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Abstract.  20 

Understanding the spatial-temporal distribution of grazing livestock is crucial for assessing livestock system sustainability, 

managing animal diseases, mitigating climate change risks, and controlling greenhouse gas emissions. In China, grazing 

ruminants are predominantly distributed across vast grasslands in semi-humid and alpine regions. However, existing gridded 

livestock distribution datasets fail to distinguish between grazing and other livestock production systems and do not 

simultaneously account for long-term and seasonal dynamics. This study introduces CLRD-GLPS, a comprehensive dataset 25 

mapping China's ruminant livestock distribution in grazing livestock production systems from 2000 to 2021. Our approach 

addresses limitations in existing datasets by integrating interpretable machine learning methods to segment grazing livestock 

from total livestock populations and generate seasonal grazing pastures with dynamic grazing suitability masks. We developed 

a stacking-based ensemble methodology that enhances predictive performance while providing insights into distribution 

mechanisms. The stacking ensemble models demonstrate robust performance through 5-fold cross-validation, with R² values 30 

ranging from 0.909 to 0.967 for cattle and 0.874 to 0.914 for sheep and goats. Validation results demonstrated the high accuracy 

of CLRD-GLPS across multiple spatial scales. At the county level, it strongly agreed with census data, effectively capturing 

grazing livestock distribution. City-level validation confirmed strong agreement (R² = 0.691–0.881), while grid-level 

validation using independent observations yielded R² = 0.79, further confirming the accuracy of fine-resolution predictions. 

The CLRD-GLPS dataset provides essential information for understanding grazing ruminant dynamics and developing 35 
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targeted livestock management policies. Furthermore, our methodological framework offers a template for creating similar 

livestock distribution datasets for other regions and livestock production systems. 

1 Introduction 

Livestock play an important role in global food systems, contributing 40% to the global agricultural gross domestic product. 

The global livestock sector is rapidly changing in response to growing demand for animal-source foods, employing over 1.3 40 

billion people and supporting 600 million poor smallholder farmers in developing countries (Herrero et al., 2013; Thornton, 

2010). Meanwhile, increasing livestock numbers contribute to a rise in greenhouse gas (GHG) emissions and places a 

significant burden on herders to gain access to the feed for livestock from natural resources (Gerber et al., 2013; Herrero et al., 

2013). In the livestock sector, ruminant animals—such as cattle, sheep, and goats—occupy the largest land area worldwide 

compared to other livestock species, predominantly on grasslands (Pulina et al., 2017). Additionally, the lower feed use 45 

efficiency in ruminant than in monogastric livestock (such as pigs and poultry), has led to relatively higher GHG emissions 

intensities (Cheng et al., 2022; Knapp et al., 2014). Therefore, it is important to capture the spatial-temporal distribution of 

ruminant livestock for showcasing their role in studying sustainability (Michalk et al., 2019), managing disease (Li et al., 2024), 

mitigating climate change risks (Thornton et al., 2021), and especially in predicting GHG emissions (Uwizeye et al., 2020) 

associated with livestock production systems (LPS). Despite many efforts (Gilbert et al., 2018; Robinson et al., 2014), existing 50 

datasets often lack the spatial-temporal resolution and seasonal dynamics necessary for sustainability assessments and climate 

change impact studies in diverse LPS. 

 

Existing of global ruminant livestock distribution maps, such as the Food and Agriculture Organization of the United Nations 

(FAO)'s Gridded Livestock of the World (GLW3) using machine learning methods with a spatial resolution of 10 km (Gilbert 55 

et al., 2018). Building upon these global datasets, tree-based models such as Random Forest (RF), Extra Trees Regressor (ET), 

and XGBoost (XGB) are widely employed in livestock distribution modelling and producing more high-resolution livestock 

distribution datasets in China (Li et al., 2021b; Zhan et al., 2023). The high-resolution livestock maps enable more accurate 

tracking of livestock movements across different seasons (Ocholla et al., 2024), Zhan et al. leveraged China's county-level 

livestock census data to generate cattle and sheep distribution data for the Qinghai-Tibet Plateau (QTP), particularly 60 

emphasizing seasonal variations with greater spatial resolution of 500m (Zhan et al. 2023). Additionally, the long-term 

distribution of livestock affects land use change and herd management, amongst others. The GDGI dataset provides the annual 

gridded grazing intensity data across the QTP from 1990 to 2020, offering valuable insights into long-term spatial and temporal 

variations in grazing pressure(Zhou et al., 2024) . 

 65 

Despite these advancements, current livestock distribution datasets have several critical limitations. A key limitation is that 

existing datasets often model livestock distribution directly based on census data, without distinguishing livestock numbers 
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among various LPS. LPS have been previously classified into three basic types: grazing LPS, mixed farming LPS and landless 

LPS (Robinson et al., 2011). In China, a significant portion of ruminant livestock exists within the grazing LPS, particularly 

in western regions with extensive grasslands, while substantial numbers are also raised in mixed and landless systems 70 

throughout the country (Jiang and Wang, 2022). This distribution varies dramatically across regions, making spatial 

disaggregation particularly challenging. Previous studies have directly used total livestock census data to predict livestock 

distribution in grazing areas based on grassland suitability (Gilbert et al., 2018; Zhan et al., 2023), leading to systematic 

overestimation of actual grazing livestock numbers and misrepresentation of their spatial patterns. Recent advancements have 

attempted to address the distinction between pasture-based and crop-based livestock in China's grazing intensity assessment 75 

relies on NDVI-biomass conversion models (Wang et al., 2024a). A more comprehensive methodological framework is still 

needed to effectively distinguish livestock across different production systems. 

 

Additionally, most ruminant livestock depend on grasslands for grazing and often move seasonally, especially in regions like 

QTP in China that adopt a two-season transhumance system (Zhan et al., 2023; Zhuang et al., 2019). Beyond these seasonal 80 

patterns, regions such as parts of Xinjiang utilize year-round pastures (Zheng, 2005). Existing datasets, such as GLW3, do not 

account for these regional differences in grazing patterns. Moreover, the coarse resolution and lack of consideration for 

seasonal livestock movements within local boundaries limit their applicability, particularly for studies focused on seasonal 

environmental stresses, such as heat stress and snow disasters (Thornton et al., 2021; Ye et al., 2021), and on seasonal grazing 

intensity (Fetzel et al., 2017). Furthermore, predicting long-term livestock distributions remains challenging, as there is 85 

currently no dataset that simultaneously meets the seasonal pattern and long-term series requirements for the diverse 

distribution patterns of livestock in grazing LPS. 

 

The methodological approaches in current livestock distribution modelling also present challenges.  Machine learning methods, 

which are commonly employed in creating livestock distribution datasets, are often considered "black-box" models that cannot 90 

directly explain the mechanisms behind the data. Interpretability remains a key challenge, as these models do not explicitly 

reveal the mechanisms driving spatial-temporal changes in livestock distribution (Hassija et al., 2024). This limitation hinders 

their use in understanding and explaining such changes, which is crucial for ecological and agricultural applications. 

