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Figure 1 Workflow of this study. Blue backgrounds represent datasets, yellow
backgrounds indicate the indicator framework or model architecture, and gray
backgrounds denote specific processes or procedural steps.
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Figure 2 Schematic of the proposed model architecture. It integrates transfer

learning by fine-tuning ResNet-34 to extract high-dimensional spatial-spectral

features from multispectral imagery, followed by XGBoost regression for predictive

modeling.
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Figure 7 Comparison of our slum population estimates with data from previous
literature and official statistics, presented as both absolute numbers and relative
shares. (a) Comparison with scaled-up values from previous studies for six cities: Rio
de Janeiro (n=9), Sao Paulo (n=5), Cape Town (n=12), Cairo (n=6), Mumbai (n=3),
and Dhaka (n=11). Scaled-up values are derived by extrapolating slum population
counts from multiple sampled slums to the city level. Asterisks indicate estimates
from this study. Box plots display the median (central line), interquartile range (box),
and minimum-maximum range (whiskers). (b) Comparison with official city-level
statistics for the same six cities. (c) Comparison of country-level slum population
shares between our estimates and World Bank data; each dot represents a Global
South country. (d) Comparison of regional-level slum population shares between our
estimates and UN-Habitat data.
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Figure S1 Number of clusters from Demographic and Health Surveys in 53 Global
South countries. The highest legend category (>3,000 clusters) includes only
Colombia (n = 4,868) and India (n = 30,170).



