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Abstract. We present a novel global dataset of CO2 enhancements (∆XCO2) derived by fusing NASA’s OCO-3 satellite and

NOAA ground-based observations. CO2 enhancements quantify the spatially resolved excess in atmospheric CO2 concentra-

tions arising from anthropogenic emissions, biospheric CO2 exchanges, and atmospheric CO2 transport. Leveraging decades

of monthly CO2 measurements from eight remote stations strictly selected from NOAA ESRL network, such as the Mauna Loa

station, we address the critical challenge of isolating localized CO2 signals from background concentrations by developing a5

latitude-dependent global CO2 baseline model that effectively captures spatial and seasonal variability in background CO2. The

developed baseline model demonstrates near-perfect hemispheric predictive accuracy (Northern: R2=0.988, RMSE=1.78 ppm;

Southern: R2=0.995, RMSE=1.09 ppm). Spatially explicit ∆XCO2 is then estimated by removing the column-corrected back-

ground CO2 from co-located OCO-3 observations. Validations of the estimated ∆XCO2 against tropospheric NO2 (R2=0.896)

and prior in-situ urban CO2 measurements, along with the dataset’s high spatiotemporal resolution (∼ 3 km2), demonstrates10

its potential for tracking anthropogenic and biospheric CO2 dynamics. Global ∆XCO2 maps reveal mean CO2 enhancements

of 0.58 ± 1.81 ppm, with urban areas exhibiting 1.5-fold higher enhancements (1.43 ± 2.04 ppm). North Hemisphere land

areas exhibits an approximately 81% higher ∆XCO2 average (0.67 ± 1.98 ppm) compared to the South Hemisphere (0.37

± 1.32 ppm), with urban enhancements amplifying this hemispheric contrast up to 95%. Comprising 54 million observations

across more than 200 countries, this open-access dataset provides an alternative metric for monitoring complex atmospheric15

CO2 variability and actionable insights for regional climate policies, available at https://doi.org/10.5281/zenodo.15209825.

1 Introduction

Mapping global CO2 enhancements with fine spatio-temporal resolution is essential for tracking anthropogenic and natural

CO2 sources, validating emission inventories and climate models, and assessing localized climate impacts, including effects

on agricultural productivity. The CO2 enhancement (∆XCO2) quantifies the combined influence of anthropogenic carbon20

emissions, the net CO2 exchange between vegetation and the atmosphere, and large-scale atmospheric transport processes
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(Kiel et al., 2021; Mitchell et al., 2018; Reuter et al., 2019; Lei et al., 2022). A positive ∆XCO2 signifies the net positive

impacts of CO2 sources and sinks with atmospheric transport processes on accumulation of atmospheric CO2 concentration

(Park et al., 2021; Kiel et al., 2021; Mitchell et al., 2018). ∆XCO2 can become negative when enhanced terrestrial CO2 uptake

surpassing the amount emitted and atmospheric conditions such as prevailing wind result in a net decline in atmospheric25

CO2 compared to long-term baseline. Accurate global ∆XCO2 measurements are critical for understanding the current net

contributions of local human and plant activities on atmospheric CO2 increases. These fundamental measurements underpin

the development of targeted strategies for future emission cuts and climate mitigation. Nevertheless, a comprehensive global

dataset of CO2 enhancements remains absent.

Carbon satellites have been reported as objective, independent data sources for monitoring spatiotemporal disparities of30

atmospheric CO2 conditions (Pan et al., 2021; Nisbet and Weiss, 2010; Schwandner et al., 2017), by providing the top-down

observations of column-averaged dry-air mole fraction of CO2 (XCO2; ppm). Satellite-derived CO2 observations enhance

data disclosure, transparency, and data equity especially in underdeveloped countries where data infrastructure is lacking and

the accounting capacity of environmental departments is often weak. Moreover, the global coverage and high spatiotemporal

resolution of satellite instruments are key advantages that support the characterization of large-scale fine-grained atmospheric35

CO2 levels. These capabilities, first, enable effective comparisons among multiple sites, cities, and countries; second, help

refine the general patterns underlying local CO2 variability, and ultimately, aid CO2 mitigation efficacy by facilitating local

governments making dynamic and targeted decisions.

