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Abstract. Rapidly rising sea level is one of the major adverse consequences of anthropogenic climate change.  Sea 15 
level rise poses an existential threat to coastal populations, particularly for urban settlements with accelerating 

growth rates. Contemporary empirical sea level reconstructions have been used to conflate short-term (~3 decades) 

satellite altimetry geocentric sea level data and long-term (50 years or longer) tide gauge records to better estimate 

reliable sea level rise towards multi-decadal to centennial time scales.  However, adequate separations and 

quantifications of low-frequency climate patterns and sea level trends globally at regional scales remain elusive. 20 
Here, we propose a new sea level reconstruction framework that incorporates Empirical Orthogonal Function (EOF) 

into the contemporary Cyclostationary EOF with Reduced Space Optimal Interpolation (CSEOF-OI) algorithm to 

better reconstruct sea level fields. Using 225 selected long-term gap-filled tide gauge records with vertical land 

motion adjusted and satellite altimetry, our global reconstructed monthly sea level time series, January 1950– 

January 2022, exhibit distinct delineations between modeled climate patterns and sea level trends at 1° × 1°regional 25 
scales.  The separated sea level patterns include trends, modulated annual cycles, the El Niño Southern Oscillation 

(ENSO), and the Pacific Decadal Oscillation (PDO).  The third principal component of the reconstructed sea level 

exhibits a Pearson correlation coefficient of 0.87 with the Niño 3.4 ENSO index, and the fourth principal component 

correlates at 0.75 with the PDO index, indicating excellent agreement. The global mean sea level trend, accounting 

for the predominant climate periodicities, is 1.9 ± 0.2 mm yr⁻¹ (95% confidence), and the estimate during the 30 
satellite altimetry era (January 1993–December 2021) is 3.2 ± 0.3 mm yr⁻¹ (95% confidence). Compared with 

previous studies, we conclude that our 72-year sea-level reconstruction allows us to better separate the ENSO and 

PDO climate patterns, as well as the sea level they induced.  Finally, we show that the short-term (5-year) rates of 

ENSO and PDO patterns significantly affect sea level both on a global and regional scale, altering global mean sea 

level trends by up to 1.1 ± 0.5 mm yr¹ (January 2011– January 2016). Over the past seven decades, the climate 35 
pattens exerted a minor impact on sea level trends, but substantially modulated apparent regional sea level 

accelerations, particularly in the western Pacific (e.g., 0.09 ± 0.05 mm yr⁻² at the Kuroshio Current), and in the east 
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and central equatorial Pacific Ocean (e.g., −0.04 ± 0.03 mm yr⁻² near Costa Rica). The reconstructed sea level and 

analysis results datasets are available at https://doi.org/10.5281/zenodo.15288817 (Wang, 2025). 

1 Introduction  40 

Sea level rise poses a significant and existential threat to humanity’s well-being now and for the foreseeable future. 

Recent studies reveal that global mean sea level rise has increased from 2.1 mm yr⁻¹ 	in the early 1990s to 4.5 mm 

yr⁻¹ by 2023 (Hamlington et al., 2024). Sea level projections show that by 2100, even under a low carbon emission 

scenario, it is estimated that 150 to 250 million people will live in areas at risk of tidal submersion due to rapid sea 

level rise (National Research Council, 2012; Kulp and Strauss, 2019). Anthropogenic greenhouse warming probably 45 
preceded the Industrial Revolution, mostly in response to agriculture and changes in land use, but accelerated once 

the Industrial Revolution drove accelerating emissions of greenhouse gases into the atmosphere. Warming of the 

oceans and mass transfer from the cryosphere to the oceans have dominated the rise in sea level for more than one 

century (Walker et al., 2022). Present-day sea level change is influenced by a range of geophysical processes, 

including oceanic thermal expansion (Feng and Zhong, 2015), ablation of Earth’s ice reservoirs, anthropogenic 50 
water impoundment in reservoirs and dams, water transfers between oceans, ice reservoirs, and continents (Shum 

and Kuo, 2010), seafloor deformation driven by deep-earth processes such as glacial isostatic adjustment (Tamisiea, 

2011), geocenter motion, and to a lesser extent, changes in seawater salinity (Wang et al., 2022). According to the 

World Climate Research Programme (WCRP) global sea level budget group, 42% of the mean sea level rise from 

1993 to 2015 can be attributed primarily to thermal expansion of the oceans, with contributions from mountain and 55 
peripheral glaciers, and the ice sheets of Greenland and Antarctica accounting for 21%, 15%, and 8%, respectively 

(WCRP Global Sea level Budget Group, 2018).  After accounting for the gravitational tidal variations from the Sun 

and the Moon, the origins of Earth’s present-day long-term sea level include annual or longer (up to multi-decadal, 

and perhaps to centennial) oceanic oscillations from interactions between the ocean, atmosphere, hydrology, 

cryosphere, solid Earth, and anthropogenic contributions including human impoundment/pumping of water in 60 
reservoirs/groundwater. These changes range from interannual to multi-decadal timescales and potentially extend to 

the century timescale, or even longer.  

The advent of satellite radar altimetry since the early 1990s has revolutionized the monitoring of global sea level. 

However, satellite altimetry measurement records are too short to determine the rate of rapid or accelerated sea level 

rise (Iz et al., 2018; Iz and Shum, 2021), especially considering the inability to characterize sea level acceleration at 65 
regional scales, from sparsely located long-term tide gauge records and due to the presence of multi-decadal or 

longer (low frequency) oceanic signals (Chambers et al., 2012, Iz and Shum, 2021).  

The empirical reconstruction has been widely employed to study multi-decadal spatiotemporal sea level changes. 

The contemporary methodology integrates temporally extensive but spatially limited records from tide gauges with 

satellite altimetry measurements that provide extensive spatial coverage and resolution, but with limited temporal 70 
duration. By applying methods such as Reduced Space Optimal Interpolation (RSOI) to synthesize data, this 
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approach enables comprehensive empirical modeling of sea level changes and dynamics spatiotemporally, extending 

from the altimetry era back to pre-altimetry periods (Church et al., 2004; Church and White, 2006; Berge-Nguyen et 

al., 2008; Church and White, 2011; Ray and Douglas, 2011; Meyssignac et al., 2012). Recent innovations have 

further refined the accuracy of historical sea level reconstruction, introducing the Cyclostationary Empirical 75 
Orthogonal Function with Reduced Space Optimal Interpolation (CSEOF-OI) to capture sea level variability better 

and reduce sensitivity to the spatial distribution of tide gauges, when compared to previous RSOI-based approaches 

(Hamlington et al., 2011; Hamlington et al., 2014; Strassburg et al., 2014).  

Apart from RSOI-based approaches, the Kalman Smoother (KS) method integrates climate fingerprints—such as ice 

melt and glacial isostatic adjustment (GIA)—along with steric dynamic priors from ocean models, fitting the 80 
information to tide gauge records to reconstruct sea level (Hay et al., 2013; Hay et al., 2015; Frederikse et al., 2018; 

Frederikse et al., 2020). The KS method has proven more effective in capturing long-term sea level trends, whereas 

RSOI excels in reconstructing sea level variability. This has led to the development of hybrid reconstructions (HR) 

that utilize KS for estimating trends and RSOI for sea level variability (Dangendorf et al., 2019, 2024). 

Despite these methodological advances, the fidelity of reconstructed sea levels—especially in distinguishing the 85 
impacts of various climate patterns—remains a significant challenge. The Modulated Annual Cycle (MAC) and the 

El Niño-Southern Oscillation (ENSO) are known to be two major drivers of climate pattern-induced sea level 

changes, and their influences are quantified globally at a regional scale by analyzing multi-decadal reconstructed sea 

level (Hamlington et al., 2011; Hamlington et al., 2014; Mu et al., 2018; Wang et al., 2024).  

The Pacific Decadal Oscillation (PDO) is another climate pattern exerting a significant influence on North Pacific 90 
Sea surface temperature anomalies (SSTa), with its broader implications for global sea level changes increasingly 

noted in recent studies (Si and Xu, 2014; Han et al., 2017). However, the task of disentangling the sea level changes 

induced by ENSO and PDO is challenging due to their similarity and strong correlation.  

To address the challenges and more accurately delineate sea level trends and internal oceanic variability affecting 

sea level at regional scales, a two-step enhancement strategy is proposed: (1) refining the long-term tide gauge 95 
records by employing a statistical gap-filling method; and (2) modifying contemporary sea level reconstruction 

methods to enhance the fidelity by better separating climate patterns and sea level trends at the regional scales. Here, 

we aim to better quantify and elucidate the mechanisms of sea level change due to internal ocean variability since 

1950, under the influence of an increasingly warmer Earth. Our data product represents a 72-year (January 1950–

January 2022) gridded (1° × 1°) global sea level data at monthly sampling, and distinct separations of climate 100 
episodes, including trend-related mode, modulated annual cycle, ENSO, and PDO.  Here, we postulate that the 

estimate of global sea level acceleration at regional scales is very difficult, given a 72-year data span, and in light of 

the presence of the multi-decadal or longer oceanic signals (Chambers et al., 2012; Iz and Shum, 2021; Iz and Shum, 

2022). While sea level acceleration is beyond the scope of this study, our study proposes to better quantify how 

major climate patterns modulate apparent regional sea level acceleration, which could be important for 105 
understanding long-term sea level change. 
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2. Data and Methods  

2.1 Data gap-filling of long-term tide gauge records 

Tide gauges have been monitoring long-term sea level changes, with data records spanning from 50 to over 200 

years. Most of the long-term records are located in the coastal regions of northern Europe, the eastern and western 110 
United States, and East Asia (Figure 1a). From 1950 to 2022, the spatial distribution of tide gauge record 

completeness (Figure 1b) mirrors the pattern of required duration in this study.  

