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Abstract 19 

Slums are a visible manifestation of poverty in Global South countries. 20 

Reliable estimation of slum population is crucial for urban planning, humanitarian 21 

aid provision, and improving well-being. However, large-scale and fine-grained 22 

mapping is still lacking due to inconsistent methodologies and definitions across 23 

countries. Existing datasets often rely on government statistics, lacking spatial 24 

continuity or underestimating slum population due to factors such as city image 25 

and privacy concerns. Here, we develop a standardized bottom-up approach to 26 

estimate slum population at the neighborhood level (~6.72 km resolution at the 27 

equator) for 129 Global South countries in 2018. Leveraging the Sustainable 28 

Development Goals 11.1 framework and machine learning, our estimation 29 

integrates household-based surveys, satellite imagery, and grided population data. 30 

Our models explain 82% to 96% of the variation in ground-truth surveys, with a 31 

root mean squared error of 4.85% to 10.47%, outperforming previous 32 

benchmarks. Cross-validation with independent data confirms the reliability of 33 

our estimates. To our knowledge, this is the first comprehensive geospatial 34 

inventory of slum populations across Global South countries, offering valuable 35 

insights for advancing urban sustainability and supporting further research on 36 

vulnerable populations. The maps of slum populations and their local shares in 37 

Global South countries are available in the Zalando repository at 38 

https://doi.org/10.5281/zenodo.13779003 (Li et al., 2025).  39 

 40 

Introduction 41 

The right to adequate housing and shelter holds a central position in the 42 

realm of international human rights (Hohmann, 2013; Nowak, 2021). However, a 43 

distressing reality persists: millions of individuals worldwide live in life- or health-44 

threatening conditions, commonly referred to as slums, informal settlements, 45 

favelas, or shanties (Hardoy et al., 2013). As a kind of visible expressions of 46 

poverty, slums are typically characterized by physical state of disrepair, degraded 47 

environment in insanitary conditions, and absence of basic and essential facilities, 48 

and they are often situated in disadvantageous, exposed and hazardous areas 49 

(Abascal et al., 2022; UN‐Habitat, 2004). The emergence and persistence of slums 50 

have been a consequence of rapid and unplanned urbanization that outpaces 51 

economic growth and infrastructure development (Ezeh et al., 2017; Marx et al., 52 
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2013). According to the World Cities Report 2020 (UN-HABITAT, 2020), over 1 53 

billion people live in urban slums, with 80% of them residing in cities within 54 

developing countries. Nevertheless, urbanization has not yet peaked, and the 55 

population living in slum-like conditions is expected to grow (Guan et al., 2018; 56 

UN-HABITAT, 2020). This intensifies the urgency to provide adequate housing, 57 

basic services and slums upgrades, in line with the commitment to the Sustainable 58 

development Goals (SDG) and “leaving no one behind” (Weber, 2018; Tian et al., 59 

2024).  60 

Reliable slum population estimates are essential for understanding the 61 

spatial scale and distribution of slum populations, providing foundational data for 62 

implementing targeted urban planning and improving human well-being (Parikh 63 

et al., 2013; Satterthwaite et al., 2020; Schetke et al., 2012). These estimates help 64 

identify vulnerable populations, similar to demographic data on the elderly and 65 

women (Singh, 2016). Detailed knowledge of slum population locations enables 66 

effective resources allocation and targeted interventions (Doe et al., 2020; Zhou et 67 

al., 2022). Quantitative data can also motivate policymakers and researchers to 68 

tackle inequalities, while spatial knowledge can help pinpoint drivers of slum 69 

population growth, such as proximity to rivers and elevation, thus contributing to 70 

climate risk management (Baynes et al., 2022; Rentschler et al., 2023; Sietchiping 71 

and Yoon, 2010). 72 

Despite this, large-scale, comparable inventories of slum populations remain 73 

scarce. National statistics and sparce survey data, such as those from censuses or 74 

Know Your City Campaigns, fail to provide a spatially continuous view of slum 75 

population (Angeles et al., 2009; Pedro and Queiroz, 2019; Persello and Kuffer, 76 

2020). These data collections are inconsistent across countries (Thomson et al., 77 

2020), and governments may withhold or omit sensitive information due to 78 

factors such as city image considerations (Björkman, 2013; Moreno, 2003; Wurm 79 

et al., 2017). Privacy concerns also contribute to underreporting (Engin et al., 80 

2020), as slum dwellers may distrust external inquiries (Binzel and Fehr, 2013; 81 

Rogler, 1967). As a result, spatially explicit data on slum populations, particularly 82 

in developing countries, remain scarce. 83 

Recent advancements in machine learning and the availability of satellite 84 

imagery provide new opportunities for slum population mapping (Burke et al., 85 

2021; Gram-Hansen et al., 2019; Wurm et al., 2019). While considerable research 86 

has focused on identifying slums based on satellite-derived morphological 87 

features, such as studies in Mumbai (Ibrahim et al., 2019), and Kenya (Mahabir et 88 

al., 2020), these efforts are often limited to individual cities (Banerjee et al., 2017; 89 
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Thomson et al., 2020) and may not provide comparable results across countries 90 

or regions. For instance, the boundaries of slum determined in these studies may 91 

yield discrete outcomes (Patel et al., 2019), making it difficult to integrate this 92 

information with population data to produce large-scale demographic insights 93 

(Breuer and Friesen, 2023). In some cases, there might be a necessity to obfuscate 94 

the precise boundaries of slums to safeguard the privacy of already vulnerable 95 

populations (Thomson et al., 2019). Although several studies have estimated slum 96 

populations in selected cities across the Global South, these estimates are 97 

generally considered to be underestimations (Breuer et al., 2024; Thomson et al., 98 

2022). 99 

In this study, we integrate ground-surveys, public satellite imagery, and 100 

advanced machine learning to map slum population at the cluster-level (6.72km × 101 

