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Abstract.

Atmospheric inversions are widely used to evaluate and improve inventories of methane (CH4) emissions on scales ranging

from global to national and beyond, combining observations with atmospheric transport models. This study uses the dense

network of in situ stations of the Integrated Carbon Observation System (ICOS) to explore how well in situ data can constrain

European CH4 emissions. Following the concept of inter-comparison studies of the atmospheric tracer transport model inter-5

comparison Project (TransCom), a CH4 inverse inter-comparison modeling study has been performed, focusing on Europe for

the period 2006–2018. The aim is to investigate the capability of inverse models to deliver consistent flux estimates at the

national scale and evaluate trends in emission inventories.

Study participants were asked to perform inverse modelling computations using a common database of a priori CH4 emis-

sions and in-situ observations as specified in a protocol. The participants submitted their best estimates of CH4 emissions for10

the 27 European Union (EU) member states, the United Kingdom (UK), Switzerland, and Norway. Results were collected from

9 different inverse modelling systems, using 7 different global and regional transport models. The range of outcomes allows us

to assess posterior emission uncertainty, accounting for transport model uncertainty and inversion design decisions, including

a priori emission and model-data mismatch uncertainty.
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This paper presents inversion results covering 15 years, that are used to investigate the seasonality and trends of CH4 emis-15

sions. The different inversion systems show a range of a posteriori emission adjustments, pointing to factors that should receive

further attention in the design of inversions such as optimising background concentrations. Most inverse models increase the

seasonal cycle amplitude, by up to 400 Gg month-1, with the largest adjustments to the a priori emissions in Western and East-

ern Europe. This might be due to underestimation of emissions from wetlands during summer or the importance of seasonality

in other microbial sources, such as landfills and waste water treatment plants. In Northern Europe, absolute flux adjustments20

are comparatively small, which could imply that the emission magnitude is relatively well captured by the a priori, though the

lower station density could contribute also.

Across Europe, the inverse models yield a similar decreasing trend in CH4 emissions compared to the a priori emissions

(-12.3% instead of -9.1%) from 2006 to 2018. While both the a priori and the a posteriori trend for the EU-27 are statistically

significant from zero, their difference is not. On subregion scale, the differences between a posteriori and a priori trends are25

more statistically significant over regions with more in-situ measurement sites, such as over Western and Southern Europe.

Uncertainties in the a priori anthropogenic emissions, such as in the agriculture sector (cows, manure), or waste sector

(microbial CH4 emissions), but also in the a priori natural emissions, e.g. wetlands, might be responsible for the discrepancies

between the a priori and a posteriori emission trends in Western and Southern Europe. Our results highlight the importance of

improving details in the inversion setup, such as the treatment of lateral boundary conditions and the model representation of30

measurement sites, to narrow the uncertainty ranges further.

1 Introduction

Methane (CH4) is the second-most important anthropogenic greenhouse gas (GHG), after carbon dioxide (CO2), and has a

significant contribution to global warming and climate change (IPCC, 2021). In the last two decades, CH4 emissions increased35

by 20%, with concentrations reaching 1.923 parts per billion (ppb) in 2023 (European Environment Agency, 2022; World

Meteorological Organization (WMO), 2024). Globally, anthropogenic CH4 emissions constitute 375 Tg yr-1 or 50-60% of

the total CH4 emissions (Saunois et al., 2024). The largest anthropogenic CH4 emissions originate from agriculture (e.g.,

livestock production, rice cultivation), followed by the energy sector (fossil fuel production and use) and waste disposal (IPCC,

2021). However, CH4 is also emitted from various natural sources (248 Tg yr-1, Saunois et al. (2024)), with natural wetlands40

contributing up to 40% of the total CH4 emissions (Yusuf et al., 2012; Zhang et al., 2024). According to a comprehensive

recent assessment, annual global CH4 emissions are around 575 Tg yr-1 (Saunois et al., 2024). The Paris Agreement commits

countries to implement mitigation measures to reduce GHG emissions. In addition, 150 countries have signed the Global

Methane Pledge, launched in November 2021 at the Conference of the Parties (COP 26) with the aim of reducing global CH4

emissions by 30% in 2030 relative to 2020 levels (Global Methane Pledge, 2023.).45
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Anthropogenic emission reporting is based on "bottom-up" inventories, and there are several bottom-up process-based mod-

els to estimate natural emissions and sinks. However, these anthropogenic and natural CH4 emissions have large uncertainties

(Brandt et al., 2014; Zavala-Araiza et al., 2015; Deng et al., 2022; Arora et al., 2023). Uncertainties in anthropogenic emis-

sions are caused primarily by uncertain emission factors used in bottom-up inventories (Cheewaphongphan et al., 2019; Solazzo

et al., 2021). Some sources of anthropogenic emissions, such as fossil fuel, might also be missing from bottom-up inventories,50

as shown in a recent study by Yu et al. (2023). Process-based models of natural CH4 sources and sinks are uncertain for many

reasons, including uncertain sensitivities to climatological conditions, small-scale variability that is difficult to scale up, and

important processes that may still be missing (Aalto et al., 2024). It is critical for countries to accurately quantify CH4 emis-

sions, as there is a growing demand from policy makers, reinforced by the Paris Agreement, for efficient methods to reduce

CH4 emissions. Therefore, in addition to these bottom-up emission inventories and process-based models, "top-down" methods55

have been developed using inverse modeling techniques (Bergamaschi et al., 2018a; Steiner et al., 2024) to bring emission

inventories into agreement with atmospheric measurements. These measurements provide independent information on emis-

sions that can be used to evaluate emission inventories, through the use of inverse modeling, in support of the transparency

framework of the Paris agreement (World Meteorological Organization, 2016; Calvo Buendia et al., 2019).

The top-down approach, using inversion techniques, yields an optimised "a posteriori" estimate of the emissions. This is done60

by relating observed atmospheric dry air mole fractions to emissions using an atmospheric transport model, and by minimizing

a Bayesian cost function with an inversion algorithm, starting from a priori information on emissions and their uncertainties

(Jacob, 2007). Different techniques have been developed to solve the inverse problem, such as the Kalman smoother (Bruhwiler

et al., 2005), the ensemble Kalman filter (EnKF) (Peters et al., 2005), and the 4D variational inversion (Chevallier et al., 2005).

Both EnKF and variational methods have advantages and disadvantages and are widely used today (e.g. Bergamaschi et al.,65

2022; Saunois et al., 2019; Steiner et al., 2024).

Previous studies used the inverse modeling technique to estimate European CH4 emissions, using regional (Bergamaschi

et al., 2018a, 2022; Petrescu et al., 2023, 2024) or global (Wang et al., 2019; Deng et al., 2022; Petrescu et al., 2023) transport

models, based on in situ (e.g. Bergamaschi et al. (2022) or Steiner et al. (2024)) and satellite observations (e.g. Bergamaschi

et al. (2013), Wang et al. (2019)). Bergamaschi et al. (2018b) used different inverse models to estimate European CH4 emissions70

for a period of six years (2006-2012). They showed a strong seasonality of CH4 emissions in Europe due to wetland emissions.

In a more recent study, Bergamaschi et al. (2022) focused on 2018 using three high resolution inverse models that showed a

posteriori emissions were higher in Germany and the Benelux than the emissions reported to the United Nations Framework

Convention on Climate Change (UNFCCC).

Here, we present a new inverse modelling inter-comparison study, with the aim of estimating European CH4 emissions over75

the period 2005-2019. We used a combination of in situ measurement databases, most importantly from the extended Integrated

Carbon Observation System (ICOS) network. The major objective is to evaluate and compare the performance of the nine in-

verse models participating in the inter-comparison. This study uses the extended measurement time series to estimate trends in

total CH4 emissions in Europe until 2019. In addition, we try to address the systematic difference in emission seasonality re-

ported by Bergamaschi et al. (2018b). Previous studies have shown large discrepancies between inversion-estimated emissions80
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of CH4 (Petrescu et al., 2021, 2023). To better understand these differences and to eliminate some of the potential causes, our

experimental protocol (Florentie and Houweling, 2021), presented in Sect. 2, prescribes the a priori emissions and observa-

tions to be used. The a priori emissions, the observations used for the different simulation experiments, the validation dataset,

the participating models, and the simulations carried out are described in Section 3. Information about the modelled output

databases is also provided in Sect. 3. The results and a discussion of our findings are presented in Sect. 4. The implications of85

our findings are presented in Conclusions (Sect. 5).

2 Inversion Protocol

To assess European CH4 emissions using an ensemble of inversions, a protocol has been formulated by Florentie and Houwel-

ing (2021), which the participants are required to use. It closely follows a protocol established in the VERIFY project

(https://verify.lsce.ipsl.fr/) and utilizes datasets that were collected as part of it. The participants have been instructed to use90

only atmospheric observations from common datasets (see Sect. 3.1) and a common set of a priori CH4 emissions (see Sect.