Generalizability and stability are also critical concerns, as the performance of different ML methods varies across different 

datasets and spatial contexts. 95 

 

Addressing these multifaceted challenges in livestock distribution datasets—including seasonal pattern identification, 

livestock production system differentiation, and methodological interpretability—requires an integrated and innovative 

approach. Interpretable machine learning (IML) techniques offer a promising solution by revealing the mechanisms driving 

model predictions and explaining the relationships between predictors and outcomes (Murdoch et al., 2019). For instance, 100 

feature importance scores and Shapley values help identify the key factors influencing predictions and their relative 
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significance(Breiman, 2001; Jiang et al., 2024), which can be applied to distinguish seasonal pastures and separate grazing 

livestock from the total livestock population. Furthermore, stacking ensemble machine learning, which combines multiple 

predictive models, has been shown to reduce bias while improving both accuracy and stability compared to individual ML 

models—critical attributes for generating reliable long-term spatial-temporal distribution data (Xu et al., 2024). Despite the 105 

potential benefits of stacking ensemble learning, no existing studies have systematically applied this approach to integrate the 

strengths of individual models for livestock distribution prediction. By leveraging stacking techniques, it is possible to enhance 

predictive performance while mitigating biases inherent to single-model approaches, ultimately addressing the key limitations 

identified in current livestock distribution datasets (Pavlyshenko, 2018). 

 110 

This study aims to develop a long-term seasonal dataset mapping the distribution of grazing ruminant livestock in China from 

2000 to 2021 (CLRD-GLPS), with a specific focus on the grazing LPS. The methodology for constructing this dataset involves 

addressing three key aspects. Firstly, long-term county-level statistical livestock data are collected and grazing ruminant 

livestock are identified within the total ruminant population. Secondly, grassland areas are differentiated into seasonal and 

year-round pastures using sampled seasonal pasture data. Lastly, the spatial-temporal distribution of ruminant livestock from 115 

2000 to 2021 is predicted and explained using well-developed interpretable machine learning models and structural equation 

modelling. 
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2 Data and methods 

 120 
Figure 1: Framework of mapping grazing ruminant livestock distributions in China's grazing livestock production system. 

 

In this study, we implemented five detailed steps to produce the CLRD-GLPS datasets (Figure 1): (1) Generation of seasonal 

and year-round pasture maps using dynamic grazing masks and Random Forest classification modelling, (2) livestock 

segmentation in grazing LPS by developing county-level grazing livestock proportion and number estimates, (3) development 125 

of stacking-based IML livestock distribution models integrating multiple algorithms (LGBM/XGB/RF/CB/ET), (4) estimation 

of livestock density in seasonal pastures and assignment of livestock numbers within county boundaries, and (5) multi-scale 

validation through comparison with census data, GLW, and other datasets. 
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2.1 Data  

The data used for this study are categorized into four types: livestock data, mask data, pasture survey data, and environmental 130 

and socioeconomic data. All these categories are listed in Table A1, with detailed descriptions provided below. 

2.1.1 Livestock data 

County-level livestock data were collected from the livestock statistical yearbooks, encompassing information from 29 

provinces across China (excluding Jiangsu, Fujian, Guangxi, Hong Kong, Macao, and Taiwan). These yearbooks provide the 

2000-2021 year-end of cattle, sheep and goats (the data in some provinces of some years can’t be found). In total, livestock 135 

numbers data are available for 16, 204 year·county. 

 

For comparison, we downloaded the Gridded Livestock of the World (GLW) datasets for 2010, 2015, and 2020 from the FAO 

website (https://data.apps.fao.org/catalog/organization/gridded-livestock-of-the-world-glw), selecting the cattle, sheep and 

goats species available. The units for GLW in 2010 and 2015 represent absolute livestock numbers (Gilbert et al., 2018), 140 

whereas in 2020, the data are provided as livestock density (heads per km²). Additional livestock datasets were also collected 

for comparison, with detailed information recorded in Table A2 (Meng et al., 2023; Wang et al., 2024b; Zhou et al., 2024). 

 

In addition, we further collected city-level livestock numbers from 2000 to 2021 from various provincial statistical yearbooks 

(Table A1), as well as grid-scale livestock density observation data recorded in previous literature and the National Rural 145 

Fixed Observation Point Micro-household Survey (NRFOP) data Table A3. 

2.1.2 Mask data 

The annual China Land Cover Dataset (2000-2021) with a 30 m spatial resolution was utilized to create a suitable distribution 

mask for livestock (Yang and Huang, 2021a). To generate a valid pasture boundary, we also obtained the boundaries of national 

nature reserves from the National Nature Reserve Boundary Data published by the Resource and Environment Science and 150 

Data Center, Chinese Academy of Sciences (https://www.resdc.cn/data.aspx?DATAID=272), which includes 169 national 

nature reserves established as of 2021 in China. The boundary of grazing ban regions in Tibet from 2004 to 2012 was collected 

from the article (Sun et al., 2020) ,while that in Inner Mongolia was collected  in Inner Mongolia Grassland Resources 

Ecological Monitoring Report (2016-2020). These regions are banned for livestock grazing. 

 155 

2.1.3 Pasture survey Data 

The sampled seasonal pasture data were collected for generating seasonal pasture of grazing livestock in the regions of Xinjiang, 

Tibet, and Qinghai. The warm-season, cold-season, and year-round pasture division maps for entire Xinjiang were obtained 
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from the Xinjiang Autonomous Region Grassland Station. The 1365 grassland survey sample locations of seasonal pasture of 

Qinghai Province were obtained from the Qinghai Province Grassland Station. For the Tibet Autonomous Region, the division 160 

maps of warm/cold-season pastures of 48 townships were obtained from Zhada, Geji, Jilong, and Dingjie County Forestry 

and Grassland Administrations.  

 

2.1.4 Environmental and socioeconomic predictor data  

Topography data such as digital elevation model (DEM) and slope were considered in the livestock density distribution model. 165 

Climate data, crucial for assessing the productivity of grasslands and other land cover types, also impacts the challenges posed 

by climatic conditions on livestock. From 2000 to 2021, we included monthly near-surface temperature and precipitation (Peng 

et al., 2019), snow cover data ( Hall, D. K. and G. A. Riggs, 2016), and wind data (Hersbach et al., 2023). Vegetation 

productivity was represented by the normalized difference vegetation index (NDVI) data spanning from 2000 to 2021 (Didan, 

2015). Additionally, the socioeconomic data comprised population distribution from 2000 to 2021(Oak Ridge National 170 

Laboratory, 2020) and travel time data from 2015 (Weiss et al., 2018). 

 

2.2 Method  

2.2.1 Preparation of dynamic suitability grazing mask  

The suitable land cover types for grazing livestock in grazing LPS include grassland (Howard et al., 2012), shrubland (Sanz et 175 

al., 2017), and wetland (Burton et al., 2009). In the Qinghai-Tibet Plateau (QTP) region, all three land cover types—grassland, 

shrubland, and wetland—were used as suitable grazing mask areas (Zhan et al., 2023). Meanwhile, for other regions in China, 

only grassland was considered as a suitable grazing mask (Wang et al., 2024a). To account for the impact of land use changes 

on grazing livestock distribution, we utilized the China Land Cover Dataset (CLCD) with 30 m spatial resolution, available 

annually from 2000 to 2021. The CLCD data were resampled to 1 km spatial resolution, retaining only pixels corresponding 180 

to the suitable land cover types based on regional differences as described above. 

 

To delineate valid pasture boundaries, we incorporated two key constraints: the boundaries of National Nature Reserves (NNRs) 

and designated grazing ban regions (GBRs), where livestock grazing is prohibited (Figure A1). For NNRs, we accounted for 

their establishment timelines by utilizing the National Ecological Protection Redline Database (2022) to mask grazing density 185 

maps according to each reserve’s official designation year. For instance, grazing activity was prohibited in Qiangtang Reserve 

following its establishment in 1993. A detailed record of each NNR’s establishment year is provided in Figure A2, with 82.2% 

of NNRs established before 2000. For GBRs, we integrated spatially explicit datasets that reflect region-specific restrictions. 

