
Responses to Reviewers 
 
We thank both Reviewers for their comments. First we provide the reviewers’ text and below 
our reply in blue. We first provide our replies to Reviewer 1, followed by our replies to 
Reviewer 2. At the end of the document, we list the new references we included in the 
revised manuscript. Other minor corrections are included in the revised manuscript. 
 
Response to Reviewer 1 
 
This study presents an interesting comparison of nine inverse models for estimating national 
CH4 emissions across Europe from 2005 to 2018. The topic is cutting-edge and highly 
relevant for evaluating the effectiveness of nationwide greenhouse gas reduction efforts, as 
well as assessing the accuracy of bottom-up emission inventories. The paper is 
well-structured and scientifically sound in most parts; however, several key concerns should 
be addressed before considering acceptance in ESSD. I recommend a major revision 
based on the following specific comments: 
 

Data resolution and coverage: 

The prior CH4 emissions used in this study vary in resolution and temporal coverage (Table 
1). For instance, the Peatlands category has a daily resolution, while other sources are 
provided at monthly or annual resolutions. The authors should justify their selection of these 
datasets and explain how missing time periods (e.g., 2005–2020 vs. 2005–2018) were 
handled. 

As discussed in the protocol (https://doi.org/10.5281/zenodo.15082281, 2021) it was decided 
to use the same dataset as in the VERIFY project to be able to compare the current output 
fluxes with results from previous projects. Natural emissions from JSBACH-HIMMELI were 
prepared as part of the CoCO2 project. For anthropogenic emissions, the year 2018 is used 
for years 2019 and 2020. We modified the text as follows: 
 
“A priori CH4 emissions used in this study are summarised in Table 1 including information 
on their spatial and temporal resolutions. The same bottom-up inventories and 
process-based models for generating natural emissions are used here as in the EU H2020 
VERIFY project. More specifically, for anthropogenic CH4 emissions, the Emissions 
Database for Global Atmospheric Research (EDGAR) v6.0 is used, which provides 
emissions for different anthropogenic sectors (Monforti et al., 2021). Year 2018 is repeated 
for 2019 and 2020. For the anthropogenic emissions, the protocol does not provide 
information on monthly, daily, or hourly factors to scale the emissions, so all models used 
temporally constant values. Natural CH4 emissions from peatlands and mineral soils derived 
from the JSBACH-HIMMELI model (Petrescu et al., 2023), prepared as part of the EU 
H2020 CoCO2 project and do account for seasonality. Climatological CH4 emissions from 
inland water, termites, ocean, and geological sinks/sources are used as shown in Table 1. 
Monthly climatological emissions from ocean and inland water are repeated for all years. 
The ULB emissions for inland water are provided by the VERIFY project. ” (Lines: 127 - 136) 

Model validation: 



For the validation of prior and posterior CH4 estimates against observations, only six out of 
nine inverse models are presented in Figure 5. Why were the remaining three models 
excluded? 

Thank you for your comment. We did not exclude any model in Fig. 5 (now Fig. 6). Not all 
the modeling groups provided validation data, as shown in Table 4. We added a sentence to 
remind the reader in the manuscript: 
 
“Bear in mind that not all inverse models provided results for the validation stations (see the 
’Validation data’ part in Table 4).” (Lines: 243 - 244) 

CTDAS-WRF model performance (Line 230): 

The authors attribute the poorer performance of the CTDAS-WRF model to discrepancies 
with observations during winter and fall. Does this discrepancy also apply to other inverse 
models? Beyond meteorological variability, what other factors (e.g., transport errors) might 
contribute? 

Thank you for your comment. Of course this discrepancy could apply to other inverse 
models. However, the performance of the other inverse models is decent and the modellers 
did not report any model discrepancies with the observations, similarly to CTDAS-WRF. 
We state in Lines 236-237 in the submitted manuscript that errors in simulating shallow 
boundary layer is a common transport model error. We added the following text: 
 
“Errors in the modeling of atmospheric transport, such as advection schemes, sub-grid scale 
parameterizations, and limited horizontal and vertical resolutions, could also be responsible 
for these discrepancies, as has been reported by previous studies, such as Locatelli et al. 
(2013).” (Lines: 253 - 255) 
 

Seasonal cycle (Figure 6): 

One inverse model exhibits abnormal seasonality compared to others, particularly in 
Western Europe (August–December). What explains this large variability? This likely offsets 
the posterior seasonality, especially in August. A more detailed explanation is needed here. 