3.2). The protocol also provides climatological radon (222Rn) fluxes (Karstens et al., 2015) for simulating radon, to assess

the performance of the atmospheric transport models that are used. The groups running regional models are required to use

initial and lateral boundary conditions from the Copernicus Atmosphere Monitoring Service (CAMS) CH4 reanalysis v19r1

(Agustí-Panareda et al., 2023), based on assimilated surface observations. Two inversion systems use the Rodenbeck 2-step95

inversion approach (Rödenbeck et al., 2009), for which consistent baseline conditions are made available as part of the protocol.

However, the protocol does not specify the meteorological boundary conditions, or the background, observation, and a priori

emissions uncertainties to be used, and whether or not to optimise background concentrations. The participants are requested

to provide monthly gridded CH4 fluxes at 25 km2 grid spacing, a priori and a posteriori national total emissions, mole fraction

time series at the measurement sites and their uncertainties. National total emissions are to be provided for at least the European100

Union (EU-27) countries, the United Kingdom (UK), Norway, and Switzerland. Regional inversions should cover at least the

area from 15°W to 35°E and 35°N to 70°N. The inversions should cover as many years as possible from 2005 to 2019. In case

it is not possible to provide results for the full period, then the groups are asked to submit results for a selection of years, chosen

to cover the full period as well as possible, including at least the years 2008, 2013 and 2018. This study focuses on total CH4

emissions, i.e. without sectorial separation of the a posteriori fluxes.105

3 Methodology

3.1 Atmospheric measurements

The European monitoring stations used in this study are shown in Figure 1 and additional information is provided in Table A1

in Appendix A. The observations are made available by the Integrated non-CO2 Greenhouse gas Observing System (InGOS)

project (2005-2018) (INGOS, 2018), the National Oceanic and Atmospheric Administration (NOAA) flask sampling network110

in Europe (2005-2018) (Lan et al., 2023), the Advanced Global Atmospheric Gases Experiment (AGAGE), the ICOS network
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Figure 1. Map showing the locations of in-situ atmospheric monitoring stations used in this study. The different colours indicate the sites

used in the different experiments (Core: red, Other: blue) and the sites used for validation (Validation: green). Flask stations are shown in

diamond. The different hatching patterns highlight the different sub-regions over the domain: ’///’ is used to define Northern Europe, ’\\’

for Western Europe, ’–’ for Eastern Europe and ’++’ for Southern Europe. See text for more details.

(Couret and Schmidt, 2023), the World Data Centre for Greenhouse Gases (WDCGG), the EBAS database hosted by the

Norwegian Institute for Air Research, and from the Laboratory for Climate and Environmental Sciences (LSCE). Two sets of

observations ("Core" and "Other") are used in different experiments (see Sect. 3.4), and one set of observations is reserved

for validation. The "Core" data set consists of 36 stations, the "Other" data set has 19 stations, while the "Validation" data set115

includes 5 stations (see Figure 1).

The in situ measurements are reported as hourly average dry-air mole fractions (in units of nmol mol-1, abbreviated as ppb),

including the standard deviation (measurement uncertainty) which are used in the inversions. In the inversions, only daytime

(12:00 to 16:00 local time) and nighttime (00:00 to 06:00 local time) observations are used for surface and mountain sites,

respectively.120
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Figure 1 highlights the sub-regions in Europe used in the analysis of our results. We are using the same region classification as

in Bergamaschi et al. (2018a), namely Northern Europe (Sweden, Finland, Estonia, Latvia, Lithuania, Norway and Denmark),

Western Europe (United Kingdom, Ireland, Netherlands, Belgium, Luxembourg, France, Germany, Switzerland, and Austria),

Eastern Europe (Poland, Czech Republic, Slovakia, and Hungary), and Southern Europe (Portugal, Spain, Italy, Slovenia,

Croatia, Cyprus, Greece, Romania, and Bulgaria). The UK and Switzerland are included in Western Europe, but not in the125

EU-27.

Table 1. A priori CH4 emissions used in this study.

Category Data source Original Resolution Time period

Peatlands, Mineral soils

(emissions & uptake),

inundated

JSBACH-

HIMMELI
0.1° × 0.1° daily 2005-2020

Inland water ULB 0.1° ×0.1° monthly Climatology

Termites Saunois et al. (2019) 1.0° × 1.0° annually Climatology

Ocean Weber et al. (2019) 0.25° × 0.25° monthly Climatology

Geological Etiope et al. (2019) 1.0° × 1.0° annually Climatology

Fossil Fuels EDGAR v6.0 0.1° × 0.1° monthly 2005-2018

Agriculture and waste EDGAR v6.0 0.1° × 0.1° monthly 2005-2018

Biofuels & biomass

burning
GFED-4.1s 0.25° × 0.25° monthly 2005-2020

3.2 A priori emissions

A priori CH4 emissions used in this study are summarised in Table 1, including information on their spatial and temporal

resolutions. For anthropogenic CH4 emissions, the Emissions Database for Global Atmospheric Research (EDGAR) v6.0 is

used, which provides emissions for different anthropogenic sectors (Monforti et al., 2021). For the anthropogenic emissions, the130

protocol does not provide information on monthly, daily, or hourly factors to scale the emissions, so all models used temporally

constant values. Natural CH4 emissions from peatlands and mineral soils are from the JSBACH-HIMMELI model (Petrescu

et al., 2023) prepared as part of the CoCO2 project and do account for seasonality. Climatological CH4 emissions from inland

water, termites, ocean, and geological sinks/sources are used as shown in Table 1. Global geological emissions are scaled down

to 15 Tg yr-1 for this study, as geological emissions have high uncertainties (Thornton et al., 2021). This value is based on a135

pre-industrial estimate derived from ice core measurements of 14C/12C in CH4 (Petrenko et al., 2017). Finally, the Global Fire

Emissions Database (GFED)-4.1s inventory (Randerson et al., 2018) is used for biomass burning emissions. The emissions are

provided at their original resolution, and at a regridded resolution of 0.25° × 0.25°, where the total mass has been conserved

upon regridding.
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Table 2. Inversion systems and atmospheric models used in this study.

Inversion model Institution Atmospheric model
Resolution of transport model

Model type Meteorology
Inversion

techniqueHorizontal Vertical

LUMIA LUND FLEXPART 0.25° x 0.25° - Lagrangian ERA5 Variational

CSR
MPI-Jena

DWD
STILT 0.25° x 0.25° - Lagrangian

ECMWF

IFS
Variational

CTE-CH4 FMI TM5
6° x 4° global,

1° x 1° zoom Europe
25 Eulerian ERA5 EnKF

NTFVAR NIES
NIES-TM

FLEXPART

NIES-TM: 3.75° x 3.75°

FLEXPART: 0.1° x 0.1°
42

Coupled Eulerian-

Lagrangian

ERA5

JRA-55
Variational

CIF-CHIMERE LSCE CHIMERE
0.5° x 0.5° over

EUROCOM domain

19 vertical levels

from surface to

200hPa

Eulerian
ECMWF

forecast
Variational

CIF-FLEXPART NILU FLEXPART 0.25° x 0.25° - Lagrangian ERA5 Variational

ICONDA EMPA ICON-ART 0.26° x 0.26° 60 Eulerian ERA5 EnKF

NTLB NIM WRF-STILT 0.27° x 0.27° 35
Coupled Eulerian-

Lagrangian
NCEP FNL

Matrix

multiplication

CTDAS-WRF VUA WRF 0.25° x 0.25° 50 Eulerian ERA5 EnKF

3.3 Atmospheric and inverse models140

All inverse models used in this study vary on the type of transport model and resolutions, as well as inversion techniques and

uncertainty specifications. The atmospheric and inverse models are listed in Table 2, including information on the resolution

of the transport model, model type, background meteorological conditions and inversion technique. Table 3 summarises the

inversion setups of the different inverse models. Further details on the atmospheric transport models and inversion techniques

that are used can be found in Appendix B.145

3.4 Inversion simulations and output database

This study presents the results of two inversions: The baseline inversion (BASE from now on) using ’Core’ observations

(see Table A1), and a test inversion (TEST from now on) in which ’Other’ observations are used in addition to the ’Core’

observations (see Table A1). Table 4 provides information about the output data and simulations performed per model.
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Table 3. Summary of the inversions setups for the different inverse models.