 
Figure 1: (a) Individual data durations of global tide gauge records from the Permanent Service for Mean Sea Level 
(PSMSL). (b) Percentages of available tide gauge data spanning at least 1950–2022 (72 years). Base map image: NASA 115 
(National Aeronautics and Space Administration) Blue Marble. 
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The spatial distribution of tide gauge records is crucial for accurate sea level reconstruction (Mu et al., 2018), and 

the number of gauges used significantly affects the ability of spatiotemporal analysis to capture the true spatial 

patterns (Calafat and Gomis, 2009; Cazenave et al., 2022). However, unexpected data gaps and uneven global 120 
distribution of tide gauge locations significantly impede the accuracy of sea level reconstruction and analysis 

(Meyssignac et al., 2012). To address the issue, three statistical methodologies have been tested: Autoregressive 

(AR) modeling, Probabilistic Principal Component Analysis (PPCA), and Regularized Expectation Maximization 

(EM). AR modeling uses linear combinations of nearby data points to interpolate missing values, refined through a 

method that balances estimates by weighted averaging of forward and backward filling (Akaike, 1969; Kay, 1988; 125 
Orfanidis, 2007). PPCA handles gaps within high-dimensional and noisy datasets by estimating latent variables and 

refining model parameters through covariance analysis, thus mitigating the effect of missing data and reconstructing 

to minimize data gaps (Roweis, 1998; Ilin and Raiko, 2010). Regularized EM directly estimates missing values 

through multivariable regression and iteratively augments model parameters, incorporating regularization to avert 

overfitting (Schneider, 2001). These methodologies collectively aim to enhance the accuracy of data gap filling by 130 
integrating observations using statistical methods. The effectiveness of the three methods to improve data continuity 

and thus the accuracy of tide gauge records is evaluated using numerical simulations.  

The simulation study selected 48 global tide gauge records from the Revised Local Reference (RLR) monthly 

product from PSMSL, spanning from January 1950 to December 2021, with an average data missing rate of 1.1%. 

To assess various data gap-filling methodologies corresponding to different data loss scenarios, these records are 135 
categorized into three groups, each subjected to varying levels of data gaps. Group 1 consists of 10 tide gauge 

records, each with three randomly generated gaps of different lengths—12, 36, and 108 consecutive months. Group 

2 includes a set of 10 records with the same configuration of random gap lengths as in Group 1, but with an 

additional 120 randomly missing single months dispersed throughout the entire simulated data record.  Group 3 

comprises 28 records, each missing 120 randomly selected single months of data. The spatial distribution of each 140 
group is illustrated in Figure 2a. The efficacy of the three data gap-filling techniques on each of the simulated tide 

gauge records is evaluated based on the resulting gap-filled time series (Supplementary Fig. S1–S3). 

The numerical simulation experiment comparison summary (Figure 2b and Table 1) shows that the Regularized EM 

algorithm consistently outperforms PPCA and AR modeling in all metrics. Notably, the regularized EM algorithm 

achieves an average correlation coefficient (r) of 0.99 with the observations, compared to 0.98 for PPCA and 0.96 145 
for AR modeling across the 48 TG records. Regarding root mean square error (RMSE), the regularized EM method 

achieved an average RMSE of 14.05 mm, substantially lower than the 21.35 mm and 30.48 mm achieved by PPCA 

and AR modeling, respectively. Furthermore, a detailed analysis reveals that the Regularized EM algorithm also 

achieves the highest r and the lowest RMSE in each group compared to the other two methods, and the performance 

of the algorithm is relatively stable (in terms of r and RMSE) across the three groups, regardless of the type of 150 
missing data. 
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Figure 2: Spatial Distribution of the Tide Gauge (TG) records and validation of the three numerical simulation 
experiments. (a) Distribution of 48 nearly complete tide gauges used in the three simulations: Groups 1 and 2 each 
comprise 10 stations, and Group 3 includes 28 stations. (b) Correlation coefficients and RMSE between the gap-filled tide 155 
gauge records using the three methodologies (Probability PCA, Regularized EM, and Autoregressive Modeling), and the 
'true' observations in the simulation study.  The Regularized EM method outperforms the other two methods. 

Table 1: Comparing the performance of the three data gap-filling methodologies based on the average Pearson 
correlation coefficient (r) and Root Mean Square Errors (RMSE) between filled missing records and true observations in 
the simulation experiments. 160 

 Pearson correlation coefficient (r) RMSE (mm) 

Group 1 Group 2 Group 3 Mean Group 1 Group 2 Group 3 Mean 
PPCA 98.54% 96.61% 98.02% 97.84% 21.43 24.16 20.31 21.35 
Regularized 
EM 99.20% 98.03% 99.18% 98.94% 14.40 18.12 12.49 14.05 

AR modeling 94.68% 94.10% 97.70% 96.32% 45.31 33.48 24.11 30.48 
 

In this study, the Regularized EM method is used to mitigate data gaps in tide gauge records, resulting in a total of 

287 global tide gauge records, compared to only 48 tide gauges before the data gap repairs. The tide gauge data 

spans from January 1950 through January 2022, and the locations of the tide gauges are shown in Supplementary 

Information (Fig. S4). 165 

https://doi.org/10.5194/essd-2025-251
Preprint. Discussion started: 16 May 2025
c© Author(s) 2025. CC BY 4.0 License.



 7 

2.2 Alignments between satellite altimetry and tide gauge sea level records 

Satellite radar altimetry has enabled global sea level measurements over the past three decades. The available data 

products include the Archiving, Validation, and Interpretation of Satellite Oceanographic (AVISO) data, European 

Space Agency's Climate Change Initiative (CCI), the Commonwealth Scientific and Industrial Research 

Organisation (CSIRO), NASA, the National Oceanic and Atmospheric Administration's Laboratory for Satellite 170 
Altimetry, the European Organisation for the Exploitation of Meteorological Satellites, the University of Colorado 

(CU), and Delft University of Technology. These organizations generate synchronized, validated, and consistent 

global sea level data products.  

Multiple comparisons between altimetry sea level datasets from different institutions have been conducted. 

Wöppelmann and Marcos (2016) revealed that the AVISO gridded altimetry sea level strongly correlates with tide 175 
gauge records after removing linear trends and seasonality. Comparisons between satellite altimetry and tide gauge 

sea level records reveal that CCI and GSFC (Goddard Space Flight Center) data products have a median correlation 

of 0.7, CSIRO at 0.6, CU at 0.4, and AVISO leading with 0.8, following this, we use AVISO Level 4 monthly 

gridded sea level product, January 1993–December 2021, for our study. To further account for potential TOPEX-A 

drift, we align the AVISO-based global mean sea-level estimates from January 1993 to February 1999 with the 180 
multi-mission record from TOPEX/Poseidon, Jason-1/-2/-3, and Sentinel-6 (Version 5.2, PO.DAAC, 

https://podaac.jpl.nasa.gov/dataset/MERGED_TP_J1_OSTM_OST_GMSL_ASCII_V52), and apply the resulting 

difference uniformly across each grid. 

Before combining altimetry and tide gauge records, it is essential to ensure consistency between these two types of 

measurements. An inverse barometer correction model, using ocean pressure data products from the National 185 
Centers for Environmental Prediction (https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html, accessed: 

December 2023) applied to the tide gauge record, follows the correction method detailed in Ponte (2006), to allow 

approximate consistency with altimetry sea level data, which are corrected using the dynamic atmospheric 

correction. Knowledge of vertical land motion is needed to convert the tide gauge records (of relative sea level 

change) to the geocentric (or absolute) sea level change time series associated with satellite altimetry (Kuo et al, 190 
2004). Equation (1) denotes the relationship between altimetry geocentric sea level and tide gauge relative sea level, 

ignoring systematic errors, such as waves and others (Abessolo et al., 2023; Ray et al., 2023):  

𝑆𝐿"# = 𝑅𝑆𝐿$% + 𝑉𝐿𝑀																																																									                       (1) 

Where: 

                    			𝑆𝐿"#: Geocentric sea level from satellite altimetry 195 

																									𝑅𝑆𝐿$%: Relative sea level from tide gauges 

																									𝑉𝐿𝑀: Vertical land motions 
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Prior studies on sea level reconstruction, Glacier Isostatic Adjustment (GIA) models have been extensively used to 

harmonize measurements between altimetry and tide gauge sea level (e.g., Church et al., 2004; Church and White, 

2006; Church and White, 2011; Hamlington et al., 2011; Hamlington et al., 2014; Meyssignac et al., 2012; Calafat et 200 
al., 2014), assuming GIA is the only geophysical cause of vertical motion at tide gauge locations. This is a 

reasonable assumption in many regions, but for tide gauges affected by coseismic and postseismic displacements, it 

is only an approximation (Caccamise, 2018; Bevis et al., 2019). Contemporary 1-D or laterally varying 3-D GIA 

models, constrained by respective model-specific assumptions, have errors or could introduce systematic biases 

(King et al., 2012; Jevrejeva et al., 2014; Oelsmann et al., 2021). In addition, GIA geophysical process is not the 205 
only nor is it dominant everywhere on Earth for the origin of vertical land motion at tide gauge locations, including 

tectonics, erosion (Wöppelmann and Marcos, 2016), anthropogenic groundwater/mineral pumping, sediment load, 

and other deeper geodynamics other than GIA. 

