or destroy a minority of the buildings in an affected area. For instance, the widely 

used xBD dataset exhibits a similar long-tail distribution, with the “intact" class constituting the vast 

majority of labeled buildings (approximately 75%). The imbalance in BRIGHT, as shown in Figure 5(d), 

therefore realistically reflects the sparse nature of catastrophic damage. 

Second, we agree with the reviewer that this imbalance is indeed one of the reasons for the lower 

performance observed in our benchmark results. Unlike general land-cover mapping tasks, where 

classes tend to be more balanced, the rarity and variability of damage signatures make it especially 

difficult for models to learn robust and generalizable representations from a limited number of disaster 



events.   

Then, we wish to clarify the primary scope of our work. As a dataset and benchmark paper, our 

central contribution is to capture and present these real-world challenges in multimodal building 

damage mapping, including the severe class imbalance, to provide a realistic and challenging testbed 

for the community. Our objective is to establish baselines by evaluating existing models on this data, 

thereby transparently highlighting this problem and providing a reference point for future studies.  

We concur with the reviewer that simply using Lovasz loss is only a partial mitigation, not a complete 

solution. However, we want to point out that fully addressing this deep-rooted imbalance is a 

significant research challenge in its own right, likely requiring multiple dedicated methodology papers 

focusing on novel algorithms (e.g., specialized loss functions, data resampling strategies, or generative 

augmentation). Such an endeavor, while crucial, extends beyond the scope of a single dataset-

focused paper. Our work aims to provide a foundational dataset to enable and inspire that future 

research. This is precisely why we highlight this issue in our manuscript: to serve not only as a caution 

to users but also as a clear focus for future methodological advancements.  

Thank you again for providing us with the opportunity to clarify the context and scope of our 

contribution. 

 

 

Q3: The discussion on cross-disaster generalization needs to be strengthened. Table 6 shows that in 

different disaster types, certain events perform particularly poorly. In particular, the mIoU values are 

the lowest for explosion and chemical accident events such as Bata-EP-2021 and Kyaukpyu-CC-2023, 

while earthquake events such as Morocco-EQ-2023 and Noto-EQ-2024 also remain highly challenging. 

This indicates that the models face significant difficulties in handling highly destructive, structurally 

complex, and spatially heterogeneous disaster scenarios. The authors should analyze these challenges 

in more depth, such as the heterogeneity and extreme local variations in explosion damage, the 

diversity of collapse patterns in earthquake events, and the limitations of SAR data in capturing fine-

grained details. It is also recommended to provide typical error cases and compare model errors across 

disaster types to better illustrate the shortcomings in generalization.  

R3: We sincerely thank the reviewer for these detailed and highly constructive suggestions. The points 

raised are crucial for understanding the complexities of cross-disaster generalization, and we 

appreciate the opportunity to clarify and strengthen our discussion.  

Our response to this valuable comment is structured in three parts: 1) we will gently clarify the 

context of the tables to ensure a common understanding of the results; 2) we will guide the reviewer 

to the sections in our manuscript where we already performed the in-depth analysis you suggested; 3) 

we will describe the new content we have added based on your excellent recommendation. 

First, we would like to gently clarify this point to avoid any potential misunderstanding regarding the 

tables. The results in Table 6 are part of the standard machine learning evaluation, providing an 



event-wise breakdown of the overall results shown in Table 5. The purpose of Table 6 is to prevent the 

evaluation from being dominated by events with a large number of samples, thus offering a more 

granular view of model performance on each disaster event. The experiments specifically designed to 

evaluate cross-event transfer generalization are presented and discussed in Section 5.4 (Section 4.6 in 

the revised manuscript), with the quantitative results shown in Table 8 (Table 10 in the revised 

manuscript). We apologize if this structure was not sufficiently clear.  

