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Abstract. A dataset of pollen extracted from the surface-sediments of lakes

with broad spatial coverage is essential for pollen-based reconstructions of past

vegetation and climate. We collected 90 new lake surface-sediment pollen
samples from the Tibetan Plateau (TP), covering major vegetation types,

including alpine forest, alpine meadow, alpine steppe, and alpine desert. By

integrating these new data with previously published lacustrine pollen datasets,

we_established a comprehensive _modern pollen dataset comprising 476

samples across the TP, covering the full range of climatic gradients across the
TP, with net primary production (NPP) from 0.16 to 6617.36 Kg C m™, mean

annual precipitation (Pann) from 97 to 788 mm, mean annual temperature (Tann)
-9.09 to 6.93 °C, mean temperature of the coldest month (Mtc,) -23.48 to -
2.65°C, and mean temperature of the warmest month (Mtwa) 1.77 to 19.26°C.

Numerical analyses based on the comprehensive modern pollen dataset (7=476)

revealed that Pang is the primary climatic determinant for pollen distribution,
while NPP,is a valuable variable reflecting vegetation conditions. To detect the

quantitative relationship between pollen and NPP/Pun, both weighted-

averaging partial least squares (WA-PLS) and random forest algorithm (RF)
were employed. The performance of both models suggests that this modern
pollen dataset has good predictive power in estimating past NPP and Pann, but
RF has a slight advantage with this dataset. This comprehensive modern pollen
dataset provides a reliable basis for reconstructing past vegetation and climate

changes on the central TP, However, caution is required when applying it fo

pollen spectra from marginal regions of the TP or to records covering the Last

Glacial period, where analogue quality js relatively poor. The dataset,

including site locations, pollen percentages, NPP, and climate data for 90 lakes,
is available at the National Tibetan Plateau Data Center (TPDC; Tian, et al.,
2025; https://doi.org/10.11888/Paleoenv.tpdc.302470).
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1 Introduction

A modern pollen dataset is the foundation for the quantitive reconstruction of past
vegetation and climate based on fossil pollen spectra. Surface-soil samples for pollen
analysis can be easily obtained, but their pollen assemblages are easily affected by local
vegetation components, which cause more noise in the modern relationships of pollen—

vegetation and pollen—climate (Cao et al., 2014). Sediment from lakes, in contrast,

provide more regional pollen signals owing to broader pollen source areas, more stable
sedimentation rates, and better preservation, making them more suitable for regional
vegetation and climate changes (Tian et al., 2020; Cao et al., 2021). Due to the sparse
distribution of lakes, high sampling costs, and limited accessibility—especially in
remote regions—modern pollen datasets from lake surface sediments remain limited
and spatially biased, particularly in China (Herzschuh et al., 2010; Ma et al., 2017; Cao
etal., 2021).

The Tibetan Plateau (TP), situated at high elevations and subject to complex climate

systems,, is highly sensitive to global climate change and human activities and exhibits

strong regional ecological and climatic peculiarities (Chen et al., 2015, 2020; Pepin et

al. 2019). These features make the TP a research hotspot for past yegetation and climate

reconstructions. Fortunately, the widespread distribution of lakes across the plateau
offers an opportunity to expand and refine pollen-based calibration datasets using lake
surface sediments, but the distribution of available pollen sites of lake surface-sediment

remains uneven and incomplete due to logistical constraints (Cao et al., 2021; Qin,
2021; Ma et al., 2024). Hence, it is essential to improve the coverage and
comprehensiveness of the modern calibration-set from lake surface-sediments on the
TP.

While previous pollen—climate relationships are often the focus of calibration-set

studies, the pollen—vegetation relationship is also crucial on the TP, where vegetation

type is generally employed as the target variable, especially when reconstructing
ecological conditions (e.g. Qin, 2021; Qin et al., 2022). Existing modern pollen datasets

reveal that pollen assemblages from different vegetation types on the TP generally
present only minor differences in pollen components and their abundance. For instance,
the dominant pollen taxa are generally herbaceous taxa., including Cyperaceae,
Artemisia, Amaranthaceae (synonym: Chenopodiaceae), and Poaceae (e.g. Herzschuh

etal., 2010; Ma et al., 2017; Cao et al., 2014, 2021; Li et al., 2020; Qin, 2021), making
it difficult to distinguish vegetation conditions based on pollen assemblages directly.

