Response to Comments of Referee #1

Thank you for the instructive and constructive comments for our paper. Those comments are very
helpful for and serve as significant guidance for our research. We have studied the comments carefully
and revised our manuscript accordingly. The changes in our manuscript are highlighted in red. The

point-to-point responses to your questions/comments are listed as follows.

Comments to the Author:

This paper introduces BRIGHT, a novel and timely benchmark dataset for building damage assessment
using multimodal high-resolution optical and SAR imagery. Covering 14 globally distributed disaster
events, BRIGHT provides pixel-level damage annotations for over 384,000 buildings. The dataset is
designed to facilitate Al-based disaster response research, particularly in challenging all-weather
conditions. The authors also benchmark a suite of machine learning and deep learning models on
multiple tasks. The authors provided detailed documents and descriptions, making the data, related

source code, and pretrained weights of models easy to understand and use.

In summary, this is quite interesting and solid work. I'd like to recommend the acceptance of this work
since it represents an important contribution to Earth observation and disaster response communities.

Yet before acceptance, several clarifications and refinements are suggested.

Response: We really appreciate your spot-on summary of our manuscript and such a positive
endorsement of our work. Our responses to your valuable comments and suggestions are itemized

below.

Q1: The manuscript would benefit from deeper exploration of what the models learn from multimodal
fusion. Specifically, what roles do optical images play in multimodal building damage assessment? Is it
beyond just building footprint localization? On the other words, are the features extracted from optical
imagery actively compared with SAR representations? Some discussion (e.g., based on CAMs in Fig. 7)

is provided but can be more explicitly elaborated.

R1: Thank you so much for this very insightful comment. To investigate the role of optical imagery in
multimodal building damage assessment, we conducted additional experiments as suggested.
Specifically, we evaluated UNet and DeeplLabV3+ under two input settings: optical + SAR and SAR only.
We chose these two models because they are a single-branch architecture, making it straightforward
to adjust the number of input channels by modifying the first convolutional layer. In contrast, the other
five methods adopt Siamese networks, where structural changes for different input modalities would

require extensive reconfiguration. For UNet and DeeplLabV3+, the modification introduces negligible



changes in the parameter count. To isolate the contribution of optical imagery beyond building
footprint localization, we provided all models with perfect building masks as post-processing steps
prior to evaluation.

The results, presented in Table 7 of the revised manuscript, demonstrate that optical imagery
contributes significantly to distinguishing different damage levels. When provided with optical + SAR
inputs, both models show notable improvements in the loU scores for the “Damaged” and “Destroyed”
classes compared to SAR-only inputs. For example, UNet’s loU for “Damaged” improved from 35.83%
to 44.83%. DeeplabV3+ also benefits from optical imagery, with loU for “Damaged” changing from
39.63% (SAR only) to 40.45% (optical + SAR), and for “Destroyed” increasing substantially from 59.54%
to 64.94%. These findings indicate that optical imagery provides critical complementary information
that supports damage classification, rather than merely improving building localization.

Accompanying Table 7, we have added a new Section 5.3 to the revised manuscript to provide a

more detailed discussion of these findings. We show the revised part below for your convenience.

Table 7. Comparison of UNet and DeepLabV3+ performance using only SAR and optical-SAR inputs for damage classification. Here,
accurate building masks are provided as the post-processing step to all models to isolate the effect of building localization on the damage

classification task.

| | if IoU per class (%)
Method Modality FrY (%) Final mloU (%)

Background Intact Damaged Destroyed
N SAR 68.71 69.84 100.0 88.19 35.83 55.35
et
Optical-SAR 73.59 7241 100.0 89.38 44.83 55.42
SAR 72.12 72.19 100.0 89.59 39.63 59.54
DeepLabV3+
Optical-SAR 73.90 73.93 100.0 90.32 40.45 64.94

450 5.3 The role of optical pre-event data in multimodal building damage mapping

In the last section, CAM visualizations revealed that DL models also exhibit responses to disaster-specific patterns in pre-event

optical imagery. This observation suggests that optical data may play a more complex role in multimodal building damage

mapping than simply supporting building localization. In other words, in a multimodal bi-temporal setup, does pre-event

optical imagery act solely as a localization aid, or does it provide additional semantic cues that networks can exploit for more
455 accurate damage classification?

To explore this, we conducted controlled experiments using UNet and DeepLabV3+. Both networks were trained under
two configurations: (1) using post-event SAR imagery only, and (2) using multimodal pre- and post-event inputs (optical-
SAR). To isolate the contribution of pre-event optical data beyond building localization, we provided perfect building masks
for postprocessing in both settings. This design ensures that any observed differences in performance are attributable to the

460 additional information from pre-event optical imagery, rather than differences in network architecture or localization accuracy.