Secondly, we are pleased that the reviewer highlighted these critical areas for analysis, as we also 

believe they are central to understanding the challenges. We would like to respectfully guide the 

reviewer to the following sections of our manuscript where some of these points were discussed in 

detail: 

 Regarding the heterogeneity of damage, we analyzed this extensively in [Section 5.4.3: Why is 

cross-event transfer challenging] (Section 4.6.3 in the revised manuscript). Specifically, Figure 9 

provides violin plots that visualize the significant shifts in SAR backscatter distributions for 

damaged and destroyed buildings across different events, including those of the same disaster 

type. This directly addresses the “heterogeneity and extreme local variations” and “diversity of 

collapse patterns” that the reviewer mentioned. 

 Regarding model performance across disaster types and SAR limitations: This was analyzed in 

[Section 5.2 - What have the models learned and what can they learn] (Section 4.2 in the revised 

manuscript). The bar chart in Figure 8 directly compares the models’ average IoU across seven 

major disaster types. The accompanying text discusses the varying performance, explicitly noting 

the models’ accuracy/errors across disaster types.  

Finally, we completely agree with the reviewer that providing typical error cases is an excellent 

way to visually illustrate the model’s generalization shortcomings. While our original analysis was 

primarily quantitative, visual examples provide a more intuitive understanding of the specific failure 

modes. Therefore, we have now added a new figure (Figure 9 in the revised manuscript) and 

corresponding analysis to Section 4.2 in the revised manuscript. This new content shows concrete 

examples of model misclassifications. We believe this addition, prompted by the reviewer's valuable 

suggestion, significantly strengthens our analysis by bridging the quantitative results with qualitative, 

real-world examples of model errors. 

Here, we show the revised part below for your convenience. 



 

 

 

Q4: The manuscript currently lacks a comparison with optical-only baselines, which is crucial to 

highlight the value of multimodal methods. Readers may question whether the inclusion of SAR brings 

significant benefits and whether the additional cost of multimodality is justified. To avoid such doubts, 

I suggest adding experiments with optical-only inputs and comparing them with Optical+SAR results. 

This would further emphasize the unique value of the BRIGHT dataset and provide stronger evidence 

for the necessity of multimodal fusion.  

R4: We sincerely thank the reviewer for this excellent suggestion. The question of how multimodal 



methods compare against an optical-only baseline is fundamental to justifying their value, and we 

appreciate the opportunity to provide a detailed clarification and new experimental evidence.  

First, we would like to respectfully clarify the specific scenario that the BRIGHT dataset is designed 

to model. The core premise of BRIGHT is to facilitate all-weather, rapid disaster response. It is 

constructed around the common and challenging real-world situation where a disaster event (e.g., a 

hurricane, flood, or wildfire) is followed by adverse atmospheric conditions (e.g., cloud cover, smoke) 

that prevent the timely acquisition of usable post-event optical imagery. Therefore, the dataset's 

composition is intentionally pre-event optical + post-event SAR. This represents a pragmatic and 

operationally vital workflow. Consequently, a direct “optical-only” baseline you suggested (i.e., pre-

event optical + post-event optical) is not feasible on the main BRIGHT dataset by design, as high-quality 

post-event optical imagery is not a component of its primary structure. 

However, we completely agree with the reviewer that a direct comparison is crucial for 

understanding the relative strengths of each modality when both happen to be available under ideal 

conditions. To address this valuable point, we have conducted a new set of experiments on a specific 

subset of our data, including Bata-Explosion-2020, Beirut-Explosion-2021, Hawaii-Wildfire-2023, 

Libya-Flood-2023 and Noto-Earthquake-2024, for which high-quality, cloud-free and preprocessed 

post-event optical imagery was also available to us.  

We benchmarked three different setups on this subset: 

 Optical-Only: Pre-event optical + Post-event optical 

 SAR-Only (BRIGHT’s standard): Pre-event optical + Post-event SAR 

 Optical+SAR Fusion: Pre-event optical + Post-event optical + Post-event SAR 

As the results show (Table 8 in the revised manuscript), when high-quality, cloud-free post-event 

optical imagery is available, the post-event optical approach outperforms the post-event SAR approach 

across all tested models. For instance, using the state-of-the-art DamageFormer model, the post-event 

optical setup achieves a final mIoU of 69.76%, higher than the 65.56% from the post-event SAR setup. 