In Southern Europe, the sharp decline in mean posterior emissions from August to 
November appears driven by one outlier model, potentially biasing the seasonality 
interpretation. 

Two inverse models exhibit abnormal seasonality, CTDAS-WRF (Western Europe) and 
NTLB (Southern Europe). It is difficult to point out the reason for this behaviour in the 
different sub-regions, without detailed sensitivity simulations. We can only speculate. As has 
been mentioned in the text CTDAS-WRF exhibits the worst performance when validated 
against independent data (old Fig. 5 - now Fig. 6) and we assume this is due to uncertainties 
on transport (PBL dynamics). NTLB also uses WRF. It is known that WRF has difficulties 
simulating realistic PBL mixing and structure and strongly depends on the parametrisation 
used (see for example https://doi.org/10.1016/j.scitotenv.2016.07.167 or DOI: 
10.20937/ATM.2016.29.01.05). These discrepancies shown by CTDAS-WRF and NTLB 

https://doi.org/10.1016/j.scitotenv.2016.07.167
https://www.elsevier.es/es-revista-atmosfera-76-articulo-sensitivity-pbl-schemes-wrf-arw-model-S0187623617300176
https://www.elsevier.es/es-revista-atmosfera-76-articulo-sensitivity-pbl-schemes-wrf-arw-model-S0187623617300176


could be due to difficulties of WRF simulating transport realistically at 0.25 x 0.25 degrees 
spatial resolution. We don’t think it is appropriate to remove inverse models from the 
comparison for this reason. The data are publicly available and the reader is free to use the 
results they want for their purposes. However, we discuss in the text about the outlying 
models and the reasons we think are responsible for this behaviour. We also provide a 
discussion on the seasonality if we remove these two models. We provide the figure without 
CTDAS-WRF and NTLB at the end of this document. We add the following text to address 
reviewers’ concerns: 

“Two inverse models exhibit abnormal seasonality: CTDAS-WRF in Western Europe 
(August-December) and NTLB in Southern Europe (from August to November), despite the 
latter performing better than CTDAS-WRF when comparing against the independent 
observations (Fig. 6). CTDAS-WRF and NTLB are driven by the same transport model 
(WRF), although both inverse models use a different inversion setup as shown in Table 3. 
This makes it difficult to point out the cause of these discrepancies. It is known from the 
literature that WRF has difficulties simulating realistic PBL mixing and structure and its 
performance varies with the PBL scheme that is used (e.g. Banks and Baldasano (2016)). 
We estimated the seasonal cycle without those two inverse models (not shown here). Then 
the results show a stronger peak during spring and summer in EU-27. When excluding 
results from CTDAS-WRF and NTLB, the seasonal patterns remain largely consistent across 
Southern, Northern, Western and Eastern Europe, with minimal changes to the overall 
seasonality. ” (Lines: 332 - 340)  

Regarding Northern Europe (Lines 255–260), the authors attribute enhanced prior CH4 
emissions to wetlands in summer. Could seasonal variations in CH₄ sinks such as ●OH also 
play a role? 

Thank you for your comment. We added the following text: 

“We expect the influence of the hydroxyl radical (·OH) on CH4 to be small over Europe (Zhao 
et al., 2020). East et al. (2024) attributed wetland emissions as the primary driver of CH4 
seasonality during summer in the northern hemisphere, while CH4 sinks, such as ·OH , are 
unlikely to play a significant role.”  (Lines: 284 - 287) 

Here is the paper by East et al. 2024: https://doi.org/10.1029/2024GL108494  

For the JSBACH-HIMMELI model, the authors acknowledge underestimation of river and 
lake emissions. Are coastal wetland emissions well-captured in this model? 