The use of Global Navigation Satellite System (GNSS) presents a potentially more robust approach, if it is really 

measuring the same vertical motion as the tide gauge experiences (Bevis et al., 2002). Despite advancements in 210 
GNSS technologies that enable accurate vertical land motion measurements, their utility is constrained by the 

limited availability of long-duration records (Wöppelmann et al., 2019). This scarcity introduces uncertainty in 

GNSS-based vertical motion estimations, further exacerbated by long-period geophysical cycles (Santamaría-Gómez 

and Mémin, 2015; Santamaría-Gómez et al., 2017).  Additionally, even minor geographic misalignments (tens of 

kilometers) between the GNSS receiver and tide gauge phase center can cause GNSS-estimated vertical land motion 215 
to inadequately represent tide gauge location motions due to the high spatial variability (Bevis et al., 2002; 

Oelsmann et al., 2021).  The most accurate method to tie the vertical motion between the tide gauge phase centers 

and GNSS antenna phase centers is via precise leveling, which is labor-intensive and has been long abandoned at 

most gauges. 

Other methods to estimate vertical motion have used satellite altimetry minus tide gauge (SA–TG) sea level 220 
approach (Nerem and Mitchum, 2002; Kuo et al., 2004; Kuo et al., 2008; Ray et al., 2010; Wan, 2015; Wöppelmann 

and Marcos, 2016; Oelsmann et al., 2021).  In particular, Kuo et al. (2004) and Kuo et al. (2008) used a network 

adjustment approach to reduce the errors of the vertical motion estimates to <0.5 mm yr-1 in the semi-enclosed seas 

and lakes. Wan (2015) conducted a joint estimate of geocentric sea level trend and vertical motion at the world’s 

tide gauge locations. Wöppelmann and Marcos (2016) concluded that for accurate vertical motion to be estimated, 225 
the satellite altimetry sea level time series has to span at least 20 years—a criterion that has been met.  

An issue that might be regarded as a mere matter of language is examined here; however, imprecise terminology can 

give rise to subtle yet conceptual misunderstandings. The use of SA–TG methods to ‘correct’ the same tide gauge 

records for land motion inevitably entails circular logic or tautological reasoning. Corrections are normally based on 

the introduction of independent or external information. A better way of describing the procedure used in this study 230 
is that we adjust the relative sea level histories recorded so that the sea level rate (post-adjustment) matches the 

estimate inferred nearby from satellite altimetry during the same (shared or common) time period of observation—a 
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little less than 30 years. We can certainly view this adjustment as accounting for VLM. But this rate change is better 

thought of as an estimate of VLM rate, not a VLM ‘correction’. Having estimated the VLM rate in this way, we can 

apply this rate adjustment to the entire tide gauge data span, not just that part of the time series used to estimate the 235 
rate adjustment. The procedure makes an implicit assumption: that the rate of VLM during the entire time of the tide 

gauge (72 years) does not differ from the rate of VLM during the nearly 30-year period in which both altimetry and 

tide gauge data are available. This method presumes that long-term variations in vertical land motion (e.g., longer 

than 20~30 years) are negligible (which may not be reasonable when the tide gauge has been displaced by very large 

earthquakes). It further assumes that vertical land motion at most tide gauge locations is not significantly non-linear.  240 

From a temporal perspective, GIA models represent deformation over centennial to millennial timescales (≈250–

1,000 years; Peltier, 2004; Stuhne and Peltier, 2015). While GNSS offers high temporal resolution, its spatial 

coverage and temporal span remain limited, with fewer than 20 sites possessing collocated records exceeding 29 

years (SONEL, 2024, https://www.sonel.org/-GPS-.html, last accessed: December 2024). Given these constraints, 

we adopt the SA–TG method—based on a 29-year overlap between satellite altimetry and tide gauge records—for 245 
estimating VLM at tide gauge locations in this study, subject to the assumptions discussed above. 

To evaluate the efficacy of the SA–TG approach for VLM estimates, we used observed GNSS vertical motion at tide 

gauges from Hammond et al. (2021). Acknowledging the constraints of GNSS-derived VLM at tide gauge locations, 

as highlighted in studies such as Santamaría-Gómez et al. (2017), Wöppelmann et al. (2019), and Oelsmann et al. 

(2021), which scrutinized the spatial discrepancy between tide gauges and GNSS stations, our analysis extends to 250 
testing the impact of VLM estimates from GNSS solution uncertainty perspectives. This study assessed VLM 

solutions for 256 out of 287 tide gauges covered by the AVISO altimetry product, which were evaluated and 

compared to the collocated GNSS solution delineated by Hammond et al. (2021). Due to the unsatisfactory GNSS-

based VLM quality, as specified by the criteria established in Hammond et al. (2021), three GNSS locations were 

excluded, which were responsible for the top three most significant discrepancies compared to collocated SA–TG 255 
solutions. The remaining 253 locations are denoted by pentagrams in Figure 3a. 

The VLM rates derived from both methods on each location, as illustrated in Figure 3b, revealed a median 

difference of 0.88 mm yr-1 between the GNSS and SA–TG sea level trend approach, with a Pearson correlation 

coefficient (r) of 0.86. Further analyses were conducted with the 152 GNSS solutions exhibiting the smallest 

uncertainties among the 253 GNSS-based solutions, with corresponding VLM rates shown in Figure 3c. This subset 260 
exhibited a median difference of 0.81 mm yr-1 and r= 0.89 between GNSS and SA–TG VLM results. We also 

examined the 77 GNSS at tide gauge solutions with the smallest uncertainties. The GNSS and SA–TG VLM 

estimates show a median difference of 0.64 mm yr-1 and a r=0.95 (Figure 3d).  

These results underscore that the lower GNSS uncertainties, VLM estimates are more closely aligned with the SA–

TG approach despite not strictly conforming to the same temporal span between the two methods and without 265 
considering the minor geographical distances between GNSS and tide gauge locations. 
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Figure 3: Comparison of vertical land motion estimates over 29 years from altimetry minus tide gauge (SA–TG) approach 
(this study) and the collocated GNSS solutions (Hammond et al. 2021). (a) 256 geographic locations using the SA–TG 
approach at the 72-year tide gauge locations (𝑻𝑮𝟕𝟐𝒀𝒓𝒔@SA), with 253 GNSS collocated at gauges (GNSS@𝑻𝑮𝟕𝟐𝒀𝒓𝒔) and 270 
the lowest 30% and 60% GNSS uncertainty locations (77 stations for the lowest 30% and 152 stations for the lowest 
60%). (b) Vertical land motion estimates from 253 GNSS and collocated 29 years of data span the SA–TG approach, with 
color codes indicating the uncertainty value from GNSS measurements. (c) Vertical land motion estimates from the 152 
locations with the lowest uncertainty GNSS and collocated SA–TG approach, highlighted with color-coded GNSS 
uncertainty. (d) Vertical land motion estimates from the 77 locations with the lowest GNSS uncertainty and collocated 275 
SA–TG approach, color-coded to represent GNSS uncertainty.  

Nevertheless, there does seem to be some systematic difference between VLM rates inferred from SA–TG and VLM 

rates measured using GNSS. We suggest that part of this difference results from reference frame realization error. 

That is, the reference frame (RF) used to express the GNSS stations’ vertical velocities is not actually identical with 

the RF used to express geocentric sea level rates from altimetry. This phenomenon was discussed at some length in 280 
Bevis and Brown (2014) –two groups of geodesists trying to express velocities in the same RF (nominally) quite 

often fail to do so, particularly when they are working with different combinations of geodetic stations, and using 

different analysis methods. Note that our procedure of transforming the tide gauge time series so as to adjust it onto 

an altimetry time series at a nearby point is probably the surest way to get both sea level time series expressed in the 

same RF.  285 

In addition to applying the inverse barometer (IB) correction and adjusting site-specific VLM using the SA–TG 

approach, we performed a fast Fourier transform-based residual analysis to further align tide gauge and altimetry sea 
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level variability for the stations used in the reconstruction. From an initial pool of 287 stations, constrained within 

100 km of a gridded reference point, a subset was further excluded to mitigate redundancy in densely covered 

regions (e.g., northwestern Europe, Japan, North America), leaving 225 stations (Supplementary Information, Fig. 290 
S4). By analyzing the residual across the 225 stations, beyond seasonal harmonics (3 months, 6 months, and 12 

months periods), two longer period signals — approximately 7.25 and 14.5 years — consistently emerged at most 

sites. These may be interpreted as manifestations of the known ~6-year oscillation (Ding and Chao, 2018; Pfeffer et 

al., 2023) and the recently identified ~13.6-year signal in GNSS VLM time series (Ding and Jiang, 2024), with the 

slight difference in periods potentially reflecting other geophysical processes. Incorporating this harmonic correction 295 
improved the agreement between altimetry and tide gauge records across the 225 sites. 