Inversion model
a priori

uncertainties

Correlation

Length

Background

Uncertainty

Model-data

mismatch

Lag/

Window

length

Optimised

fluxes

LUMIA

5 TgCH4 year-1

distributed proportionally to

the net prior

500 km / 30 days

None

background is

prescribed

10-90 ppb depending

on the site
none/none

sum of anthropogenic

and natural

CSR
50 %

domain wide

300 km

30 days
none

8-40 ppb depending

on the site
none

anthropogenic

and natural

CTE-CH4

80% on flux over land

and 20% over ocean
100 km over Europe none

10 to 60 ppb

depending on sites

5 weeks

7 days

anthropogenic

& natural

NTFVAR
30% of anthropogenic

and 50% of natural
50 km none

4.5 to 75 ppb

depending on sites
2 weeks

anthropogenic

& natural

CIF-CHIMERE 100% at pixel scale
200 km over land

and 1000km over sea
10% depending on site 1 year total fluxes

CIF-FLEXPART 50% 200 km 0.26% 9 ppb 14 days total fluxes

ICONDA
100% on anthropogenic

and natural fluxes
200 km 0.5%

10 pbb + 30% of the

yearly mean

anthropogenic signal

2

10 days

anthropogenic

& natural

NTLB 30 % 500 km none 28 ppb 1 month
sum of anthropogenic

and natural

CTDAS-WRF
100% on anthropogenic

and natural fluxes
200 km 2 ppb

20 and 75 ppb

depending on the site

2

10 days

anthropogenic

& natural

Table 4. List of inverse models, available datasets and years for which they provided outputs.

Inverse model
Gridded
Fluxes

Country
totals

CH4 mixing
ratios

Validation
data

Experiment Years

LUMIA ✓ ✓ ✓ BASE/TEST 2006-2019
CSR ✓ ✓ ✓ ✓ BASE/TEST 2006-2019

CTE-CH4 ✓ ✓ ✓ ✓ BASE 2005-2019
NTFVAR ✓ ✓ ✓ ✓ BASE 2005-2019

CIF-CHIMERE ✓ ✓ ✓ BASE 2005-2018
CIF-FLEXPART ✓ ✓ ✓ BASE 2005-2019

ICONDA ✓ ✓ ✓ ✓ BASE/TEST 2008,2013,2018
NTLB ✓ ✓ ✓ ✓ BASE/TEST 2008,2013,2018

CTDAS-WRF ✓ ✓ ✓ ✓ BASE 2008,2013,2018
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4 Results and Discussion150

This section presents the averaged a priori and a posteriori CH4 fluxes, in mg m-2 hr-1, from all the inverse models and

for the common years 2008, 2013 and 2018. The performance of the inversions is tested at the measurement sites used in

the optimisation as well as the validation observation sites, focusing on the common years. This section also discusses CH4

emission seasonality and trends over Europe and selected sub-regions, as defined and shown in Sect. 3.1, and for the full period

(2006-2018). The results discussed here are mostly from the BASE run, while results from the TEST run are discussed briefly155

at the end of each section. Detailed results from the TEST run are shown in the appendices.

4.1 European CH4 fluxes

4.1.1 BASE results

Figure 2 shows the common a priori (Figure 2a) CH4 total (the sum of anthropogenic and natural fluxes) fluxes over Europe,

as well as the increments (Figure 2b-j), calculated as the difference between the a posteriori and a priori fluxes for each model,160

using results from the BASE run averaged over the common years 2008, 2013, and 2018. Figure 2 shows a large variability

in the spatial distribution of flux increments between the different inversion systems. Despite this variability, some common

patterns can also be seen.

All the inverse models show a strong flux enhancement over the Netherlands. Similarly, a common enhancement is shown

over southern UK, although the strength of this enhancement varies among the different inverse models. All inverse models,165

except NTFVAR, CTE-CH4 and CTDAS-WRF, show a systematic reduction over Italy, possibly due to overestimated a priori

geological emissions (see Sect. 3.2) that are important in this region (Bergamaschi et al., 2015). The disagreement by NTFVAR,

CTE-CH4 and CTDAS-WRF could be influenced by transport model uncertainties (such as planetary boundary layer (PBL)

structure) in simulating the in-situ observations in that region, notably from Monte Cimone. In CTE-CH4, geological emissions

are not optimised, which may be a reason why this inverse model does not show strong changes in Italy. In northern Europe,170

where natural CH4 emissions from wetlands are important, some models show reductions (ICONDA, CTDAS-WRF, CIF-

CHIMERE), while others show a small enhancement (CSR, CTE-CH4) or mixed patterns (NTLB, LUMIA, NTFVAR, CIF-

FLEXPART).

Some inverse models (e.g. CSR, CTE-CH4) show similar spatial patterns over Central Europe, but across all models, the pat-

terns have a large variability in that region. The inverse models show large differences over Ireland and the Iberian Peninsula.175

As these regions are close to the predominant inflow edge, these differences may be related to the treatment of the western do-

main boundary condition: regional inverse models, such as LUMIA, CSR, ICONDA, NTLB, CTDAS-WRF, CIF-FLEXPART,

use CAMS as lateral boundary condition (or its Rödenbeck variant), some with optimisation, while global inverse models do

not.
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(a)

(b)

CIF-Chimere

CTDAS-WRF

(c) (d)  

(e) (f) (g)

(h) (i)
(j)

Figure 2. CH4 emission fluxes, in mg m-2 hr-1, over Europe averaged for the common years 2008, 2013 and 2018, and the BASE simulation.

The different panels show (a) the common a priori fluxes, (b-j) the differences between a posteriori and a priori fluxes for LUMIA, CSR,

CTE-CH4, NTFVAR, CIF-CHIMERE, CIF-FLEXPART, NTLB, ICONDA, and CTDAS-WRF inverse models, respectively. Panel (a) also

shows the location of the observations (’Core’), as white triangles, used in the BASE simulation.
10
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Some similarities are found between inverse models that make use of the same transport model or optimisation method. For180

example, LUMIA and CIF-FLEXPART, which both use FLEXPART, show similarities in Italy, France, northern Europe and

part of eastern Europe. However, differences are found over Ireland and the Iberian Peninsula, potentially due to a different

treatment of the boundary conditions (see Table 3). The two models that are coupled to the Community Inversion Framework

(CIF), CIF-FLEXPART and CIF-CHIMERE, mostly agree with each other, except over regions in central and northern Europe.

Furthermore, some inverse models (ICONDA, CTE-CH4 and CTDAS-WRF) use the CTDAS EnKF for optimisation. However,185

there is little agreement in the spatial patterns, such as an increase in CH4 emission over The Netherlands, in these three models.

CIF-CHIMERE, CIF-FLEXPART, ICONDA and CTDAS-WRF optimise background conditions, which could explain the

similar flux increments over Ireland, the UK, and Spain. However, the global CTE-CH4 inversion, in which discontinuities at

regional domain boundaries do not play a role, shows different patterns.

Many other differences between the inverse models may explain the patterns that are found, including differences in mete-190

orological boundary conditions, transport models, inconsistencies in transport with the inversion system used in CAMS, state

vector and covariance parameters. To further investigate model uncertainties related to transport, 222Rn could be used as a tracer

for atmospheric transport. Unfortunately, the number of participants who provided information on 222Rn is too low for such an

assessment in this inter-comparison.

4.1.2 Influence of number of in-situ stations on a posteriori CH4 fluxes195

Half of the participants submitted results for the BASE and TEST experiments which we used to investigate whether the use

of 19 additional stations constrains the CH4 emissions better. Figure C1 in Appendix C shows the same results as Figure 2

but for the TEST run. In the TEST simulation all inverse models show overall different patterns between each other over the

domain, except ICONDA and NTLB showing similar patterns over Northern Europe, the UK and Ireland. However, all inverse

models agree on an increase over The Netherlands / northwest Germany and a negative adjustment of the CH4 fluxes over Italy.200

Petrescu et al. (2023) showed regional inversion results over Europe from 2006 to 2017 with negative emission adjustments

over Italy, and positive adjustments over the Benelux region for 2 out of the 3 inverse models.

Figure 3 shows the differences between the a posteriori fluxes from the BASE and TEST runs for the inverse models with

results for both runs. In the TEST run, there are more stations in central and northern Europe, as well as in Italy, Greece, and

Romania. All inverse models show different BASE vs. TEST patterns, but there are clusters of inverse models showing similar205

patterns over specific regions. For example, ICONDA and LUMIA (Fig. 3a,d) show higher emissions in the TEST simulation

over south Eastern Europe, where there is only one new station (in Romania) compared to the BASE simulation. On the other

hand, three inverse models agree (Fig. 3a,b,c) on increased CH4 emissions over Germany, Denmark, and southern Sweden

and Norway, which are in the footprint of stations in the "Other" list, but not in the "Core" list. The comparison between the

BASE and TEST simulations shows overall similar spatial patterns for most of the inverse models (compare Figures 2 and 2),210

indicating a moderate sensitivity to the network geometry.
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(a)
(c) (d)  

(a) (b)

(c) (d)

Figure 3. Differences in the a posteriori CH4 fluxes, in mg m-2 hr-1, between BASE and TEST runs, using model data averaged for the

common years 2008, 2013 and 2018. The different panels show results for the different inverse models: (a) LUMIA, (b) CSR, (c) ICONDA,

and (d) NTLB.