Mapping ∆XCO2 based on satellite remote-sensing data remains challenging, although CO2 satellites have been popular for

global atmospheric observations (Streets et al., 2013). The century-long persistence of CO2 causes the immensely strong signal40

and notable spatial variability of background CO2 concentration in the atmosphere, even in desert-like places (Hakkarainen

et al., 2019). This accumulation masks the true CO2 signals from local human and natural processes. Localized atmospheric

CO2 fluctuations are around two orders of magnitude smaller than the background CO2 concentration (Canadell et al., 2023;

Reuter et al., 2019). This substantial difference complicates the global differentiation of enhanced CO2 signals from the accu-

mulative trend of background CO2. Therefore, a key step in isolating localized ∆XCO2 is deducting accurate fine-resolution45

background CO2 concentration from the satellite CO2 observations.

Satellite-driven ∆XCO2 measurements are typically single site-specific, individual city-specific, or estimated from multiple-

site gradients, rather than offering spatially-continuous coverage. Previous efforts to correct background CO2 concentration

have struggled with scale and seasonal sensitivity (Lindenmaier et al., 2014; Verhulst et al., 2017; Zeng et al., 2021; Miller et al.,

2020; Che et al., 2024; Kort et al., 2012; Schneising et al., 2013). These issues constrain the effectiveness in delivering large-50

scale spatial analysis for fine-resolution ∆XCO2 data. Site-specific ∆XCO2 estimates are derived from the difference between

satellite observation of atmospheric CO2 and CO2 records at ground-truth stations with minimal human and plant interference.

These ground-truth stations include remote in-site stations from the Total Carbon Column Observing Network (Kiel et al.,

2021) and mountaintop CO2 observation sites in Salt Lake County, North America (Mitchell et al., 2018). City-specific ∆XCO2

estimates rely on the deviations of satellite observations in urban centers from the daily median (Hakkarainen et al., 2016; Park55

et al., 2021) or monthly median (Labzovskii et al., 2019) remote-sensing CO2 observations in rural areas assuming that rural
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atmospheric CO2 concentration should be considerably lower than that in urban cores (Wu et al., 2020; Reuter et al., 2019;

Ye et al., 2020). The former site-specific approach cannot be effectively generalized for regional or global applications due to

significant spatial heterogeneity in atmospheric conditions. The latter city-specific approach is sensitive to the seasonal timing

of satellite overpasses, since seasonal biospheric-atmospheric CO2 fluxes obscure the differentiation of urban-derived ∆XCO260

signals from background CO2 concentration in the rural areas. This limited generalizability can be in large part improved by

leveraging the cooperative air sampling network of the National Oceanic and Atmospheric Administration (NOAA), which

provide a range of remote marine stations for the developments of latitudinal references for background CO2 concentration

(Masarie and Tans, 1995; Tans et al., 1989). However, the continental-to-global spatial scales along multiple-site gradients

of atmospheric background CO2 (Mitchell et al., 2018) remain too coarse for precisely tracking background CO2 dynamics65

in cities. This underscores the need for more spatially-explicit measurement techniques to better characterize subtle ∆XCO2

variations within cities that contribute significant shares to global emissions (Duren and Miller, 2012).

To present both globally comprehensive and locally representative measurements of ∆XCO2, we leverage a NASA’s new

Orbiting Carbon Observatory 3 (OCO-3) satellite that offers the state-of-the-art highest resolution observations (≈ 3 km2)

covering the period from August 2019 to November 2023, and further remove atmospheric background CO2 corrected from a70

novel global CO2 baseline model based on ground-sourced CO2 data from the Global Monitoring Laboratory (NOAA ESRL

network). The satellite-derived dataset of global CO2 enhancements enables objective, timely and spatially-explicit diagnosis

of net impacts of CO2 sources, sinks, and transport on atmospheric CO2 increases, contributing to sub-city scale decision

making on global net-zero strategies and climate actions.

2 Methods75

This work develops a novel dataset of global CO2 enhancements from 2019 to 2023 by integrating satellite-derived and ground-

sourced CO2 observations. Fig. 1 demonstrates the dataset involved and the main workflows. The following three subsections

elaborate on carbon satellite XCO2 product (XCO2), the global CO2 baseline estimation (CO2b), and the global CO2 enhance-

ments (∆XCO2), respectively.