However, the pollen concentration and percentages from lake sediments have been

confirmed to positively correlate with vegetation coverage, which reflects total plant
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Gonsamo et al., 2013; Ni, 2013; Walker et al., 2015; Ji et al., 202 ollen can serve
as an indirect proxy for NPP, allowing us to infer spatial and temporal patterns of

vegetation conditions on the TP.

Here, we analysed 90 lake surface-sediment samples for pollen and combined them
with previously published 386 modern pollen data extracted from lake surface-
sediments (Herzschuh et al., 2010; Li and Li, 2015; Cao et al., 2021; Ma et al., 2024;
Wau et al., 2024), then used a combination of ordination techniques, weighted averaging
partial least squares (WA-PLS), and Random Forest (RF) to: (1) establish a
comprehensive pollen dataset extracted from lake surface-sediments covering the entire
TP with an relative even distribution; (2) evaluate the predictive power of models using

the modern pollen dataset in reconstructing past yegetation and climate.

2 Study area

The cl]imate of the TP is controlled mainly by the Asian Summer Monsoon in summer

with warm-wet conditions and by westerlies in winter with a cold-dry climate (Wang,
2006). In addition, there is a gradient from high summer temperatures (up to 19°C) and
high precipitation (>700 mm) on the south-eastern TP, to low summer temperatures (ca.
6°C) and low precipitation (<100 mm) on the north-western TP (Fig. 1; Sun, 1999;
Herzschuh, 2007; He et al., 2020).
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Figure 1. Spatial distribution of 476 modern pollen samples collected from lake surface-sediments
on the Tibetan Plateau (red filled circles: 90 sampled lakes; orange filled circles: 386 previous
samples; Herzschuh et al., 2010; Li and Li, 2015; Cao et al., 2021; Ma et al., 2024; Wu et al., 2024)

based on (A) vegetation types and (B) net primary production (NPP, Zhao and Running, 2010).

The TP exhibits distinct vegetation zonation along its south-east—north-west thermal
and moisture gradients, progressing from forest ecosystems through alpine meadows

and steppes to desert vegetation (Fig. 1; Zhang, 2007). Alpine forest, dominated by

Pinus, Picea, Abies, Betula, Quercus, and Tsuga are primarily distributed in the warm-
humid south-eastern and eastern marginal regions of the TP (Herzschuh, 2007). Alpine
meadow, as one of the most important vegetation types, are mainly distributed on the

eastern and southern TP, and are characterized by Kobresia spp., Carex, Asteraceae,
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Polygonum, Potentilla, Fabaceae, Caryophyllaceae, Leontopodium, Arenaria,
Ranunculus, and Poaceae (Wu, 1995; Herzschuh et al., 2010; Cao et al., 2021). Alpine
steppe, are primarily distributed across the southern, eastern, and central TP, and is

mainly dominated by Stipa purpurea, Artemisia, Potentilla, Asteraceae, Amaranthaceae,
and Carex (Fig. 1; Zhang, 2007; Yue et al., 2011). Alpine desert, located in the dry
north-central and westernmost central TP, are characterized by sparse vegetation, and

are predominantly occupied by drought-tolerant taxa such as Ceratoides
(Amaranthaceae), Salsola, Haloxylon, Kalidium, Artemisia, Ephedra, Nitraria, and
Poaceae (Fig. 1; Zhang, 2007).

3 Materials and methods

3.1 Sample collection and pollen processing

To achieve a broadly representative coverage of Jakes across different vegetation zones

on the TP, we collected pne surface-sediment,sample (top 2 cm) from the centre of each

lake, for a total of 90 lakes across different vegetation types on the TP: forest (n=5),
meadow (n=22), steppe (n=53), and desert (n=10) between 2021 and 2023 (Fig. 1, Table

1). Collecting from the lake centre is intended to provide a representative pollen *
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Table 1. Locations of the sampling sites of our field work on the Tibetan Plateau.