Thank you for your comment. JSBACH‑HIMMELI does not explicitly resolve coastal wetland 
emissions. Coastal wetland emissions appear in JSBACH-HIMMELI emission maps as part 
of ‘wet mineral land’ or ‘inundated land’ and the emissions are calculated using the approach 
by Spahni et al. (2012) and the emission results have not been compared against 
measurements in coastal wetlands.  

We added the following text in the manuscript: 

“Though JSBACH‑HIMMELI does not explicitly resolve coastal wetland emissions.” (Lines: 
290-291) 

https://doi.org/10.1029/2024GL108494


Lines 260–265: The authors note that uncertainties in temperature and precipitation limit 
wetland CH₄ emission estimates. However, precipitation is a poor proxy for wetland 
emissions compared to inundation (see https://doi.org/10.1029/2020GB006890 and 
https://doi.org/10.1038/s43247-025-02438-3). A discussion of these hydrological indicators 
would strengthen the analysis. 

Thank you for your comment and sharing these two interesting papers which show 
inundation to be important for tropical wetlands. We agree that inundation could result in 
high CH4 emissions during spring in northern Europe. We added the following text: 

“Although temperature and precipitation are important drivers, studies suggest that CH4 

emissions are more sensitive to inundation (Gerlein-Safdi et al., 2021). Inundation, after 
snow-melt, could induce large CH4 emissions in spring. Inundation in JSBACH-HIMMELI is 
taken as prescribed from satellite data (WAD2M, Zhang et al. 2021) and CH4 emissions from 
inundated lands are calculated using the approach by Spahni et al. (2011). However, 
bottom-up process-based models, such as JSBACH-HIMMELI, have limitations combining 
emissions from different types of land, which might result in limitations in the total wetland 
CH4 emissions.” (Lines: 294 - 299) 

Suggestion: Replace "missing processes" (Line 264) with "missing/simplified processes" to 
account for parametrization simplifications in bottom-up models. 

Thank you, we did. 

Lines 279–281: The deduction that wetland emissions may decrease in Southern/Eastern 
Europe due to reduced precipitation is problematic. Precipitation is a weak predictor of 
wetland CH4 emissions due to time lags (runoff, microbial decomposition). Inundation or 
GRACE terrestrial water storage data would be more appropriate. The argument for future 
projections based on precipitation should be reconsidered. 

Thank you for your comment. Regarding the model: Inundation in JSBACH-HIMMELI is 
taken as prescribed (WAD2M satellite-data - based product, Zhang et al 2021) and CH4 
emissions from inundated lands are calculated using the approach by Spahni et al (2011), 
using JSBACH respiration fluxes in the calculation.  

Precipitation and inundation are of course linked. Precipitation may seem like a poor proxy 
because of this delay and dynamics related to snow melt,  but it is nevertheless an 
environmental driver. Also inundation, as the inundation extent depends on snow 
melt/precipitation during previous days and weeks. Inundation extent directly scales the 
methane emission but it is not the only process which gives rise to methane emissions, as 
peatlands and mineral soils which are not in inundation can also emit methane. The models 
generally, and also JSBACH, have limitations  in combining emissions from different types of 
land. 

However, we decided to remove our statement about precipitation in the paper to avoid any 
confusion and getting into a detailed discussion which will be out of the scope of this paper.  



Lines 296–299: The seasonal variability in Western Europe is linked to agricultural and fossil 
fuel emissions. Is the agricultural sector large enough to drive summer seasonality? 
Source-resolved posterior analyses could clarify this. 

This is only an assumption from our side. Agriculture emissions, such as livestock and 
manure management, are a dominant sector in Western Europe. Emissions of storage and 
treatment of manure are temperature dependent, and exhibit seasonal variations that might 
not be well accounted for in the bottom-up inventories. Unfortunately, a source-resolved 
posterior analysis using all the inverse models is not possible, as these detailed posterior 
fluxes are not provided as an output  from all inverse models/systems. In addition, methane 
measurements provide limited information to constrain the emission from specific sectors. 
This could further be investigated in upcoming inter-comparison projects.  
 
We added the following text in the revised manuscript: 
 
“Conducting source-resolved posterior analyses in future studies, for example using isotopic 
measurements, would facilitate a more precise quantification of contributions from 
agricultural and fossil fuel sources.” (Lines: 329- 331) 

Interannual trends (Figure 7): 

Why do negative emissions appear? Are these CH4 emission anomalies? Clarify how 
anomalies were calculated. The figure caption and y-axis title need revision for accuracy. 