2.1 Satellite-retrieved XCO2 Observations80

Satellite-derived XCO2 observations (column-averaged dry air mole fraction of CO2; ppm) are from the Orbiting Carbon

Observatory 3 (OCO-3). This NASA satellite, launched in 2019, collects the global magnitude and distribution of atmospheric

CO2 concentrations with the highest spatial-temporal resolution to date, allowing it to track XCO2 variations with a grid

resolution of 2.2×1.6 km2. Studies have proven that the OCO-3 is capable of detecting localized emission sources by giving

diurnal and geographically diverse XCO2 observations (Kiel et al., 2021; Schwandner et al., 2017) and are less vulnerable to85

the impacts of small-scale atmospheric processes on the accuracy of local emission accounting (McKain et al., 2012). We use

OCO-3 Level 2 bias-corrected XCO2, version 10.4r data (OCO3_L2_Lite_FP), which is publicly available through the NASA

Goddard Earth Science Data and Information Services Center (GES DISC) (http://disc.sci.gsfc.nasa.gov/). We filter the OCO-
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Fig. 1. A conceptual diagram of the generation process of the global CO2 enhancements dataset.
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Table 1. The descriptive statistics of OCO-3 XCO2 product.

Periods Number of Observations Mean (ppm) 1st quantile (ppm) 99th quantile (ppm)

2019-08 to 2019-12 3,807,526 408.49 402.39 413.67

2020-01 to 2020-12 15,045,735 411.52 405.17 416.70

2021-01 to 2021-12 13,526,529 414.17 408.36 419.57

2022-01 to 2022-12 12,383,251 416.44 409.86 421.94

2023-01 to 2023-11 9,685,130 418.49 412.58 424.02

Total 54,448,171 414.33 405.29 422.60

3 dataset using the ‘Quality flag’. Quality flag 0 indicates high-quality remote-sensing data for scientific analysis. The full

window of August 2019 through November 2023 with 90,714,334 XCO2 samples is covered, of which, a total of 54,448,17190

terrestrial observations are used for developing global XCO2 dataset (Table 1).

2.2 Global CO2 Baseline Estimation

2.2.1 Selection of global CO2 background stations

Global Monitoring Laboratory (GML) within the Earth System Research Laboratories (ESRL) of NOAA operates a wide net-

work of global ground-truth stations that accurately monitor long-term near-surface CO2 levels. These stations are strategically95

deployed based on their geographical locations to represent background CO2 concentrations.

The global CO2 background stations are first required to be situated at considerable distances from urban infrastructures

and anthropogenic activities to minimize human interference. Utilizing the global ESA Sentinel-2 10m land use/land cover

map (Zanaga et al., 2022) to detect urban areas, we select monitoring stations that exhibit less than 2% built-up land cover

within a radius of 5 kilometers (10×10 km2 area). To further minimize local ‘contamination’ from dense vegetation, we100

additionally select stations with an Enhanced Vegetation Index (EVI) of less than 0.3 within the predefined box size, based on

MODIS Vegetation Index Products (Didan, 2021). Moreover, sea-level flask samples are excluded to minimize the influence

of air-ocean exchanges. This approach, different from NOAA’s marine station selection (Conway and others, 1994), focuses

exclusively on terrestrial sampling stations and provides enhanced representations of terrestrial CO2 patterns. Stations situated

within the Arctic and Antarctic circles, where carbon cycles exhibit unique characteristics (Bruhwiler et al., 2021), as well105

as those positioned downwind of emission sources, are similarly screened out. In addition, we conduct a visual inspection

of the built-up surfaces and vegetation characteristics within a 5-km buffer zone around each monitoring station to avoid

misguidance in station selection due to local heterogeneity. This examination is especially crucial for island stations, which

often lack detailed land use and vegetation cover data. On this basis, we exclude stations with nearby vegetation or built-up

areas, even if these are minimal within the buffer zone. In accordance with baseline modelling requirements, we ensure that110

the selected background stations have CO2 time series data for at least 10 years between 2000 and 2023.
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Of the 88 active sites across 38 countries from the Global Monitoring Laboratory (NOAA ESRL network), a total of eight

CO2 background stations with wide latitudinal and longitudinal coverage (Fig. 2, Table 2) are chosen to model the global CO2

baseline.