4.2 Evaluation of inverse models

The a priori and a posteriori modelled CH4 mole fractions are evaluated against the observations used in the inversion and

against independent measurements. Here we present summary statistics across all stations, comparing the different inverse

models for the common years.215

Optimised stations

Figure 4 shows the averaged root mean square error (RMSE), mean bias, and correlation coefficients between the a priori and

a posteriori modelled CH4 mole fractions and the observations used in the optimisation set-ups ("Core" list in Table A1). The

statistical metrics are shown per model and they are calculated per station and then averaged over the three common years.
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Figure 4. Evaluation of the a priori and a posteriori modelled CH4 mole fractions, against all available observations used in the optimisation

and averaged for the common years 2008, 2013 and 2018 ("Core" list, as shown in Table A1), and for the BASE simulation. (a) shows mean

RMSE in ppb, (b) shows mean bias in ppb, and (c) shows correlation coefficient, for all inverse models. The pink and blue bars represent,

respectively, a priori and a posteriori CH4 mole fractions.

As expected, a posteriori CH4 mole fractions show better agreement with the observations than the a priori, with reduced220

RMSEs and biases, with ICONDA and NTLB having the smallest biases. Note that CIF-FLEXPART and NTFVAR show

slightly higher a posteriori biases, compared to the a priori, while the a posteriori RMSE is reduced, with an averaged (over

the common years) measurement uncertainty of 43 ppb. The results in Fig. 4a show a correlation between RMSE and model

resolution. ICONDA, LUMIA and NTFVAR (regional inverse models) show the lowest RMSE. All a posteriori results show

improved correlation coefficients, higher than 0.8. The corresponding comparison for the TEST run (with Core and Other sites)225

is shown in Appendix D.
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Figure 5. Validation of the a priori and a posteriori CH4 mole fractions against the independent observations for the common years (Validation

list, as shown in Table A1), and for the BASE simulation. (a) shows mean RMSE in ppb, (b) shows mean bias in ppb, and (c) shows correlation

coefficient, for six inverse models. Pink color shows the validation against the a priori CH4 mole fractions, while the blue shows the validation

against the a posteriori CH4 mole fractions.

Validation stations

Figure 5 shows the averaged RMSE, mean bias, and correlation coefficients between the a priori, a posteriori modelled CH4

mole fractions, and the independent observations (Validation list, as shown in Table A1) for the BASE simulation. The same

plots are shown in Appendix E for the TEST simulation (Fig. E1). Averaging over all stations, the RMSEs (Fig. 5a) decreased230

for almost all inverse models, with ICONDA having the smallest RMSEs. Fig. 5b,c also show improved a posteriori results with

low biases and correlation coefficients higher than 0.6 respectively for four out of six inverse models. Two of the models that

submitted comparisons to the validation stations modelled these observations considerable less well than the observations from

the observations optimization stations, CSR (Fig. 5c) and CTDAS-WRF (Fig. 5a,c), the latter showing the poorest performance

in this metric among all models. The poorer overall performance of CTDAS-WRF is driven by big discrepancies with the235

observations during winter and fall. Hence, we speculate that they could be due to errors in simulating the shallow boundary
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layer, which is a common transport model error (Gerbig et al., 2008; Deng et al., 2017; Lehner and Rotach, 2018). Note

that, despite the poorer performance against validation stations, the CTDAS-WRF fluxes are mostly within the inter-model

variability of the a posteriori fluxes (Figure 2), which suggests that the poorer performance against validation stations does not

translate into poorer performance of the flux results. Figure E1 (in Appendix E) shows the results for the TEST simulation,240

with improved posterior mixing ratios, for which fewer inverse models submitted results.

The reductions in RMSE and bias from a priori to a posteriori is less for independent sites than for optimised sites (Fig. 4).

Some loss in performance is expected due to uncertainties in atmospheric transport models, and limitations in the coverage of

the measurements that are used in the optimisation. This is also reflected in the correlation coefficients which barely improve,

as the measurement variability is largely determined by the meteorology, which is not optimised.245

4.3 Seasonal cycle

Figure 6 shows the seasonal cycle of total CH4 emissions for EU27 (Fig. 6a), Western, Northern, Eastern and Southern Europe

(Fig. 6b-e), using results from the BASE run. See Fig. 1 (Sect. 3.1) for the sub-regions definition. The seasonality is estimated

by subtracting the annual mean of each year from the monthly values of that year. Here we treat the different inverse model

results as an ensemble consisting of 9 BASE runs (see Fig. 6) and 4 TEST runs (see Appendix F and Fig. F1), as shown in Table250

4. The average over all models is also shown. For the EU27, the a posteriori CH4 emissions show an enhanced seasonal cycle

compared to the a priori, with a maximum in July/August and a minimum in March/April and November/December. Although

the models generally follow the same pattern, there is a considerable spread in the individual inverse models, especially during

summer and winter months. To further investigate the origin of this signal in the a posteriori CH4 emissions, we split the EU27

in four sub-regions.255

A priori CH4 emissions show a very small seasonal cycle in all sub-regions (Fig. 6b,d,e), except for Northern Europe

(Fig. 6c). In Northern Europe, a priori CH4 emissions are enhanced during the summer (Fig. 6c), due to the contribution of

natural wetland emissions, as shown in previous studies (Bergamaschi et al., 2018b). A posteriori CH4 emissions follow the a

priori seasonality, however, the signal is slightly more enhanced during summer and extends longer into autumn. By using the

JSBACH-HIMMELI model as the only a priori estimate for natural emissions, we might indeed underestimate total emissions260

over Northern Europe during summer, because it does not account for emissions from rivers and lakes (Tenkanen et al., 2024).

Recent studies, such as by Aalto et al. (2024), have demonstrated JSBACH-HIMMELI’s limitations on producing accurate

CH4 emissions, due to uncertainties in processes, for example, linked to temperature and precipitation. Wet soils have high

emission rates during summer, however, bottom-up process models might underestimate these rates due to missing processes,

underestimation of soil moisture, and inundation extent (Aalto et al., 2024; Ying et al., 2024).265
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(a)

(c)

(d) (e)

Figure 6. Seasonal cycle of CH4 emission, in Gg month-1, for 2006-2018. The black solid line shows the mean a priori emissions, while the

red line shows the mean a posteriori emissions. The green lines show the a posteriori results from the different inverse models. This figure

shows the seasonal cycle for (a) EU 27, (b) Western Europe, (c) Northern Europe, (d) Eastern Europe and (e) Southern Europe, based on the

BASE simulation.

In other sub-regions, the model-average of a posteriori CH4 emissions show a slightly enhanced seasonality compared to

the a priori. An increase was expected since the anthropogenic component of the prior emissions had no seasonal cycle in

our protocol. A posteriori emissions show stronger emissions during summer, with a peak in August, in Southern Europe

(Fig. 6e) than the a priori. Similar seasonal adjustments are found in Eastern Europe (Fig. 6d), although slightly less strong

than in Southern Europe, with a smaller spread of the ensemble members. We speculate that factors contributing to a summer270
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maximum in these regions could be enhanced energy use due to air conditioning (Dong et al., 2021) and microbial sources

such as CH4 emissions from land fills and waste water, which we assume respond to warmer temperatures with higher CH4

emissions (Hu et al., 2023). Neither factor would be accounted for in temporally resolved bottom-up data for these regions:

time profiles for power use available in the literature are not region-specific and feature a maximum of energy use in winter

[e.g. (Kuenen et al., 2014)], and to our knowledge up to date time profiles are not available for waste treatment (Guevara et al.,275

2021). Therefore, while including a seasonal cycle in the anthropogenic prior emissions may have improved the prior estimate

in other regions, it could have increased the discrepancy between prior and posterior seasonal cycles in Southern and Eastern

Europe. Note that both regions are not well covered by the observation network and the sites in the center of those regions may

drive the adjustments in the a posteriori results. Emissions from wetlands in Southern and Eastern Europe are driven mostly

by variations in precipitation, and as precipitation is expected to decrease due to climate change during winter, then wetland280

emissions might be decreasing in those regions (Bergamaschi et al., 2018b; Christidis and Stott, 2022).