J
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No. Lake Latitude (°N) Longitude (°E) Elevation (ma.s.l.) ~ Water area (km?)  Vegetation type

1 Cuomujiri 94.4304 29.8118 4235 1.642 Forest

2 Ranwu Lake 96.8252 29.3962 5263 13.58"° Forest

3 Sanse Lake 94.7670 30.7239 4042 0.632 Forest

4 Ren Co 96.6748 30.7156 4452 3550 Forest

5 Potal Lake 95.5743 31.6223 4656 8352 Forest

6 Ruba Lake 90.1725 29.4644 3923 0.67° Meadow
7 Namucoluo 90.3347 29.6070 4690 0.36° Meadow
8 Cuoriwang 90.4064 30.0345 4400 0.282 Meadow
9 Niangde Co 90.1834 29.2810 4365 0.272 Meadow
10 Cona Lake 91.4305 32.0779 4602 188.54° Meadow
11 Tangbin Lake 90.9672 30.4795 5025 0.722 Meadow
12 Cuoe 91.5350 31.5088 4511 86.62° Meadow
13 Changma Lake 92.1069 32.0639 4932 3.892 Meadow
14 Cuomuri 92.0596 31.6201 4547 3.65° Meadow
15 Gemu Co 91.6990 31.5550 4524 1.43° Meadow
16 Xiongmu Co 91.6303 31.0399 4662 2352 Meadow
17 Nairi Pingco 91.4788 31.2730 4513 95.56"° Meadow
18 Cuomuzhelin 88.2168 28.3933 4395 54.43" Meadow
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Nariyong Co 91.9377 28.3071 4731 23.31° Meadow
Peiku Co 85.5869 28.8507 4561 272.95% Meadow
Zhegu Co 91.6770 28.6316 4601 59.06° Meadow

Nianjie Co 96.2905 33.0773 4441 20.66° Meadow
Samu Co 93.7813 30.9753 4748 1.642 Meadow
wlala Lake 97.5967 38.2507 4071 611.57 Meadow

Zhaling Lake 97.3420 34.9447 4280 526.62° Meadow

Koucha Lake 97.2311 34.0081 4518 18.16° Meadow

Eling Lake 97.7130 35.0217 4257 629.75 Meadow
¥aoulu Co 92.4546 34.5942 4639 25.89° Steppe

UlanUI Lake 90.7108 34.8528 4857 566.96° Steppe

Xijir Ulan Lake 90.3528 35.1875 4769 373.87° Steppe
Lexiewudan Lake 90.2053 35.7071 4862 247.58"° Steppe
Xiangyang Lake 89.4616 35.8194 4843 3.67° Steppe

Kekexili Lake 91.2205 35.6115 4875 315.95° Steppe

Kekao Lake 91.3874 35.6973 4881 60.04° Steppe

Zhuonai Lake 91.9833 35.5325 4734 255.37* Steppe

Kusai Lake 92.9412 35.6753 4471 271.08"% Steppe

Zigétang Co 90.8973 32.0674 4538 225.55° Steppe

Daru Co 90.7324 31.6562 4675 134.27° Steppe

Bange Lake 89.4734 31.7282 4519 136.34% Steppe
Lingge Co 88.7220 33.9370 5061 108.14° Steppe
Qiagang Co 88.3966 33.2313 4719 21.64* Steppe
Caiduochaka Lake 88.9793 33.1576 4833 37.14° Steppe
Eya Co 88.6713 33.0013 4824 75.14° Steppe

Ri Co 89.6068 30.9302 4648 113.02° Steppe
Mujiu Co 89.0144 31.0337 4664 83.58° Steppe

Suo Co 90.9056 31.3978 4556 0.162 Steppe
Mading Co 90.2995 31.4147 4680 0.16* Steppe
Maiding Co 90.3202 31.8413 4773 0.35 Steppe
Changma Co 87.8756 32.2605 4725 4430 Steppe
Cuolongjiao 88.8539 32.7857 4873 3.55b Steppe
Duomaxiang Lake 89.1268 32.3249 4704 0.07? Steppe
Gewa Co 88.7968 30.6725 4745 1.86¢ Steppe
Wojiong Co 89.3646 31.6276 4598 0.012 Steppe
Gaa Co 88.9583 322130 4602 10.28"° Steppe

Chelachapuka 86.1548 31.8024 4773 0372 Steppe
Yong Co 84.7044 31.9383 4712 2.09° Steppe
Rena Co 84.2559 32.7281 4579 19.49° Steppe
Chabo Co 84.2108 33.3512 4500 40.89° Steppe