Thank you for your comment and our apologies for missing out on this. Indeed we show 
emission anomalies. The same is the case also for the seasonality. We have updated the 
figures, figures caption and we added the following text for the trends:  
 
“Standarised anomalies are first estimated by inverse model and then the results are 
averaged to get the mean posterior anomaly trends.” (Lines: 357 - 358) 

Underestimated wetland emissions (Line 370): 

A quantitative estimate (e.g., "underestimated by ~20%") would strengthen the discussion. 

Thank you we added a percentage as the Reviewer suggested.  

Background concentration influence (Line 386): 

The impact of background concentration determination on posterior estimates is 
underdiscussed and should be expanded. 

We added the following text: 

“The choice of optimising background concentrations seems to be important for constraining 
long-range transport or inconsistencies caused by the lateral boundary conditions. Including 
background concentration optimization within the inversion framework enhances the 
agreement between posterior modelled and observed concentrations, particularly in regions 
close to the boundaries of the modeling domain and minimises uncertainties due to biases 
on long-way transport (Steiner et al., 2024).” (Lines: 433 - 437) 



Study implications: 

The broader implications of this work—particularly strategies to reduce inter-model 
discrepancies—should be discussed. 

We added the following text: 

“Detailed protocols with prescribed prior emissions, common observations to be used for 
optimisation and validation, and lateral boundary conditions, as has been done in this study, 
can help to narrow down inter-model discrepancies. The use of common meteorological 
boundary conditions in a subset of inverse models, as in Munassar et al. (2023), could be 
explored to shed light on the causes of transport errors in the models.” (Lines: 441 - 444) 

Minor Corrections: 

Figure 3 caption: Inconsistent with subplot order. 

Thank you, we corrected the order. 

Line 328: "EU 27, where they a show similar strong negative trend" correct the typo to 
"EU-27, where they show a similarly strong negative trend." 

Thank you. We corrected the typo and changed “EU27” to “EU-27” throughout the 
manuscript.  



Response to Reviewer 2 
 
Ioannidis et al. performed a CH4 inverse inter-comparison modeling (MIP) study to estimate 
European CH4 emissions. With a suite of inverse models that use different transport models 
and have different model resolutions, designs of state vectors, and data assimilation 
techniques, they investigate differences in their estimated emission magnitudes, spatial 
patterns, seasonal variations, and trends. Given that atmosphere-based estimates are 
considered as an important tool to assess the accuracy of national greenhouse gas 
inventory reporting and their external uncertainties are often hard to quantify by using one 
modeling system alone, such an inter-comparison modeling study provides important 
insights on how well the atmospheric observations can be used to quantify European CH4 
emissions. The current manuscript is well organized. It well describes the MIP protocols, the 
participating modeling systems, and their obtained results. It can be further improved by 
some revision. 
 

1.​ The authors discussed similarities and differences in the adjustments of the posterior 
estimates relative to the common prior based on different inversion results (e.g. Fig 
2). Although such information is useful, it is also important to know, with the posterior 
adjustments, whether posterior emissions show similar spatial patterns as the prior. 
Therefore, besides Fig. 2, maps that show posterior emissions, as well as some 
discussion on the posterior spatial patterns, could be useful to add.   

 
Thank you for your comment. We now show the posterior fluxes from all the inverse 
models in the Appendix (Appendix C) and we added the following text in the main 
manuscript: 

 
“Figure C1 in Appendix C shows the a posteriori CH4 fluxes for all the inverse 
models. The spatial distribution of posterior CH4 fluxes are similar for all the inverse 
models and the prior fluxes over the Benelux region, south of Poland, Finland, the 
UK and Bretagne. Similar spatial patterns are shown between the a priori fluxes and 
for all inverse models except for CIF-FLEXPART over Romania and Po Valley and in 
the North Sea except for CSR. However, the posterior emission adjustments 
compared to the prior fluxes are shown much clearer by calculating their differences.” 
(Lines: 165 - 169) 
 