Fig. 2. The locations of eight CO2 background stations. Station codes and names are highlighted in bold, including ICE: Storhofdi, Vest-

mannaeyjar; WLG: Mt.Waliguan; IZO: Izana, Tenerife, Canary Islands; ASK: Assekrem; MLO: Mauna Loa, Hawaii; NMB: Gobabeb; CRZ:

Crozet Island; PSA: Palmer Station, Antarctica. Sources of Basemap: Esri, TomTom, Garmin, FAO, NOAA, USGS, © OpenStreetMap con-

tributors, and the GIS User Community.

2.2.2 Development of a global CO2 baseline model115

We construct a global model to estimate spatio-temporal CO2 baseline (CO2b) using a simple and interpretable near-sinusoidal

growth function (Eq.1). The mathematical form is an addition of a sinusoidal function and a linear function, both depending on

a time parameter, m, denoting the number of months since January 2000. While the sinusoidal function simulates the wave-like

periodicity and oscillation of seasonal CO2 swings caused by seasonal changes in ecosystem photosynthesis and respiration

(Arrigo et al., 1987; Hall et al., 1975), the linear function simulates the long-term trend of atmospheric CO2 concentration,120

which has been documented for decades (Groves et al., 1978). π/6 is the unit angle of one month in the sinusoidal function. f

is the frequency of CO2 seasonal variations. ϕh signifies the phase shift due to the inconsistent interhemispheric seasonality.

ϵh denotes a residual term. h can be North or South Hemisphere.

6

https://doi.org/10.5194/essd-2025-234
Preprint. Discussion started: 17 June 2025
c© Author(s) 2025. CC BY 4.0 License.



Table 2. The location, percentages of built-up area, vegetation greenness, and satellite images of CO2 background stations. The red triangles

are the locations of background stations. Source: Google Maps (© Google, accessed July 11, 2024)

Station Location Built-up Percentage (%) Average EVI Data Range Satellite Images

ICE 63.400°North, 20.288°West 0.00 0.14 1992-2023

WLG 36.288°North, 100.896°East 0.00 0.21 1990-2023

IZO 28.309°North, 16.499°West 0.31 0.17 1991-2023

ASK 23.263°North, 5.632°East 0.00 0.05 1995-2023

MLO 19.536°North, 155.576°West 0.00 0.00 1969-2023

NMB 23.580°South, 15.030°East 0.23 0.07 1997-2023

CRZ 46.434°South, 51.848°East 0.02 0.21 1991-2023

PSA 64.774°South, 64.053°West 0.00 NoData 1978-2023
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Further, we allow parameters, β2,h, β1,h, and β0,h, in Eq.1 to be linearly dependent on latitude, l (Eq.2), considering that

latitudinal gradient exerts considerable influence on human activities (Lei et al., 2021), naturally terrestrial biota, and air125

transmission through the troposphere (Denning et al., 1995) and thereby affecting the spatiotemporal distributions of CO2

baseline levels (Conway and Tans, 1999; Shim et al., 2013). Specifically, studies reported a non-linear latitude dependence of

seasonal CO2 amplitude from the South Pole to the North Pole (Yun et al., 2022; Forkel et al., 2016; Heimann et al., 1998).

The seasonal CO2 amplitude varies slightly with latitude in the South Hemisphere whereas it shows a reinforced trend at high

latitudes in the North Hemisphere. The growth rate of atmospheric CO2 is also sensitive to latitude (Taylor and Orr, 2000).130

β0,h(l) represents the latitude-dependent prehistoric CO2 concentration. In addition, Eq.3 ensures that baseline estimations in

the North and South Hemispheres are continuous at the equator.