This alignment step introduces a minimal bias, with the absolute difference in the mean sea level trend between the 

225 processed tide gauges and the collocated altimetry measurements being as small as 0.02 mm yr⁻¹ over January 

1993 to December 2021. Given its magnitude, we do not distinguish whether the harmonic correction is applied 

before or after the linear VLM adjustment within the tide gauge processing workflow. Moreover, this correction was 300 
not applied to the tide gauge records that were not used in the reconstruction process for independent validation to 

maintain consistency with previous studies. Notably, the tide gauges used in the reconstruction throughout each 

month remain fixed, thereby preserving more sites for subsequent independent validation. 

2.3 Modified sea level reconstruction by combining CSEOF and EOF 

Empirical Orthogonal Function (EOF) is a multivariate statistical technique extensively used for spatiotemporal 305 
analyses in atmospheric science, oceanography, and climatology. A notable variant, the Cyclostationary EOF 

(CSEOF), developed by Kim et al. (1997), is particularly adept at analyzing climate time series characterized by 

dominant periodic oscillations by integrating a nested periodicity. In sea level studies, a 12-month cycle is 

commonly used to adeptly capture annual variations (Hamlington et al., 2011; Hamlington et al., 2013; Feng et al., 

2024). Both EOF analysis and CSEOF are instrumental for understanding sea level variability. In the cyclostationary 310 
framework, an observed altimetry sea level anomaly 𝑋&,( (with spatial index 𝑖 and time index 𝑗 ) is assumed to 

exhibit a nested period 𝑑. We decompose 𝑋&,( into two parts: 

𝑋&( = ∑)  𝜙)(𝑖, 𝑗)𝐴),(                                                                                 (2) 

where: 

𝑋&,( denotes the altimetry sea-level anomalies, 315 

𝜙)(𝑖, 𝑗) is the cyclostationary loading vectors (CSLVs) for mode 𝑘 at spatial point 𝑖 and time point 𝑗, 

𝐴),( is the principal component (PC) for mode 𝑘 at time 𝑗. 

The index 𝑘 labels the order of the modes. Since each cyclostationary loading vector (CSLV) captures a 

cyclostationary process with period 𝑑, the cyclostationary load vector is: 
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                                    𝜙)(𝑖, 𝑗) = 𝜙)(𝑖, 𝑗 + 𝑑)                                                                              (3) 320 
 

Likewise, the associated covariance function 𝐶 is also periodic with period 𝑑: 

𝐶(𝑖, 𝑗; 𝑖*, 𝑗*) = 𝐶(𝑖, 𝑗 + 𝑑; 𝑖*, 𝑗* + 𝑑)																																																																	 (4) 

To find the 𝑘th CSLVs 𝜙)(𝑖, 𝑗) and corresponding the eigenvalue Λ) solve the Karhunen-Loève type equation 

adapted for CSEOF: 325 
𝐶(𝑖, 𝑗; 𝑖*, 𝑗*)𝜙)(𝑖*, 𝑗*) = Λ)𝜙)(𝑖, 𝑗)                                                           (5) 

With the extracted CSLVs from the altimetry sea level anomalies, combining the optimal interpolation (Kaplan et 

al., 2000) to fit the collocated long-term sea level measurements to extend the PCs up to the tide gauge records’ 

temporal range. However, utilizing the CSEOF method to analyze spatiotemporal sea level reveals the windowing 

effect in CSEOF trend mode (Multiplication of CSLVs that explain most of the trend in the altimetry sea level 330 
anomalies and respective PC), as discussed by Hamlington et al. (2019). This effect exhibits nonmonotonic, 

nonlinear heteroscedasticity, characterized by elevated standard deviations at the start and end of extracted trend 

components, decreasing towards the middle (Kirkegaard and Gerritsen, 2021).   

 

Figure 4: Identification of regional average trend mode in monthly AVISO altimetry sea level anomlies using CSEOF 335 
analysis. Subsequent EOF decomposition of these trend components has further delineated the primary component. The 
insets highlight the respective geographic study regions in blue. 
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To clarify this issue, we use CSEOF decomposition on AVISO altimetry sea level anomalies and estimate the 

regional average of the trend modes, as shown in Figure 4. Notably, areas like Northern Europe from 1993 to 1997 

and from 2015 to 2021 show significant edge effects, with intensity varying by region.  340 

When using CSLVs decomposed from 29-year altimetry sea-level anomalies and for reconstructing 72 years, the 

nonlinear heteroscedasticity can propagate to the entire reconstructed period through optimal interpolation (details in 

the upcoming section). To mitigate this issue, the study found further applying EOF decomposition to CSEOF trend 

mode 𝑋+,-./ ,	allowing for an accurate representation of nonlinear trends in altimetry sea level while eliminating 

portions that cause windowing effects (Figure 4, red line). Specifically, it employs the first (EOF) principal 345 
component of 𝑋+,-./ denoted as 𝐴+,-./∗ , along with its corresponding EOF spatial patterns 𝜙+,-./∗ 	 as further refine 

the CSEOF trend mode, denote as 	𝑋+,-./∗ . 

 

𝑋+,-./ =	𝜙+,-./	𝐴+,-./																																																																													 (6) 

 350 
𝑋+,-./∗  = 𝜙+,-./∗ 		𝐴+,-./∗                                                                        (7) 

 

The refined trend mode 𝑋+,-./∗  explains approximately 90% of the variance in 𝑋+,-./  and accounts for about 13% 

of the total variance in the gridded monthly AVISO altimetry sea level product (January 1993 to December 2021).  

During the optimal interpolation, we integrated tide gauge records to extend the temporal coverage. Each tide gauge 355 
record is indexed by time 𝑡 spanning from 𝑡 = 1 up to the entire duration of the records. For the top 𝑀	CSLVs 

denote as 𝜙1"234!, after replacing the trend spatial pattern from CSEOF into the refined EOF spatial pattern, i.e., 

𝜙+,-./∗ , we denote that the modified top 𝑀 spatial patterns as 𝜙234_1"234!. Additionally, 𝜙1"234"#! represents the 

high-order CSLVs obtained from altimetry sea level anomalies.  Accordingly, we retain 𝑀 = 20, that is, 𝜙+,-./∗ 	plus 

19 additional CSLVs to capture 84% of the variance in the 29-year AVISO dataset as fitted patterns, a choice guided 360 
by prior RSOI-based reconstruction configurations (Church et al. 2004; Church and White 2006; Meyssignac et al. 

2012; Hamlington et al. 2012).  

We also investigated the impact of omitting the 1.4% variance terms attributable to discrepancies between 𝑋trend  and 

𝑋trend 
∗  during optimal interpolation. Our experiments indicate that excluding this part slightly improves the 

reconstruction performance, as evidenced by a marginally higher correlation between the observed altimetry global 365 
mean sea level (GMSL) and the reconstructed GMSL over the common dataspan. Therefore, we exclude this portion 

from the optimal interpolation (OI) computation. The overall reconstruction framework applied in this study is 

outlined through Eqs. (8)–(12), accompanied by detailed explanations. 

 

 370 
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        𝑅 = 𝑃	𝜙1"234"#! 		Λ1"234"#! 	𝜙1"234"#!
$ 	𝑃$ +𝐷                                                                 (8) 

 

𝑄 = C𝜙234_1"234!
$ 	𝑃$𝑅67𝑃	𝜙234_1"234! + 𝛬234_1"234

67E67	                                                  (9) 

 

		𝐶𝑜𝑣𝐻 = 	𝜙234_1"234! 	𝑄		𝜙234_1"234!
$ +		 	𝜙1"234"#! 	Λ1"234"#! 	𝜙1"234"#!

$ +	𝐻8														(10) 375 
 

	𝐴9 = 𝑄	𝜙234_1"234!
$ 		𝑃$𝑅67𝑋:                                                                                               (11) 

 

     																					�̂� = 𝜙234_1"234! 	𝐴9                                                                                                                 (12) 

 380 
In Eq. (8), 𝐷 denotes the instrumental error in tide gauge records. Wang et al. (2024) estimate 𝐷 by applying 50 mm 

threshold to the first difference of records. In this study, we estimate 𝐷 using a harmonic analysis is applied to 

periods guided by Bâki Iz (2014). For each gauge series, we fit sub- and super-harmonics along with a linear trend 

via least squares. The root mean square of the residuals between the fitted time series and observations is used to 

construct the 𝐷 matrix, assuming that errors are independent across different tide gauge locations. The minimal 385 
instrumental error estimation is then set to the median of the resulting distribution to avoid overconfidence. Λ is the 

general notation describes the eigenvalues from different parts that are tagged at the bottom right of the symbol. 

Equation 9, where 𝑄 is a theoretical estimate for error covariance in the solution (Kaplan et al., 2000). Equation 10 

𝐶𝑜𝑣𝐻	account for the error variance covariance matrix of the reconstructed field at each grid point, including large 

scale error (	𝜙234_1"234! 	𝑄		𝜙234_1"234!
$ ), high order error from CSEOF (	𝜙1"234"#! 	Λ1"234"#! 	𝜙1"234"#!

$ ) and 390 
the unfitted 1.4% terms (𝐻8). 𝐴9 (Eq.11) represents extended PCs and �̂� (Eq.12) describes the reconstructed gridded 

sea level anomalies.  