“In the TEST simulation all the a posteriori fluxes show spatial patterns that are 
similar to the a priori fluxes, such as over the Benelux region, Po Valley, Romania 
and southern  Poland. ” (Lines: 206 - 207) 

2.​ The authors evaluated the performance of inverse models with observation used in 
the optimization and independent data. It is obvious that the performance varies quite 
a bit with the ICONDA model standing out as the best in near all the statistics. This is 
useful to know. However, it would be more beneficial for the community if the authors 
can provide specific insights on why ICONDA performs the best. Is it due to more 
accurate transport simulations, or their data assimilation techniques, or the 
optimization of their boundary values, or the suitability of their specified error 
covariance parameters? Although the authors mentioned about the importance of 
atmospheric transport modeling, they rarely mention the importance of the error 



covariance parameters at all. To me, the relatively poorer performance of the 
CTDAS-WRF may relate to the possibility of an overfitting of their observations. 

Thank you for your comment. We understand the reviewer's comment about 
ICONDA’s performance, however we decided only to refer to the recent paper which 
describes the model’s development and detailed tests for readers to go through if 
they are interested because we believe it’s out of the scope of this paper to state the 
reasons inverse models (ICONDA, LUMIA) perform the best. We now have 
expanded the discussion only about the poorer performance of CTDAS-WRF which 
is the less tested inverse model for CH4. 

About CTDAS-WRF: 

“Two of the inverse models that submitted results for the validation stations simulated 
these observations considerably less well than the observations that were optimised: 
CSR (Fig. 5c) and CTDAS-WRF (Fig. 5a,c), where the latter shows the poorest 
performance in this metric among all models, despite using a similar inversion setup 
to an outperforming inverse model, such as ICONDA (see Table 3). The poorer 
overall performance of CTDAS-WRF is driven by big discrepancies with the 
observations during winter and fall (not shown here). Hence, we assume that this 
could be due to errors in simulating the shallow boundary layer, which is a common 
transport model error (Gerbig et al., 2008; Deng et al., 2017; Lehner and Rotach, 
2018). Errors in the modeling of atmospheric transport, such as advection schemes, 
sub-grid scale parameterizations, and horizontal and vertical resolutions, could also 
be responsible for these discrepancies, as has been reported by previous studies, 
such as Locatelli et al. (2013). Complex terrain, e.g. mountainous sites, could also 
introduce biases in the results, as it is difficult to simulate inflow in and around 
mountains (e.g. Oqaily et al . 2025). The performance of CTDAS-WRF with respect 
to the stations that were optimized for is much better (compare Figure 5 and Figure 
6), which suggests that the poor performance with respect to the validation stations 
could be due to overfitting. However, on average, the fit to the optimized stations 
does not improve more in the CTDAS-WRF inversion than some other models 
(Figure 5), suggesting that the weight of the observations in the inversion was not 
considerably larger than in the other models. Overfitting could still play a role for 
individual stations, but further analysis is needed. Finally, the statistics presented 
here are averaged using all the stations for the common years. Therefore it is 
possible that the statistics are driven by one of the stations.” (Lines: 247 - 262) 

3.​ Base versus test runs. It is nice to see the authors conducted both base versus test 
runs to assess whether the posterior emission estimates can be improved with 
additional sites. However, it is very hard to compare the performance of the base 
versus test runs in their current presentation. Please consider to add the summary 
statistics for both base and test runs into the same barcharts. For example, merge 
Figs. 4 and D1 and merge Figs 5 and E1. Also, the authors only mentioned the 
summary statistics in those figures without much discussion. Please add discussion 
on the test runs. 