CO2b,h(l,m) = β2,h(l) · sin(
π

6
·m · f + ϕh) +β1,h(l) ·m + β0,h(l) + ϵh, h ∈ {south,north} (1)

βi,h(l) = β1,i,h · l + β0,i,h + ϵi,h, i ∈ {0,1,2} (2)135

subject to, CO2b,south(0,m) = CO2b,north(0,m) (3)

The global CO2 baseline model is constructed using 2,097 monthly observations collected between 2000 and 2023 from

eight selected CO2 background stations. This model has achieved near-perfect goodness-of-fit with R2=0.988 and RMSE=1.78

for North-Hemisphere curves, and R2=0.995 and RMSE=1.09 for South-Hemisphere curves. Fig. 3 illustrates time-series CO2140

observations and estimations at eight CO2 background stations. For model simplicity, the student’s t-test are applied to examine

the statistical significance of all model parameters and only the significant ones (p-value < 0.05) remain in the final model.

Eq.4 and 5 represent estimated CO2 baseline models respectively for the North and South Hemispheres. These should be able

to offer accurate estimates of CO2 baseline levels at any latitude without being constrained by ground-truth station layout.

CO2b,north =−0.625 · sin(
π

6
·m · 1.002 +0.846) +0.129 · l · sin(

π

6
·m · 1.002) +0.186 ·m + 0.035 · l + 366.240 (4)145

CO2b,south =−0.625 · sin(
π

6
·m · 1.002 +0.846) + (1.180e−4 · l + 0.186) ·m + 0.027 · l + 366.240 (5)

CO2b(0,m) =−0.625 · sin(
π

6
·m · 1.002 +0.846) +0.186 ·m + 366.240 (6)

2.2.3 Sensitivity Analysis150

Parameter sensitivity analysis is performed to examine the robustness of the developed global CO2 baseline model over dif-

ferent criteria for background station selection. Multi-criteria combinations of the percentage of built-up areas, the EVI-based

vegetation greenness, and buffer size of background stations are used for this purpose. By setting the thresholds of built-up

percentages at 2% and 5%, the thresholds of EVI values at 0.2 and 0.3, and the thresholds of buffer radius at 2.5 km and 5.0

km, we compare the selected CO2 background stations and their fitting performances. The background CO2 estimations are155

highly stable and not sensitive to changes in background station selection criteria (Table 3).
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Fig. 3. The performance of the developed global CO2 baseline model at eight CO2 background stations.
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Table 3. The sensitivity test of the estimated global CO2 baseline model

Buffer Radius: 2.5 km

Built-up Percentage (%) Average EVI Model Performance

< 2% < 0.2
North Hemisphere Model: R2=0.989; RMSE=1.67

South Hemisphere Model: R2=0.994; RMSE=1.10

< 5% < 0.2
North Hemisphere Model: R2=0.989; RMSE=1.67

South Hemisphere Model: R2=0.994; RMSE=1.10

< 2% < 0.3
North Hemisphere Model: R2=0.988; RMSE=1.78

South Hemisphere Model: R2=0.995; RMSE=1.09

< 5% < 0.3
North Hemisphere Model: R2=0.986; RMSE=1.88

South Hemisphere Model: R2=0.994; RMSE=1.10

Buffer Radius: 5.0 km

Built-up Percentage (%) Average EVI Model Performance

< 2% < 0.2
North Hemisphere Model: R2=0.989; RMSE=1.67

South Hemisphere Model: R2=0.994; RMSE=1.10

< 5% < 0.2
North Hemisphere Model: R2=0.989; RMSE=1.67

South Hemisphere Model: R2=0.994; RMSE=1.10

< 2% < 0.3
North Hemisphere Model: R2=0.988; RMSE=1.78

South Hemisphere Model: R2=0.995; RMSE=1.09

< 5% < 0.3
North Hemisphere Model: R2=0.988; RMSE=1.78

South Hemisphere Model: R2=0.995; RMSE=1.09

2.3 A global dataset of CO2 enhancements

The CO2 enhancements, ∆XCO2, is estimated as the difference between remote-sensing CO2 observations (XCO2) and a

column-average concentration equivalent of the CO2 baseline (XCO2b) (Eq.7), considering the vertical profile of atmospheric

CO2 by altitude (Bischof et al., 1980). We derived XCO2b by applying a linear calibration function to CO2b, based on 28,397 co-160

located observations from OCO-3 and CO2 background stations (R2=0.909). The calibration function, with both its coefficients

and constant terms linearly dependent on latitude due to the sensitivity of atmospheric vertical mixing and circulation to latitude

changes (Monte-carlo and Sun, 1985; Huth et al., 2008), can scale ground-sourced CO2 observations to satellite-based column

average concentration.