6.72km at the equator) across Global South countries. During the training, 102 

validation, and testing phases, we assemble data from surveys covering over 1 103 

million households in 67,204 clusters across 53 countries, sourced from 104 

Demographic and Health Surveys (DHS). Using this data, we construct a slum 105 

indicator framework and fine-tune the ResNet-34 algorithm to extract features 106 

from Landsat and nighttime light imagery. For out-of-sample predictions, we 107 

apply the cross-validated model to predict slum indicators and integrate them 108 

with grided population data to create detailed slum population maps for 129 109 

Global South countries in 2018. Overall, we offer a generalized and scalable 110 

approach to slum population mapping that enables regional comparisons while 111 

maintaining privacy safeguards. The objectives of this study are to (1) develop a 112 

machine learning-based workflow for slum population mapping, (2) generate a 113 

fine-grained inventory of slum population in 129 Global South countries, and (3) 114 

analyze spatial distribution disparities across different geographic regions and 115 

income groups. 116 

 117 

2 Dataset description 118 

Four types of publicly accessible datasets are used in this study. The first type 119 

is geo-referenced household surveys, which are used to calculate the slum 120 

indicator as machine learning labels. The second type consists of daytime satellite 121 

imagery and nighttime light imagery, which serve as the input features. The third 122 

type is grided population data, used in combination with the slum indicator to 123 

produce the final gridded slum population estimates. The fourth type consists of 124 

gridded auxiliary data related to slum populations, which help exclude areas 125 

https://doi.org/10.5194/essd-2025-260
Preprint. Discussion started: 28 May 2025
c© Author(s) 2025. CC BY 4.0 License.



5 

 

without human settlements.  Table 1 outlines the datasets and layers that are 126 

used to generate the slum population map in this study. 127 

 128 

Table 1. Overview of data sources for generating the slum population map in Global 129 

South countries 130 

Data Sources Abbreviation Input spatial resolution Period Coverage Reference 

Demographic and 

Health Survey 
DHS (https://www.dhsprogram.com/Data/) 

household-based data, 

~2km for urban areas 

and ~5km sometimes 

10km for rural areas 

The latest version 

for 53 countries 

varying from 

2010~2020 

Rutstein 

and 

Staveteig 

(2014) 

Landsat Collection 2 

on Google Earth 

Engine 

Landsat 8 Level 2, Collection 2, Tier 1 

(https://developers.google.com/earth-

engine/datasets/catalog/LANDSAT_LC08_C02_T

1_L2) 

Landsat 7 Level 2, Collection 2, Tier 1 

(https://developers.google.com/earth-

engine/datasets/catalog/LANDSAT_LE07_C02_T

1_L2) 

30m 

Landsat 7 ETM+: 

1999~2024 

Landsat 8 

OLI/TIRS: 

2013~2024 

Tamiminia 

et al. 

(2020); 

Roy et al. 

(2016) 

Global NPP-VIIRS-

like nighttime light 

data (through a new 

cross-sensor 

calibration from 

DMSP-OLS NTL data 

and a composition of 

monthly NPP-VIIRS 

NTL data. 

An extended time-series (2000-2023) of global 

NPP-VIIRS-like nighttime light data 

(https://doi.org/10.7910/DVN/YGIVCD) 

15 arcsec (∼500 m)  2000~2023 

Chen et al. 

(2020); 

Elvidge et 

al. 

(2017); 

Hsu et al. 

(2015) 

Global Human 

Settlement 

Population Grid 

GHS-POP (https://human-

settlement.emergency.copernicus.eu/download.p

hp?ds=pop) 

1km 2020 

Schiavina 

et al. 

(2022) 

Global Human 

Settlement Model 

Grid 

GHS-SMOD (https://human-

settlement.emergency.copernicus.eu/download.p

hp?ds=smod) 

1km 2020 

Schiavina 

et al. 

(2022) 

Copernicus 

Copernicus Global Land Cover Layers: CGLS-

LC100 Collection 3 

(https://developers.google.com/earth-

engine/datasets/catalog/COPERNICUS_Landcove

r_100m_Proba-V-C3_Global) 

100m 2018 

Buchhorn 

et al. 

(2020) 

 131 

 2.1 Geo-referenced household surveys 132 

This study uses the household-based ground survey data from Demographic 133 

and Health Surveys (DHS) to calculate the proportion of slum households at the 134 

cluster-level. The DHS program is funded primarily by the United States Agency 135 

for International Development (USAID), and collects nationally representative 136 

and comparable information based on a consistent set of questionnaires for a wide 137 

range of monitoring and impact evaluation indicators in the areas of population, 138 

health, and household living conditions in developing countries (Rutstein and 139 

Staveteig, 2014). The derived standard DHS Surveys have large sample sizes 140 

(usually between 5,000 and 30,000 households) and typically are conducted 141 
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about every 5 years. Focusing on Global South countries, we deprive the geo-142 

referenced data from 53 countries (as of 2022) in Latin American, Africa and Asia, 143 

with a valid dataset comprising over 1 million households across 67,204 clusters. 144 

The ground-truth household surveys points can be found in Figure S1 and Table 145 

S1. To protect respondent confidentiality, the DHS program randomly displaces 146 

the geographic coordinates of the surveyed locations, with a maximum of 2km for 147 

urban clusters and 5km or sometimes 10 km for rural clusters (Burgert et al., 148 

2013). To avoid misclassification in analysis using administrative-level data, the 149 

displacements are constrained within the administrative boundaries, specifically 150 

at the administrative level 3 (Figure S2). The cluster level thus corresponds to 151 

neighborhoods in urban areas or villages in rural areas. 152 

 153 

2.2 Satellite imagery 154 

We collect publicly available Landsat-7 ETM+ (Collection 2, Tier 1), Landsat-155 

8 OLI (Collection 2, Tier 1) and nighttime light imagery centered on each cluster 156 

from Google Earth Engine platform (Tamiminia et al., 2020) and Global NPP-157 

VIIRS-like nighttime light dataset (Chen et al., 2020). Landsat imagery series offer 158 

the world’s longest-running collection of consistently acquired, high-resolution 159 

earth observation data, and have been applied in numerous studies such as urban 160 

growth monitoring. The collection 2, Tier 1 images have undergone improved 161 

systematic geometric correction and radiometric calibration. Due to differences in 162 

the spectral reflectance between different sensors, we adopt the normalization 163 

coefficients from Roy et al. (2016) to characterize the ETM+ reflectance to that of 164 