Jibuchaga Co 83.9975 32.0205 4467 8.17¢ Steppe

Cuoguo Co 83.2921 32.2503 4669 10.07# Steppe

Bieruoze Co 82.9417 32.4308 4392 3227° Steppe

Shekazhi 82.0466 32.0115 4591 17.78* Steppe
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63 Dagze Co 87.4456 31.8332 4465 269.07° Steppe
64 Xiabie Co 87.2680 32.2179 4592 17.85% Steppe
65 Jiaruo Co 86.6001 32.1730 4445 13.34 Steppe
66 Xuguo Co 90.3251 31.9542 4598 33.12° Steppe
67 Beilei Co 88.4296 329120 4797 25.23% Steppe
68 Unknown 81.7962 31.1937 5433 0.50? Steppe
69 Nading Co 85.4359 32.6776 4845 12432 Steppe
70 Bala Co 82.9849 33.4281 4757 1.532 Steppe
71 Dong Co 84.7120 32.1440 4388 92.47° Steppe
72 Xiaogemu Co 85.7384 33.5778 4711 0.042 Steppe
73 Ningri Co 85.6752 33.3333 5020 21.02° Steppe
74 Guping Lake 85.6787 33.1683 5030 2.22° Steppe
75 Qiuruba Co 84.7966 33.3073 4733 9.02° Steppe
76 Caima’er Co 84.5879 33.5469 4573 45.12° Steppe
77 Selin Co 88.6979 31.7363 4512 2129.02° Steppe
78 Zhari Namco 85.4004 30.9068 4595 990.26° Steppe
79 Kuhai Lake 99.1636 35.3070 4117 48.50° Steppe
80 Donggi Cona 98.6596 35.2875 4066 238.15% Steppe
81 Aru Co 82.4768 33.9682 4904 91.22¢ Desert
82 Aksai Chin Lake 79.7863 35.2456 4831 170.22* Desert
83 Kunchuke Co 82.6590 33.7096 5042 22.90° Desert
84 Xiawei Lake 82.0454 34.6738 5110 5.52° Desert
85 Luotuo Lake 81.9849 34.4339 5082 63.43" Desert
86 Meima Co 82.4404 34.1278 4897 145.22° Desert
87 Lhanag Co 81.2820 30.6674 4577 270.32* Desert
88 Hongshan Lake 80.0545 34.8300 5043 6.35% Desert
89 Manasarovar Lake 81.3939 30.7465 4577 409.90° Desert
90 Xiada Co 79.3584 33.3916 4338 8.042 Desert
2; data measured from ArcGis; " data from Yang, 2019.

For each sample, 2-3 g of dry material was used for pollen extraction, and a tablet
with Lycopodium spores (10,315 grains) was added to each sample initially as a tracer
(Maher, 1981). Pollen samples were processed using standard acid-alkali-acid
procedures (Faegri and Iversen, 1989), including 10% HCI, 10% KOH, 40% HF,
acetolysis treatment, and sieving in an ultrasonic bath to remove particles <7 um. Pollen
grains were identified and counted under a Zeiss optical microscope at 400x
magnification, referring to modern pollen slides collected from the eastern and central
TP and published palynological literatures (Wang et al., 1995; Tang et al., 2016; Cao et
al., 2020). To ensure the reliability of the pollen assemblages for numerical analyses,
more than 500 terrestrial pollen grains, or over 2000 Lycopodium spores were counted

for each sample. The pollen diagram was constructed using Tilia software (Grimm,

1987, 1991).

3.2 Data collection and harmonization

[)]ﬂlj B& 7 : tracers
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We compiled a dataset of modern pollen assemblages from lake surface sediments
across the TP, incorporating 375 lakes situated in the eastern (Herzschuh et al., 2010;

Cao et al., 2021), central, and western TP (Ma et al., 2024; Wu et al., 2024), obtained
from accessible databases or from authors directly. To enhance spatial coverage, an

additional 11 surface pollen assemblages were digitized from published diagram

representing sites along the eastern edge of TP (Li and Li, 2015). The final dataset

comprises 476 pollen assemblages from lake surface-sediments on the TP (Fig. S1).
The pollen assemblages of the 386 previously published samples have already been

described and discussed in detail in their original publications. Therefore, in this stud

we present only the pollen assemblages of the 90 newly collected samples.