The results, summarized in Table 7, show that incorporating pre-event optical imagery leads to notable improvements in dis-
tinguishing building damage levels. For UNet, the loU for the “Damaged” class increased from 35.83% (SAR only) to 44.83%
(Optical-SAR), and for the “Destroyed” class from 55.35% to 55.42%. DeepLabV 3+ exhibited significant gains also, with loU
improvements from 39.63% to 40.45% for “Damaged” category, and from 59.54% to 64.94% for “Destroyed” category. These

465 results suggest that pre-event optical imagery contributes beyond mere building localization, enriching the feature space for

more effective semantic comparison for different building damage levels across modalities.




Q2: The manuscript makes extensive evaluations of supervised and unsupervised change detection
models, but the conceptual and methodological relationship between building damage assessment
and generic change detection remains unclear, which is largely implied rather than discussed. An

explicit and clearer explanation would be great for readers who lack of related background.

R2: Thank you for this insightful comment. We agree that clarifying the conceptual and methodological
relationship between building damage assessment (BDA) and generic change detection (CD) will help
readers unfamiliar with the field.

Specifically, a common view is to treat BDA as a special case of “one-to-many” semantic change
detection tasks [1]-[4], where the goal is to assess not just whether a change has occurred but also to
characterize the type and severity of the change (i.e., levels of damage). In this sense, BDA extends
beyond binary change detection by requiring finer-grained semantic interpretation of pre- and post-
event imagery. Many existing methods for BDA are thus derived from or adapted versions of generic
change detection models. Furthermore, in some unified change detection frameworks [3]-[5], BDA is
explicitly included as one of the downstream tasks, highlighting their methodological overlap.

It is important to note that this discussion focuses on the formulation of BDA tasks that take bi-
temporal inputs (i.e., both pre- and post-disaster images). Alternative approaches that rely solely on
post-disaster imagery exist but are outside the scope of our evaluation and discussion.

We have added the above description in Section 4.1 of the revised manuscript to clarify this problem.
We show the revised part below for your convenience.
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are employed in the experiments to compare their results.
It is worth noting that in this work, we focus on the formulation of building damage assessment as a bi-temporal task, where
345 both pre- and post-event images are used as inputs. This formulation aligns closely with generic change detection tasks, which
aim to identify changes between two time points. Conceptually, building damage assessment can be viewed as a specialized
“one-to-many” semantic change detection problem (Zheng et al., 2021, 2024; Lu et al., 2024), where the objective is not only
to detect whether a change has occurred but also to categorize the type and severity of changes (damages) to buildings. Many
existing methods are thus derived from or adapted versions of generic change detection frameworks (Chen et al., 2024; Zheng

350 etal., 2024; Guo et al., 2024).

4.2 Benchmark suites

Q3: Since UMCD methods underperform, consider including a random guessing baseline for reference.
This would contextualize the difficulty of BRIGHT and help readers understand the performance floor
under UMCD setup.

R3: Thank you for your insightful suggestion. We have added the results of a random guessing baseline
to Table 12 for reference. As shown below, the different methods achieve improvements over random
guessing; however, the gains are not very significant. This highlights the challenging nature of applying

UMCD methods to the BRIGHT dataset. We show the revised part below for your convenience.

Table 12, Results of representative unsupervised multimodal change detection methods. KC is the acronym of kappa coefficient. The highest
values are highlighted in bold, and the second-highest results are highlighted in underline. The accuracies on the UMCD benchmark dataset
are the accuracies on the four datasets presented in Figure G1, obtained from their literature. Details of methods and benchmark datasets
are presented in Appendix G. The random guessing baseline is included to indicate the performance floor under the UMCD setup. The “-”

symbol indicates that the corresponding method did not report results on that dataset in their original publications.

Method | UMCD benchmark datasets BRIGHT

| oA Fl KC OA FI  IoU KC
Random guessing 50.0 8.4/6.0/11.0/11.4 0.0 50.00 7.83 4.08 0.00
IRG-McS (Sun et al., 2021) 98.3/-/97.1/972 804/-/754/73.7 794/-1739/75.1 | 90.03 1265 675 765
SR-GCAE (Chen et al., 2022b) 98.6/98.5/-/- 82.9/77.6/-1/- 82.1/769/-/- 77.83 1435 773 5.64
FD-MCD (Chen et al., 2023) 98.2/978/-/96.7 81.4/722/-/73.2 823/71.1/-/714 | 8096 1584 8.60 794
AOSG (Han et al.,, 2024) -/-1-/96.4 -/-1-171.7 -/-1-1759 7793 1075 568 398
AGSCC (Sun et al., 2024a) 98.3/-/959/976 782/-/68.0/779 773/-/658/76.6 | 88.49 14.82 8.00 9.54
AEKAN (Liu et al., 2025) 98.7/-/-7/98.3 83.8/-/-/84.7 83.1/-/-/83.9 81.60 13.09 7.00 3.56

Q4: While Table 1 offers a comprehensive comparison of datasets, several datasets seem relevant and
should be included to enhance its completeness, like CRASAR-U-DROIDs [arXiv:2407.17673] and Noto-
Earthquake building damage dataset [10.5194/essd-2024-363].