The fenced grazing ban regions in Tibet (2004–2012) were obtained from Sun et al. (2020), while grazing ban regions in Inner 
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Mongolia (2016–2020) were derived from the Inner Mongolia Grassland Resources Ecological Monitoring Report. These 190 

temporal grazing bans were dynamically applied to the corresponding years in the grazing mask, ensuring consistency in 

restricted grazing areas over time. 

2.2.2 Generation of seasonal and year-round pastures  

Based on the dynamic suitability grazing pastures, the distribution of seasonal pasture samples (warm-season pastures vs. cold-

season pastures) was used to predict the seasonal pasture distribution across the entirety of China (Figure A1). Data collected 195 

from the scientific survey show that livestock in the QTP (Tibet, Qinghai, Sichuan, Yunnan, Gansu) follow seasonal grazing 

rules, grazing on cold-season pastures during the cold season and on warm-season pastures during the warm season. Although 

Xinjiang has seasonal pastures, there are also some areas with year-round pastures that can support grazing in either the cold 

or warm season. In other provinces of China, grazing typically occurs on year-round pastures without strict seasonal restrictions.  

 200 

Therefore, this study predicted the seasonal pasture distribution separately for QTP, Xinjiang, and other provinces. For the 

QTP, we used a Random Forest Classification (RFC) model to predict seasonal pasture(warn-season/cold-season) (Breiman, 

2001; Zhan et al., 2023). The Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) demonstrates the 

performance of the seasonal pasture prediction model (Negnevitsky, 2005). Detailed methods can be found in our previous 

study focused on livestock seasonal mapping (Zhan et al., 2023). In this study, we further integrated interpretable machine 205 

learning (IML) techniques into the RFC model by assessing feature importance (Breiman, 2001), allowing us to identify key 

environmental and socio-economic drivers of seasonal pasture distribution. In addition to topographic (DEM, slope), 

vegetation (NDVI), and climatic variables (GStmp, GSpre, Wtmp, Wpre), wind speed (wind) was also included as an important 

predictor. For Xinjiang, the distribution maps of seasonal and year-round pastures were directly converted into raster maps 

with a spatial resolution of 1 km, covering the entire region. In other provinces, pastures are all year-round. 210 

2.2.3 Segmentation of grazing and non-grazing livestock populations 

According to the China Animal Husbandry and Veterinary Statistics Yearbook (2000–2021), grazing livestock numbers at the 

end of each year are documented for pastoral and semi-pastoral regions. This dataset is available at the provincial (or 

autonomous regional) level and provides a comprehensive, long-term record (2000–2021) of grazing livestock distribution 

across China. By comparing the number of grazing ruminant livestock (cattle, sheep and goats) to the total ruminant livestock 215 

inventory for each province (or region), we derived the proportion of livestock within grazing livestock production systems 

(LPS) at the provincial scale. 

 

To downscale the provincial-level grazing livestock proportions to counties with grazing LPS, we developed prediction models 

using Random Forest, an interpretable machine learning (IML) technique. We selected this method for its ability to capture 220 
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complex non-linear relationships between environmental factors and livestock distribution patterns, its effectiveness with 

spatial data, and its resistance to overfitting (Breiman, 2001). 

 

For model development, we used a comprehensive set of predictors strongly associated with grazing proportion. The response 

variable was the proportion of grazing livestock at the provincial level from 2000 to 2021. Predictors included: (1) the 225 

proportion of grassland (calculated as the ratio of grassland area to total land area using CLCD), (2) the proportion of cropland 

(similarly derived from CLCD), (3) the Normalized Difference Vegetation Index (NDVI) of grassland and cropland 

(representing vegetation productivity), and (4) the geographic coordinates of the administrative centre (longitude and latitude). 

These variables were selected as they capture key ecological and land use factors commonly associated with grazing activities 

across different LPS. 230 

 

We split the provincial-level data into training (80%) and validation (20%) sets. The IML model was optimized using 

hyperparameter tuning through a grid search approach with 5-fold cross-validation to identify the optimal combination of 

parameters (including number of trees, maximum depth, and minimum samples per leaf). Model performance was evaluated 

using coefficient of determination (R²) and root mean square error (RMSE) metrics. To interpret model results, we employed 235 

SHAP (Shapley Additive Explanations) values (Sundararajan and Najmi, 2020), which provide transparent insights into how 

each predictor contributes to the model's predictions. 

 

To evaluate the accuracy of these predictions, we validated the county-level grazing livestock proportions using empirical data 

on livestock carrying capacities from 74 counties participating in the Grassland Ecological Protection Subsidy and Reward 240 

Program (Table A3). This dataset, recorded during the implementation of the subsidy program, captures actual grazing 

intensity, including instances of overgrazing, thereby reflecting real-world grazing conditions. Notably, this dataset records 

the total grazing livestock population, including both cattle and sheep (sheep and goats). Therefore, for validation purposes, 

we converted the predicted grazing proportions of cattle and sheep (sheep and goats) into the overall grazing proportion of 

total livestock at the county level, using a standard conversion factor where one head of cattle is equivalent to five standard 245 

sheep units. Model performance was assessed using the R² and RMSE. 

 

Finally, we used the predicted county-level grazing livestock proportions—specifically for cattle and sheep (sheep and 

goats)—to estimate the number of grazing livestock within grazing LPS at the county level for each year from 2000 to 2021:

·Gij Tij GijLN LN P=  ,                                                                                                                                                        (1) 250 
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where GijLN  represents the number of grazing livestock in grazing LPS for county i in year j, and TijLN  is the total livestock 

population in county i in year j as reported in the county-level statistical yearbook, and GijP  the predicted proportion of grazing 

livestock in grazing LPS for county i in year j. 

2.2.4 Development of the livestock distribution models and assignment of livestock numbers  

This study employed stacking-based interpretable machine learning (IML) techniques to develop distribution models for the 255 

grazing ruminant livestock (cattle,sheep and goats). We constructed six livestock distribution models: three each for cattle and 

sheep (sheep and goats) corresponding to the three pasture types (warm-season, cold-season, and year-round pastures). 

 

For our models, county-level livestock density served as the response variable, measured in heads per square kilometre 

(heads/km²). For counties with a single pasture type, we calculated this density by simply dividing annual livestock numbers 260 

for grazing LPS ( GiLN )  by the area covered by the suitability mask for that pasture type. For counties with multiple pasture 

types (particularly in Xinjiang where cold-season, warm-season, and year-round pastures coexist), we employed a specific 

methodology. Since year-round pastures are accessible during both seasonal periods, we calculated livestock density for warm-

season models by dividing the county's total livestock census by the combined area of warm-season and year-round pastures. 

Similarly, for cold-season models, we divided the same county's livestock census by the combined area of cold-season and 265 

year-round pastures. For the year-round pasture model specifically, we used the average of these two density calculations. This 

approach accounts for the overlapping functional role of year-round pastures in our density estimations while maintaining 

consistency with established seasonal grazing patterns. 

 

In developing these models, we considered multiple environmental and anthropogenic factors as predictors (Gilbert et al., 2018; 270 

Zhan et al., 2023). The distribution patterns of livestock within grazing LPS are primarily influenced by topography (acting as 

a macro-control factor), climate (determining grassland type and productivity), vegetation productivity (affecting carrying 

capacity), and pastoralist activities. Detailed information on all predictor variables is provided in Table A1. 