OLI. To get clear slices with fewer clouds and snow, we generate a 1-year median 165 

composite from Landsat imagery by selecting cloud-free pixels based on the 166 

quality assessment (QA) bands, and then calculating the median value for each 167 

available cloud-free pixel over the 1-year period (Azzari and Lobell, 2017). 168 

Similarly, considering the inconsistent timing of household surveys across 169 

countries, we use the Global NPP-VIIRS-like nighttime light dataset to ensure 170 

spatiotemporal consistency between satellite imagery and slum indicator labels. 171 

This NPP-VIIRS-like dataset, produced through cross-sensor calibration of the 172 

DMSP-OLS and NPP-VIIRS datasets, is particularly suitable for analyzing long-173 

term demographic and socioeconomic trends. We thus obtain six multispectral 174 

bands from Landsat imagery including red, green, blue, near infrared and two 175 
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shortwave infrared bands, and one single band from NPP-VIIRS-like nighttime 176 

light dataset. The Landsat and Nighttime light slices have a size of 224 × 224 tiles, 177 

in accordance with the input size of our convolutional neural networks 178 

architecture and covering the extent of displacement. Consequently, our mapping 179 

resolution is determined to be 6.72 kilometers on equator (30m-pixel size × 224 180 

pixels = 6.72 km). 181 

 182 

2.3 Population and gridded auxiliary data 183 

We utilize and process the 1km-gridded Global Human Settlement Population 184 

dataset (GHS-POP), developed by the EU Joint Research Center, to estimate the 185 

slum population (Schiavina et al., 2022). The GHS-POP dataset provides a more 186 

precise estimation of population distribution by disaggregating census or 187 

administrative unites into grid cells, based on the classification of built-up areas 188 

in the Global Human Settlement Layer derived from Landsat imagery. It is selected 189 

for its superior accuracy and top-down constrained allocation approach, 190 

outperforming other available gridded population datasets (Smith et al., 2019; 191 

Tellman et al., 2021). We resample this population dataset to match the resolution 192 

of our cluster level mapping. Additionally, we incorporate the GHS Settlement 193 

Model Grid (GHS-SMOD) and the Copernicus Global Land Cover Layers product 194 

(CGLS-LC100) as auxiliary grided data (Buchhorn et al., 2020; Schiavina et al., 195 

2022). This helps us differentiate settlement patterns across urban, semi-urban, 196 

and rural areas, and also allows us to exclude areas with low population density. 197 

 198 

3 Methodology 199 

We propose a standardized and comparable framework for estimating 200 

cluster-level slum population, which integrates a slum indicator framework based 201 

on the definition of slum households, a deep learning model, and an XGBoost 202 

ensemble classifier. Our approach addresses the underestimation of slum 203 

population in prior literature, which heavily relied on slum boundary geometry. A 204 

set of examples of the uncertainties in slum boundary delineation is shown in 205 

Figure S3. Figure 1 depicts the flowchart for mapping slum populations in Global 206 

South countries. The main procedures are outlined as follows. 207 
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 208 

Figure 1 Flowchart of this study 209 

 210 

3.1 Framework of slum indicator 211 

We use the SDG 11.1 framework as a proxy to estimate the occurrence of 212 

households living in slums or slum-like conditions within a cluster. Based on UN-213 

Habitat’s definition of a slum household (UN-habitat, 2021), we incorporate 214 

“access to electricity” into our slum population framework, recognizing its critical 215 

role in human well-beings in developing countries. However, we exclude the 216 

“security of tenure” dimension due to data limitations. As a result, the slum 217 

population is defined as individuals (or households) living in conditions lacking 218 

one or more of the following: safely and adequate housing, safely managed 219 

drinking water and sanitation services, or reliable and modern energy services. 220 

These conditions are categorized into three dimensions, comprising ten indicators 221 

(Table 2). The specific definitions and criteria are detailed in Table S2. We treat 222 

housing, water and sanitation, and electricity as equally important, assigning each 223 

a weight of 0.33. The slum indicator is then determined as follows: 224 

 𝑆𝑐 =
1

𝑁𝐻𝑐
⋅ (𝑤𝐻 ⋅

∑ ℎ𝑖,𝑐
𝑛𝐻
𝑖=1

𝑛𝐻
+ 𝑤𝑊 ⋅

∑ 𝑤𝑎𝑗,𝑐
𝑛𝑊
𝑗=1

𝑛𝑊
+ 𝑤𝐸 ⋅

∑ 𝑒𝑙,𝑐
𝑛𝐸
𝑙=1

𝑛𝐸
) ⋅ 100% (1) 225 

where Sc represents the slum indicator for each cluster c; NHc is the total number 226 

of households in cluster c; wH, wW, and wE represent the weights assigned to the 227 

dimensions of safely and adequate housing (H), safely managed drinking water 228 

and sanitation services (W), and reliable and modern energy services (E); nH, nW, 229 
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nE represent the total number of sub-indicators within the H, W and E dimensions, 230 

respectively; hi,c, waj,c, and el,c denote the numbers of households in cluster c that 231 

fail to meet the criteria for the i-th housing sub-indicator, j-th water and sanitation 232 

sub-indicator, and l-th energy sub-indicator, respectively. 233 

 234 

Table 2 The framework of slum indicator based on household data 235 

Dimensions Indicators 

Safely and adequate housing 

House made of finished materials (roof, wall and 

floor) 

House with a sufficient living room 

Safely managed drinking water 

and sanitation services 

Household using safely managed drinking water 

Household with access to water availability for 

continuous two weeks 

Household with access to drinking water located 

within a round trip of 30 minutes 

Household using safely managed sanitation toilets 

Household using safely managed hand-washing 

facility with water. 