Thank you for your comment. We included two tables in section 4.2, which 
summarises the statistics for the BASE and TEST runs and only focuses on the 6 



inverse models that provided results for both simulations. We removed Figs. D1 and 
E1. We also added the following discussion on the TEST runs:​ ​  

For the optimised stations: 

“Table 5 summarises the statistics for the inverse models that provide CH4 mole 
fractions for the optimised stations in the  BASE and TEST simulations. The use of 
more stations results in improved statistics for all inverse models in general. For 
example, RMSE is further improved for all inverse models in the TEST simulation, 
with comparable correlation coefficients between the two runs. ICONDA and LUMIA 
performed better than the other two inverse models. ” (Lines: 236 - 240) 

​ For the validation stations: 

“Table 6 summarises the statistics for the inverse models that provide CH4 mole 
fractions for the validation stations for both the BASE and TEST simulations. The use 
of more stations in the TEST simulation resulted in better agreement between the 
modelled and the observed molar fractions for all inverse models, as shown by the 
lower RMSEs for all models. ICONDA performs better than the other two inverse 
models with a lower bias and a higher correlation coefficient in both simulations. For 
details regarding ICONDA's development and detailed testing for European CH4 
inversions please refer to Steiner et al. (2024). ” (Lines: 262 - 267) 

4.​ For the results discussing the seasonal cycle and trend. Consider add additional lines 
summarizing the posterior results averaged among the best performing models (e.g. 
ICONDA, NTLB, and another one?). It would be interesting to know if they will get the 
same seasonal cycle or trend by only using the best performing models. Also, 
consider to add some discussion on these results too. 

Thank you for your comment. There are two inverse models that exhibit abnormal 
seasonality, as pointed out by Reviewer 1. These inverse models are: CTDAS-WRF 
in Western Europe and NTLB in Southern Europe. Therefore we have added the 
following text summarising the averaged posterior results by removing these two 
inverse models. Bear in mind this is applicable only for the seasonal analysis and not 
for the trends as these two inverse models, as well as ICONDA, are not included in 
the trends analysis because they haven’t submitted results for the full period as 
shown in Table 4 and mentioned in Lines 313-315 in the submitted manuscript. 

“Two inverse models exhibit abnormal seasonality: CTDAS-WRF in Western Europe 
(August-December) and NTLB in Southern Europe (from August to November), 
despite the latter performing better than CTDAS-WRF when comparing against the 
independent observations (Fig. 6). CTDAS-WRF and NTLB are driven by the same 
transport model (WRF), although both inverse models use a different inversion setup 
as shown in Table 3. This makes it difficult to point out the cause of these 
discrepancies. It is known from the literature that WRF has difficulties simulating 
realistic PBL mixing and structure and its performance varies with the PBL scheme 
that is used (e.g. Banks and Baldasano (2016)). We estimated the seasonal cycle 
without those two inverse models (not shown here). Then the results show a stronger 
peak during spring and summer in EU-27. When excluding results from CTDAS-WRF 
and NTLB, the seasonal patterns remain largely consistent across Southern, 



Northern, Western and Eastern Europe, with minimal changes to the overall 
seasonality.” (Lines: 332 - 340)  

5.​ In the trend section, it would be insightful to know what drives the declining trend in 
CH4 emissions over eastern and southern Europe. 

Thank you for your comment. It is a bit difficult to know what drives the stronger 
declining trend over Eastern and Southern Europe from this analysis. These are the 
results we are getting when using in-situ data. We assume the in-situ stations provide 
different information compared to what the a priori emission inventories report and 
therefore we get the stronger trends.  We added the following text in the manuscript: 

“The stronger decline on CH4 emissions over Southern and Eastern Europe 
compared to the a priori could be driven from the observations used to constrain the 
a priori emissions. Follow up studies could further explore what drives the emission 
trends (e.g. in-situ stations, background optimisation) in the European boundaries. ” 
(Lines: 376 - 378)  

Other: 

Line 151: “mg m-2 hr-1” - this is the unit used for the maps, not for the trends and seasonal 
cycles. 

Thank you, we removed the units from this line. 

Fig. 1 – label the country names. This would be useful for readers to link the country-based 
similarities or differences to specific areas in the maps. 

Thank you, we did. 

Fig. 3 – please indicate where the additional sites are considered 

Thank you, we did. 

 

 



 
Similar to Fig.7 in the revised manuscript, but without CTDAS-WRF and NTLB 
inverse models. The posterior fluxes per inverse model are shown in dashed lines:  
ICONDA is shown in green, CTE-CH4 in pink, NTFVAR in orange, CIF-CHIMERE in 
gray, LUMIA in brown, CSR in yellow and CIF-FLEXPART in red.  
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