 

Our modelling approach utilized a stacking-based IML framework to enhance prediction accuracy and stability. We split the 275 

dataset into training (80%) and testing (20%) sets to ensure proper model evaluation. The stacking architecture employed a 

two-layer structure with base learners in the first layer and a meta-model in the second (Figure A3). For base learners, we 

selected five machine learning regression models:  Random Forest Regressor (RF) (Breiman, 2001), Extra Trees Regressor 

(ET) (Geurts et al., 2006), XGBoost Regressor (XGB) (Friedman, 2001), LightGBM Regressor (LGBM) (Ke et al., 2017), and 

CatBoost Regressor (CB) (Prokhorenkova et al., 2018). These models were chosen for their strong fitting capabilities and 280 

robustness in handling nonlinear relationships. Each base model was trained using 5-fold cross-validation on the training data, 
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generating predictions that served as meta-features for the second layer. For the second layer, we compared performance across 

base models and selected the one with highest R² and lowest RMSE as the meta-model for final ensemble prediction. 

 

To ensure the robustness of the model, we employed a separate validation process using the 20% testing data that was not used 285 

during model training. The evaluation metrics included the coefficient of R² and RMSE, which were used to assess the fit and 

predictive accuracy of the models. The validation results of all base models and the stacking model were statistically analysed 

and compared to identify the best-performing model. Additionally, SHAP values were utilized to interpret the feature 

importance of each base model in the stacking ensemble, providing valuable insights for subsequent model optimization and 

result analysis(Sundararajan and Najmi, 2020). 290 

 

The optimal models selected in this study were converted into grid-based weights within the pasture mask (warm-season 

pastures, cold-season pastures, year-round pastures) for each county-level polygon to assign county-level livestock numbers 

for grazing LPS  ( GiLN ) using the dasymetric mapping method (Mennis, 2009). The final distribution maps of livestock 

numbers (CLRD-GLPS) were produced with units per grid cell in heads (as each grid cell is 1 km, this can be considered 295 

heads/km²). 

 

2.2.5 Multi-scale validation and external dataset comparison  

To compare our results (CLRD-GLPS) with other livestock distribution maps and actual distribution patterns, we used the 

GLW, LHGI, GDGI, Meng datasets for 2000, 2010, 2015, and 2020, standardized to livestock numbers (SSUs) as 300 

representatives of widely used global datasets (one cattle is equivalent to five Standard Sheep Units (SSUs)). Detailed 

information about these datasets is provided in Table A2. Actual (census) livestock distribution patterns were derived from 

county-level livestock numbers for grazing LPS ( GiLN ) in corresponding years for each county-level polygon. We aggregated 

values to the county level and calculated the R² and RMSE to assess validation accuracy. 

 305 

To conduct rigorous external cross-validation and further ensure the robustness of our results, we performed additional multi-

scale validation at both city and grid levels. For city-level validation, we aggregated CLRD-GLPS results to the city 

administrative level as predicted values, and then compared these with city-level census data adjusted by provincial grazing 

proportion to obtain observed grazing livestock numbers in the Grazing LPS. At the grid level, we validated our results against 

independent livestock density observations from previous literature, as well as calculated livestock densities from the National 310 

Rural Fixed Observation Point Micro-household Survey data (NRFOP), which provided valuable ground-truth information on 

livestock numbers and pasture areas for grazing and semi-grazing villages. Grid-level validation incorporated combined 
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livestock densities (cattle, sheep, and goats) expressed in SSUs. For all validation approaches, we calculated the R² and RMSE 

to comprehensively assess accuracy and reliability across different spatial scales. 

3 Results 315 

3.1 Seasonal and year-round pastures generated based on dynamic suitable grazing mask 

With the dynamic CLCD datasets, National Nature Reserves (NNRs), and designated grazing ban regions (GBRs), we 

produced dynamic suitable grazing masks for 2000 to 2021. Based on these dynamic suitable grazing masks, we established 

seasonal pasture masks using an interpretable machine learning (IML) approach with Random Forest Classification (RFC) 

models. The RFC model demonstrated excellent performance with a mean AUC of 0.98 across ten-fold cross-validation 320 

(Figure A4 (a)), indicating high reliability in predicting seasonal pastures for livestock grazing. 

 

The feature importance analysis revealed that topographic factors were the primary drivers of seasonal pasture distribution, 

with slope being the most influential factor (15% importance) followed by elevation (DEM, 12%) (Figure A4 (b)). Vegetation 

condition (NDVI, 11%) and socioeconomic factors (Travel Time, 11%) also significantly contributed to the model's predictive 325 

power. Climate variables collectively accounted for approximately 20% of the classification power, with growing season 

precipitation (GSpre) and summer temperature (GSmp) being the most important climate factors. 

 
Figure 2: Seasonal and year-round pasture mask for livestock grazing in China (2021).  
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Using this validated RFC model, we predicted seasonal pastures across the five provinces of the Qinghai-Tibet Plateau. By 330 

integrating these predictions with the dynamic suitability mask and the seasonal and year-round pasture distribution maps of 

Xinjiang, we generated 1-km resolution seasonal and year-round pasture distribution masks for grazing ruminant livestock in 

grazing production systems for each year from 2000 to 2021, with the 2021 distribution shown in Figure 2. 

 

The temporal dynamics of seasonal pasture types across China from 2000 to 2021 illustrates in Figure A5. The total pasture 335 

area exhibited a slight declining trend, primarily driven by changes in grassland area, the establishment of NNRs, and the 

implementation of the GBR policy (Figure A5 (a)). Throughout the study period, warm-season pastures consistently occupied 

approximately 30% of the total area, cold-season pastures dominated at around 35%, while year-round pastures maintained 

approximately 35% of the total pasture area (Figure A5 (b)). The implementation of grazing ban policies in Tibet (2004-2012) 

and Inner Mongolia (2016-2020) coincided with minimal changes in the absolute area of each seasonal pasture type. The 340 

proportional composition of seasonal pastures remained relatively stable despite policy interventions, suggesting limited 

effectiveness of grazing bans in altering seasonal utilization patterns of grazing ecosystems.  

3.2 Grazing ruminant livestock segmentation in grazing livestock production system 

We developed interpretable machine learning models to predict grazing livestock proportions for cattle and sheep (sheep and 

goats) at the provincial level. The 10-fold cross-validation results demonstrated high predictive performance for both models, 345 

with R² values of 0.933 for both cattle and sheep (sheep and goats), and RMSE values of 0.084 and 0.081, respectively (Figure 

3 (a)-(b)). The SHAP value distribution revealed distinct feature importance for livestock proportions. For cattle, the primary 

determinants were cropland area, longitude, and grassland area, while for sheep and goats, the key factors were grassland area, 

cropland area, and longitude (Figure 3 (c)-(d)). Notably, the SHAP analysis consistently showed that larger grassland areas, 

smaller cropland areas, and higher longitudes corresponded to higher livestock proportions. 350 
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Figure 3: Model performance and feature importance analysis for grazing ruminant livestock segmentation model in China. (a–b) 
Cross-validation results of the grazing livestock proportion prediction models. (c-d) SHAP value distributions illustrating the relative 
importance of features in the grazing livestock proportion models. (d) County-level validation of razing ruminant livestock segmentation 
model using existing livestock carrying capacity data. 355 

Using provincial-level models, we predicted cattle and sheep (sheep and goats) proportions for counties with grazing LPS from 

2000 to 2021. The 2021 predictions (Figure 4 (a)-(b)) highlighted regions with high grazing livestock proportions, particularly 

in Tibet, Qinghai, Xinjiang, and Inner Mongolia, where proportions exceeded 0.6. Slight variations were observed, with cattle 

proportions marginally higher than sheep and goats in these regions. Change analysis between 2000-2021 (Figure 4(c)-(d)) 

revealed a predominant decreasing trend in grazing livestock proportions across China, with 56.7% of counties showing 360 

decreased cattle proportions and 60.0% showing decreased sheep (sheep and goats) proportions. Simultaneously, notable 

increases were observed in 40.6% of counties for cattle and 37.6% for sheep and goats, primarily in specific regions of western 

China. To validate the county-level predictions, we compared our results with existing county-level livestock carrying capacity 

datasets. The validation (Figure A6) yielded a robust R² of 0.800 and a low RMSE of 0.023, indicating high prediction accuracy. 

