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Abstract. The eddy covariance method is used by various disciplines to measure surface-atmosphere 11 
fluxes of both vector and scalar quantities. However, eddy covariance observations are uncommon in 12 
urban areas. One of the few long-term and ongoing urban flux experiments is the Indianapolis Flux 13 
Experiment (INFLUX), which has successfully deployed eddy covariance towers at eleven locations 14 
measuring fluxes from various land cover types in and around the urban environment. The data collected 15 
from this network of towers has been used to determine urban greenhouse gas emissions, assess transport 16 
model performance, and separate anthropogenic from biogenic sources. This paper describes the available 17 
data associated with the INFLUX eddy covariance network, provides details of data processing and 18 
quality control, and provides site attributes needed to interpret the data. For access to the various data 19 
products from the INFLUX eddy covariance work, please see the data availability section below. 20 
 21 
Short summary. We present data from a network of towers in Indianapolis used to study how heat and 22 
gases move between the surface and atmosphere in a city. This rare, long-term urban experiment helps us 23 
understand things like carbon emissions from these urban areas. We explain what was measured, how we 24 
checked data quality, and why these observations help improve our overall understanding of the urban 25 
environment.  26 
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1   Introduction 27 
 28 
Eddy covariance (EC) is a method for quantifying the transfer (i.e., flux) of mass, energy, and momentum 29 
between the surface and the atmosphere. Using EC, investigators can monitor a system with minimal 30 
disturbance over long periods, making it an attractive method for various disciplines (e.g., ecologists, 31 
meteorologists, hydrologists) (Baldocchi et al., 2001). The foundation of the technique is to sample the 32 
spectrum of turbulent eddies and the associated scalar constituents to calculate the covariance of the 33 
vertical wind component and the variable of interest. This covariance can be used to quantify the 34 
turbulent surface flux of a variable (vector or scalar) in many conditions (e.g. Yi et al. 2000). This method 35 
typically uses fast response (≥10Hz) instruments to measure the three-dimensional wind and various 36 
atmospheric scalars (e.g., CO2, H2O, temperature). A comprehensive description of the EC method can be 37 
found in Aubinet et al. 2012 and Burba 2013 or many micrometeorological-focused texts (Foken, 2008; 38 
Lee et al., 2004). 39 
 40 
Urban EC work often involves quantifying greenhouse gas (GHG) emissions. Urban areas are responsible 41 
for 67-72% of anthropogenic CO2 emissions globally (Lwasa et al., 2023). Many cities have pledged to 42 
reduce GHG emissions in this era of anthropogenic climate change. The EC method can directly measure 43 
GHG fluxes within the tower’s footprint. For example, Liu et al., (2012) investigated spatial and temporal 44 
variability of CO2 fluxes in the Beijing megacity using the EC method and found weekly (e.g., traffic 45 
volume) and seasonal (e.g., domestic heating) patterns in CO2 fluxes. Crawford and Christen (2015) were 46 
able to disaggregate observed CO2 fluxes into biogenic and anthropogenic sources by modeling various 47 
sources/sinks within the turbulent source area (i.e., flux footprint) of a residential area in Vancouver, 48 
Canada. Pawlak and Fortuniak (2016) assessed the temporal variability of CH4 fluxes in a populated area 49 
of Łódź, Poland, and found the city's annual emissions (17.6 g m-2 year-1) were comparable to surrounding 50 
natural sources like wetlands (18 g m-2 year-1). Menzer and McFadden (2017) used statistical partitioning 51 
of CO2 fluxes over a suburban neighborhood outside Saint Paul, Minnesota, (US-KUO: KUOM tower) to 52 
separate biogenic from anthropogenic sources.  53 
 54 
Mixed fluxes are not unique to urban flux measurements. Ecosystem flux measurements have endeavored 55 
for years to disaggregate, for example, respiration from photosynthesis and transpiration from 56 
evaporation. Biological and anthropogenic CO2 fluxes have been disaggregated using both statistical 57 
partitioning methods, which model some carbon source or sink (Crawford and Christen 2015; Lee et al. 58 
2021; Menzer and McFadden 2017), and tracer ratio methods (Ishidoya et al. 2020; Wu et al. 2022). In a 59 
similar vein, the Indianapolis Flux Experiment (INFLUX; Davis et al., 2017) primarily investigates 60 
greenhouse gas (GHG) emissions in and around Indianapolis. The EC method continues to increase in 61 
popularity and accessibility, increasing the number of EC towers (i.e., flux towers) in operation. Despite 62 
this expansion in the number of towers contributing data to global networks like FLUXNET 63 
(https://fluxnet.org/), most flux towers monitor rural vegetative communities. Urban environments are 64 
underrepresented (Pastorello et al., 2020). 65 
 66 
A handful of projects have successfully measured fluxes using EC in the urban environment (Biraud et al., 67 
2021; Kotthaus and Grimmond, 2014; Menzer and McFadden, 2017; Vogt et al., 2006; Wu et al., 2022), 68 
and collaborative intercity comparisons have and continue to utilize the increasing number of urban EC 69 
measurements (Lipson et al., 2022; Nicolini et al., 2022; Papale et al., 2020). For example, Nicolini et al. 70 
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(2022) compared thirteen EC towers in eleven different European cities to assess the impacts of COVID-71 
19 on CO2 emissions. Through this work, they found a significant relationship between factors such as the 72 
lockdown stringency index and relative CO2 flux change (i.e., before vs. during lockdown), showing the 73 
value of EC measurements in detecting long and short-term changes in CO2 fluxes in real time. Other 74 
efforts, such as the Urban-PLUMBER project (https://urban-plumber.github.io/), have gathered urban EC 75 
measurements from twenty towers located all over the world, creating a dataset of urban EC 76 
measurements covering a spectrum of different climatic conditions and urban forms used in model 77 
evaluation (Lipson et al., 2022). 78 
 79 
While having a single tower in a city is invaluable, a single flux tower cannot represent the heterogeneous 80 
mosaic across the entire city. Having multiple towers within and outside a single city allows for intra-city 81 
comparisons and assessment of the urban-rural interface. For example, Nicolini et al. (2022) were able to 82 
use paired towers within the same city (e.g., residential vs. non-residential) to infer qualitative 83 
information on the dominant CO2 driver (e.g., vehicular, vegetation, etc.). Peters et al. (2011) showed the 84 
benefit of measuring turfgrass lawns using a short-stature (1.35 m) tower to help interpret ET 85 
measurements made on the KUOM tall tower (40 m) in Saint Paul, Minnesota.   86 
 87 
The urban greenhouse gas test beds program of the National Institute of Standards and Technology 88 
(Semerjian and Whetstone, 2021) has endeavored to “improve emission measurement tools to better equip 89 
decision makers and mitigation managers with capabilities to chart progress in GHG emissions 90 
mitigation” (https://www.nist.gov/greenhouse-gas-measurements/urban-test-beds). The INFLUX project 91 
is the longest-running test bed in this program. Atmospheric inversions are the primary technological 92 
approach employed for urban GHG emissions estimates in the test bed program (Karion et al., 2023; 93 
Lauvaux et al., 2020; Yadav et al., 2023) given their ability to encompass emissions from the entirety of 94 
an urban area. These approaches struggle, however, to infer the spatial structure of emissions within a city 95 
(Lauvaux et al., 2020). Eddy covariance flux towers, long used to study fluxes at a spatial resolution more 96 
accessible to local-scale, process-based model evaluation, have been deployed in INFLUX to complement 97 
whole-city atmospheric inversions. 98 
 99 
The INFLUX EC flux towers have measured CO2, H2O, energy, and momentum fluxes in and around 100 
Indianapolis. The network includes EC flux observations from eleven locations (Fig. 1), comprising over 101 
a decade and a half of observation site years (Table 1, Fig. 2). These tower locations range from 102 
agricultural sites in the croplands surrounding Indianapolis to towers in the cities’ interior over turfgrass, 103 
suburban forests, residential areas, and heavily developed urban regions (Fig. 1). This multiplicity of flux 104 
sites was achieved by moving instrumentation from site to site as deemed necessary to sample the 105 
variability in fluxes in and around this urban landscape. A subset of the flux measurements (Table 1) has 106 
been co-located with mole fraction observations (Richardson et al., 2017) from the INFLUX urban GHG 107 
testbed monitoring network (Miles et al., 2017a).  108 
 109 
This paper documents the urban EC measurements undertaken as part of the INFLUX project. We discuss 110 
methods for quality-controlling the INFLUX EC measurements and describe the groups of EC flux sites 111 
within the INFLUX project (i.e., agricultural, turfgrass, and tall towers). We present the data processing 112 
required to interpret the data within this urban network and document the availability of data products.  113 
 114 
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 115 
Figure 1. Locations of INFLUX eddy covariance towers in and around the city of Indianapolis. The gray 116 
shading represents the 2023 impervious surface cover from the National Land Cover Database 117 
(doi.org/10.5066/P9JZ7AO3). Major roadways are depicted using orange lines and waterways in light 118 
blue. The Morgan-Monroe State Forest (MMSF) AmeriFlux tower is also included for spatial reference. 119 
Service layer credits go to City of Indianapolis, Marion County, Esri, TomTom, Garmin, SafeGraph, 120 
FAO, METI/NASA, USGS, EPA, NPS, USFWS, and GeoTechnologies Inc. 121 