Household using safely managed hand-washing 

facility with soap or detergent 

Reliable and modern energy 

services 

Household with access to electricity 

Household with clean cooking fuels 

 236 

3.2 Model architecture 237 

We employ transfer learning by fine-tuning the pre-trained ResNet-34 to 238 

extract the informative features from satellite imagery (Figure 2). Transfer 239 

learning in deep learning leverages pre-trained models, which have been trained 240 

on large datasets, to capture general features with high accuracy (Pan and Yang., 241 

2009). In this study, we start with a ResNet model pre-trained on the large 242 

ImageNet dataset, which comprises over 100 million samples. ResNet, standing 243 

for the Residual Network, is a deep convolutional neural network (CNN) 244 

architecture that uses skip connections to bypass one or more layers, allowing 245 

input data to be added directly to the output (He et al., 2016). These skip 246 

connections help mitigate the vanishing or exploding gradient problems often 247 

encountered in deep networks. ResNet-34 strikes a balance between model depth 248 
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and computational efficiency, making it an idea choice for fine-grained mapping 249 

tasks (Robinson et al., 2017; Shi et al., 2022) while offering a good trade-off 250 

between model capacity and accuracy (Russakovsky et al., 2015).  251 

For the purpose of this study, we modify the first convolutional layer to 252 

accommodate our satellite slice inputs, and the last layer to produce a continuous 253 

estimate instead of a classification. Specifically, we initialize the RGB channels 254 

with weights pre-trained on ImageNet, while for non-RGB channels, we use the 255 

average of weights for RGB weights for initialization, scaling all weights by 3/7. 256 

Following Yeh et al., (2020), the remaining layers of the ResNet are initialized to 257 

their ImageNet values, and the weights for the final layer are initialized randomly. 258 

The model is trained using Adam optimizer (Kingma and Ba, 2014) and a mean 259 

squared-error loss function with L2 regularization. The models are trained for 120 260 

epochs, with early stopping implemented to prevent overfitting. The 261 

hyperparameter learning rate and L2 weight regularization are ranged among 0.1, 262 

0.01, 0.001 and 0.0001, and 1, 0.1, 0.01 and 0.001, respectively. After fine-tuning 263 

the ResNet-34 model, we leverage it to extract 512-dimensional features from the 264 

satellite images. Here we do not incorporate other slum-related geographical 265 

characteristics, such as proximity to government agencies or educational facilities, 266 

since these quantifications are not sufficiently accurate due to the displacement of 267 

cluster locations as indicated in DHS documentations.  268 

Subsequently, we use eXtreme Gradient Boosting tree (XGBoost), a popular 269 

and flexible supervised-learning algorithm, to predict the occurrence of slum 270 

household in each cluster from 512 features. XGBoost, introduced by Chen and 271 

Guestrin (2016), is a scalable machine learning model based on the gradient 272 

boosting framework. It builds an ensemble of decision trees by sequentially 273 

adding weak learners, each aimed at improving prediction accuracy. The first tree 274 

is constructed by splitting features to minimize the loss function, and subsequent 275 

trees are generated iteratively, correcting the residuals of previous predictions. 276 

This process continues until the stopping criteria are met. In XGBoost, the trees 277 

work together to progressively reduce residuals, with the final prediction 278 

obtained by aggregating the outputs of all trees. XGBoost is renowned for its high 279 

speed and strong predictive performance, particularly well-suited for large 280 

datasets and high-dimensional data.  281 
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 282 

Figure 2 The model architecture for integrating transfer learning using ResNet-34 283 

as the feature extractor and XGBoost for regression. 284 

 285 

 286 

We perform a grid search to find the optimal combinations of 287 

hyperparameters and apply L2 regularization to the loss function to prevent 288 

overfitting. The hyperparameters tuned include the learning rate (learning_rate), 289 

the maximum depth of trees (max_depth), the fraction of the training data used 290 

for building each tree (subsample), the fraction of features used for each tree 291 

(colsample_bytree), the regularization term to control tree complexity (gamma), 292 

and the total number of boosting rounds (n_estimators). By optimizing these 293 

parameters, we ensure the model achieves a balance between predictive 294 

performance and generalization. These optimal hyperparameters are then applied 295 

https://doi.org/10.5194/essd-2025-260
Preprint. Discussion started: 28 May 2025
c© Author(s) 2025. CC BY 4.0 License.



12 

 

to retrain the model on the entire dataset, producing the final model for out-of-296 

sample estimation. Table 3 lists the candidate values considered during the grid 297 

search. 298 

 299 

Table 3 The hyperparameters used in grid search 300 

Hyperparameters Param_grid 

learning_rate [0.01, 0.03, 0.05, 0.1] 

max_depth [3, 5, 6, 7] 

subsample [0.6, 0.8, 1.0] 

colsample_bytree [0.6, 0.8, 1.0] 

gamma [0, 0.1, 0.2, 0.3] 

n_estimators [best_num_boost_rounds] 

 301 

3.3 Model training and cross validation 302 

During the model training and cross validation phases, we divide the 53 303 

countries with the DHS data into 9 groups based on their geographical regions and 304 

income levels (Table S3). In other words, we train nine separate regional models, 305 

following the flowchart in Figure 1. To enhance the generalization ability of the 306 

models, we group countries for training and validation rather than training 307 

individual country-specific models, ensuring a sufficient number of samples per 308 

group. While our primary focus is on regional models, we also compare their 309 

performance against country-specific models to evaluate potential differences. 310 

We split the spatial-temporal matched satellite images and DHS survey labels 311 

into training, validation, and test sets. Specifically, 20% of the dataset is held out 312 

as an independent test set to assess the final model’s performance, while the 313 

remaining 80% is used for training and validation. For robust model evaluation, 314 

we employ 5-fold spatially stratified cross-validation. In each fold, the data is 315 

divided to maintain equal proportions of urban and rural samples, as well as 316 

consistent proportions of samples from each country within the group. During 317 

cross-validation, the model is trained on four folds and validated on the remaining 318 

fold, repeating the process five times so each fold serves as the validation set once. 319 