In Western Europe, the seasonality in inversion-optimised CH4 emissions shows a double maximum in winter and summer

(Fig. 6b). The spread of the ensemble members (the different inverse models) is bigger, however, in Western Europe than in

the other sub-regions, and seems to drive the spread shown in EU27 (Fig. 6a). A missing contribution from fossil fuel use (e.g.

intense heating) to the a priori seasonal cycle might explain the difference between the a posteriori and a priori winter peak in285

January and the longer extend in February and March. For example, bottom-up inventories have been found to underestimate

CH4 emissions from urban areas during spring (Defratyka et al., 2021; EPA, 2024), which might be reflected in the a priori

emissions in March. Recent studies point to CH4 leaks from oil and gas pipelines in Western European cities, which might be

missing in bottom-up inventories (Maazallahi et al., 2020; Defratyka et al., 2021; Dowd et al., 2024). However, only small

seasonal variations have been found for natural gas distribution systems (McKain et al., 2015; Wong et al., 2016), so this290

processing is unlikely to explain the different seasonalities in the a posteriori emissions compared to the a priori emissions.

Uncertainties in agricultural emissions from livestock and manure management might also influence emission seasonality

(Solazzo et al., 2021; Petrescu et al., 2021; Ghassemi Nejad et al., 2024). Recent studies show that emissions from storage

and treatment of manure are temperature dependent, and exhibit seasonal variations (Cárdenas et al., 2021; Zhang et al.,

2021; Ólafsdóttir et al., 2023). Other studies have reported significant variations in CH4 emissions from dairy cows, due to the295

lactation periods of cows (Ulyatt et al., 2002). Increased agricultural emissions during summer combined with increased fossil

fuel emissions during winter could explain the double peaked seasonal variability in the a posteriori CH4 emissions in Western

Europe, as well as seasonal emission adjustments in other sub regions.

The TEST run (see in Appendix F) shows seasonal emission adjustments that are similar to the BASE run, namely a strong

seasonal cycle in the a posteriori fluxes in EU27 (Fig. F1a), as well as in Western and Northern Europe (Fig. F1b and F1c300

respectively). Interesting patterns are shown in Southern and Eastern Europe, namely a stronger variability during summer and

winter compared to the BASE run (Fig. 6d). More stations are available in the TEST run over Western and Southern Europe,

compared to the BASE run. Therefore, more information is available to constrain the a priori emissions, which might explain

the increased seasonal emission adjustments. The reasons discussed earlier could be responsible for the discrepancies between

a priori and a posteriori results.305

17

https://doi.org/10.5194/essd-2025-235
Preprint. Discussion started: 10 June 2025
c© Author(s) 2025. CC BY 4.0 License.



Table 5. A priori and a posteriori trend over the years 2006 to 2018 for EU27 and the four sub-regions. p-value is given for mean a priori,

mean a posteriori trend and for the difference between the mean a posteriori and mean a priori trend. These results are based on the BASE

simulation. See text for more information.

a priori

trend

a priori

p-value

a posteriori

trend

a posteriori

p-value

p-value posterior

minus prior

EU-27 -9.1% 3.2e-06 -12.3% 0.002 0.1

Western Europe -18.3% 3.2e-06 -2.8% 0.8 0.03

Northern Europe 6.6% 0.2 3.6% 0.5 0.6

Southern Europe -8.4% 0.0001 -21% 0.0003 0.01

Eastern Europe -14.5% 1.4e-05 -35.6% 0.003 0.06

4.4 CH4 emission trends

According to the European Environment Agency (European Environment Agency, 2022), regulations at the European level,

following the Kyoto protocol and the Paris agreement, have resulted in a decrease in CH4 anthropogenic emissions from the

energy sector, including fugitive emissions from oil, coal and natural gas, as well as the agriculture and waste sectors, since the

early 1990s. Previous inverse modelling inter-comparison studies, such as by Bergamaschi et al. (2018b), did not discuss trends310

in CH4 emissions in detail, as they focused on a shorter time period (2006 to 2012). Nevertheless, Bergamaschi et al. (2018b)

reported a negative trend in CH4 emissions for EU28 (including the UK). Petrescu et al. (2021, 2023) compared top-down and

bottom-up estimations for several years, but provided trends only for the a priori emissions. Here we present a detailed analysis

of trends over Europe and sub-regions (Fig. 7) as defined earlier, including the common years from all the inverse models

provided results for a long time period (see Table 4). The results based on the BASE run are shown here. The trends from the315

TEST run are not shown here since only two models submitted results for all the years. Table 5 summarises the a priori and a

posteriori trends for EU27 and per sub-region, and also shows whether the trends and the difference between the a posteriori

and a priori trend are statistically significant, as indicated by the p-value, computed using the Mann-Kendall test (Mann, 1945;

Kendall, 1948; Gilbert, 1987). We consider results to be statistical significant when the p-value is less than 0.05.

The EDGAR inventory used for the a priori anthropogenic emissions in this study indicates a decrease in CH4 emissions320

over Europe as well as all our sub-regions except Northern Europe (Table 5), where the prior shows no significant trend. More

specifically, a priori CH4 emissions show a negative trend (-9.1% or -0.7% year-1) in EU27 (Fig. 7a), while the decrease is

stronger (-18.3% or -1.3 % year-1) in Western Europe (Fig. 7b) and in Eastern Europe (-14.5% or -1.04 % year-1) (Fig. 7d).

The a priori trends are statistically significant for EU27 and these three sub-regions, whereas no statistically significant trend

is present in the prior emissions for Northern Europe (Fig. 7c).325
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(a)

(b) (c)

(e)(d)

Figure 7. Total CH4 emission trends, in Gg year-1, over (a) EU-27, (b) Western Europe, (c) Northern Europe, (d) Southern Europe and (e)

Eastern Europe and over the common long period (2006-2018), based on the BASE simulation. The red line shows the mean a priori model

results, the blue line shows the mean a posteriori results, while the green lines and dots shown the a posteriori model outputs. The horizontal

gray line shows the reference line at y = 0. The blue shade shows the emissions’ uncertainty, which is estimated using the standard deviation

of the ensemble of models.

The inverse model outputs are treated here as ensemble members and the trend based on the mean a posteriori emissions

is analysed. The trends of averaged a posteriori results agree with the prior (i.e., are not statistically significantly different)

in the EU27, where they a show similarly strong negative trend (-12.3% or -0.9% year-1), and in Northern Europe, where no
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statistically significant trend is detected (+3.6% or +0.3% year-1). By contrast, the trends of the mean a posteriori emissions in

Western, Eastern and Southern Europe differ significantly from the trends of the respective a priori emissions. The emission330

reduction trends in both Southern (-21% or -1.5% year-1, Fig. 7e) and Eastern (-35.6% or -2.5% year-1, Fig. 7d) Europe are

significantly stronger than in the prior. The opposite applies to Western Europe: while the prior emissions show the above-

mentioned significant emission decrease (-18.3% or -1.3% year-1), the posterior emissions saw a small decrease (-2.8% or

0.2% year-1) which is not a significant trend. We note that the period with the strongest emission reductions in the prior in

Western Europe, 2006-2011, is characterized by much higher interannual variability than in the other periods and regions, with335

relatively small uncertainty among the models.

Overall, the inversions retrieve a similar trend as the prior over the aggregated EU27 region, but shifts emission reductions

in the prior from Western Europe to Eastern and Southern Europe.

5 Conclusions

A new inverse modelling inter-comparison has been presented to study European CH4 emissions, organised as part of the340

CoCO2 project and WMO-IG3IS. The participating groups submitted inverse model outputs of a posteriori CH4 emissions, and

a priori and a posteriori CH4 mole fractions over Europe covering the period from 2005 to 2019. The inversion setups follow

an experimental protocol specifying common a priori CH4 emissions and in-situ measurements to be used in two inversions,

using different sets of in-situ stations (BASE and TEST runs). This resulted in 9 model submissions for the BASE run and 4

for the TEST run, which have been used to analyse mean emission adjustments, emission seasonality, and trends during the345

study period.

The inverse models use different atmospheric transport models, operating at different resolutions, and inversion techniques,

which differ in model-data mismatch and a priori flux uncertainties. The optimised emissions adjustments from the a priori

show significant spatial variations across the European domain with differences between the inverse models that largely persist

in time. We speculate that some of these differences could be due to known critical issues in regional inverse transport mod-350

elling, such as the sensitivity to the treatment of domain boundaries, atmospheric transport uncertainty (such as representation

of mountain sites due to uncertainties in the PBL structure) and the relative weight of the data and a priori fluxes. Despite

these differences, the inverse model outputs also show common spatial patterns in a posteriori emission adjustments, such as a

systematic enhancement over The Netherlands and northern Germany and over southern UK. Most models agree on emissions

reduction over Italy and Belgium. To test inversion performance, the a priori and a posteriori CH4 mole fractions have been355

evaluated against measurements that are used for optimisation and validation. The optimisation decreased the RMSEs and

biases for all inverse models from a priori values ranging between 21 and 45 ppb RMSE and -17 to 5 ppb bias, to a posteriori

RMSEs ranging between 20 and 33 ppb and biases of -12 to 2 ppb, for sites used in the optimisation. RMSEs and biases also

decreased for all but one model compared to independent measurements, from a priori values ranging between 19 and 50 ppb

RMSE and -16 to 13 ppb bias, to a posteriori values range between 18 and 60 ppb RMSE, and -8 to 11 ppb bias. Modelled360
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a posteriori CH4 mole fractions also improved in the TEST simulation, compared to the a priori. However, the use of more

stations did not lead to better results against the independent stations compared to the BASE run.