The pollen data are standardized following the procedures outlined in Cao et al.

(2013), including harmonization of taxonomy, generally to the family or genus level,,

and recalculation of pollen percentages based on total terrestrial pollen grains. Only
pollen taxa with an abundance of at least 0.5% in at least three samples and a maximum

>3% (n=35) were retained for the following statistical analyses (RDA, WA-PLS. and

RF).

We employed the Chinese Meteorological Forcing Dataset (CMFD), a gridded near-
surface meteorological dataset covering the period from January 1979 to December
2018, with a temporal resolution of 3 h and a spatial resolution of 0.1°. Climate data of
cach sampled lake were assigned as the values of the nearest pixel from the

meteorological dataset. For all 476 lakes, the following parameters were extracted: Pann:

mean annual precipitation, mm; Tan: mean annual temperature, °C; Mte: mean
temperature of the coldest month, °C; Mtwa: mean temperature of the warmest
month, °C (He et al., 2020). The geographical distances between lake coordinates and
grid centroids were calculated geodetically using the ydist.earth function in the fields

package version 16.3.1 (Nychka et al., 2025) for R (R Core Team, 2019),
The NPP value, defined as Gross Primary Productivity (GPP) minus Maintenance

Respiration (MR) (Zhao and Running, 2010), was obtained from observations of the
MOD17A3HGF.006 product during 2001-2022 with a pixel resolution of 1000 m.
Across the study region, NPP values range from 0.16 to 6617.36 Kg C m™2, Py, ranging
from 97 to 788 mm, and cold thermal conditions characterized by low Tam (-9.09 to
6.93°C) and Mtco (-23.48 to -2.65°C; Table S1).

3.3 Data analysis

For all statistical analyses (redundancy analysis: RDA, weighted averaging partial least

squares regression: WA-PLS, and Random Forest: RF), we used the full integrated

dataset of 476 samples.

To visualize how the modern pollen assemblages respond to climatic variables,

ordination techniques were employed, based on the selected 35 pollen types from all

476 sites. Pollen data were square-root transformed to stabilize variances and optimize
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the signal-to-noise ratio (Prentice, 1980). Detrended correspondence analysis (DCA;
Hill and Gauch, 1980) showed that the gradient length of the first axis of the pollen data
was 2.36 SD (standard deviation units), indicating that a linear response model is
suitable for our pollen dataset (ter Braak and Verdonschot, 1995). We employed RDA,
to assess how major pollen taxa and sampling sites are distributed along vegetation and
climate gradients. Climatic predictors were introduced sequentially following a forward
selection procedure, with multicollinearity assessed at each step via variance inflation
factors (VIF). Variables exhibiting VIF values above the threshold of 20 were excluded
to maintain model parsimony and reduce redundancy (ter Braak and Prentice, 1988;
Birks, 1995). Additionally, the suitability of each climatic variable for quantitative
reconstruction was evaluated using the ratio of the first constrained eigenvalue to the
first unconstrained eigenvalue (A1/A2), where larger ratios indicate stronger predictive
potential (Juggins, 2013). All ordinations were carried out using the rda and decorana
functions in the vegan package (Oksanen et al., 2019).

WA-PLS regression was applied to calibrate transfer functions linking modern pollen
assemblages to Pann and NPP, based on square-root transformed relative abundances of
the 35 selected taxa—consistent with those used in the ordination analyses (ter Braak
and Juggins, 1993). Model performance was evaluated using “leave-one-out” cross-
validation, and the optimal number of WA-PLS components was, determined based on

arandomization #-test (Juggins and Birks, 2012). All the analyses were performed using
the WA-PLS function of the rioja package version 0.7-3 (Juggins, 2012) in R.