Figure 5 illustrates the impact of windowing effects, as indicated by the elevated initial and terminal values in the 

moving standard deviation (STD) estimates of the CSEOF trend mode and their subsequent propagation following 

optimal interpolation. Further EOF decomposition of the CSEOF trend component shows a reduction in the edge 395 
amplitude of the moving STD, mitigating the tilting effect and propagation through extension and improving results 

after applying our modified reconstruction process. For simplicity, the combined approach of CSEOF, EOF, and 

optimal interpolation process will be referred to as the 'Modified reconstruction' approach.  
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 400 
Figure 5 Top: Global average normalized standard deviations (STD) of AVISO altimetry sea level trend components via 
CSEOF (black) and the first component by further applying EOF (red). Bottom: STD from extended trend components 
using CSEOF-OI approach (black) and counterpart from modified reconstruction (red). 48-month window size on the 
estimate moving STD. 

From the reconstructed sea level anomaly grids, �̂�, we obtain the reconstructed global mean sea level at each time by 405 
aggregating over all grid points: 

𝐺𝑀𝑆𝐿3; = 𝑤	�̂�                                                                                       (13) 

Where 𝐺𝑀𝑆𝐿3; represents the global mean sea level estimate from our modified reconstruction, and the w 

coefficients ensure that each spatial point of reconstructed sea level �̂� contributes proportionally to its area 

coverage.When 𝐶𝑜𝑣𝐻	is the full covariance, the uncertainty in optimal interpolation reconstruction on global mean 410 
sea level, follows standard linear error propagation, where Var(∙) stands for the variance operator. 

Var(𝐺𝑀𝑆𝐿3;) = 𝑤<𝐶𝑜𝑣𝐻	𝑤                                                                  (14) 

However, in addition to this error, two additional sources of uncertainty can influence the resulting global mean sea 

level time series: (1) the error from the filling process for missing tide gauge records. (2) estimated VLM rate 

uncertainties at tide gauge locations. 415 
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To capture these effects, we conduct a Monte Carlo approach, generating multiple realizations (i.e., 300 times) of 

the gap-filled tide gauge dataset and the VLM-adjusted tide gauge dataset, respectively. Each realization is then 

passed through the optimal interpolation reconstruction in exactly the same way, producing an ensemble of global 

mean sea level. 

From this ensemble, we compute two empirical standard deviations: 𝜎filling , quantifying the spread in global mean 420 
sea level arising from the gap filling uncertainty, and 𝜎=>?, reflecting the spread introduced by vertical land motion 

rate uncertainty. 

If we regard these three components i.e. Var(𝐺𝑀𝑆𝐿3;), 𝜎filling, 
@ , and 𝜎=>?@ 	 as statistically independent, the total 

standard deviation can be approximated by: 

𝜎A?B> ≈ SVar	(GMSLCD) + 𝜎EFGGFHI@ + 𝜎=>?@                                                  (15)                                425 

To suppress short-term (≤3 months) fluctuations in the reconstructed sea level grids, we apply a low-pass finite 

impulse response (FIR) filter using a Blackman window with a sidelobe attenuation of −57 dB (Oppenheim and 

Schafer, 2010; Jwo et al., 2021). This procedure introduces a minor additional uncertainty, which is quantified based 

on the linear error propagation framework by Eichstädt et al. (2014). Although the filter-induced uncertainty is small 

relative to the total error budget, it is retained in our final estimates. Unless otherwise specified, all subsequent 430 
validations and analyses are based on the filtered reconstructions, including comparisons with altimetry and tide 

gauge records used for validation, both of which are processed using the same filter to ensure methodological 

consistency. 

3. Results  

3.1. Validation  435 

Sea level reconstructions leverage the extensive spatial coverage provided by altimetry measurements. Initial 

comparisons between the 29-year altimetry regional sea level trends (Figure 6a) and those derived from the modified 

reconstruction (Figure 6b) over the same period reveal a strikingly high correlation coefficient at r=0.98.   

Figure 6c indicates that the differences in sea level trend estimates between altimetry and our reconstruction are 

minimal. The median absolute difference is 0.14 mm yr-1, and 99% of grid cells differ by no more than ±1 mm yr-1. 440 
Considering that regional sea-level trends can exceed ±8 mm yr-1 from 1993 to 2021, these small discrepancies 

underscore the high accuracy of the reconstruction in capturing altimetry-era trends. 
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Figure 6: Validation of the modified sea-level reconstruction using multiple datasets. Panels (a) and (b) show the 29-year 445 
geocentric sea-level trends (January 1993–December 2021) from satellite altimetry measurements and the modified 
reconstruction, respectively, while panel (c) illustrates their difference. Panel (d) compares the detrended monthly 
modified reconstruction to two types of linear detrended tide gauge records not used in the reconstruction as long-term 
independent validations: 40-year series (1982– 2021) from 224 stations (squares) and 65-year series (1957– 2021) from 34 
stations (pentagrams). Shading indicates correlations between detrended altimetry and respective reconstruction during 450 
January 1993–December 2021. Panels (e)–(f) depict 𝟓° × 𝟓° regional geocentric sea-level trend over 1950–2021 from HR 
(Dangendorf et al. 2024) and from the modified reconstruction, (g) highlights the regional differences. 

The reconstructed global mean sea level trend estimates using ordinary least squares, adjusting for lag-1 

autocorrelation, and incorporate additional reconstruction uncertainties via multiple realizations and re-fitting using 

Monte Carlo approach (Dangendorf et al., 2024), from the 29-year (January 1993 through December 2021) GMSL 455 
from modified reconstruction (3.2 ± 0.3 mm yr-1, 95% confidence) align with altimetry measurements (3.2 ± 0.3 mm 

yr-1, 95% confidence), underscoring the effectiveness in accurately capturing regional sea level trends during the 

altimetry era.  
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To assess how well the reconstruction captures sea-level variability, we computed the correlation coefficient (r) 

between linear detrended monthly sea levels at each grid point and collocated detrended altimetry measurements. 460 
The median r=0.78, with most regions exceeding 0.7 and low-latitude equatorial areas consistently above 0.85 

(Figure 6d). Additionally, we validated the reconstruction using monthly tide gauge records (processed for fill 

missing data, IB, and VLM adjustment, followed by the previously described method) that were detrended and 

compared against nearby (≤200 km) reconstruction grids. This validation was performed over 40 years (January 

1982 to December 2021; 224 gauges) and 65 years (January 1967 to December 2021; 34 gauges), yielding a 465 
consistent median r=0.85 (85.19% for 40 years and 84.76% for 65 years).  

To evaluate regional sea level trends over the past seven decades, we compared our modified reconstruction using 

the HR reconstructed sea level available from Dangendorf et al. (2024). Known for superior trend estimation, the 

HR reconstruction outperforms other contemporary reconstructions in capturing long-term sea level trends 

(Dangendorf et al., 2019). Due to the spatial resolution difference between the two reconstruction products, we 470 
examine sea level trends from 1950 to 2021 across each 5°×5° grid in various ocean basins, as detailed in Figure 6e-

f. Grids, where fewer than 80% of spatial points hold values, were excluded to minimize discrepancies caused by 

insufficient sampling. Further analysis based on Figure 6g reveals that 30% of the 5°×5° grids exhibit discrepancies 

(absolute) below 0.18 mm yr-1, while 60% of the grids show discrepancies under 0.38 mm yr-1, and 90% maintain 

discrepancies less than 0.77 mm yr-1. This demonstrates the efficacy of the modified reconstruction in capturing sea 475 
level trends both during and prior to the satellite altimetry era. Overall, these comparisons underscore the 

effectiveness of our modified reconstruction in accurately capturing both sea level trends and variabilities. 

3.2. Climate pattern-induced sea level 

Beyond high-frequency tidal components such as M2, S2, and O1 (Foreman, 2004), numerous low-frequency 

periodic irregular climate patterns are embedded within sea levels. Most research concentrates on regions 480 
particularly sensitive to specific climate modes, such as the Indian Ocean (Frankcombe et al., 2015; Kumar et al., 

2020) and the Pacific Ocean (Si and Xu, 2014; Hamlington et al., 2016; Meng et al., 2019). Extracting global sea 

level responses to multiple climate patterns at the regional scale without relying on predefined climate indices 

remains complex. Although ENSO and PDO are recognized for their considerable influence on global sea level (Han 

et al., 2017), disentangling their individual effects accurately is particularly challenging due to their overlapping 485 
activity and spatiotemporal characteristics in the Pacific Ocean. Recognizing these challenges, this study believes 

that quality-enhanced sea level reconstructions could better quantify the significant climate pattern-induced sea 

level, including ENSO and PDO, thereby diminishing the reliance on predefined climate indices for pattern 

extraction.  

Besides the improved reconstruction product, an effective decomposition method is essential for revealing 490 
physically meaningful spatiotemporal patterns. EOF analysis is widely applied to extract orthogonal modes of 

maximum variance; however, its performance may decline with compromised data quality, resulting in less coherent 

signals. By contrast, CSEOF incorporates cyclical variability by linking each mode with a PC and a periodic spatial 
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pattern, although its strict periodic assumptions introduce artifacts in higher-order modes that may lack genuine 

cycles. To better capture higher-order variability, in this study, we use an EOF-based decomposition on our 495 
reconstructed sea level, while recognizing the value of CSEOF in sea level reconstructions. 

Uncertainty in our EOF‐based sea level patterns is estimated using a bootstrap approach (Wang et al. 2014). Each 

month in the time series is resampled with replacement to generate a synthetic dataset of equal size, preserving the 

overall observation count while randomizing the temporal order. Repeating this process 300 times yields an 

ensemble of EOF solutions. The standard deviation at each grid point across these solutions quantifies the spatial 500 
uncertainty, thus providing a nonparametric means of assessing how sensitive the extracted sea level patterns are.  