The analysis of optimised CH4 emissions reveals a stronger seasonal cycle, by up to 220 Gg month-1, in the a posteriori CH4

emissions compared with the a priori (up to 100 Gg month-1) integrated over the EU27, peaking in summer. After splitting

up the EU27 into sub-regions, a stronger seasonality is found in the multi-model mean a posteriori than in a priori emissions365

across the European domain, albeit with large inter-model differences. However, the shape of the a posteriori seasonal cycle

varies between Western Europe, with emission maxima during winter and summer, and Southern and Eastern Europe, where

emissions peak during summer. The seasonal cycle of the a posteriori CH4 emissions is stronger than a the priori, driven

entirely by the observations, as we didn’t impose a seasonal cycle on the a priori emissions. Further investigation could help

to quantify the uncertainty imposed on a priori emissions due to the use of temporal profiles. Natural CH4 emissions from370

wetlands or wet mineral soil could be underestimated in the JSBACH-HIMMELI process-based model (Aalto et al., 2024;

Ying et al., 2024), although Northern Europe has only a relatively minor contribution to the EU27 seasonal cycle adjustment.

Missing seasonality in the anthropogenic emission sectors, such as fossil fuel (e.g. energy sector due to intense heating in

winter or due to intense use of air conditioning in summer), waste treatment (livestock waste, landfills, waste water plants)

could play a role also (Tenkanen et al., 2024), but needs further investigation.375

Compared with previous inversion inter-comparison studies, we were able to extend the inversion time window with addi-

tional years of measurements, allowing us to study a priori and a posteriori trends in CH4 emissions. According to the a priori

CH4 emissions inventory the emissions in the EU27 decreased by 9.1% between 2005 and 2019, while the inversion results

(-12.3%) agree within uncertainties. Analyzing this result by sub-region, the inversions shift an emission decrease in Western

Europe that is present in the prior to Eastern and Southern Europe. The inversion results for Western Europe until 2011, i.e.380

the period of biggest emission reductions in the prior, exhibit bigger a posteriori emissions inter-annual variations compared to

any other period or region in our analysis.

This is the first inversion inter-comparison study of national CH4 emissions for Europe spanning 15 years. Our results high-

light the importance of lateral boundary conditions in regional inversions and accurate representations of the optimised stations

by the atmospheric transport models that are used. Most of the participating inversion systems are still under development for385

long-term applications. Future projects could investigate in detail the role of optimising background concentrations in the in-

versions with detailed sensitivity runs. Follow-up inter-comparison studies are in preparation in the on-going European projects

Attributing and Verifying European and National Greenhouse Gas and Aerosol Emissions and Reconciliation with Statistical

Bottom-up Estimates (AVENGERS), Verifying Emissions of Climate Forcers (EYE-CLIMA) and Process Attribution of Re-

gional Emissions (PARIS) for which this study can serve as a reference. There is still a significant potential to narrow down390

the wide range of inverse model estimates, as needed for a more detailed evaluation of national emission inventories.
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Data availability. The output database has been prepared in network Common Data Form (NetCDF) and comma-separated values (csv)

format and are available at the ICOS portal: https://doi.org/10.18160/KZ63-2NDJ (Ioannidis et al., 2025). The protocol can be found at

Florentie and Houweling (2021).
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Appendix A395

Table A1. European monitoring stations used in this study. Altitude and intake height are in meters (m). ST specifies the sampling type: I

stands for continuous measurements and F for flask (discrete) measurements. The last three columns indicate the use of the corresponding

station data set in the inversions.

ID Station name Data provider Latitude Longitude Altitude Intake Height ST Core Other Validation

PUY Puy de Dome ICOS 45.7719 2.9658 1475.0 10.0 I •
PUY LSCE 45.7700 2.9700 1475.0 10.0 F •
IPR Ispra ICOS 45.8100 8.6400 226.0 16.0 I •

IPR
personal

communication
45.8100 8.6400 226.0 16.0 I •

CMN Mt Cimone
personal

communication
44.1667 10.6833 2172.0 7.0 I •

OXK Ochsenkopf InGOS 50.0300 11.8100 1185.0 163.0 I •
OXK NOAA 50.0301 11.8084 1185.0 163.0 F •
OXK ICOS 50.0300 11.8100 1185.0 163.0 I •
MHD Mace Head NOAA 53.3100 -9.9000 26.0 21.0 I •
MHD AGAGE 53.3300 -9.9000 5.0 0.0 I •
PAL Pallas NOAA 67.9600 24.1100 570.0 5.0 I •
PAL ICOS 67.9733 24.1159 567.0 7.0 I •

ZSF
Zugspitze

Schneefernerhaus
WDCGG 47.4165 10.9796 2670.0 3.0 I •

PDM Pic du Midi LSCE 42.9400 0.1400 2877.0 0.0 I •
KAS Kasprowy Wierch InGOS 49.2300 19.9800 1989.0 2.0 I •
BIS Biscarosse LSCE 44.3781 -1.2311 120.0 47.0 I •
LMP Lampedusa NOAA 35.5100 12.6100 50.0 5.0 F •
RGL Ridge Hill WDGCC 51.9976 -2.5400 294.0 90.0 I •

OPE
Observatoire perenne

de l’environnement
ICOS 48.5619 5.5036 510.0 120.0 I •

TER Teriberka WDGCC 69.2000 35.1000 42.0 2.0 I •
LUT Lutjewad ICOS 53.4036 6.3528 61.0 60.0 I •

SSL Schauinsland
personal

communication
47.9000 7.9167 1211.0 6.0 I •

BGU Begur LSCE 41.9700 3.2300 15.0 2.0 F •
GIF Gif-sur-Yvette LSCE 48.7100 2.1475 167.0 7.0 I •

HUN Hegyhátsál NOAA 46.9500 16.6300 344.0 96.0 F •
HUN InGOS 46.9600 16.6500 344.0 96.0 I •
BIK Bialystok InGOS 53.2300 23.0100 483.0 300.0 I •
CIB CIBA NOAA 41.8100 -4.9300 850.0 5.0 F •
TRN Trainou ICOS 47.9647 2.1125 311.0 180.0 I •

JFJ Jungfraujoch
personal

communication
46.5475 7.9851 3580.0 10.0 I •
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ID Station name Data provider Latitude Longitude Altitude Intake Height ST Core Other Validation

TAC WDGCC 52.5177 1.1386 241.0 185.0 I •

HEI Heidelberg
personal

communication
49.4200 8.6800 143.0 30.0 I •

SAC ICOS 48.7200 2.1400 260.0 100.0 I •

WAO Weybourne
personal

communication
52.9500 1.1200 10.0 0.0 I •

HPB Hohenpeissenberg NOAA 47.8011 11.0245 941.0 5.0 F •
HPB ICOS 47.8000 11.0100 1065.0 131.0 I •
FKL Finokalia LSCE 35.3400 25.6700 150.0 0.0 F •
FKL LSCE 35.3378 25.6694 165.0 15.0 I •
LMT Lampedusa WDCGG 38.8763 16.2322 14.0 8.0 I •
PDM Pic du Midi LSCE 42.9372 0.1411 2887.0 10.0 F •
UTO UTO ICOS 59.7800 21.3700 65.0 57.0 I •
VKV Voeikovo InGOS 59.9500 30.7000 76.0 6.0 I •
HTM Hyltemossa ICOS 56.1000 13.4200 265.0 150.0 I •
NOR Norunda ICOS 60.0900 17.4800 146.0 100.0 I •
BIR Birkenes EBAS 58.3900 8.2500 218.0 3.0 I •
ORL Orleans LSCE 47.8300 2.5000 1949.0 1779.0 F •
TOH Torfhaus ICOS 51.8100 10.5400 948.0 147.0 I •
HEL Heidelberg ICOS 54.1800 7.8800 153.0 110.0 I •
SMR Hyytiala ICOS 61.8500 24.2900 306.0 125.0 I •
CUR Monte Cursio NOAA 39.3160 16.4232 1801.0 3.0 F •
LIN Lindenberg ICOS 52.1700 14.1200 171.0 98.0 I •
BSC Black Sea NOAA 44.1776 28.6647 5.0 5.0 I •
BAL Baltic sea NOAA 55.4100 17.0600 28.0 25.0 F •
KRE Kresin u Pacova ICOS 49.5700 15.0800 784.0 250.0 I •
LPO Ile Grande LSCE 48.8000 -3.5800 20.0 10.0 F •
KIT Karlsruhe ICOS 49.0900 8.4200 310.0 200.0 I •
NGL Neuglobsow WDCGG 53.1428 13.0333 62.0 0.0 I •
GAT Gartow ICOS 53.0700 11.4400 410.0 341.0 I •
SNB Sonnblick WDCGG 47.0542 12.9578 3111.0 5.0 I •
SVB Svartberget ICOS 64.2600 19.7800 385.0 150.0 I •