This rigorous approach enables accurate assessment of the model’s generalization 320 

ability across different geographic regions and income levels, while ensuring an 321 

unbiased evaluation on the held-out test set. 322 
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 323 

3.4 Out-of-samples predictions  324 

Using our final models, we apply satellite imagery and nighttime light data to 325 

grid cells of 6.72-km in Global South countries, focusing on cells with populations 326 

exceeding 1,000. This allows us to estimate the cluster-level slum indicators 327 

across 129 Global south countries, based on the list of the United Nations' Finance 328 

Center for South-South Cooperation. Clusters with populations below 1000 are 329 

excluded to avoid unreliable out-of-sample estimates. 330 

To produce the final map of population living in slums or slum-like conditions, 331 

we integrate the GHS-POP dataset with the map of cluster-level slum indicator. 332 

The slum indicator is used to clip the GHS-pop population grid, and to re-sample 333 

the population data for achieving spatial alignment. By combining the slum 334 

prevalence map with grided population dataset, we produce the final map of slum 335 

population at the cluster-level. 336 

 337 

3.6 Evaluation approaches 338 

Our slum population framework integrates multiple data sources, making 339 

robustness and uncertainty assessment complex. To address this, we adopt a step-340 

by-step evaluation process, which involves validating results from intermediate 341 

steps and comparing results with other statistics (Haberl et al., 2021). We evaluate 342 

the performance of the final models using two metrics including coefficient of 343 

determination (R2) and root mean squared error (RMSE). We cross‐validate our 344 

mapped slum population estimates against a broad range of literature and 345 

statistical data at regional, national, and local scales. This comparison provides an 346 

additional layer of validation, helping to evaluate the consistency of our estimates 347 

with existing data.  348 

To test the robustness of our framework, we evaluate the models under two 349 

alternative weighting schemes for the slum indicator: the “Basic Service” scenario 350 

and the “UN-Habitat” scenario. In the Basic Service scenario, greater emphasis is 351 

placed on water and sanitation, and energy services, with weights of 0.2, 0.4, and 352 

0.4, respectively (Fu et al., 2019). In contrast, the UN-Habitat scenario prioritizes 353 

housing and water and sanitation services, assigning weights of 0.4, 0.4, and 0.2 354 

(Mwaniki and Ndugwa, 2021). This sensitivity analysis helps determine how 355 

different weighting schemes affect the final predictions. We also compare the 356 
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performance of regional models with country‐specific models to identify the 357 

strengths and limitations of applying a generalized model across different 358 

geographical areas. 359 

 360 

4 Results 361 

4.1 Model performance 362 

To evaluate the performance of our regional models, we use two metrics, 363 

RMSE and R2, to assess the predictive accuracy of the slum indicator at the cluster 364 

level in Africa, Asia, and Latin American regions, respectively (Table 4 and Figure 365 

3). The optimal hyperparameters for the regional models are provided in Table S4. 366 

The household-based slum indicator calculated from DHS data serves as the 367 

ground truth, while our method generates the predicted values.  368 

Overall, our regional models demonstrate strong performance, with RMSE 369 

values ranging from 5.20% to 10.17% and R2 values between 0.82 and 0.95. 370 

Specifically, the models achieve an average RMSE of 5.89% in Africa, 6.66% in Asia, 371 

and 8.26% in Latin America. This performance may be attributed to the availability 372 

of labeled training data from household surveys used during the modeling process. 373 

When comparing performance across income groups, models developed for low‐374 

income and low‐middle‐income groups perform better than those for upper‐375 

middle‐income and high‐income groups in Asia and Latin America. It is worth 376 

noting that all models deliver satisfactory results.  377 

In Figure 3, scatter points represent the distribution of true versus predicted 378 

values, and their even scatter around the 1:1 line indicates no significant 379 

overestimation or underestimation. Collectively, the results demonstrate the 380 

effectiveness of state‐of‐the‐art machine learning models in capturing the complex 381 

relationships between satellite imagery and slum indicators. Given that local 382 

household survey data are not always available, our method offers a valuable 383 

approach for using limited data to identify the spatial distribution of slum 384 

households—a key indicator for estimating affordable and adequate housing, in 385 

alignment with SDG 11.1. 386 

  387 
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Table 4 Model performance of slum indicator in Global South 388 

 389 

Figure 3 Model performances across different income groups. The true values represent 390 

the slum indicator calculated from DHS data using our slum framework, while the predicted 391 

values are produced by our machine learning-based models. For each model, a linear 392 

regression line is displayed alongside a reference line with a slope of one for comparison.  393 

 394 

Region Income groups Model RMSE (%) R2 

Africa 

Low income 
Model 1 5.29 0.93 

Model 2 5.88 0.89 

Lower middle income 
Model 3 6.40 0.92 

Model 4 6.00 0.95 

Upper middle income Model 5 8.92 0.83 

Asia 
Lower middle income Model 6 5.20 0.84 

Lower middle income Model 7 5.87 0.89 

Latin 

American 

Lower- middle and low income Model 8 6.36 0.89 

High and upper middle income Model 9 10.17 0.82 
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4.2 Spatially explicit estimates of slum population in Global South 395 

We apply the proposed framework to map slum population in 2018 across 396 

129 Global South countries, including 54 in Africa, 42 in Asia and 33 in Latin 397 

America, using a spatial resolution of 3.63 arc-minutes (6.72 km on equator). The 398 

map is based on settlement slices, each having a population of over 1,000, and 399 

aligns with the delineations of urban and rural areas provided by the Global 400 

Human Settlement Layer. To refine the analysis, we also use the higher-resolution 401 

CGLS-LC100 dataset to mask out other land cover types from the settlement slices.  402 