Figure 7: Top Four EOF spatial patterns and their respective principal components (PCs) from the 72-year modified sea 
level reconstruction (this study), compared with the corresponding climate indices. Spatial pattern (a) and its 
corresponding uncertainty (b), together with PC (c) of the first EOF mode, exhibit a trend-related mode.  The second 505 
EOF spatial pattern (d), pattern uncertainty (e), and its corresponding PC (f) represent the modulated annual cycle. The 
third EOF spatial pattern (g), respective pattern uncertainty (h), and corresponding yearly smoothed PC (i), which is 
closely linked to ENSO climate pattern, as evidenced by correlation with Niño 3.4 climate index (i) at 𝒓 = 0.87 after yearly 
smooth. The fourth global EOF spatial pattern (j) and its uncertainty estimate (k), which is strongly related to PDO 
climate, is proven by a high correlation between the yearly smoothed PC 4 and respective PDO climate index (l) at 𝒓 = 510 
0.75. The Climate index scale matched with PCs 

Using EOF decomposition on the modified monthly sea level reconstruction from January 1950 to January 2022, the 

first component predominantly represents the trend and encompasses the annual variations, as illustrated in Figure 
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7a-c. By testing the ability of this mode to represent the trends present in the reconstructed sea level, the study 

estimates the correlation coefficient of the EOF spatial pattern from the first mode and the 72-year geocentric sea 515 
level trend map. This analysis yielded a high correlation coefficient of 𝑟=0.98. This highlights the overall trend 

representation of the first EOF mode, which accounts for 43% of the overall variance of the 72-year monthly 

reconstructed sea level.  

The second EOF mode outlines the modulated annual cycle (MAC), highlighting a pronounced divergence between 

the northern and southern hemispheres due primarily to opposing seasonality (Figure 7d). In the north hemisphere, 520 
mid- to high-latitudes exhibit a marked response to this mode, especially along the eastern coasts of China and Japan 

and the coastal regions of the United States. The uncertainty estimate (Figure 7e) indicates a notable response on 

both sides of the equatorial Pacific, likely linked to ENSO. The corresponding PC 2 (Figure 7f) confirms the annual 

oscillation in this component, which accounts for 12% of the total variance. 

The third EOF mode, derived from the modified 72‐year reconstruction, corresponds to the El Niño–Southern 525 
Oscillation (ENSO). The Niño 3.4 index—defined based on sea surface temperature anomalies (SST) in the region 

5°N–5°S, 170°W–120°W—is used as an ENSO indicator. The spatial pattern of EOF 3 (Figure 7g) reveals a 

prominent positive sea-level anomaly in the central Pacific. Temporal characteristics are evaluated by correlating the 

third principal component (PC3) with the NOAA (https://psl.noaa.gov/data/timeseries/month/) Niño 3.4 index 

(Figure 7i). To mitigate high-frequency variability and emphasize interannual signals, both PC3 and the Niño 3.4 530 
index are averaged annually and then interpolated back to a monthly (excluding January 2022), yielding a 

correlation of r = 0.87. The uncertainty estimate for EOF 3 (Figure 7h) indicates elevated uncertainty along the 

eastern equatorial Pacific, the eastern coast of Mexico, and the Indian Ocean—regions strongly influenced by 

ENSO. This mode accounts for 7% of the variance in the reconstructed sea levels, underscoring ENSO’s significant 

impact on sea level. 535 

The Pacific Decadal Oscillation (PDO) represents another key mode of climate variability in the Pacific, distinct 

from ENSO primarily in its temporal scale. Both phenomena arise from coupled ocean–atmosphere interactions, yet 

ENSO operates on seasonal to interannual timescales while the PDO unfolds over decadal periods. During a positive 

PDO phase, warmer SST prevail along the western North American coast and extend into the central Pacific, with 

cooler conditions in the northwest Pacific; these patterns reverse during a negative phase. The fourth EOF spatial 540 
pattern (Figure 7j) from our modified reconstruction effectively captures these features, in line with SST responses 

documented by Newman et al. (2016). Spatial uncertainty associated with this pattern is illustrated in Figure 7h. The 

associated smoothed PC4 (Figure 7l) exhibits a robust correlation (r = 0.75) with the annually smoothed PDO index 

(https://ds.data.jma.go.jp/tcc/tcc/products/elnino/) from the Japan Meteorological Agency (excluding January 2022), 

confirming its physical significance. This mode accounts for 5% of the variance in the 72-year reconstructed sea 545 
level, underscoring the notable influence of the pattern.  

EOF decomposition of 72 years of reconstructed monthly sea levels reveals that the first four modes, each linked to 

distinct physical processes, collectively account for approximately 68% of the total variance. By capturing both 
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trend and large‐scale climate oscillations (e.g., ENSO and PDO) globally at the regional scale, these modes 

underscore the robust interpretability of our long‐term reconstruction. Moreover, the approach quantifies physically 550 
significant sea‐level patterns independently of external climate models or indices, thereby providing a self‐consistent 

framework for assessing the roles of individual climate patterns in shaping sea level change. 

To clearly compare our results with existing sea-level reconstructions, we conducted assessments using two 

independent datasets: the CSEOF-OI dataset (Hamlington et al., 2014) and the HR dataset (Dangendorf et al., 2024). 

The CSEOF-OI dataset, originally weekly-resolved from January 1950 to June 2009, was aggregated to the monthly 555 
resolution to match our analysis timeframe, treating the period from January 2009 to June 2009 as a full year to 

maximize comparability. The yearly HR dataset was truncated to cover the period 1950–2021, re-centered by 

removing the mean from each time series before EOF analysis, and its PCs were linearly interpolated to monthly 

values before comparison with corresponding climate indices. Both products adjusted their spatial coverage to best 

match our domain before tests. In addition to the annual smoothing, a biennial smoothing was applied following a 560 
similar methodology: data were averaged over 24-month intervals, with the remaining length of 18 months or longer 

but less than 24 months treated as complete two-year intervals at the end, and the averaged values interpolated back 

to monthly resolution. Correlation coefficients between PCs and major climate indices are detailed in Table 2. Over 

the 72-year analysis, our reconstruction clearly distinguishes distinct PCs corresponding to individual climate 

patterns under both annual and 2-year smoothing scenarios. 565 

Table 2: Summary of the strongest absolute correlation coefficients (|r|) between climate indices (ENSO and PDO) and 
principal components (PCs) derived from the EOF decomposition of sea-level reconstruction products. The analysis 
includes both 1-year and 2-year smoothed comparisons. Correlation values exceeding 0.7 are reported, as lower values 
are considered statistically insignificant. For each case, the corresponding PC order is indicated in parentheses below the 
correlation coefficient.  570 

 1-year smoothed comparison   
PC vs climate indices 

2-year smoothed comparison  
PC vs climate indices 

𝑟𝑃𝐶,𝐸𝑁𝑆𝑂 
(Strongest) 

𝑟𝑃𝐶,𝑃𝐷𝑂 
(Strongest) 

𝑟𝑃𝐶,𝐸𝑁𝑆𝑂 
(Strongest) 

𝑟𝑃𝐶,𝑃𝐷𝑂 
(Strongest) 

This Study 
(1950 - 2021) 

𝑟 = 0.87 
(PC 3) 

𝑟 = 0.75 
(PC 4) 

𝑟 = 0.88 
(PC 3) 

𝑟 = 0.81 
(PC 4) 

HR  
(1950 - 2021) 

𝑟 = 0.77 
(PC 2) ______ 𝑟 = 0.87 

(PC 2) 
𝑟 = 0.71 

(PC 2) 
CSEOF-OI 

(1950 - 2009) 
𝑟 = 0.89 

(PC 2) ______ 𝑟 = 0.88 
(PC 2) 

𝑟 = 0.74 
(PC 2) 

Over a 72-year span, our modified reconstruction consistently yields distinct, non-repeating PCs associated with 

individual climate patterns (i.e., PC 3 shows the strongest correlation with the Niño 3.4 index, and PC 4 with the 

PDO, indicating that these two dominant climate patterns are captured by distinct, non-overlapping EOF modes), as 

shown in both annual and 2-year smoothed scenarios.  

At the annual smoothed case, the PCs from both the HR and CSEOF-OI products exhibit a clear representation of 575 
the ENSO pattern, with correlation values exceeding the r > 0.7 threshold. The PDO-related correlations in the two 
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products, suggesting a less robust detection with no meet the threshold. In the case of CSEOF-OI, this outcome may 

partly influenced by its slightly shorter time span (1950–2009). 

Under the two-year smoothing, the HR product captures both ENSO and PDO signals, though they converge onto 

the same PC (PC2), with correlations of r = 0.88 and 0.71, respectively. A similar situation is found in the CSEOF-580 
OI reconstruction, where PC2 also simultaneously reflects both Niño 3.4 and PDO (r = 0.89 and 0.74, respectively).  

Among the tested products, our reconstruction demonstrates a consistent capacity to separate ENSO- and PDO-

related signals into distinct PCs. This likely benefits from the enhanced sea level reconstruction achieved through 

the modified approach. Given the decadal to multi‐decadal nature of the PDO, we anticipate that extending the 

temporal coverage of altimetry observations and sea level reconstructions in future studies will further enhance the 585 
separation of ENSO, PDO‐induced sea level. While differing in focus and design, both the HR and CSEOF-OI 

approaches contribute valuable perspectives on ENSO-induced sea level. 