As WA-PLS is known to produce systematic prediction biases near the ends of
environmental gradients—commonly referred to as the “edge effect” (Birks, 1998; Tian
ensemble learning algorithm that integrates multiple decision trees based on a
classification tree algorithm and summarizes their results for classification or regression
tasks (Breiman, 2001). The importance of the explanatory variable is normally
measured as a percentage increase in the residual sum of squares after random shuffling
of the yariables order, thereby determining which explanatory variable can be added to

the model. RF has been applied in the geographical and ecological fields and performs
well (Li, 2013; Jin et al., 2016). In this study, we applied RF to assess the importance

of pollen and the NPP/climate variables (Table S1). The model was systematically
optimized through a stepwise reduction procedure, in which the pollen taxa with the
least important score was deleted until the RF-importance of all remaining taxa were
greater than 0 (Breiman, 2001). The RF algorithm was run based on square-root

transformed pollen percentages of the selected 35 taxa, using the randomForest

function in the randomForest package version 4.6—14 (Liaw, 2018) in R. The statistical
significance of the reconstructions derived from WA-PLS and RF were tested with the
randomTF function of the palaeoSig package (Telford and Birks, 2011; Telford, 2013)
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in R.

In quantitative climate reconstructions, the taxonomic distance between a fossil
pollen assemblage and its modern analogue is a key variable in evaluating the analogue
quality (Birks et al., 1990). Shorter distances indicate closer taxonomic similarity and
higher analogue quality, enhancing reconstruction reliability. This distance is
commonly calculated using the squared chord distances based on the percentages of all
pollen taxa. To evaluate the analogue quality, we calculated the squared chord distances
between the selected fossil pollen spectra since the last glacial maximum (n=65,
elevation higher than 3000 m a.s.l.; Cao et al., 2013) and the combined modern pollen
dataset on the TP. The square chord distances were calculated using the MAT function

of the rioja package (Juggins, 2018) in R.
4 Data description

The pollen assemblages of the new surface-sediment samples (n=90) are dominated by
herbaceous pollen from alpine meadow, steppe, and desert sites on the TP. In contrast,
arboreal pollen dominates the samples collected from forest, consisting mainly of Pinus,
Picea, Alnus, Tsuga, Juniperus, Betula, and Quercus (Fig. 2). Additionally, there are

evident regional peculiarities in its distribution (Figs. 2—4). Sites with Cyperaceae

abundances >60% from alpine meadows are more common than other sites, whereas
steppe regions are marked by higher percentages of Poaceae and Artemisia, typically
exceeding 30% and 50%, respectively. The distribution center of Amaranthaceae (>
30%) is generally located in desert (Figs. 2—4; Table S1).
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Figure 2. Percentage diagram of major pollen taxa for 90 lake surface-sediment samples on the

Tibetan Plateau. Samples are arranged according to their vegetation type.

Group 1 (forest, n=5): The pollen assemblages of the sampled lakes are characterized

by the lowest Artemisia and Amaranthaceae abundance, yet exhibits the highest

arboreal pollen (AP) percentages among the four groups. Key arboreal taxa include
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Pinus (mean 26.0%, maximum 34.2%), Betula (mean 11.7%, maximum 15.6%),

Quercus (mean 3.9%, maximum 9.3%), and Picea (mean 2.7%, maximum 7.0%, Figs.

2-4).

Group 2 (meadow, n=22): This group is typically characterized by the lowest AP and
A/Cy (Artemisia/Cyperaceae) ratio but the highest Cyperaceae abundance (mean 39.8%,
maximum 64.7%), with common taxa comprising Artemesia (mean 27.1%, maximum
58.9%), Amaranthaceae (mean 6.8%, maximum 16.4%), and Poaceae (mean 6.3%,
maximum 26.1%, Figs. 2—4).
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Figure 3. The spatial distribution maps of pollen percentages for total arboreal pollen (AP) and
selected herbaceous taxa (Artemisia, Amaranthaceae, Cyperaceae, Poaceae) in the dataset of lake
surface-sediment samples (#=476) on the Tibetan Plateau.

Group 3 (steppe, n=53): Artemesia (mean 28.9%, maximum 59.0%) is the most
dominant component compared to meadow sites (Fig. 2—4). In addition, as a common
taxon, Poaceae (mean 10.3%, maximum 31.4%), as well as the A/C (Artemisial
Amaranthaceae) ratio (range 0.25-12.14, median 3.45), reach their highest values of

the different vegetation types.
Group 4 (desert, n=10): These sites are characterized by the highest percentages of
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Amaranthaceae (mean 26.7%, maximum 52.4%), with higher Artemisia abundance
(mean 27.4%, maximum 40.2%, Fig. 2—4), and the lowest Poaceae (mean 3.1%,
maximum 6.6%), Cyperaceae (mean 11.4%, maximum 21.1%) percentages, and A/C
ratio (range 0.55-2.08, median 0.83).