2    INFLUX Eddy Covariance Tower Network 122 
2.1   Flux tower sites and site categories 123 
The INFLUX flux towers can be subdivided into heterogeneous (US-INc, US-INg, US-INf) and 124 
homogeneous sites. Within the homogenous grouping, we further subdivide the towers into agricultural 125 
(US-INd, US-INe, US-INi, US-INj, US-INn, US-INp) and turfgrass (US-INa, US-INb) categories. Each 126 
site is equipped with a sonic anemometer, either a Gill WindMaster (WindMaster, Gill Instruments, 127 
Lymington, UK) or CSAT3 (CSAT3, Campbell Scientific, Logan, UT, USA), and an infrared gas 128 
analyzer (LI-7500DS or LI-7500A LI-COR Biosciences, Lincoln, NE, USA) collecting data at 10Hz 129 
frequency (Table 2). The low-stature towers are also instrumented with a temperature and humidity probe 130 
(HMP155, Vaisala Oyj, Vantaa, Finland), and a subset are equipped with photosynthetically active 131 
radiation (PAR) sensors (LI190R, LI-COR Biosciences, Lincoln, NE, USA) (Table 2). US-INc and US-132 
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INg were equipped with 4-way net radiometers (CNR4, Kipp and Zonen, Delftechpark, Netherlands) in 133 
October 2023 and March 2024, respectively. In addition to the INFLUX EC towers, the AmeriFlux Core 134 
Site US-MMS (Figure 1), located in the Monroe-Morgan State Forest, is approximately seventy 135 
kilometers to the southwest of Indianapolis (Dragoni et al., 2011; Schmid et al., 2000). 136 