Figure 4a shows the spatial distribution of slum population across Global 403 

South countries. In terms of absolute numbers, slum population is concentrated in 404 

areas with expected high population densities, such as northern India in Asia, 405 

Rwanda and northern Morocco in Africa, and the coastal regions of Rio De Janeiro 406 

in Latin America, highlighted in dark blue on the map. Notably, more than 50% of 407 

the total slum population resides in less than 8% of the total grid cells.  408 

Figure 4b highlights the administrative statistics and geographic disparities in 409 

slum population distribution. At the regional level, we estimate a total of over 0.88 410 

billion people living in slums across the Global South. More than 60% of this 411 

population resides in South Asia and Sub-Saharan Africa, followed by East Asia 412 

and the Pacific (16%), the Middle East and North Africa (8.6%), Latin America and 413 

the Caribbean (7.4%), and Europe and Central Asia (1.7%). 414 

When comparing urban slum populations to those living in slum-like 415 

conditions in rural areas, distinct urban-rural differences in settlement patterns 416 

emerge. In Latin America and the Caribbean, the Middle East and North Africa, 417 

Europe and Central Asia, and East Asia and the Pacific, a higher proportion of the 418 

slum population—between 46% and 60%—is concentrated in urban areas. In 419 

contrast, 41% of the slum population in South Asia is located in suburban areas, 420 

while 44% of those in Sub-Saharan Africa live in rural regions with slum-like 421 

conditions and inadequate services. 422 

  423 

https://doi.org/10.5194/essd-2025-260
Preprint. Discussion started: 28 May 2025
c© Author(s) 2025. CC BY 4.0 License.



17 

 

 424 

Figure 4 Spatial distribution of slum population in the Global South and their 425 

geographic disparities. (a) Map of slum population with a resolution of 3.63 arc‐minutes. 426 

The settlement slices with a population of less than 1,000 are not included. (b) Statistics of 427 

slum population across geographic regions and disparities between rural and urban areas. 428 

 429 

4.3 Mapping of local shares of slum population in Global South 430 

We further estimate the local shares of slum population in Global South 431 

countries at a resolution of 3.63 arcminutes (Figure 5). These local shares allow 432 

for comparisons across countries and regions, accounting for differences in 433 

population sizes. Moreover, we implement a hierarchical classification of slum 434 

clusters, ranging from very low to very high concentrated levels, to reflect the 435 

extent to which local populations lack adequate infrastructure and housing within 436 

a community.  437 
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As shown in Figure 5a, the spatial distribution of local shares provides new 438 

insights into the settlement pattern of slum population. For example, Sub-Saharan 439 

Africa exhibits notably high local shares of slum population, with 57% of the local 440 

population living in slum conditions. Within this region, countries like Libya and 441 

Nigeria show even higher local shares, reaching 70%. Comparatively, Latin 442 

America and Caribbean, South Asia, and East Asia have local slum population 443 

shares of 28%, 21% and 39%, respectively. Even in smaller countries such as 444 

Sierra Leone, the proportion of the population living in slums remains significant, 445 

at 60%. 446 

We also analyze the concentration levels of slum clusters, from very low to 447 

very high, across income groups and regional groups (Figure 5b). Across the 448 

Global South, about 24% of the slum population resides in very highly 449 

concentrated slum clusters. In low-income countries, 60% of the slum population 450 

lives in clusters with very high concentration levels. In contrast, slum populations 451 

in high-income countries are less concentrated, with 45% living in moderately 452 

concentrated clusters. From a geographic perspective, Sub-Saharan Africa has the 453 

highest concentration, with 55% of the slum population living in very highly 454 

concentrated clusters. In other regions, slum populations are mainly concentrated 455 

at low or moderate levels.  456 

The differing patterns of slum population concentration across Global South 457 

countries can be attributed to factors such as urbanization and uneven 458 

socioeconomic development. Our map provides rich spatial details on slum 459 

populations, both in terms of absolute numbers and local shares, making it a 460 

valuable tool for urban planning and slum upgrading initiatives. 461 

 462 
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 463 

 464 

Figure 5 Slum populations categorized by concentration levels, ranging from very low 465 

to very high, and their geographic and socioeconomic disparities. (a) Map displaying 466 

local shares of the slum population at a resolution of 3.63 arcminutes. (b) Statistical analysis 467 

of disparities in slum population concentration across different regional and income groups. 468 

Concentration levels are classified based on the proportion of the slum population within each 469 

grid cell: very low (less than 10%), low (10%-20%), moderate (20%-40%), high (40%-60%) 470 

and very high (over 60%). 471 

 472 

5 Discussions 473 

We present a unified, scalable, and operational bottom‐up approach for 474 

mapping slum populations. Our approach integrates location‐specific data, state‐475 

of‐the‐art machine learning, satellite imagery, and population datasets. This 476 

approach enables slum population mapping over large areas and offers the 477 
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potential to predict slum populations with a high level of spatial detail in countries 478 

lacking survey‐based data. The resulting estimates can be cross‐compared at both 479 

local and regional scales. To the best of our knowledge, this is the first large‐scale, 480 

spatially explicit inventory of slum populations across the Global South countries. 481 

 482 

5.1 Robustness of our framework 483 

Figure 6a and 6b illustrate the percentage change in the country-level slum 484 

population estimates by comparing the equal weight scenario with two alternative 485 

weighting schemes (Section 3.6). We observe that, in both the basic services and 486 

UN-Habitat weight scenarios, the variation in slum population estimates for most 487 

countries in Africa and South Asia, and Brazil in Latin America remains within 488 