R4: Thank you for your valuable suggestion. We have reviewed the CRASAR-U-DROIDs
[arXiv:2407.17673] and the Noto-Earthquake Building Damage Dataset [10.5194/essd-2024-363] and



have updated Table 1 to include them for a more comprehensive comparison.

We show the corresponding revised part below for your convenience.

Table 1. Comparison of BRIGHT with the existing building damage assessment datasets. The OA indicates whether the dataset is open
access (OA) or not, and GSD is an acronym for ground sampling distance (GSD). Note that since some datasets integrate other datasets,
we summarize only the largest one to avoid duplication here. For example, the BDD dataset (Adriano et al., 2021) includes the Tohoku-

Earthquake-2011 dataset (Bai et al., 2018) and Palu-Tsunami-2018 dataset (Adriano et al., 2019).

Dataset OA  Modality GSD (m/pixel)  No.of events  Disaster Lype No. of building  Granularity
ABCD (Fujita et al., 2017) v Optical EO 0.4 1 Tsunami N/A Image-level
(Nguyen et al., 2017) v Images on social media N/A 4 3 natural disasters N/A Image-level
(Cheng et al., 2021) v Optical EO N/A 1 Hurricane 1,802 Image-level
(Xue et al., 2024) v Streel-view image N/A 1 Hurricane 2,468 Image-level
FloodNet (Rahnemoonfar et al., 2021) v Optical EO N/A 1 Flood 6,673 Pixel-level
RescueNet (Rahnemoonfar et al., 2023) v Optical EO N/A 1 Hurricane 10,903 Pixel-level
Ida-BD (Kaur et al., 2023) x Optical EO 0.5 1 Hurricane 18.083 Pixel-level
CRASAR-U-DROIDs 4 natural disasters

v Optical EO 0.02-0.12 10 ) 21,716 Pixel-level
(Manzini et al., 2024) I man-made disaster
Noto-BDA-MV (Vescovo et al., 2025) v Optical EO N/A 1 Earthquake 140,208 Pixel-level
xBD (Gupta et al., 2019) v Optical EO <0.8 15 6 natural disasters >700,000 Pixel-level
QQB (Sun et al., 2024b) ' Optical and SAR EO <l 1 Earthquake 4,029 Pixel-level
BDD (Adriano et al., 2021) x Optical and SAR EO 1.2-33 9 3 natural disasters 123,453 Pixel-level

5 natural disasters
BRIGHT v Optical and SAR EO 0.3-1 14 384,596 Pixel-level
2 man-made disasters

Q5: The paper describes careful multimodal alignment but omits the software used, e.g., ENVI, ArcGlIS,

or QGIS. Please provide related details.

R5: Thank you for mentioning this detail. We have added information about the multimodal
registration process in the Appendix B of the revised manuscript. Specifically, we used QGIS as the
registration software, employing the [Georeferencer] plugin to align SAR images to the optical imagery
as the reference. The transformation type was set to [Thin Plate Spline], and [Lanczos resampling (6x6
kernels)] was applied to ensure high-quality interpolation.

We show the corresponding revised part below for your convenience.

Appendix B: Manual registration and estimating registration errors

We performed the manual registration process using QGIS, with the “Georeferencer” plugin to align SAR images to the optical
695 imagery as the reference. The transformation type was set to “Thin Plate Spline”, and “Lanczos resampling (6x6 kernels)” was

applied to achieve high-quality interpolation. The manually selected control points by EO experts on some disaster scenes are

shown in Figure BI.

Q6: Appendix G includes important new experimental setups and evaluation methods for UMCD.
However, too much content is composed together now. It is not easy for people to grasp information.

Adding section subtitles could improve readability.



R6: Thank you for this helpful suggestion. According to your suggestion, we have revised Appendix G
by dividing it into two parts for improved clarity. The first part introduces the unsupervised multimodal
change detection methods, while the second part describes the proposed more practical evaluation

protocol. This restructuring makes it easier for readers to grasp the key information.

Q7: 8: Please specify in the figure or caption that the values represent average + standard deviation

across models.

R7: Thank you for your thoughtful comment. We believe you were referring to Figure 8. We have
clarified in the caption that each bar represents the mean loU of seven deep learning models for a
specific class under each disaster type, and the error bars indicate the standard deviation of loU scores
across the seven models.