3.3. Impacts of climate patterns on sea level changes 

According to the Intergovernmental Panel on Climate Change (IPCC), ENSO is characterized by sea surface 

temperature (SST) fluctuations lasting 2 to 7 years, whereas the PDO is a longer, irregular oscillation typically 590 
spanning 10 to 30 years (Mantua et al., 1997; Newman et al., 2016). To assess the simultaneous impacts of ENSO 

and PDO on sea level and mitigate high-frequency noise, we employ an analytical window spanning 5 years (61 

months) across the dataset. Within each window, we fit a linear trend to the pattern-induced (i.e., the combined 

influence of ENSO and PDO) global mean sea level to better characterize their contributions. 

Four intervals were selected, two of which fall within the satellite altimetry era (for validation purposes). For the 595 
pre-altimetry decades, the interval 1955–1960 exhibits a notable positive pattern-induced global mean sea level 

trend of 0.6 ± 0.4 mm yr⁻¹, while the 1988–1993 interval shows another prominent positive trend at 0.7 ± 0.4 mm 

yr⁻¹. Within the altimetry period, the strongest negative pattern-induced global mean sea-level trend occurs during 

1997–2002 (–1.0 ± 0.9 mm yr⁻¹), and the interval 2011–2016 records the highest positive contribution at 1.1 ± 0.5 

mm yr⁻¹. 600 

Figure 8a illustrates regional sea‐level trends from 1955 to 1960, revealing a pronounced rise along the equatorial 

eastern Pacific coast that extends northward toward Alaska and the Bering Strait, suggesting a combined influence 

of ENSO and PDO over this period. Elevated trends also appear in the southern Indian Ocean and east of 

Madagascar, whereas notable decreases occur offshore of northern Australia and east of the Philippines. Once the 

climate pattern–induced modes are removed (Figure 8b), the prominent equatorial rise and mid‐ to high‐latitude 605 
increases along the western coast of North America largely subside, and the previously strong signals in the Indian 

Ocean weaken. Likewise, the pronounced decline near Australia nearly disappears, underscoring the role of ENSO 

and PDO in shaping sea‐level changes during this interval. 
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Figure 8: Comparative analysis of sea-level trends for four distinct five-year intervals: 1955–1960 (a, b), 1988–1993 (c, d), 610 
1997–2002 (e, f, g), and 2011–2016 (h, i, j). Left-column panels (e, h) show altimetry-derived sea-level trends where 
available. Middle-column panels (a, c, f, i) depict sea-level trends from our modified reconstruction, while right-column 
panels (b, d, g, j) illustrate corresponding trends after removing ENSO- and PDO-related EOF modes. Color shading 
indicates the magnitude of sea-level trends (mm yr⁻¹). The altimetry-based trends correlate closely with our 
reconstruction, with r = 0.95 for 1997–2002 (e, f) and r = 0.97 for 2011–2016 (h, i), highlighting the effectiveness of our 615 
modified reconstruction in capturing short-term sea level trends. 

During the interval from 1988 to 1993, regions exhibiting pronounced sea-level changes were predominantly 

concentrated near the equator, with limited influence at higher latitudes (Figure 8c). According to ENSO 

classification (Trenberth, 1997), this period featured significant ENSO fluctuations, beginning with a strong La Niña 

event in 1988–89, which transitioned to a strong El Niño event from 1991 to 1992. These sequential ENSO phases 620 
resulted in marked regional contrasts: sea level notably increased across the eastern Pacific, extending toward the 

International Date Line. Conversely, the western Pacific experienced significant sea-level declines concentrated 

primarily in mid- to low-latitude regions, consistent with typical ENSO-driven SST patterns (Yu and Kim, 2010). 

After removing ENSO and PDO signals (Figure 8d), the trends in pattern active regions decreased from over ±35 

mm yr-1 to within ±10 mm yr-1. Elsewhere, trends were generally within ±5 mm yr-1, highlighting the dominant role 625 
of climate patterns in short-term sea level. However, compared to the scenario from 1955 to 1960, we found that the 
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sea level rise during this five-year period mainly belongs to ENSO, evident by most of the strong rising areas 

concentrating on the low-latitude Pacific. 

From 1997 to 2002, a pronounced sea-level decline extended along the eastern Pacific Ocean into higher latitudes 

near the Bering Strait, coupled with widespread reductions across the Indian Ocean. Notably, the sea-level drop 630 
during this period exhibited a broader latitudinal range. Conversely, regions including Southeast Asia and eastern 

Japan experienced substantial sea-level increases, frequently surpassing 40 mm yr⁻¹, a pattern consistently captured 

by altimetry measurements (Figure 8e) and our reconstruction (Figure 8f). The strong regional correlation 

coefficient (r = 0.95) between the measured trends and our reconstructions confirms the method’s effectiveness in 

capturing short-term fluctuations. These fluctuations reflect the prominent joint influence of ENSO and PDO, both 635 
notably active during this period, with clear declines appearing not only over the low-latitude Pacific but also near 

the Bering Strait. Once climate-induced EOF components are removed (Figure 8g), the pronounced sea-level rises 

and declines largely diminish, with trends in most regions stabilizing within ±15 mm yr⁻¹ from ±45 mm yr⁻¹. 

During 2011–2016, altimetry measurements and our reconstruction reveal the most pronounced climate-induced 

positive sea-level trends of the altimetry era (Figure 8h,i). Strongly positive trends dominate along the eastern 640 
Pacific coast and across the southern Indian Ocean, contrasted by significant declines along the low-latitude western 

Pacific coast. Notably, elevated sea-level anomalies are also evident along the eastern North Pacific and the western 

Antarctic Peninsula. These patterns are robustly confirmed by a correlation coefficient of r = 0.97 between altimetry 

measurements and trends estimated from our reconstruction. This expansive spatial coverage suggests simultaneous 

positive phases of both ENSO and PDO rather than dominance by a single climate pattern. After removing ENSO- 645 
and PDO-related components (Figure 8j), most regional trends stabilize within ±20 mm yr⁻¹, substantially lower 

than uncorrected trends, which exceed ±50 mm yr⁻¹. However, residual variability persists in regions such as the 

North Atlantic and high-latitude areas along the western coast of North America, indicating potential influences 

from additional climate factors. 

Analysis of extreme sea level events over the past 72 years reveals that the majority of interannual to decadal sea 650 
level changes cannot be attributed solely to ENSO dynamics; rather, the PDO also plays a significant role in most of 

the severe events we examined. This finding highlights the critical need to account for both ENSO and PDO 

influences for understanding short-term sea level changes.  

We further examined the influence of ENSO and PDO on longer-term sea-level changes and found that the pattern-

induced sea-level trend during 1950–2021 is primarily localized in the equatorial Pacific, Southeast Asia, and parts 655 
of northern Australia (Figure 9a). Regions such as northern Australia and the Gulf of Thailand exhibit negative 

trends of –0.8 to –0.5 mm yr⁻¹, while a limited area in the eastern equatorial Pacific shows positive trends of 0.8–

1.0 mm yr⁻¹ from the combined influences of ENSO and PDO during the past 72 years. The limited influence of 

pattern-induced sea level on long-term regional sea level trend is likely caused by the relatively short dominant 

periods of ENSO and PDO—shorter than half of the 72-year reconstruction period—thus limiting their large-scale 660 
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influence. Additionally, we further estimated their effect on sea level acceleration. Given evidence of a ~60-year 

oscillation in sea level (Chambers et al., 2012;  Ding et al., 2021), we avoided directly comparing sea level 

acceleration coefficients before and after removing ENSO and PDO. Instead, we fitted the acceleration term of the 

pattern-induced sea level itself, enabling a clearer assessment of how these modes influence long-term sea-level 

acceleration. 665 

 
Figure 9: Pattern‐induced sea‐level trends and acceleration coefficients over the 72‐year period (1950–2021). Panel (a) 
shows the combined ENSO- and PDO-induced regional sea‐level trend, while panel (b) depicts the corresponding sea‐level 
acceleration, highlighting representative locations (marked by asterisks) whose time series are provided in panels (c–l). In 
these time series, the individual and combined influences of ENSO and PDO are presented at annual resolution, and the 670 
curves represent quadratic fits, and 3‐sigma error bars are derived from monthly pattern‐induced sea‐level errors via 
error propagation. Each panel (c–l) also reports the location‐specific acceleration coefficient and its standard error at the 
bottom. 

Unlike the pattern-induced sea-level trend of the past seven decades, the corresponding acceleration field shows a 

pronounced global imprint that resembles a superposition of ENSO- and PDO-like patterns (Figure 9b). A notable 675 
negative response emerges in the eastern Indian Ocean, while positive anomalies appear in the Bay of Bengal and 

the Burmese Sea, extending along Australia’s west coast. This positive influence further spans the entire western 
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Pacific, with peaks in the equatorial region and the Kuroshio current area, where the acceleration coefficient reaches 

0.06~0.09 mm yr⁻². Negative acceleration coefficients dominate the eastern Pacific, extending northward into the 

Gulf of Alaska and southward along the Peruvian coast, with an additional pronounced negative feature in the 680 
Amundsen Sea. The color scale is set to [–0.10, 0.10] mm yr⁻², which is approximately half the range previously 

estimated for regional sea‐level acceleration since 1960 and 1970 (Dangendorf et al., 2019; Dangendorf et al., 2024). 