Finally, we applied the annual county-level grazing livestock proportions to segment grazing livestock numbers within grazing 365 

LPS using county-level livestock census data from 2000 to 2021. 
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Figure 4: Spatial distribution and temporal changes in grazing livestock proportions across China. (a-b) Cattle (sheep and goats) 
proportions in 2021; (c-d) Change in cattle (sheep and goats) proportions between 2000-2021 with pie chart showing proportion of counties 370 
experiencing increase (red) or decrease (blue). 

3.3 Grazing ruminant livestock density model developed and livestock number assigned 

The stacking-based interpretable machine learning (IML) approach yielded highly accurate predictions for grazing ruminant 

livestock density across different pasture types. Figure 5 presents the kernel density estimation plots comparing predicted 

versus observed livestock densities from 5-fold cross-validation. For cattle, the models demonstrated excellent performance 375 

across all pasture types, with R² values of 0.961, 0.967, and 0.909 for warm-season, cold-season, and year-round pastures, 

respectively. The corresponding RMSE values were 0.312, 0.292, and 0.586, indicating high prediction accuracy, particularly 

for seasonal pastures. The models for sheep and goats also showed strong predictive capability, with R² values of 0.900 for 

warm-season, 0.914 for cold-season, and 0.874 for year-round pastures. The RMSE values ranged from 0.419 to 0.475 across 

these categories. While these models performed slightly below the cattle models, they still provided reliable spatial distribution 380 

predictions. 
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Figure 5: Kernel Density Estimation (KDE) plots of model performance on the independent 20% test data for predicting cattle (a-
c) and sheep (e-g) distribution in warm-season, cold-season, and year-round pastures using the stacking-based IML models.  385 

 

The best-performing algorithms within the stacking framework varied by livestock type and pasture category. Extra Trees (ET) 

emerged as the optimal meta-model for both cattle and sheep (sheep and goats) in seasonal pastures (warm-season and cold-

season), whereas XGBoost and CatBoost delivered superior results for cattrle and sheep (sheep and goats) in year-round 

pastures, respectively (Meta-Model contribution in Figure A7 - Figure A12). This variability suggests distinct underlying 390 

patterns in livestock distribution across different grazing environments. Using the livestock density distribution predicted by 

the best-performing stacking-based IML models, we assigned county-level cattle and sheep (sheep and goats) numbers through 

dasymetric mapping. This approach resulted in the distribution of livestock numbers (CLRD-GLPS) across warm-season, cold-

season, and year-round pastures. In seasonal pastures, cattle are most densely distributed in the southeast of the Qinghai-Tibet 

Plateau (QTP), with numbers decreasing as they extend into Xinjiang (Figure 6 (a)-(b)). In contrast, sheep and goats are most 395 

numerous in the north-eastern part of Qinghai Province and Xinjiang (Figure 6 (d)-(e)). In year-round pastures, the cattle 

density is lower than that in cold-season or warm-season pastures, as grazing can occur year-round (Figure 6 (c)). However, 
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for sheep and goats, there is still a relatively high density of livestock distribution in Xinjiang and the western part of Inner 

Mongolia (Figure 6 (f)). The CLRD-GLPS cover 22 years from 2000 to 2021.  

 400 
Figure 6: CLRD-GLPS distributions of cattle ((a)–(c)) and sheep and goats ((d)–(f)) across warm-season, cold-season, and year-
round pastures in 2020. The boxes labelled A, B, and C represent magnified regions of seasonal pastures in different areas. 
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SHAP feature importance analysis revealed distinctive drivers of livestock distribution patterns. For cattle density distribution, 

vegetation indicators (NDVI) and topographical features (DEM) emerged as the most influential factors (Figure A7 - Figure 

A9). In contrast, sheep and goat density distributions were primarily influenced by snow cover, elevation (DEM), and annual 405 

mean temperature (Tmpmean_year), representing snow conditions, topography, and climate factors, respectively (Figure A10 

- Figure A12). 

 

3.4 Multi-scale Validation of CLRD-GLPS 

3.4.1 Spatial distribution validation  410 

To validate the CLRD-GLPS, we examined detailed regional comparisons of cattle (Figure 7) and sheep and goats (Figure 8) 

distributions across different pasture types in 2020. In these magnified regions (A: warm-season, B: cold-season, and C: year-

round pastures), CLRD-GLPS results demonstrate closer alignment with actual census data compared to GLW datasets. The 

CLRD-GLPS provides more detailed spatial information on livestock distribution patterns within these specific pasture regions, 

capturing local variations that GLW misses.  415 

 

Quantitative comparison of regions A, B, and C further validates these visual observations (Figure 7 and Figure 8). For cattle 

distribution, our analysis reveals that GLW underestimates densities, with an average of 3.42 heads/km² compared to census 

data of 9.37 heads/km², representing a 63.5% underestimation. In contrast, CLRD-GLPS provides much closer estimates at 

7.86 heads/km², reducing the deviation from census data to only 16.1%. For sheep and goats, GLW shows considerable 420 

overestimation with an average of 51.07 heads/km² compared to census data of 33.78 heads/km², representing a 51.2% 

overestimation. CLRD-GLPS demonstrates better accuracy with an estimate of 44.86 heads/km². Overall, these numerical 

comparisons demonstrate CLRD-GLPS's superior accuracy in capturing livestock distribution patterns within different pasture 

systems, providing a more reliable foundation for livestock management and policy development. 

 425 
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Figure 7: Comparison of CLRD-GLPS with GLW and actual census cattle density distribution in 2020. Detailed comparison in three 
regions corresponding to Figure 6 (A: warm-season pastures, B: cold-season pastures, C: year-round pastures) showing CLRD-
GLPS (a), GLW (b), and census data (c).  
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 430 
Figure 8: Similar to Figure 7, but for sheep and goats.  

3.4.2 Quantitative validation at multiple scales  

Quantitative validations were conducted by comparing CLRD-GLPS with existing livestock distribution datasets (GLW, 

GDGI, LHGI, and Meng) for benchmark years 2000, 2005, 2010, 2015, and 2020 across three spatial scales. 