∆XCO2 = XCO2−XCO2b (7)165
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3 Dataset description

This study develops a cutting-edge dataset featuring instantaneous and highest-resolution (≈ 3 km2) estimates of global CO2

enhancements, which contains 54,448,171 ∆XCO2 observations across terrestrial regions (between approximately 52.88°S and

53.58°N) from August 2019 to November 2023. Of them, 1,231,856 ∆XCO2 samples locate in urban areas, as defined by a

published global urban extents map (Zhao et al., 2022). The dataset’s high spatiotemporal resolution enables precise detection170

of short-term CO2 enhancements driven by human activities and natural processes. For long-term evolution of atmospheric

CO2 burden, monthly or annual aggregations are recommended.

However, the spatio-temporal coverage of ∆XCO2 is incomplete owing to OCO-3 observations loss attributed to cloud

coverage and other data quality issues (Table. 1). Users are advised to examine the data coverage within their specific study

area. Efforts are underway to mitigate this problem leveraging spatio-temporal interpolation techniques (Wu et al., 2024).175

Ongoing improvements of dataset coverage are expected as OCO-3 observations accumulate. A future work will involve cross-

verifying background CO2 estimates at a regional scale to ensure the consistency and accuracy of baseline models at different

spatial resolutions.

The global dataset of CO2 enhancements is stored in a NetCDF file with data attributes including latitude, longitude, time,

satellite-derived CO2, and CO2 enhancements. At the time of writing this article, this dataset has been updated to November180

2023. Future updates will also be available alongside with newly available OCO-3 data and NOAA ESRL station data.

4 Results and discussion

4.1 Dataset validation

4.1.1 Validation against tropospheric NO2 measurements

The validation of this developed CO2 enhancements dataset is performed by comparing ∆XCO2 values in urban areas with185

co-located tropospheric NO2 columns. This is a well-accepted approach because of the CO2-NOx co-emission (Dou et al.,

2023; Huo et al., 2022; Lei et al., 2022). Due to its shorter lifetime (hours), NO2 is less affected by long-distance atmospheric

transport, making it easier to be detected (Reuter et al., 2014; Richter et al., 2005). It means that the NO2 column variation

can trace the enhanced urban CO2 compared to the global baseline due to human activities or natural processes (Wang et al.,

2020). This study uses the Sentinel-5P TROPOMI Tropospheric NO2 L2 product (https://disc.gsfc.nasa.gov/), which provides190

the tropospheric NO2 column measures at a spatial resolution of 3.5×5.5 km2. Observations with a quality assurance (qa)

value higher than 0.75 are utilized here to ensure trustworthiness. We geospatially match the hourly ∆XCO2 samples and

the co-located NO2 observed throughout the three-hour window covering one hour before and one hour after the specified

hour of the day. We also perform aggregation by averaging the ∆XCO2 values within the NO2 grids. Since the NO2 data

is coarser than our dataset, we only use NO2 grids that have at least three ∆XCO2 observations to illustrate the relationship195
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Fig. 4. Validation of global CO2 enhancements (∆XCO2). (a) Relationship between the binned ∆XCO2 and co-located average NO2 values

in built-up areas worldwide. The error bar denotes the 95% Confidence Interval. (b) Compare the hourly ∆XCO2 on three days in Los

Angeles with a previous study (Kiel et al., 2021). The error bar denotes standard deviations.

between binned ∆XCO2 and average NO2 values. Using ∆XCO2 samples from global built-up regions, we confirm a strong

correlation between the proposed CO2 enhancements and NO2 values, with R2=0.896 (Fig. 4a).

4.1.2 Comparison with existing urban CO2 enhancements

We also compare ∆XCO2 data proposed in this article with a previous urban CO2 enhancements paper focusing on the Los

Angeles megacity which measured background concentration using a remote surface station (Kiel et al., 2021). Kiel et al.200

(2021) reported intra-urban enhanced CO2 relative to the background CO2 for specific one hour on four days. To mitigate the

wind impacts on locally atmospheric CO2, only urban CO2 observations from three of those days are compared (Fig. 4b). We

find that the hourly ∆XCO2 estimates provided by our datasets align closely with those reported in Kiel et al. (2021). The

Mann-Whitney U test, with a p-value of 0.4, indicates insignificant difference between the ∆XCO2 averages of two datasets.