 137 
Figure 2: Data availability at each site through 2023. Each half-hour data point is indicated by a red “+”, 138 
flux instrumentation deployment dates are indicated by black x’s, and flux instrumentation 139 
decommissioning dates are indicated by gray x’s. Any missing data between the deployment and 140 
decommissioning dates is due to power loss or instrument malfunction. 141 

Table 1. Site identification in FLUXNET format, deployment period, and short description of each site. 142 

Site Time Start Time End Site Description 

US-INa August 2017 April 2019 
Pioneer Cemetery in Crown Hill Cemetery tower 
measured a minimally managed turfgrass lawn.  

US-INb November 2018 April 2019 The Fort Golf Resort tower measured a heavily 
managed turfgrass lawn.  

US-INc October 2020 Current Downtown Indianapolis tower measured an urbanized, 
heterogeneous area and is also mole fraction site 03*. 

US-INd August 2017 November 2018 
An agricultural tower near Pittsboro measured a 
mixture of corn and soy. 

US-INe September 2017 October 2020 An agricultural tower near Pittsboro measured corn 
(2018 and 2020) and soy (2019). 

US-INf January 2013 November 2013 
The tower at East 21st St measured a heterogeneous 
commercial and residential area and is also mole 
fraction site 02*. 

US-INg April 2019 Current 
Wayne Twp Comm tower measures a heterogeneous 
residential and commercial area and is also mole 
fraction site 07*. 
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US-INi April 2019 May 2022 The agricultural tower measured soy (2019) and corn 
(2021). Located near mole fraction site 09*. 

US-INj May 2020 March 2023 
The agricultural tower measured corn during both 
growing seasons (2020 and 2022). Located near mole 
fraction site 09*. 

US-INn April 2019 October 2021 
Agricultural tower measured corn during 2019 and 
2021. Located near mole fraction site 14*. 

US-INp May 2020 April 2021 
The agricultural tower measured a mixture of corn and 
turfgrass in 2020. Located near mole fraction site 14*. 

* Mole fraction towers and their numbers are described in Miles et al. (2017a). 143 
 144 
Table 2. Measurement heights of deployed eddy covariance instruments and flux instruments for each 145 
site. 146 

Site 
EC 

measurement 
height 

Infrared gas  
analyzer 

Sonic 
anemometer 

Temperature/ 
Humidity 

PAR Net 
Radiation 

Arable 

US-INa 3 m Licor 
LI-7500A 

Campbell 
CSAT3 

Vaisala 
HMP155 

- - - 

US-INb 3 m Licor 
LI-7500A 

Campbell 
CSAT3 

Vaisala 
HMP155 

- - - 

US-INc 43 m Licor 
LI-7500A 

Campbell 
CSAT3 

- - Kipp & 
Zonen 
CNR4 

(10/2023) 