Although AP pollen is detected at most meadow and steppe sites, and occasionally
in desert regions, its abundance is markedly lower than that in the forest sites (Table 1,
Figs. 2—4). Since trees are absent in the alpine meadow, steppe, and desert communities
on the TP (Wu, 1995; Wu and Xiao, 1995; Herzschuh et al., 2010), the low AP
abundances likely represent wind-transported pollen transported from adjacent low-
elevation regions. Despite this influence, the pollen assemblages effectively represent
local vegetation composition, as the contribution of distant pollen is minimal overall
(Figs. 2—4). Thus, the modern pollen distribution aligns closely with established
vegetation types, corroborating findings from previous studies (Shen et al., 2006;
Herzschuh et al., 2010; Li et al., 2020). Pollen assemblages of the 476 pollen samples
of the dataset from TP are shown in Figure S1.
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Figure 4. Box plots of the regional percentage distributions of arboreal pollen (AP) and four selected
herbaceous pollen types (4Artemisia, Amaranthaceae, Cyperaceae, Poaceae), plus the ratios of A/C

(Artemisia/ Amaranthaceae (synonym: Chenopodiaceae)) and A/Cy (Artemisia/Cyperaceae) from

modern lake surface-sediment samples across the Tibetan Plateau.

The initial RDA showed that the VIF, values for Tam, Mtco, and Mtw,_exceeded 20.

Since Tany had the highest VIF, it was removed. After this adjustment, the remaining ;

four variables (NPP. Pann, Mteo, and Mtywa) all had VIF values below 20, and were

therefore retained jn the final RDA to assess their influence on the modern pollen

dataset.
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Table 2. Summary statistics of redundancy analysis (RDA) of 476 sites, 35 pollen types, and four )

climatic variables (P.in: mean annual precipitation, mm; Mte: mean temperature of the coldest
month, °C; Mty,: mean temperature of the warmest month, °C; Tann: annual mean temperature, °C)
and NPP (net primary production) in the pollen dataset from the Tibetan Plateau. VIF: variance

inflation factor.

Climatic VIF VIF Ai/A2  Climatic variables as sole Marginal contribution based on climatic
variables (without Tann) (with Tann) predictor variables
Explained variance (%) Explained variance (%) P-value
NPP 1.94 2.19 0.21 7.29 0.67 0.006
Pann 3.10 343 044 1313 3.92 0.001
Mteo 2.84 80.97 0.09 337 2.70 0.001
Mtwa 2.90 41.11 0.15  5.04 1.03 0.001
Tann — 185.28 — — — —
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Figure 5. Redundancy analysis (RDA)biplots of the pollen datasetalong the first two axes, showing |

the relationships between (A) 35 selected pollen taxa (circles) and (B) 476 integrated samples

(symbols) from different vegetation types and the four variables respectively (arrows): net primary /

production (NPP, Kg C m™), mean annual precipitation (P,.,, mm),mean temperature of the coldest |

(w7

[ﬂﬂﬁ%?:l&

[)]}}UI%T: biplot

[)]}}IJE,% 7 based on

(BT (

[ﬂﬂﬂl‘%?: Pann:

[ﬂﬂ'ﬂi‘%?: s Mteo:

[MJK/%T:,

[M’JF%T:;

[MJ BRT: Mtwa:

[M‘JB%T:,

] [)]}}UF%T: , and NPP: net primary production, Kg C m™

[ﬂ)}ﬂ BT Pamn

[)]ﬂﬂl*,%?: NPP

[)BHJK%T: 13.13

month, (Mt.,. °C),and mean temperature of the warmest month, (Mt,.., °C). ,’ if ' @MB?T: 697
The RDA results highlight that, as a sole predictor, relative to Mte, and Mty,, NPP [Mjﬁ%? 3

and P.., explain substantial portions of pollen assemblage variation (7.29% and 13.13%, ; - [)])}'J BRT:A

respectively) in the dataset (Table 2). Biplots of the RDA shows that the vectors for . [MJI%%T: b

both NPP and P.., form smaller angles with the positive direction of axis 1 (capturing

28.23% of total inertia in the dataset) than with axis 2 (12.83%), suggesting moisture -

availability as the primary determinant along axis 1 (Fig. 5). RDA axis 1, which is .