±5%. However, in Southeast Asia and other Latin American countries, the 489 

variation ranges from 5% to 10% under the basic service scenario and from -5% 490 

to -10% under the UN-Habitat scenario. This suggests that the basic services 491 

scenario tends to overestimate slum populations, while the UN-Habitat scenario 492 

tends to underestimate them. The three maps of slum population distribution 493 

under these three weight scenarios are provided in Figure S4. 494 

It is important to note that countries with changes exceeding ±5% are 495 

typically regions where nation-wide household-based surveys are not conducted, 496 

which is what our machine learning model is trained to estimate. Overall, our 497 

regional models demonstrate strong robustness for countries with available 498 

training data, although the weighting scenarios have a relatively large impacts on 499 

estimates for countries lacking such data. The equal-weight scenario offers a 500 

balanced approach, avoiding the overestimations and underestimations observed 501 

in other scenarios. 502 

Figure 6c and 6d compare the performance of regional models with individual 503 

country‐specific models. To enhance the generalization capabilities of our models, 504 

we opt to train regional models rather than individual models for each country. 505 

While the regional models show slightly lower performance in terms of RMSE and 506 

R2 compared to single‐country models, the differences are minimal and within a 507 

comparable range. This indicates that our regional models achieve both high 508 

accuracy and strong generalization ability. The full list of individual model 509 

performance can be found in Table S5. 510 

 511 
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 512 

 513 

Figure 6 Robustness of the slum population framework and generalization ability of 514 

our regional models. Variation in slum population under the basic service (a) and the un-515 
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habitat (b) scenarios. Comparison of RMSE (c) and R2 (d) performance between regional 516 

models and country-specific models 517 

 518 

5.2  Spatial resolution and dataset selection 519 

Our maps of slum population distribution and their local shares are presented 520 

at spatial resolution of 3.63 arcminutes. This spatial resolution is carefully chosen 521 

based on several factors, including the characteristics of satellite imagery, 522 

algorithm architecture, and the truth‐ground survey data. It is crucial to ensure 523 

spatial and temporal match between satellite images and survey data, given the 524 

diverse ranges of household‐based survey data collected across multiple years and 525 

countries. To enhance input data richness, we prefer satellite images with more 526 

spectral bands beyond the standard three RGB bands (Wulder et al., 2022), such 527 

as Landsat imagery, which offers consistent temporal coverage, global reach, and 528 

multiple spectral bands, with a resolution of 30 meters.  529 

The ResNet‐34 deep learning architecture used for feature extraction 530 

requires the input image to be in a 224x224 pixel format (Wu et al., 2019). 531 

Consequently, the resolution of our maps is set at 3.63 arcminutes (6.72 km on 532 

equator) to balance these technical requirements. This resolution aligns with 533 

other published maps that focus on sub‐dimensions of poverty, such as the wealth 534 

index and education (Local Burden of Disease Educational Attainment 535 

Collaborators, 2020; Yeh et al., 2020), and provides more granular local insights 536 

beyond the administrative boundaries typically used in slum population statistics 537 

(Tjia and Coetzee, 2022). While our method relies on slum proxy at the cluster 538 

level rather than precise slum boundaries, it nonetheless yields valuable insights 539 

for large‐scale. cross‐national estimates of slum populations under current data 540 

constraints. Although this resolution does not capture the fine‐grained 541 

morphology of slums, it effectively identifying populations living in slum‐like 542 

conditions. Future research can build on this foundation by producing higher‐543 

resolution slum data to address this limitation. 544 

The quality of any machine learning or deep learning model relies heavily on 545 

the data it is trained on (Meena et al., 2023). The DHS datasets provide accurate 546 

and representative household‐based survey data on population characteristics 547 

and socioeconomic factors. However, a limitation of this dataset is the intentional 548 

perturbation of the latitude and longitude coordinates to protect the privacy of the 549 
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surveyed households. This perturbation introduces random jitter of 2km in urban 550 

areas and 5km in rural areas (Owusu et al., 2021). The 3.63 arcminutes resolution 551 

of our maps strikes a balance between preserving privacy, leveraging available 552 

data, and ensuring the technological feasibility of our approach.  553 

The grided population dataset is also a critical component for measuring and 554 

mapping the slum population. Widely used global population datasets, such as 555 

GPWv4.11 (CIESIN et al., 2018), GHS-POP (Pesaresi et al., 2016), World Pop 556 

(Stevens et al., 2015), and regional/national products like HRSL (Smith et al., 557 

2019), vary significantly in characteristics and assumptions. These differences 558 

arise from the nature and heterogeneity of the input population data, the ancillary 559 

data involved, and the methodological framework applied to redistribute 560 

population counts to grid cells. Although some regional products like HRSL show 561 

commendable accuracy in identifying building footprints and population 562 

distributions at finer resolutions, their limited coverage poses challenges for 563 

large-scale cross-country comparisons, especially in the Global South.  564 

Considering the ‘fitness to use’ principle (Juran et al., 1979), the GHS-POP 565 

dataset has distinctive advantages closely aligned with our research objectives. 566 

Grounded in human settlement information, GHS-POP is effective for spatially 567 

refining population data along the urban gradient, making it ideal for our slum 568 

population modeling. Additionally, the Global Human Settlement Layer (GHSL), 569 

which uses Landsat imagery, aligns with the satellite images used in this study, 570 

reducing uncertainties introduced by using different data sources.  571 

 572 

5.3  Comparison of results with statistical data 573 

Given the inherent uncertainty in slum population estimates, we cross-574 

validate our mapping results against a broad range of literature data and 575 

government statistical data across multiple scales. We first compare our slum 576 

population estimates with previous estimates from the literature, which are 577 

derived by scaling population counts at individual slum level (Butera et al., 2019; 578 

Byuro, 2015; Davis, 2013; Guilmoto and Rajan, 2013; Medeiros et al., 2012; Patel 579 

et al., 2019; Sabry, 2009; Taubenböck and Wurm, 2015). Our estimates, indicated 580 

by an asterisk (*), fall within the range of these scaled slum population estimates 581 

(Figure 7a). Moreover, when compared to city-scale slum population statistics, our 582 

results show strong alignment, particularly in Hyderabad and Johannesburg 583 
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(Trindade et al., 2021) (Figure 7b). However, for some cities, such as Rio de Janeiro 584 

and Dhaka, our results appear to be overestimated. This discrepancy may be 585 

because the slum population figures reported in the literature are from around 586 