Appendix B

• CIF-CHIMERE: The CIF is a modular inverse modeling platform developed as a python library (Berchet et al., 2020),

designed in the framework of European and international projects. It can drive various data assimilation schemes (analytical

inversions, Ensemble Kalman filtering and 4D variational inversions) and it can be coupled to various chemistry-transport

models (CTMs). Here, we use CIF with the CTM CHIMERE in variational mode. The regional chemistry-transport model400

CHIMERE (Mailler et al., 2017) and its adjoint (Fortems-Cheiney et al., 2021) computes CH4 concentrations as a passive
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tracer. The European configuration covers the latitude range of 31.75-73.75°N and longitude range of 15.25°W -34.75°E with

a 0.5° × 0.5° horizontal resolution and 17 vertical layers up to 200 hPa. Meteorological forcing for CHIMERE is generated

using operational forecasts from the Integrated Forecasting System (IFS) of the European Centre for Medium Range Weather

Forecasting (ECMWF). Total fluxes of CH4 are optimized on a daily basis at the pixel scale, as well as background concentra-405

tions on a 2-day basis, also at the pixel scale.

• CIF-FLEXPART: FLEXPART is a Lagrangian Particle Dispersion Model, which is driven by external meteorological

fields (Stohl et al., 2005; Pisso et al., 2019); in this study ECMWF EI fields at 1.0° × 1.0° horizontal resolution and 3-hourly

temporal resolution are used. FLEXPART can be run in a backwards in time mode to compute retroplumes from which source-

receptor relationships can be derived and describe the relationship between the change in flux and the change in mole fraction at410

a given observation point. The retroplumes are calculated for 10 days backwards in time from the observation time. The source

receptor relationships are calculated for each hourly observation with a resolution of daily and 0.25° × 0.25° for the European

domain and 1.0° × 1.0° for the global domain. In addition, the sensitivity of each observation to the initial mixing ratios

is calculated from the particle locations when they are terminated (10 days before the observation). The FLEXPART output

(source receptor relationships and sensitivities to initial mixing ratios) are used in the Community Inversion Framework (CIF)415

- a Python library for atmospheric inversions (Berchet et al., 2020). Using CIF, the minimum solution for the cost function was

found using the variational approach based on the Lanczos algorithm.

• CSR: The CarboScope Regional inversion system (CSR) uses a Bayesian approach for solving the under-determined in-

verse problem (Rödenbeck, 2005). For the CSR inversion system the spatial and temporal correlation of the a-priori uncertainty

was taken from previous studies with a spatial correlation scale length of 300 km and a temporal correlation time scale of 1420

month (Bergamaschi et al., 2018b). Prior uncertainties of 50% are assumed domain wide (15°W to 35°E and 33°N to 74°N)

at annual time scale. Model representation errors are assigned to the individual sites according to their location with respect

to urban, continental, remote, mountain or oceanic situations (Rödenbeck, 2005), ranging from 40 ppb to 8 ppb on weekly

scale, respectively. Atmospheric transport is simulated by the Stochastic Time-Inverted Lagrangian Transport (STILT) model

(Lin et al., 2003), which is utilized to calculate surface influences (i.e. “footprints”) for the observing stations with 0.25° ×425

0.25° spatial resolution and hourly temporal resolution. The model is driven by meteorological fields from the high-resolution

implementation of the Integrated Forecasting System (IFS HRES) model of the European Centre for Medium Range Weather

Forecasts (ECMWF), extracted at 0.25° ×0.25° using 90 vertical levels until 20 km height and 3-hourly temporal resolution.

The footprints are simulated over the past 10 days by releasing 100 virtual particles at receptor positions and sampling heights.

For mountain sites a release height correction was applied due to the fact that the actual elevation of mountain sites differs430

from the mean orography of the 0.25° × 0.25° grid cell. The height correction was introduced using the half of the difference

between the actual elevation of the mountain site and the mean orography of the corresponding 0.25° × 0.25° grid cell. The

hourly release time differs between mountain atmospheric sites (23:00 - 04:00 UTC) and all other atmospheric sites (11:00 -

16:00 UTC).

• CTE-CH4: CTE-CH4 is based on the Carbon Cycle Data Assimilation Shell (CTDAS; Peters et al. (2005), Van Der435

Laan-Luijkx et al. (2017)) and optimises CH4 fluxes globally. For observation operator, the Eurlerian global atmospheric
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transport model TM5 (Krol et al., 2005) is used. TM5 is run 6° (longitude) × 4° (latitude) globally with 1° × 1° resolution

zoom over Europe (24°N–74° N, 21°W–45° E) with 25 hybrid sigma pressure levels, constrained by 3-hourly ECMWF ERA5

meteorological fields. The initial 3-dimentional mixing fields was taken from previous study (Saunois et al., 2019). CTDAS

is run with 500 ensemble members, a window length of seven days, lag of five weeks and localization based on Peters et al.440

(2007). Anthropogenic and natural CH4 emissions are optimised separately, and at 1° × 1° resolution over Europe. 80% a

priori uncertainty is applied to both a priori anthropogenic and natural fluxes, assuming them to be uncorrelated. Two categories

were optimised: (1) anthropogenic (Fossil Fuels & Agriculture and waste, i.e. EDGAR components as a sum) and (2) natural

(Peatlands, Mineral soils, inundated i.e. JSBACH-HIMMELI components as a sum). The spatial correlation length is set to

100 km over Europe, and no temporal correlation is assumed. The data representation uncertainty is set to constant values per445

observation site, and ranged between 4.5 and 75 ppb globally, following previous work, for example by Bruhwiler et al. (2014)

and Tsuruta et al. (2019).

• CTDAS-WRF: The Weather Research and Forecasting Greenhouse gases (WRF-GHG v4.5.2) transport model is used

here (Grell et al., 2005; Beck et al., 2011). The model is run at 25 × 25 km2 spatial resolution, covering continental Europe,

with 50 vertical eta levels. European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) is used for450

the meteorological boundary conditions (Hersbach et al., 2020). Spectral nudging is applied, with spectral nudging parameters

calculated as in Hodnebrog et al. (2019). WRF-GHG temperatures and winds are nudged to the reanalysis, at each dynamical

step above the PBL, and are updated every 6 hours. 150 ensemble members are used as separate passive tracers in the model,

which are advected internally every model time-step. The model is run for the years 2008, 2013 and 2018.

WRF-GHG is coupled to CTDAS, originally developed in the H2020 projects SCARBO and CHE (see https://che-project.eu/node/239).455

The coupling between WRF and CTDAS is described in Reum et al., in prep.. The optimisation in CTDAS is carried out using

an Ensemble Kalman Filter (EnKF) to solve the Bayesian optimisation problem via in-situ data, providing a statistical repre-

sentation of the covariance structure in the space of fluxes and mixing ratios (Peters et al., 2005). CTDAS-WRF supports flux

optimisation at high spatial resolution by using a priori flux covariances and replacing the existing localization algorithm with a

computationally more efficient version. The new localization method is based on the distance between the observation and the460

state vector element location, instead of the t-test that was implemented initially and drastically reduces computational time.

Anthropogenic and natural CH4 emissions are optimised separately, using the a priori emissions provided with the protocol.

100% a priori uncertainty is applied to both a priori anthropogenic and natural fluxes, whereas the uncertainty of background

CH4 mole fractions is set to 2 ppb. A window length of 10 days is chosen, with two lags, and the correlation length is set to

200 km. The state vector has 106504 flux elements in our implementation (2 windows x (2 processes × 26622 grid cells + 8465

boundary condition parameters)). The data representation uncertainty is set to constant values of 20 and 75 ppb for land and

mountain sites, respectively, following previous work, for example by Bruhwiler et al. (2014).