highly correlated with NPP and Pann, generally divides the pollen taxa into two groups.
One group, comprising Cyperaceae, Ranunculaceae, and Salix, indicates wet climatic

conditions (located along the positive direction of Pann), while the other group,
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consisting of Artemisia, Amaranthaceae, Poaceae, Ephedra, and Saxifragaceae
represents drought (located along the negative direction of Pann; Fig. 5A). Furthermore

samples collected from alpine desert, steppe, meadow, and forest are located along the

gradients of NPP and P.n, (Fig. 5B), indicating that they can effectively distinguish

different vegetation types as well as pollen assemblages.

5 Potential use of the lake surface-sediment pollen dataset

In the calibration-sets, NPP and Pann are selected as the target variables because of their ! [ﬂﬂﬁ%?: and NPP
identified importance in influencing pollen distribution, with NPP further providing [ﬂ)}'ﬂ%‘:?: as
insights into alpine vegetation conditions (Table S2). Pollen-based estimates of modern [ﬂﬂﬂlﬁ%?: The pollen
NPP and P.n using both WA-PLS and RF approaches match original measurements
well, exhibiting high coefficient of determination, (R) and low root mean square error AN [M‘JB’%T: Pamn
of prediction (RMSEP) (Fig. 6). The RF model showed superior predictive performance . :@BHJ F& 7 : NPP estimations
compared to WA-PLS for both target variables. ; ) [MJB%T: with a
% [MJE,%T: between observed and predicted variables
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Figure 6. Scatter plots of observed net primary production (NPP) vs. predicted NPP (A, B)

observed mean annual precipitation (Pann) vs. predicted Pann (C. D) nsing weighted-averaging partial

least squares regression (WA-PLS: top row) and random forest (RF: bottom row) based on the pollen
data (n=476) from lake surface-sediments on the Tibetan Plateau (R%: coefficient of determination
between observed and predicted values; RMSEP: root mean square error of prediction produced by

“leave-one-out” cross-validation).
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2 . o . 0 " . T#7 [1]: For Py, the proportion of residuals between -50
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minus reconstruction) for both NPP (E) and P, (F).

Most of the poor analogue assemblages come from the TP margin and date back

to>12 cal ka BP, possibly due to the higher abundance of arboreal pollen in this specific .-

period and region (Fig. 8). While our combined modern pollen dataset from lake
surface-sediments can provide good analogues for fossil pollen assemblages and
enhance the performance of palacoclimate reconstructions on the central TP, caution
remains warranted for interpreting pollen assemblages from plateau margins and
periods earlier than the Holocene (Fig. 8).

100°E
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N.0€

80°E 90°E 100°E

Figure 8. Spatial distribution of analogue quality for six key time slices on the Tibetan Plateau: (A)
15-12 cal ka BP; (B) 12-9 cal ka BP; (C) 9-6 cal ka BP; (D) 6-3 cal ka BP; (E) 3-0 cal ka BP.

6 Data availability

The modern pollen dataset from lake surface-sediment samples (n=90) comprising
pollen percentages, site locations, net primary production, and climatic data for each
lake is accessible from the National Tibetan Plateau / Third Pole Environment Data
Center (TPDC; Tian,et al., 2025; https://doi.org/10.11888/Paleoenv.tpdc.302470).
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7 Summary

We established a comprehensive modern pollen dataset extracted from lake surface-

sediments in forest, meadow, steppe, and desert vegetation types on the TP by

combining new modern pollen data with previous datasets. Numerical analyses reveal
that Pann is the most important climatic determinant influencing pollen distribution. Our
dataset has good predictive power for past NPP and Pan reconstructions. The random
forest algorithm is found to be a reliable approach for pollen-based reconstructions of
past environments.

The pollen data from our sampled lakes help to fill the geographical gap left by
previously published modern pollen datasets, thereby improving the spatial distribution
of sampling sites covering the TP. Our dataset is a key component for providing

quantitative estimates of past vegetation or climate, and can also be integrated with
other pollen datasets in the future to improve the reliability of past ecosystem and

climate reconstructions on the TP. Moreover, the current spatial coverage of lakes across

the TP is still not fully even, highlighting the need for additional sampling to achieve a

more representative dataset in future work.
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