 435 

At the county level, following the dasymetric mapping process to generate CLRD-GLPS, our validation showed high 

consistency (R² ranging from 0.990 to 0.999) for both cattle and sheep (sheep and goats) distributions (Figure 9 (a)-(h)). This 

high correspondence was expected since county-level census data served as constraints for our downscaling approach. In 

contrast, other livestock datasets showed substantially lower agreement with observed data, with R² values ranging from 0.445 
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to 0.826, and RMSE values from 19.24 to 41.95 (10,000 heads) (Figure 9 (i)-(l)). Our CLRD-GLPS dataset therefore appears 440 

to better capture the spatial distribution patterns of grazing ruminant livestock in grazing LPS compared to previous approaches. 

 
Figure 9: Validation of cattle ((a)–(d)) / sheep and goats ((e)–(h)) numbers from CLRD-GLPS across all pasture types, comparing 
GLW (i), GDGI (j), GLW (k), and Meng (l) datasets separately with census data at the county level in 2000, 2005, 2010, 2015, and 
2020.  445 

The city-level validation between CLRD-GLPS and observed grazing livestock numbers across warm-season, cold-season, 

and year-round pastures demonstrated robust performance, with R² values ranging from 0.71 to 0.92, and RMSE from 9.88 to 

76.89 (10,000 heads) (Figure 10 (a)-(f)). This confirms that our methodology effectively preserved the spatial patterns at 

administrative levels higher than the county. Further validation of CLRD-GLPS at the grid level using independently collected 

point observations of grazing livestock yielded an RMSE of 33.3 (SSUs/km²) and an R² of 0.79, indicating strong agreement 450 

between our predicted grid-level densities and observed values (Figure 11 (a)-(b)). These multi-scale validation results 

collectively demonstrate that CLRD-GLPS maintains high reliability across different spatial resolutions, from administrative 

units to fine-resolution grids. 
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Figure 10: Validation of cattle ((a)–(c)) / sheep and goats ((d)–(f)) numbers from CLRD-GLPS at city-level across all pasture types 455 
from 2000 to 2021.  

 
Figure 11: Validation of livestock numbers across all pasture types at the grid level from 2000 to 2021 (a), and the spatial distribution 
of sampling points across different seasonal pastures in China (b). Livestock numbers are expressed in Sheep Stock Units (SSUs) to 
standardize mixed cattle, sheep, and goat counts in the validation dataset.  460 
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4 Discussion 

4.1 Improvements of livestock distribution modelling framework 

Our development of CLRD-GLPS represents several important advancements in livestock distribution modelling compared to 

existing approaches. The main advancements in livestock distribution modelling in this study include three aspects. First, this 

study is the first to segment ruminant livestock within grazing LPS from the total livestock count across all LPS based on 465 

interpretable machine learning methods. Second, it expands the classification of grazing pastures to include seasonal types, 

specifically warm-season, cold-season, and year-round pastures across China, with dynamic suitability grazing mask. Finally, 

using stacking-based interpretable machine learning approach, we explore and explain the spatial-temporal distribution 

patterns of grazing ruminant livestock. 

 470 

Livestock density varies significantly across different LPS. While this variation is well-documented  (Thornton, 2002), 

previous livestock distribution models have largely failed to account for differences between grazing and non-grazing livestock 

within the same administrative units. In China, where grazing LPS account for 39.54% of the total LPS area (Kruska et al., 

2003), this methodological limitation leads to substantial overestimation of grazing livestock numbers when relying solely on 

county-level census statistics(Wang et al., 2024b). Our quantitative analysis reveals the magnitude of this overestimation 475 

problem. Based on our grazing ruminant livestock segmentation prediction results (Figure 4), the average grazing livestock 

proportion in 2021 across counties with grazing systems ranges from 20% to 80%. This means previous approaches would 

overestimate grazing livestock numbers by 25-400% (calculated as (1/proportion – 1) × 100%). For cattle, with an average 

grazing proportion of 0.58, the mean overestimation reaches 72.3%. For sheep and goats (average proportion 0.61), the 

overestimation averages 63.9%. 480 

 

To address this issue, our machine learning approach successfully segments grazing livestock from the total livestock count 

with high accuracy. The model validation demonstrates excellent performance (R² of 0.933 for both cattle and sheep/goats 

models at provincial level, and R² of 0.800 at county level), confirming the reliability of our segmentation method. By applying 

this approach, we effectively reduced the systematic overestimation that has plagued previous grazing livestock distribution 485 

studies. The spatial heterogeneity in grazing proportions revealed by our analysis reflects the fundamental competition between 

different LPS across China. Our SHAP analysis (Figure 3 (c)-(d)) demonstrates that the trade-off between cropland and 

grassland availability serves as the primary determinant of grazing livestock proportions, representing the classic competition 

between agricultural and pastoral land uses. This competition manifests differently across China's geographic gradient, with 

eastern regions showing lower grazing proportions due to intensive crop production and more developed mixed-farming and 490 

landless LPS (Jiang and Wang, 2022). The significant influence of geographic factors (longitude and latitude) in our models 

captures broader socioeconomic and policy dimensions that shape regional specialization in LPS. These findings highlight the 
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critical importance of accurately determining grazing proportions before modelling grazing ruminant livestock distribution, as 

failure to do so leads to significant spatial and number biases. 

 495 

Leveraging interpretable machine learning methods, our findings reveal notable differences between year-round pastures and 

seasonal pastures in the factors influencing livestock distribution and livestock density. For cattle, grass quality (NDVI) is the 

primary factor influencing distribution in both warm-season and cold-season pastures, with NDVI consistently showing the 

highest importance (approximately 0.6-0.8 on the importance scale) across all models. In contrast, for year-round pastures, 

topography (DEM) emerges as the dominant factor (with values around 0.6-0.7), while NDVI becomes a secondary influence 500 

(approximately 0.4-0.5) (Figure A7 - Figure A9). For sheep and goats, topography (DEM) and snow cover prominently feature 

as the main determinants in warm-season pastures (with DEM reaching 0.4 and snow cover up to 0.5 in some models), while 

in cold-season pastures, a more balanced influence of topographical features (slope, DEM) and snow cover shapes distribution. 

Most notably, in year-round pastures for sheep and goats, climate factors (particularly Tmpmean_year) become the dominant 

influence (reaching values of 0.4-0.5) (Figure A10 - Figure A12). These differences highlight the complex interaction between 505 

environmental factors and human activities in different grazing systems, providing valuable insights for targeted management 

strategies. 

 

4.2 Methodological advantages of the stacking-based IML approach 

In this study, we introduced stacking-based interpretable machine learning (IML) to livestock distribution modelling. Unlike 510 

previous studies that relied on single machine learning algorithms such as Random Forest or Extra Trees for livestock 

distribution prediction, our stacking ensemble approach demonstrates significant advantages in both prediction accuracy and 

model robustness. 

 

The comparative analysis of model performance revealed that our stacking-based IML approach consistently outperformed 515 

individual base models. For cattle distribution prediction, the stacking ensemble achieved up to 4.2% improvement in R² values 

over the best-performing individual model (from R²=0.926 in RF to R²=0.967 in stacking) for cold-season pastures, and 6.2% 

improvement (from R²=0.856 in RF to R²=0.909 in stacking) for year-round pastures (Figure A13). These improvements are 

particularly valuable across different pasture types within grazing LPS, where single-model approaches often struggle to 

maintain consistent performance. Similar enhancements were observed for sheep (sheep and goats) distribution prediction, 520 

with the stacking approach providing more stable predictions across diverse geographical conditions and reducing overfitting 

tendencies common in single model approaches (Figure A14). 