This suggests a great agreement between our CO2 enhancements dataset and prior works.205

4.2 Spatial patterns of global CO2 enhancements

Fig.5a illustrates the spatial distributions of global ∆XCO2 measurements aggregated to 2°×2° grids. From 2019 to 2023, the

global land exhibits ∆XCO2 ranging from -49.86 ppm to 21.25 ppm with an average of 0.58 ppm and a standard deviation

of 1.81 ppm (Fig. 5b). North Hemisphere shows an average ∆XCO2 at 0.67 ppm (std=1.98), which is approximately 81%

higher than the average ∆XCO2 of 0.37 ppm observed in the South Hemisphere (std=1.32) (Fig. 5b). We note that major210

CO2 enhancements are concentrated in Eastern and South-Eastern Asia as well as equatorial tropical forests (e.g., Indonesia
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forest cover and tropical savannahs) (Fig. 5a). High ∆XCO2 levels in Eastern and South-Eastern Asia are primarily driven

by anthropogenic factors including accelerated socioeconomic development and population growth. In contrast, the elevated

∆XCO2 near the equator can be attributed to biospheric factors. First, frequent fires in the tropical savannahs of the Sahel-

Sudano-Guinean region emit substantial amounts of CO2 into the atmosphere (Van Der Werf et al., 2017), Second, tropical215

woody vegetation increasingly functions as net carbon sources due to degradation and deforestation (Baccini et al., 2017).

With fine spatio-temporal resolution, the global dataset of CO2 enhancements also provides detailed information for mon-

itoring and characterizing ∆XCO2 within urban areas. There are significant heterogeneity in urban ∆XCO2 levels across six

continents (Fig. 6a). North America has the highest average (mean = 1.76 ppm; std = 2.04 ppm), displaying relatively lower

∆XCO2 in the east than the west, because larger quantities of plants in the east absorb atmospheric CO2 and attenuate the220

∆XCO2 levels. Asia follows, with an average of 1.72 ppm and a standard deviation of 2.08 ppm. By comparison, Oceania has

the lowest ∆XCO2 levels, averaging 0.59 ppm (std = 1.27 ppm) from 2019 to 2023.

The ∆XCO2 values observed in global urban areas range from -16.89 ppm to 18.66 ppm with an average approximation

of 1.43 ppm and a standard deviation of 2.04 ppm (Fig. 6b). The urban average ∆XCO2 worldwide being roughly 1.5 times

higher than the global terrestrial mean highlights the significant influence of urban environments on the rise of atmospheric225

CO2 levels. Urban areas in the North Hemisphere have an average ∆XCO2 of 1.52 ppm, about 95% higher than the average

level in the counterparts of South Hemisphere (Fig. 6c-d), owing to populated city distributions in the North. Fig. 7 exemplifies

the spatial maps of ∆XCO2 across six global cities. The spatially-explicit ∆XCO2 values at sub-city scale have been clearly

depicted and varying ∆XCO2 levels between urban areas are also shown.

4.3 Temporal dynamics of global CO2 enhancements230

The temporal patterns of global CO2 enhancements differ between the North and South Hemispheres, both in terms of changes

in monthly ∆XCO2 averages and in their seasonal variability. In the North Hemisphere, the monthly trend of ∆XCO2 mean

has a statistically significant increase (p-value<0.05 tested by a linear least-squares regression) from 2019 to 2023 with a

slope of roughly 0.03 ppm per month (R2=0.31). Within North hemisphere urban areas, the monthly ∆XCO2 mean increases

approximately 0.04 ppm per month (R2=0.33) (Fig. 8a). No notable trend in the monthly ∆XCO2 averages has been detected235

in the South Hemisphere and its urban areas (Fig. 8b). Moreover, the North Hemisphere, regardless of terrestrial land or urban

coverage, experiences more pronounced seasonal fluctuations compared to the South Hemisphere which has lower terrestrial

vegetation biomass.