Furthermore, we visualize the pattern‐induced sea level acceleration coefficients for ten representative locations that 

are strongly affected by these climate modes, in order to estimate their contributions to sea‐level acceleration from 

ENSO and PDO separately as well as from their combined influence. This analysis is presented in Figures 9c–l, with 685 
the ten locations marked by asterisks on the regional pattern‐induced sea level acceleration map (Figure 9b). The 

pattern-induced sea level is converted from monthly to yearly for a more accurate acceleration estimate. Error 

estimates are derived under the assumption that uncertainties originate solely from the spatial patterns of the EOF 

modes. The associated errors at each time step are then converted to a yearly error following error propagation. 

Our analysis indicates that, in the majority of strongly responding regions, the acceleration effects induced by ENSO 690 
and PDO exhibit the same sign. However, in a few areas, the signals diverge. For example, along the western coast 

of North America, ENSO produces a negative acceleration of –0.03 ± 0.02 mm yr⁻², whereas PDO generates a 

positive feedback of 0.01 ± 0.01 mm yr⁻² (Figure 9g). Moreover, among the ten visualized locations, ENSO 

consistently emerges as the dominant influence compared to PDO. 

These results highlight that from a multi-decadal perspective, while the pattern‐induced sea‐level trend from ENSO 695 
and PDO remains relatively localized, the associated acceleration signals leave a broader global imprint over the 

past 72 years. Most notably, ENSO emerges as the dominant influence in most of the regions visualized, though 

PDO can either reinforce or counteract ENSO’s effects. Such findings underscore the importance of accounting for 

multiple climate patterns when assessing both short‐term sea‐level variability and longer‐term acceleration. 

3.4. Sea level changes from 1950 to 2022 700 

Upon validating our modified sea level reconstruction and explaining the role of ENSO and PDO in sea level 

changes, we estimate regional geocentric sea level trends from January 1950 to January 2022 by linearly fitting our 

reconstructed monthly product, which removed ENSO and PDO influence, as depicted in Figure 10a. Since 1950, 

the Western Pacific region has exhibited notably higher sea level rise rates than other areas, typically ranging from 

2.5 to 3.5 mm yr⁻¹. Conversely, the equatorial eastern Pacific experiences lower rates, generally between 1 and 2 705 
mm yr⁻¹. Across the Atlantic Ocean, especially along the coastal regions of North and South America, sea level rise 

is more pronounced, commonly falling within 2 to 3 mm yr⁻¹. The Indian Ocean shows moderate increases, 

averaging from 1.5 to 2.5 mm yr⁻¹. Certain areas west of the Antarctic Peninsula display negative trends, suggesting 

localized sea level declines.  
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 710 
Figure 10: Reconstructed global geocentric sea‐level trends and evolution since 1950. Panel (a) shows regional sea‐level 
trends derived from our modified reconstruction, with ENSO‐ and PDO‐induced sea level removed, spanning 
January 1950 to January 2022. Panel (b) presents the monthly global mean sea level (GMSL) time series from the same 
reconstruction, which retains ENSO and PDO influences, with 3‐sigma error estimates for each time point, and compares 
it against altimetry‐based GMSL that has also been corrected for ENSO and PDO using our spatiotemporal modes over 715 
the altimetry period. (c) Yearly GMSL since 1950, as obtained from the modified reconstruction and additional annual 
GMSL datasets (including an ensemble mean) with 3‐sigma error estimate. 
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Due to the limited availability of high-frequency (e.g., monthly, weekly) sea level reconstruction products, we 

integrated data from various studies—each with different temporal resolutions—into yearly values to facilitate 

comparison, as illustrated in Figure 10c. For studies that provide gridded datasets (e.g., Hamlington et al. 2014; 720 
Dangendorf et al. 2024), we adjusted their spatial coverage to best match ours before estimating their respective 

GMSL. The resulting comparisons are presented in Table 3. 

Table 3: Global mean sea-level trend estimates from various studies since 1950. Error estimates account for uncertainties 
in global mean sea level. For modified reconstruction (This study), the trend was derived from monthly results, whereas 
all other estimates are based on yearly resolution. 725 

 GMSL trend (mm yr⁻¹) Year range 
This study 1.9 ± 0.2 mm yr⁻¹ (95% confidence) January 1950 – January 2022 
Ensmable mean 1.9 ± 0.4 mm yr⁻¹ (95% confidence) 1950 – 2021  
Dangendorf et al. (2024) 1.7 mm yr⁻¹ 1950 – 2021 
Church and White (2011) update 2.2 mm yr⁻¹ 1950 – 2019 
Frederikse et al. (2020) 1.7 mm yr⁻¹ 1950 – 2018 
Hamlington et al. (2014) 1.5 mm yr⁻¹ 1950 – 2009 
 

From January 1950 to January 2022, our modified sea‐level reconstruction yields a global mean sea‐level trend of 

1.9 ± 0.2 mm yr⁻¹ (95% confidence) after removing ENSO and PDO influences. This estimate closely aligns with 

the Ensemble Mean trend of 1.9 ± 0.4 mm yr⁻¹  (95% confidence) for 1950–2021, and is comparable to 1.7 mm yr⁻¹ 

by estimate dataset from Dangendorf et al. (2024) and 1.7 mm yr⁻¹ by Frederikse et al. (2020) during 1950 – 2018. 730 
By contrast, Church and White (2011, update) yield the highest trend of 2.2 mm yr⁻¹ for 1950–2019, while 

Hamlington et al. (2014) report the lowest trend at 1.5 mm yr⁻¹, likely due to the exclusion of recent data (1950 – 

2009). Overall, our global mean sea level estimate falls between the higher and lower values reported over the past 

60–70 years. Despite methodological differences, all studies consistently indicate an increasing rate of sea‐level rise 

over multiple decades. Furthermore, independent assessments consistently indicate that the global mean sea level 735 
trend during the past three decades (1993–2021; ≈ 3.2 mm yr⁻¹) is substantially higher than the estimated global 

mean sea level trend over the past seven decades.  

4. Code and data availability  

The gridded sea-level reconstruction products, including validation datasets, EOF analysis results, associated 

uncertainties, short-term sea-level trend fields before and after the removal of ENSO- and PDO-induced sea level, 740 
and pattern-induced contributions to long-term sea-level changes, along with additional supporting datasets, are 

publicly available at https://doi.org/10.5281/zenodo.15288817 (Wang, 2025). The gridded datasets are provided 

globally at a spatial resolution of 1° × 1°. To facilitate data usage, analysis, and plotting, scripts developed in 

MATLAB (for time series analyses) and Generic Mapping Tools (GMT; for spatial field visualizations) are also 

provided. Users are referred to the repository for accessing both the datasets and the associated visualization codes.  745 
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5. Discussion and Conclusion  

Sea level change, driven by climate dynamics, presents scientific challenges (particularly in terms of reconstruction 

and prediction) and will produce profound impacts on global societies and economies. The current 29-year dataset 

derived from satellite altimetry is insufficient to capture long-term trends and discern the intricacies of internal 

oceanic variability that contribute to sea level rise over multi-decadal to century-long scales. Conversely, long-term 750 
tide gauge records are hindered by scarcity and spatial unevenness. The integration of these two types of 

measurements enables reconstruction of the spatiotemporal long-term sea level. However, the deficiencies of tide 

gauge records and the temporal mismatches between the two types of measurements limit the quality of the 

reconstructed sea level. Our study tackles the issue of insufficient long-term tide gauge records by using the 

Regularized EM method, proven to be the most effective, to mitigate tide gauge record data gaps and increase the 755 
number of global tide records from 48 to 287, January 1950 through January 2022. Drawing on high-quality tide 

gauge records and altimetry sea level anomalies, we propose a modified sea level reconstruction method that 

integrates CSEOF and EOF to mitigate trend-related component windowing issues in the CSEOF process. The 

resulting reconstructed monthly sea level trend field strongly correlates with AVISO satellite altimetry (r = 0.98) 

over the overlapping period. Additionally, the reconstructed variability maintains a consistently high median 760 
correlation (r = 0.85) with collocated monthly tide gauge records that were not included in the reconstruction 

process across multi-decades, further validating its robustness. 

Applying EOF decomposition to our 72-year sea-level reconstruction, we robustly isolate the ENSO-induced mode 

in agreement with prior studies. Moreover, the enhanced product captures PDO-induced sea level in a distinct EOF 

mode orthogonal to the ENSO mode, thereby providing a unified framework for separating and quantifying 765 
sea-level responses to these two major climate patterns without imposing predefined model constraints. The 

quantified pattern-induced modes reveal that both ENSO and PDO exert significant influences on sea level globally 

at the regional scale, and that ENSO alone may not be enough to explain certain sub-decadal fluctuations. Over the 

long term, the combined influences of ENSO and PDO substantially modulate sea-level acceleration over the past 

seven decades. Together with the trend-related and the modulated annual cycle EOF modes, these physically 770 
interpretable components account for 68 % of the variance in the reconstructed monthly sea-level fields over the full 

72-year period.  

In conclusion, our reconstructed 72-year sea level dataset provides a valuable resource for disentangling and 

clarifying the contributions of major climate patterns to sea level variability and trends. By enabling more accurate 

representation of oceanic signals, our product strengthens efforts to understand both short-term and long-term sea 775 
level changes.  
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