 

Beyond improved accuracy, the stacking-based approach offers several additional advantages. First, it effectively mitigates 

the inherent biases of individual algorithms. For instance, in regions with complex topography such as the south-eastern QTP, 525 

RF and XGB models produced inconsistent estimates of livestock density, while the stacking ensemble provided more 
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balanced predictions. Second, through SHAP value analysis across different base models, we gained more comprehensive 

insights into the driving factors of livestock distribution patterns than would be possible from a single model perspective. This 

revealed, for example, that while vegetation productivity (NDVI) is consistently important across all models for cattle 

distribution in warm-season pastures, its relative importance varies substantially (15-28% contribution) depending on the 530 

algorithm used, highlighting the value of ensemble approaches in robust feature importance assessment (Figure A7). 

 

Together, the stacking-based IML approach provide an innovation way that can be adapted for creating similar livestock 

distribution datasets in other regions and LPS. By combining the strengths of multiple algorithms while maintaining 

interpretability, our approach advances the field of livestock distribution modelling and provides more reliable data for 535 

sustainability assessments, climate change impact studies, and policy development. 

 

4.3 Uncertainties and limitations 

This study still faces certain limitations. Firstly, our historical county-level livestock statistical data did not manage to cover 

every county and year, due to the availability or accessibility of the data. While each model ensures a minimum of 12,000 540 

training samples, collecting more statistical data in the future may reduce errors introduced by model response data and expand 

the analysis across more years. Secondly, the dynamic grazing suitable mask is crucial. Although we utilized the annual 30m 

CLCD dataset, a more comprehensive coverage of grazing ban regions across both space and time would further improve the 

accuracy of this study. Lastly, in segmenting grazing livestock from the overall livestock population, the validation data on 

livestock carrying capacity mainly come from the QTP. While the QTP accounts for over 50% of China's grassland area (Li 545 

et al., 2021a), incorporating samples from more provinces, such as Inner Mongolia, would further enhance the validation of 

our grazing proportion predictions. 

5 Data availability 

China’s long-term annual ruminant livestock distribution in grazing livestock production systems from 2000 to 2021 (CLRD-

GLPS) is accessible on Zendo at the following link: https://doi.org/10.5281/zenodo.15347430 (Zhan et al., 2025). The datasets 550 

include cattle and sheep distributions in warm-season, cold-season, and year-round pastures, organized in corresponding 

folders. Each folder contains 22 GeoTIFF files from 2000 to 2021, with a 1km resolution (0.00083° at the equator) and units 

in heads per pixel (or heads/km²). 
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Appendices 

Table A1: List of datasets used in this study 

Data Type Variable Name Variable Description Data Source 

Livestock Data 

County-level 
Livestock Numbers 

Livestock (cattle/sheep/pigs) year-end stock 
numbers for 2000-2021 in 29 provinces 

China and Provincial Statistical 
Yearbooks (partially from 

Provincial Statistical Bureaus) 

City-level 
Livestock Numbers 

Livestock (cattle/sheep/pigs) year-end stock 
numbers for 2000-2021 in 29 provinces 

China and Provincial Statistical 
Yearbooks (partially from 

Provincial Statistical Bureaus) 

Grid-level 
observed Livestock 

Density 

Livestock density at grid-level (countryside-
level) from 2000 to 2021 

Previous literature and the 
National Rural Fixed 

Observation Point Micro-
household Survey 

Mask Data 

China Land Cover 
Dataset (CLCD) 

30-meter resolution land cover dataset of China 
for the years 2000, 2005, 2010, 2015, and 2020 (Yang and Huang, 2021b) 

National Nature 
Reserves 

Boundaries of the core areas of national nature 
reserves 

Chinese Academy of Sciences 
Resource and Environmental 

Sciences and Data Center 

Grazing ban Areas Boundaries of fenced pastures where grazing is 
prohibited (Sun et al., 2020) 

Pasture Data Seasonal Pasture 
Sample Data 

Seasonal pasture location data and distribution 
maps 

Qinghai Province Grassland 
Station; County-level Forestry 
and Grassland Bureaus of Tibet 
Autonomous Region; Xinjiang 
Autonomous Region Grassland 

Station 

Topographic Data 
DEM Digital Elevation Model 

NASA Shuttle Radar 
Topography Mission (Jarvis et 

al., 2008) 

Slope Slope (Fischer et al., 2008) 

Climate Data 

Presum_year Average annual cumulative precipitation for 
2000-2021            (Peng et al., 2014) 

Tmpmean_year Average annual mean temperature for 2000-2021 (Peng et al., 2014) 

GSpre Average cumulative precipitation during the grass 
growth season (April-October) for 2000-2021 (Peng et al., 2014) 

Wpre Average cumulative precipitation during winter 
(November-March) for 2000-2021 (Peng et al., 2014) 

GStmp Average mean temperature during the grass 
growth season (April-October) for 2000-2021 (Peng et al., 2014) 

Wtmp Average mean temperature during winter 
(November-March) for 2000-2021 (Peng et al., 2014) 
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Data Type Variable Name Variable Description Data Source 

Wind Average 10-meter wind speed for 2000-2021 
ECMWF (European Centre for 

Medium-Range Weather 
Forecasts) 

Snow Data 
Snow depth Average snow depth during winter (November-

March) for 2000-2021 

Spatial-temporal Tier 3 
Environmental Big Data 

Platform 

Snow Cover   Average number of snow cover days 
during winter (November-March) for 2000-2021 

US National Snow and Ice Data 
Center 

Vegetation Data 

GPP Maximum Gross Primary Productivity for 2000-
2021 MOD17A3H v006 

NPP Maximum Net Primary Productivity for 2000-
2021 MOD17A3H v006 

NDVI Maximum Normalized Difference Vegetation 
Index for 2000-2021 MOD13Q1 

Socioeconomic 
Data 

Travel time Shortest travel time to cities with at least 50,000 
people in 2015 (Weiss et al., 2018) 

POP LandScan 1-km Global population for 2000-2021 (Oak Ridge National 
Laboratory, 2020) 

 
Table A2:  Information of different livestock distribution datasets. 

 715 

 

Datasets Method Region Resolution Samples Season LPS Suitability mask Species 

LHGI 
Wang et 

al. (2024) 
RF Western 

China  

1980-2000 
Annual 

0.1° 
2001-2022 

Annual 
0.0025° 

No clearly 
number No Yes Grassland  

Livestock 
(cattle, goats, 
sheep, horses, 
donkeys, and 

camels) 

GDGI 
Zhou et 

al. (2024) 

ET 
RF 
GB 

KNN 
SVM 

Qinghai-
Tibet 

Plateau 
 

1990-2020 
Annual 
100m 

182 counties, 
and 4998 

independent 
records 

No No 

Suitable pasture: 
Grassland, 

Altitude<5600, 
slope<40%, 
Population 

density<0.5/hm2 

Livestock 
(cattle, sheep, 

horse, and 
mule) 

Meng et 
al. (2023) 

CSF 
RF 

Qinghai-
Tibet 

Plateau 
 

1982-2015 
Annual 
0.083° 

242 counties No No 

Unsuitable pasture:  
Non-grassland, 
Altitude>5600, 

NNR, 
Urban area 

Livestock 
(cattle, yaks, 

horses, 
donkeys, 
mules, 

camels, goats, 
and sheep) 
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Table A3: List of observed grid-level grazing density data used in this study  