This is expected, as optical imagery provides rich and intuitive visual information for damage 

assessment. Crucially, the results also demonstrate that fusing both modalities consistently provides 

the best results, outperforming even the strong post-event optical methods in every case. For example, 

DamageFormer’s mIoU increases from 69.76% (post-event optical) to 70.79% with the addition of SAR 

data, suggesting that SAR provides complementary information that can enhance the results even 

when high-quality optical data is present.  

While this experiment provides a valuable benchmark, its results ultimately reinforce our motivation 

for BRIGHT. The high performance of the optical-only model is entirely contingent on the availability 

of ideal, cloud-free post-event imagery, a condition frequently not met in the critical window after 

many disasters. Therefore, the small performance trade-off of the post-event SAR-based approach is 

justified by its invaluable all-weather, day-and-night operational capability. BRIGHT is designed 

precisely to advance the development of models for these realistic, often non-ideal, but operationally 

critical scenarios. We have added this new experiment and discussion to the new Section in the revised 



manuscript to further emphasize the unique value of our dataset and the necessity of multimodal 

fusion.  

Here, we show the revised part below for your convenience. 

 

 

 

Q5: The discussion of limitations and future directions is insufficient. At present, the conclusion mainly 

emphasizes the dataset’s contributions, but it does not address its shortcomings in detail. It is 

suggested to include a separate subsection summarizing the limitations, such as the use of single-



polarization SAR, the lack of time-series data, and the fact that most disaster events are concentrated 

after 2020.  

R5: We sincerely appreciate this constructive suggestion to improve the discussion on the limitations 

of our dataset. We fully agree that a thorough and transparent account of the dataset’s shortcomings 

is essential for the community. Just for clarity, our original manuscript actually already included 

relevant content in Section 6 – Discussion:  

 Section 6.1 - Limitation of BRIGHT: to address what we identified as the primary limitations, 

including potential registration errors, label quality, and sample/regional imbalance.  

 Section 6.2 - Significance of BRIGHT: by suggesting that “Incorporating richer data sources, such 

as fully polarimetric SAR and LiDAR data, can further enhance the accuracy and reliability of future 

all-weather building damage assessments”. 

That said, we acknowledge that our initial discussion did not explicitly address two important points 

raised by the reviewer: the absence of time-series data and the temporal concentration of disaster 

events after 2020. We greatly appreciate this observation. In response, we have revised Section 6.1 

(Section 5.1 in the revised manuscript) to incorporate these limitations, thereby providing a more 

comprehensive discussion. We believe these additions, prompted by the reviewer's insightful 

comment, have significantly strengthened the manuscript. We thank the reviewer again for helping us 

improve the quality of our work.  

Here, we show the revised part below for your convenience. 

 

 

 

Q6: The description of study areas and disaster events is somewhat redundant.  

R6: Thank you so much for this valuable suggestion. In preparing the manuscript, we followed the style 



of other disaster-related papers published in ESSD, which typically provide detailed descriptions of 

study areas and events. However, we agree with you that presenting too many event-specific details 

in the main text can be overwhelming and may distract readers from the core contributions of the 

work.  

In response, we have revised the structure of the manuscript to streamline this section. Specifically, 

we have moved the detailed descriptions of individual disaster events to the Appendix, while 

retaining a concise overview in the main text. Specifically, the general description originally included 

in Section 2 has been merged into Section 3, now serving as its opening subsection. We believe this 

restructuring improves the readability of the manuscript by highlighting the key information while still 

making the detailed event descriptions accessible to interested readers.  

Here, we show the revised part below for your convenience. 

 

 

 

Q7: The terminology for “one-shot” may not be accurate. The authors describe it as using “a small 

number of labeled samples,” which may be better defined as “few-shot.” Since these concepts are 

borrowed from previous work, it is suggested to cite the corresponding references.  