• ICONDA: ICONDA is a system based on CTDAS, an ensemble Kalman smoother coupled to the ICOsahedral Nonhy-

drostatic (ICON) model (Wan et al., 2013; Zängl et al., 2015; Van Pham et al., 2021) with the extension for aerosols and

Reactive Trace (ART; Rieger et al. (2015); Weimer et al. (2017); Schröter et al. (2018)). The implementation and application470

of the inversion system is described in detail in Steiner et al. (2024). The ICON-ART model is run in limited area mode with a
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spatial resolution of 26 × 26 km2 and 60 vertical levels, with a grid covering Europe and a time step of 120 s. The simulations

are initialised and driven at the lateral boundaries by ERA5 data (Hersbach et al., 2020). During the simulation, the meteorolog-

ical fields were weakly nudged towards the 3-hourly reanalysis data throughout the domain to keep the simulated meteorology

close to the analysed meteorology. The simulation used 192 ensemble members, i.e. 192 passive tracers representing the signal475

of the perturbed emissions. In addition, a background tracer is transported into the model, initialised and driven with data from

the CAMS v19r1 inversion product (available via https://ads.atmosphere.copernicus.eu/). The background tracer is perturbed

in 8 different regions of the lateral boundary to allow optimisation of the background concentrations in these boundary regions.

In the inversions, anthropogenic and natural CH4 emissions were optimised separately in each of the 21344 grid cells of the

domain. In addition, the background concentrations were optimised in 8 boundary regions. As we set up the system as a lag-2480

smoother (with an assimilation window of 10 days), the total state vector size is 85392 per cycle. We apply an a priori uncer-

tainty of 100% for each flux in each grid cell and 0.05% for the background concentrations in each boundary region. We use

a mdm of 10 ppb plus 30% of the mean (over the entire inversion period) emitted signal at each station in the forward model

simulations using the a priori emissions. We assume uncorrelated errors. In the optimisation, we localised the Kalman gain by

attenuating the signal in grid cells that are spatially distant from the observation. This reduces spurious correlations and avoids485

erroneous state vector updates due to spurious covariances between observations and distant grid cells.

• LUMIA: LUMIA is a regional atmospheric inversion system, initially developed for regional CO2 inversions using Euro-

pean in-situ CO2 observations (Monteil et al., 2019), and adapted to CH4 inversions in the framework of the CoCO2 project.

Regional tracer transport is computed using the FLEXPART 10.4 Lagrangian particle dispersion model (Pisso et al., 2019),

driven by meteorological data from the ECMWF ERA5 reanalysis. For this study, boundary conditions were taken from the490

CAMSv19 product (as per the protocol), as prescribed CH4 timeseries baselines at each of the observation sites, following the

approach of Rödenbeck et al. (2009).

The inversions solve the daily total CH4 emissions (i.e. the sum from all categories), at a 0.25°spatial resolution. Prior

uncertainties were set proportional to the prior values, uniformly scaled to achieve a total annual uncertainty of 5 TgCH4 year-1

over the whole domain, accounting for the error covariances reported in Table 3.495

The inversions assimilate day-time observations (from 12:00 to 16:00 solar time) at regular sites, and night time observations

(from 00:00 to 4:00) at high-altitude sites (> 1000 m a.m.s.l), from the observation sites imposed by the protocol. The obser-

vation error combines the measurement uncertainty (provided with the observations) with a site-specific estimate of the model

representation error based on the quality of the prior model fit to the short-term observed variability. For this, we calculated

de-trended observed and prior time-series at each site, by subtracting their respective weekly moving average. The representa-500

tion error of each site was then set to the standard deviation of the difference between these modelled and observed detrended

time-series. This approach yields an estimate of the observation error ranging from ≈ 10 ppb at background sites (e.g. 10.3

ppb at Mace-Head), but much higher for sites closer to anthropogenic emission hot-spots (e.g. 87.4 ppb at Lutjewad).

• NTFVAR: The NIES-TM-FLEXPART-variational model (NTFVAR) is a variational inverse modelling system based on

coupled global Eulerian-Lagrangian models, integrating the National Institute for Environmental Studies Transport Model505

(NIES-TM) as the Eulerian component with the FLEXible PARTicle dispersion model (FLEXPART) as the Lagrangian com-
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ponent (Belikov et al., 2016). This model combination leverages the strengths of both approaches: Eulerian modeling provides

3-D background concentrations at moderate resolutions, while Lagrangian modeling captures localized flux influences. Mete-

orological data for the current version of transport model (see Nayagam et al. (2023)) is sourced from ERA5 for the NIES-TM

and for FLEXPART from the JRA-55 meteorological fields provided by the Japanese Meteorological Agency (JMA) Climate510

Data Assimilation System (Kobayashi et al., 2015). The JRA-55 fields include three-dimensional wind fields, temperature, and

humidity at a 1.25°× 1.25° spatial resolution, 40 vertical hybrid sigma-pressure levels, and a 6-hour temporal resolution. A vari-

ational inversion framework is applied to estimate flux corrections. This framework minimizes the mismatch between observed

and simulated concentrations by iteratively adjusting emission scaling factors across different source categories (Maksyutov

et al., 2021). Sensitivity analyses are conducted to examine the impact of uncertainties in observational data and a priori emis-515

sions, following methodologies such as perturbation of input values (Wang et al., 2019). The inversion process yields monthly

scaling factors for emission fields, optimised at a 0.2°× 0.2° spatial resolution with bi-weekly temporal steps. A spatial corre-

lation length of 50 km and a temporal correlation of two weeks are applied to ensure smooth scaling factors. Scaling factors

and flux corrections are estimated for six anthropogenic and natural emission categories: agriculture, waste, coal, oil and gas,

biofuel burning (considered anthropogenic), and wetlands. Fluxes are estimated with separate inversion for each year, with520

18-month assimilation window, starting from optimised global 3-D field 3 months before the year begins and ending 3 months

after the year end. The simulation period spans 2005–2020, providing a detailed assessment of emissions and flux variability

over time.

• NTLB: The Weather Research and Forecasting (WRF 4.3, Grell et al. (2005)) and the Stochastic Time-Inverted La-

grangian Transport model (STILT, Lin et al. (2003)) are used here. The WRF model operates at a spatial resolution of 27 km2,525

covering the European continent with 35 vertical levels. The lateral boundary conditions and initial conditions of the meteoro-

logical field required for WRF model are provided by NCEP FNL Operational Model Global Tropospheric Analyses at 1°×
1° spatial resolution and 6-hourly temporal resolution (NCEP, 1999). The WRF Model configuration in this study follows the

work by Ren et al. (2024). Combining conventional meteorological data provided by the World Meteorological Organization

(https://www.ncei.noaa.gov/products/wmo-climate-normals), the Grid-nudging method (Stauffer and Seaman, 1990) and Ob-530

servational data assimilation (OBSGRID) are added to the meteorological field simulation process (Deng et al., 2009). The

STILT model is driven by WRF meteorological data and operates in time-reverse mode, releasing an ensemble of 1000 particles

that are transported backward for 7 days for each observation’s hour and location. Each hourly footprint provides an estimate

of surface influence on the measurement. Mixing height is derived from WRF Planetary Boundary Layery (PBL) heights; we

set the influence layer as 0.5 of the mixed layer height. The model is run for the years 2008, 2013 and 2018.535

The WRF-STILT model is coupled with Bayesian statistical methods for inversion (Ren et al., 2024). The optimisation in

NTLB is carried out using matrix multiplication to solve the Bayesian optimisation problem, the calculation of the solution

(a posteriori flux) and a posteriori uncertainty is described in Yadav and Michalak (2013). The inversion framework compre-

hensively considers the observation value, background value, a priori information and footprints data of the whole month, and

obtains the monthly emission flux of the whole European region. The a priori emissions provided by the protocol are used to540

optimise the total regional emissions, with the a priori flux uncertainty set at 30% and the correlation length set at 500 km.

28

https://doi.org/10.5194/essd-2025-235
Preprint. Discussion started: 10 June 2025
c© Author(s) 2025. CC BY 4.0 License.



The Model-data mismatches value (include Transport model, boundary condition and other errors) are determined at each site.

We set the model-data mismatch error parameter based on the idea of grid search in the statistical machine learning algorithm,

where the mismatch error value of all sites is set to the same 28 ppb.
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Appendix C545

(a)

(b) (c) (d)

(e)

Figure C1. Same as Figure 2, but for the TEST simulation. Panel (a) shows the observations used in the TEST simulation, which are the

’Core’, shown as black triangle, and the ’Other’, shown as black squares, set of sites. The different panels show results for the different

models: (a) ICONDA, (b) CSR, (c) NTLB, and (d) LUMIA.
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Appendix D
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Figure D1. Same as Figure 4, but results are shown for the TEST simulation.
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Appendix E
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Figure E1. The same as Figure 5, but results are shown for the TEST simulation.
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Appendix F

(a)

(b) (c)

(d) (e)

Figure F1. The same as Figure 6, results are shown for the TEST simulation.
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