Mean grazing density 
(SSUs/km2) Season Time Longitude Latitude Source 

13.8 Cold_season 2021 84.5724 33.5086 (Zhou et al., 2024) 

16.8 Cold_season 2021 84.5764 33.5173 (Zhou et al., 2024) 

1.3 Cold_season 2021 83.2922 33.1169 (Zhou et al., 2024) 

32.1 Cold_season 2021 83.3174 33.1207 (Zhou et al., 2024) 

155.2 Cold_season 2010 93.5 30.45 (Zhou et al., 2024) 

0 Cold_season 2021 80.3398 34.6949 (Meng et al., 2023) 

0 Cold_season 2021 85.5507 32.9491 (Meng et al., 2023) 

0 Cold_season 2021 83.3801 32.4206 (Meng et al., 2023) 

0 Cold_season 2021 81.3056 32.1976 (Meng et al., 2023) 

0 Cold_season 2021 81.1381 31.0308 (Meng et al., 2023) 

0 Cold_season 2021 82.5525 30.5754 (Meng et al., 2023) 

0 Cold_season 2021 83.5271 30.0013 (Meng et al., 2023) 

0 Cold_season 2021 81.5937 32.0056 (Meng et al., 2023) 

0 Cold_season 2021 84.5005 31.5758 (Meng et al., 2023) 

0 Cold_season 2021 93.8996 35.4687 (Meng et al., 2023) 

0 Cold_season 2021 99.0157 35.2812 (Meng et al., 2023) 

175.5 Cold_season 2005 101.213 37.48 (Zou et al., 2016) 

15.2 Cold_season 2018 99.934 34.009 (Yu et al., 2021) 

60.6 Cold_season 2018 99.461 33.757 (Zhou et al., 2024) 

146.856465 Cold_season 2004 101.4512 36.49412 NRFOP 

120.678685 Cold_season 2001 101.4512 36.49412 NRFOP 

159.9051008 Cold_season 2000 101.4512 36.49412 NRFOP 

410.5294118 Cold_season 2003 88.05187 44.15674 NRFOP 

147.6139979 Cold_season 2002 101.4512 36.49412 NRFOP 

153.7366548 Cold_season 2002 101.4512 36.49412 NRFOP 

416.2280702 Cold_season 2001 88.05187 44.15674 NRFOP 

1.4 Warm_season 2021 83.2653 33.1603 (Zhou et al., 2024) 

0 Warm_season 2021 84.2821 33.2489 (Meng et al., 2023) 

0 Warm_season 2021 82.5718 32.2185 (Meng et al., 2023) 

0 Warm_season 2021 84.1376 32.1522 (Meng et al., 2023) 
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Mean grazing density 
(SSUs/km2) Season Time Longitude Latitude Source 

0 Warm_season 2021 84.5005 31.5758 (Meng et al., 2023) 

126 Warm_season 1998-
2000 99.506 33.573 (Dong et al., 2015) 

60.6 Warm_season 2018 99.461 33.757 (Zhou et al., 2024) 

62 Warm_season 2012 87.078 43.878 (Zhou et al., 2024) 

95 Warm_season 2012 87.085 43.888 (Zhou et al., 2024) 

146.856465 Warm_season 2004 101.4512 36.49412 NRFOP 

410.5294118 Warm_season 2003 88.05187 44.15674 NRFOP 

147.6139979 Warm_season 2002 101.4512 36.49412 NRFOP 

153.7366548 Warm_season 2002 101.4512 36.49412 NRFOP 

120.678685 Warm_season 2001 101.4512 36.49412 NRFOP 

416.2280702 Warm_season 2001 88.05187 44.15674 NRFOP 

159.9051008 Warm_season 2000 101.4512 36.49412 NRFOP 

56 Year_round 2010 107.369 38.641 NRFOP 

68 Year_round 2010 114.84 44.0178 NRFOP 

90.39077514 Year_round 2004 118.5405 41.96392 NRFOP 

43.30666667 Year_round 2004 122.9213 44.52178 NRFOP 

8.584105442 Year_round 2004 107.1001 37.81548 NRFOP 

8.912958371 Year_round 2003 107.1001 37.81548 NRFOP 

136.625 Year_round 2003 106.1724 35.58533 NRFOP 

83.72837924 Year_round 2002 118.5405 41.96392 NRFOP 

43.46153846 Year_round 2002 121.4012 42.41777 NRFOP 

9.518465353 Year_round 2002 107.1001 37.81548 NRFOP 

139.5 Year_round 2002 106.1724 35.58533 NRFOP 

81.99871877 Year_round 2002 118.5405 41.96392 NRFOP 

47.91208791 Year_round 2002 121.4012 42.41777 NRFOP 

9.196137283 Year_round 2002 107.1001 37.81548 NRFOP 

133.25 Year_round 2002 106.1724 35.58533 NRFOP 

96.15631006 Year_round 2001 118.5405 41.96392 NRFOP 

43.24175824 Year_round 2001 121.4012 42.41777 NRFOP 

9.213101918 Year_round 2001 107.1001 37.81548 NRFOP 

140.25 Year_round 2001 106.1724 35.58533 NRFOP 
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Mean grazing density 
(SSUs/km2) Season Time Longitude Latitude Source 

84.11274824 Year_round 2000 118.5405 41.96392 NRFOP 

18.21956846 Year_round 2000 107.1001 37.81548 NRFOP 

118 Year_round 2000 106.1724 35.58533 NRFOP 
 

The ordinary words in the sample table of Grassland Ecological Protection Subsides are in Chinese (Table A2), the red 

words are translated into English, and the blue-framed column contains the data used in this study. Additionally, as this 720 

data is not permitted for publication, all numbers in the table are masked. 

  
Table A3: The sample basic information table on the grassland ecological protection subsidy and reward mechanism in Tibet. 
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  725 
Figure A1: Sampling seasonal pasture mask and unsuitable mask for livestock grazing.  

  
Figure A2: Establishment time distribution of National Nature Reserves in China.  
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 730 

Figure A3: Structure of the stacking-based interpretable machine learning (IML) model for livestock density distribution 
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Figure A4: Results of ten-fold cross-validation (a) and feature importance (b) for the Random Forest Classification model.  

 735 
Figure A5: Temporal changes in seasonal pastures (2000-2021). (a) Absolute area (km²) of warm-season, cold-season, and year-
round pastures. (b) Proportional composition (%) of the three pasture types. 
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Figure A6: County-level validation of grazing ruminant livestock segmentation model using existing livestock carrying capacity data. 

  740 
Figure A7:  SAHP feature importance and Meta-Model contributions of cattle distribution prediction in warm-season pastures.  
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Figure A8: SAHP feature importance and Meta-Model contributions of cattle distribution prediction in cold-season pastures.  
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Figure A9: SAHP feature importance and Meta-Model contributions of cattle distribution prediction in year-round pastures.  745 
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Figure A10: SAHP feature importance and Meta-Model contributions of sheep and goats distribution prediction in warm-season 
pastures.  

 750 
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Figure A11: SAHP feature importance and Meta-Model contributions of sheep and goats distribution prediction in cold-season 
pastures.  
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 755 
Figure A12: SAHP feature importance and Meta-Model contributions of sheep and goats distribution prediction in year-round 
pastures.  

  
Figure A13: Comparison between individual model and stacking model for cattle and sheep (sheep and goats) distribution prediction 
in cold-season, warm-season, and year-round pastures. 760 
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Figure A14: Overfitting assessment of cattle and sheep (sheep and goats) across all pasture types.  

 
 765 

https://doi.org/10.5194/essd-2025-263
Preprint. Discussion started: 4 June 2025
c© Author(s) 2025. CC BY 4.0 License.