R7: We sincerely thank you for this precise and helpful comment. We agree that a clear and accurate 

definition of terms like “one-shot” and “few-shot” is crucial for methodological rigor.  

The reviewer is correct that the phrase “a small number of labeled samples” generally corresponds 

to a “few-shot” learning scenario. Our intention in using this more general phrase in the original 

manuscript was to illustrate the practical context of disaster response, where it might be feasible for 

experts to quickly label a handful of examples from a new event. We recognize that this phrasing 

created an ambiguity between the real-world analogy and our specific experimental setup. Therefore, 

we have modified the corresponding contents in the revised manuscript.  

Furthermore, we would like to take this opportunity to clarify a key distinction in our application of 

the “one-shot” paradigm. In many computer vision tasks, one-shot learning typically refers to learning 

to recognize new semantic classes from a single example. In our work, however, the classes (e.g., intact, 

damaged, destroyed) remain consistent across all disaster events. Our challenge is not learning new 



classes but rather adapting the model to a new data domain. That is a new, unseen disaster. Therefore, 

we use the one-shot sample to facilitate cross-event adaptation, helping the model adjust to the 

unique visual characteristics, sensor properties, and damage signatures of the target event.  

To ensure our manuscript accurately reflects this, we have revised the description to be more precise 

about both the terminology and the methodological context. Here, we show the revised part below 

for your convenience. 

 

 

 

Q8: At line 420, the authors state that SAR is not sensitive to fine structural changes. Would this 

limitation reduce the value of multimodality in certain scenarios?  

R8: Thank you for your thoughtful comment. We thank the reviewer for raising this insightful question. 

It is important to clarify that every remote sensing modality captures only certain aspects of the 

Earth’s surface, and each has its own strengths and limitations. For example, optical imagery records 

reflect light in the visible and near-infrared spectrum, while SAR measures backscattered microwave 

signals. Consequently, each modality is inherently more or less sensitive to particular types of features. 

In the case of single-polarization SAR, it is true that very fine structural changes/damages may not 

be well captured. However, this limitation is not unique to SAR. Indeed, even optical VHR satellite 

imagery can sometimes struggle to detect subtle or small-scale damage, as noted in [1]. Therefore, the 

challenge of capturing fine-grained structural changes/damages is a broader limitation of satellite data 

rather than a drawback that renders multimodality less valuable.  

The core value of multimodal integration lies in ensuring operational continuity for disaster response, 

which is the primary motivation for our dataset. As discussed in the Introduction, optical EO data, while 

semantically rich, is frequently rendered unusable by cloud cover in the critical hours and days 

following a disaster. SAR data's all-weather capability is not just an advantage; it is often the only viable 

option for timely data acquisition. The combination of pre-event optical data and post-event SAR 

data is therefore a pragmatic and powerful solution for rapid assessment, even if neither modality 

alone is perfect. 

Of course, in an ideal scenario, incorporating additional modalities such as fully polarimetric SAR, 



LiDAR, or multi-temporal imagery, would provide more complete coverage of structural damages. As 

noted in Section 6.2 (Section 5.2 in the revised manuscript), we explicitly highlight this as an important 

direction for future dataset development.  

In summary, while we acknowledge the limitations of single-polarization SAR for detecting fine-scale 

damage, this represents a pragmatic trade-off rather than a fundamental flaw. It does not diminish 

the value of multimodality but instead highlights the importance of combining complementary data 

sources to build robust, timely, and practical disaster response systems.  

[1] T. Manzini, P. Perali, J. Tripathi and R. R. Murphy, “Now you see it, Now you don’t: Damage Label 

Agreement in Drone & Satellite Post-Disaster Imagery,” Proc. 2025 ACM Conf. Fairness, 

Accountability, and Transparency (FAccT '25), New York, NY, USA, pp. 1998–2008, 2025.  