We show the corresponding revised part below for your convenience.
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Figure 8. IoU distribution of deep models over seven disaster types. Each bar represents the average IoU of seven DL models for that specific

category under each disaster type. The error bars indicate the standard deviation of loU scores across the seven models.

Q8: 10: Add a note in the caption to clarify that each dot corresponds to performance on a single test

event under cross-event transfer.

R8: Thank you for your thoughtful comment. We believe you were referring to Figure 10. We have
added a note in the caption to clarify that each dot represents the performance on a single test event
under cross-event transfer.

We show the corresponding revised part below for your convenience.
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Figure 10. Comparison of models’ best performance (mloU) on test events versus the best checkpoints selected on validation sets under the
cross-event transfer setting. Each point represents the performance on a single test event under cross-event transfer. The farther a point lies
from the diagonal line, the larger the gap between the model’s selected performance and its true upper bound.

Q9: Typo in Table 7: “Object-based major voting” should be corrected to “Object-based majority

voting”.

R9: Thank you for your careful review. We have corrected “Object-based major voting” to “Object-
based majority voting” in Table 7 (now Table 8 in the revised manuscript).

We show the corresponding revised part below for your convenience.

Table 8. Further contributions to mloU from post-processing algorithms. ChangeMamba (Chen et al., 2024) is used here as the baseline.
Details on these algorithms are provided in Appendix D.

Method mloU (set) mloU (event)

Baseline 67.63 51.39

Test-time augmentation 68.50 51.95

Object-based majority voting 67.22 52.08

Ensembling multiple models 68.45 52.14

All 68.86 52.31

Q10: Clarify the meaning of “—” symbols in Table 11. Do they indicate missing data or inapplicability?
This should be stated explicitly.

“_n

R10: Thank you for pointing this out. The symbols in Table 11 indicate that the corresponding
methods did not report results on that dataset in their original publications. We have clarified this in

the caption of Table 11 (now Table 12 in the revised manuscript). We show the corresponding revised



part below for your convenience.

Table 12. Results of representative unsupervised multimodal change detection methods. KC is the acronym of kappa coefficient. The highest
values are highlighted in bold, and the second-highest results are highlighted in underline. The accuracies on the UMCD benchmark dataset
are the accuracies on the four datasets presented in Figure G1, obtained from their literature. Details of methods and benchmark datasets

are presented in Appendix G. The random guessing baseline is included to indicate the performance floor under the UMCD setup. The *-”

symbol indicates that the corresponding method did not report results on that dataset in their original publications.

Q11: “ML” should be defined on its first use and consistently used thereafter instead of alternating

with [machine learning].

R11: Thank you for carefully checking this detail. We have defined “ML” (machine learning) at its first
occurrence in the manuscript and have revised the text to ensure consistent use of the abbreviation

thereafter.

Q12: Standardize currency formatting (e.g., USD vs. USS).

R12: Thank you for carefully noting this. We have standardized the currency formatting throughout

the manuscript and now consistently use “USD” to avoid ambiguity.

Q13: Define abbreviations such as IGN and GSI when first mentioned as data providers.

R13: Thank you for kindly reminding us of this. We have defined the abbreviations “GSI” and “IGN” in
the caption of Table 2 in the revised manuscript. Specifically, GSI refers to The Geospatial Information
Authority of Japan, and IGN refers to The Instituto Geografico Nacional (National Geographic Institute)
of Spain.

We show the corresponding revised part below for your convenience.

Table 2. Summary of basic information of the BRIGHT dataset with disaster events listed in chronological order. GSI refers to the Geospatial

Information Authority of Japan, and IGN refers to the Instituto Geografico Nacional (National Geographic Institute) of Spain.

Disaster area Type of disaster Date GSD (m/pixel) Data provider / source No. of tiles No. of building
Beirut, Lebanon Explosion (EP) 04 Aug. 2020 1 Maxar & Capella 133 25,496

Bata, Equatorial Guinea Explosion (EP) 07 Mar. 2021 0.5 Maxar & Capella 107 8,893

Goma, DR Congo Volcano eruption (VE) 22 May 2021 0.33 Maxar & Capella 123 18,741

Les Cayes, Haiti Earthquake (EQ) 14 Aug. 2021 048 Maxar & Capella 73 18918

La Palma, Spain Voleano Eruption (VE) 19 Sept. 2021 - 13 Dec. 2021 0.3-0.35 IGN (Spain) & Capella 933 30,239




Q14: The format of references should be standardized. Some of these entries use abbreviations for

journals, while others have full titles.

R14: Thank you for your kind reminder. We have standardized all references in the revised manuscript.
Journal names are now uniformly abbreviated according to the Journal Title Abbreviations by Caltech

Library, as required by ESSD.