2014. Factors such as population growth, migration, and slum upgrading projects 587 

may have contributed to changes in slum population over time. Additionally, a 588 

recent study indicates that relying solely on the spatial extent of morphological 589 

slums and grided population datasets can lead to underestimation of the slum 590 

population (Breuer et al., 2024). This supports the advantage of our approach.  591 

A comparison of the relative shares of urban slum populations with the World 592 

Bank (2018) and UN-Habitat (2021) statistics shows a strong correlation at the 593 

national scale (R2 > 0.95) and good agreement at the regional scale (Figure 7c and 594 

7d), with an average RMSE of 14% at the national level.  595 

Several factors likely contribute to the observed discrepancy. First, the 596 

definition of slum households in our study does not fully align with those used in 597 

the statistical data, which leads to differences in the selection of quantitative 598 

indicators. For example, the World Bank's statistics, based on UN-HABITAT 599 

definition, adopt a broader perspective that includes housing affordability and 600 

security of tenure. Their framework encompasses additional indicators, such as 601 

the proportion of households with formal title deeds (to land and housing) and 602 

whether a household's monthly net housing expenditure exceeds 30% of their 603 

income. Due to data limitations, these specific indicators are not quantified in our 604 

study. Instead, we include more detailed sub-indicators, such as access to safely 605 

managed drinking water and sanitation services (e.g., households with access to 606 

drinking water within a 30-minute round trip), which are absent in the statistical 607 

data.  608 

Moreover, the statistical data are compiled from various sources, such as the 609 

World Health Surveys (WHS) and Living Standards and Measurement Surveys 610 

(LSMS), while our household survey data come from a more singular source. 611 

Additionally, in our efforts to generalize a large-scale, unified framework, our 612 

regional model estimates for certain countries, especially small island nations, 613 

may exhibit bias due to the lack of specific survey data. Further research is needed 614 

to refine and validate these results, especially as more high-resolution reference 615 

datasets and local-scale models become available in the future. 616 

https://doi.org/10.5194/essd-2025-260
Preprint. Discussion started: 28 May 2025
c© Author(s) 2025. CC BY 4.0 License.



25 

 

 617 

Figure 7 Comparison of our slum population estimates with data from the literature 618 

and government statistics, including the absolute numbers and relative shares. 619 

 620 

5.4 Implications and future research  621 

Our study provides a foundation for generating large-scale, fine-grained slum 622 

population estimates, especially in data-sparse environments across Global South 623 

countries. First, this inventory reveals the significant gaps in the efforts of these 624 

countries to achieve sustainable development goals. Our estimates provide 625 

compelling evidence to raise awareness among governments and organizations 626 

about the scale of the slum issue, advocating for more effective allocation of funds 627 

and resources to the areas most in need during the slum upgrading projects. 628 

Second, given the overcrowded and unsanitary conditions in slums, which are 629 

often associated with waterborne diseases, our maps serve as valuable reference 630 

data for addressing environmental issues, health-related challenges, and climate 631 

change impacts. Additionally, the data can help policymakers and stakeholders 632 

identify slum communities at risk during extreme weather events such as floods 633 
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or droughts, supporting the planning and implementation of relocation or 634 

emergency response strategies. 635 

Overall, our study has broader implications for urban planning, resource 636 

allocation, and the improvement of human well-being among slum populations. 637 

The insights provided by our maps support evidence-based decision-making and 638 

targeted interventions aimed at achieving sustainable development goals. Since 639 

our approach is based on free and openly available data, it can be extended over 640 

time to track the dynamics of slum populations at the cluster level. Multi-temporal 641 

slum population maps could help uncover the underlying drivers of slum growth, 642 

in addition to the forces of local population growth and migration. With more 643 

accurate geospatial survey data and higher-resolution satellite imagery, we 644 

anticipate significant improvements in the resolution and accuracy of slum 645 

population maps. This progress will greatly enhance our understanding of the 646 

distribution and scale of slums, enabling more informed decision-making and 647 

more effective interventions. 648 

 649 

6 Data availability 650 

The maps of slum populations and their local shares in Global South countries 651 

are available in the Zalando repository at 652 

https://doi.org/10.5281/zenodo.13779003 (Li et al., 2025). All household-based 653 

data are available for downloading, free of charge by registered users, from the 654 

DHS Program (https://www.dhsprogram.com/data/), satellite images and land 655 

cover layers product are download on GEE platform 656 

(https://earthengine.google.com/). Global NPP-VIIRS-like nighttime light dataset 657 

is from Chen et al. (2020). The Settlement Model grid (GHS-SMOD) and Population 658 

Grid (GHS-POP) can be obtained from Global Human Settlement Layer 659 

(https://ghsl.jrc.ec.europa.eu/download.php). 660 

 661 

7 Conclusions 662 

In this study, we develop a standardized, operational, and bottom-up 663 

framework for producing fine-grained, spatially explicit estimates of slum 664 

populations. Our framework is based on SDG 11.1 slum household indicators and 665 

combines feature extraction techniques with machine learning algorithms. It 666 
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integrates household-based surveys, satellite imagery, and grided population data 667 

to address the underestimation of slum populations found in prior studies, which 668 

often relied heavily on slum geometry. Our approach provides reliable slum 669 

population predictions, particularly in data-scarce environments.  670 

The resulting maps are the first comprehensive inventory of slum populations 671 

across Global South countries, created with a spatial resolution of 3.63 arcminutes 672 

(6.72km at the equator) to protect privacy. The models demonstrate strong 673 

performance and robustness, with RMSE values ranging from 5.20% to 10.17% 674 

and R2 values between 0.82 and 0.95. Our estimates fall within the range of scaled 675 

slum population estimates from existing literature and exhibit strong correlations 676 

with them at both national and regional scales. This approach offers a valuable 677 

tool for generating reliable slum population estimates, and the dataset produced 678 

will support a wide range of evidence-based decision-making and targeted 679 

interventions aimed at achieving city-level sustainable development goals. 680 
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