Seasonal disparities in average ∆XCO2 are evident (Fig. 8c), with the highest average (mean = 1.05 ppm) occurring in

autumn in which terrestrial ecosystem increases net carbon release due to stronger total ecosystem respiration relative to gross240

primary productivity (Tang et al., 2022; Piao et al., 2008). In contrast, spring experiences the lowest average ∆XCO2 (mean

= 0.02 ppm) because of the onset of growing season and reduced human heating and cooling demands (Shen et al., 2014).

Human cooling- and heating-caused CO2 emissions explain the increases in averaged ∆XCO2 during summer (mean = 0.67

ppm) and winter (mean = 0.40 ppm), respectively, compared to spring.
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Fig. 5. The spatial map of CO2 enhancements (∆XCO2) in global land areas at grids of 2° latitude by 2° longitude for illustration purpose

(a). The box-plots display the ∆XCO2 distributions at the original resolution (2.2×1.6 km2) across land areas globally, as well as within

the North and South Hemisphere (b). The ‘whiskers’ of box-plots extend to 1.5 times the Interquartile Range (IQR) from Q1 and Q3, and

outliers are hidden. The green triangle denotes the mean value and the orange line signifies the median value.

5 Conclusions245

We generate a global dataset of CO2 enhancements relative to the long-term CO2 baseline, intending to identify ways that

satellite-derived retrievals can guide local net-zero target and to foster international partnerships toward achieving carbon

neutrality. Through synergistic integration of satellite-derived and ground-sourced CO2 observations, this dataset provides

54,448,171 and 1,231,856 ∆XCO2 records in global land areas and global urban areas over 2019-2023, respectively, with high

spatial (≈ 3 km2) and temporal (instantaneous) resolutions. The spatiotemporal patterns also reveal that this CO2 enhancements250

dataset is capable of capturing and characterizing the variability in net effects of carbon sources, sinks, and atmospheric

transport on atmospheric CO2 increases, across the globe and down to minimal intra-city scale.

The core strength of this dataset is to deliver spatially-explicit maps that enable instantaneous monitoring and ensure con-

tinuous, equitable tracking of CO2 enhancements at multiple scales (across continents, countries, and cities). By identifying

hot-spots and diagnosing temporal trends via a standardized metric, it equips international and domestic policy-makers with255
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Fig. 6. The spatial maps of CO2 enhancements (∆XCO2) throughout global urban areas (2°×2°) and six regions (1°×1°) (a). The ∆XCO2

distributions within urban areas are presented for the global scale (b), the North Hemisphere (c), and the South Hemisphere (d). The

‘whiskers’ of box-plots extend to 1.5 times the Interquartile Range (IQR) from Q1 and Q3, and outliers are hidden. The green triangle

denotes the mean value and the orange line signifies the median value.
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Fig. 7. The spatial maps of CO2 enhancements (∆XCO2) of six global cities aggregated to 0.02° resolution grids.

evidence-based insights. This will support the development of targeted and well-informed strategies for hierarchical carbon

governance, and ultimately enhancing effective responses to climate risks.

6 Data availability

The global dataset of CO2 enhancements is freely available at https://doi.org/10.5281/zenodo.15209825 (Zhou et al., 2025).

This dataset has been organized in NetCDF format under the WGS84 geographic coordinate system. It is compatible with260

Python, R, and free GIS software for reading and post-processing. As the satellite-derived and ground-sourced CO2 observa-

tions update, the dataset will be continuously released aiming to consistently support in global carbon management and climate

change mitigation.
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Fig. 8. The monthly variations of CO2 enhancements (∆XCO2) in the North Hemisphere (a) and South Hemisphere (b). The monthly mean

∆XCO2 values exhibit statistically significant upward trend over land and urban areas in the North Hemisphere (p-value<0.05) whereas no

significant trend is observed in the South Hemisphere. Global seasonal cycles of CO2 enhancements are shown at (c). The ‘whiskers’ of

box-plots extend to 1.5 times the Interquartile Range (IQR) from Q1 and Q3, and outliers are hidden. The green triangle denotes the mean

value and the orange line signifies the median value.
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