- 

US-INd 3 m Licor 
LI-7500A 

Campbell 
CSAT3 

Vaisala 
HMP155 

-  - 

US-INe 3 m 
Licor 

LI-7500A 
Campbell 
CSAT3 

Vaisala 
HMP155 

-  Yes 

US-INf 30 m 
Licor 

LI-7500A 
Campbell 
CSAT3 

   - 

US-INg 41 m Licor 
LI-7500DS 

Gill  
WindMaster 

- - Kipp & 
Zonen 
CNR4 

(03/2024) 

- 

US-INi 3 m Licor 
LI-7500A 

Campbell 
CSAT3 

Vaisala 
HMP155 

Licor 
LI190R 

- - 

US-INj 3 m Licor 
LI-7500A 

Campbell 
CSAT3 

Vaisala 
HMP155 

Licor 
LI190R 

- Yes 

US-INn 3 m Licor 
LI-7500A 

Campbell 
CSAT3 

Vaisala 
HMP155 

Licor 
LI190R 

- - 
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US-INp 3 m Licor 
LI-7500A 

Campbell 
CSAT3 

Vaisala 
HMP155 

- - Yes 

 147 
2.2   Data acquisition and organization 148 
 149 
The INFLUX EC instruments produce 10 Hz GHG data files, each containing thirty minutes of 150 
continuous data; 48 files per day. The GHG file is then transferred from the logger to a Linux server using 151 
SFTP. Each instrument has a unique incoming directory where the files are stored. Every night, a set of 152 
shell scripts checks to see if all 48 files have been delivered. Furthermore, every night, GHG files are 153 
copied to an archive while the data files are checked for (i) readability for further processing (occasionally 154 
some files are corrupt), (ii) monotonically time increase of recorded data (will be automatically corrected 155 
if possible), (iii) any non-ASCII characters which could cause problems during further scientific 156 
processing), (iv) incomplete data rows. Emails are automatically generated if any fault is recognized, 157 
while copies of the automatically modified and corrected data files are saved. Each step is captured in a 158 
log file. Missing data, errors, and file modifications due to errors trigger an email notification. These 159 
checks test file integrity and completeness of data files. Once the integrity tests are completed, the data is 160 
automatically processed and analyzed using EddyPro (LI-COR, 2021) and Python scripts. Graphics of the 161 
processed data (two-week data window) are automatically updated online to manually monitor the 162 
incoming data and quickly identify and address issues. This lets researchers quickly see whether the 163 
instruments produce reasonable results or need immediate attention. 164 

 165 
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Figure 3. Percent of total data (i.e., all wind directions) flagged (radial) as a binary attack angle flagging 166 
(red/blue) vs. wind direction (angular) at US-INc (Oct 2020 – Jan 2023). Radial scales show 1.1, 2.2, 3.3, 167 
4.4, and 5.6 percent of the total data moving from the inner to the outer ring, respectively. The red triangle 168 
represents the location of US-INc. The base map is a digital surface map generated using 2016 Indiana 169 
Statewide 3DEP LiDAR Data Products for Marion County (USDA, 2016). Service layer credits go to 170 
Maxar and Microsoft. 171 
2.3   Flux processing and quality control 172 
 173 
The complete time series of fluxes are calculated separately from the automatic processing script using a 174 
set of distinct post-processing steps and the EddyPro software package. For a comparison between how 175 
EddyPro compares to other commonly used software (e.g., TK3 and eddy4R) when computing fluxes at 176 
tall urban flux towers, please see Lan et al. (2024). For every thirty minutes, we apply a block-averaging 177 
detrending (Foken, 2008; Lee et al., 2004) and planar fit coordinate rotation (Lee et al., 2004; Paw U et 178 
al., 2000; Wilczak et al., 2001). Only a planar fit rotation was applied to US-INf, and none of the 179 
following corrections or quality control tests were used. The Vickers and Mahrt (1997) despiking 180 
procedure is done before calculating fluxes, spikes are removed, and the number of spikes is reported. As 181 
the molar densities are measured by open-path sensors (LI-7500A or LI-7500DS), we apply the Webb, 182 
Pearman, and Leuning correction for density fluctuations (Lee and Massman, 2011; Paw U et al., 2000; 183 
Webb et al., 1980). The cospectra are corrected (high and lowpass) via the analytical methods of 184 
Moncrieff et al. (1997), which is based on the methods of Moore (1986) using the similarity-based 185 
cospectral models from Kaimal et al. (1972). For each averaging period, using the methods of Vickers and 186 
Mahrt (1997), a set of flags is generated based on the high-frequency measurements. 187 
 188 
Flux data are flagged for violating an angle of attack test if >10% of the wind vectors exceed an attack 189 
angle of >|30º| for the averaging period. In the urban environment, the attack angle can be used to 190 
examine the impact of wake turbulence generated from roughness elements (RE) within the footprint of 191 
the tower. For example, wind directions from the southwest (180-225°) of US-INc (Fig. 3) are flagged ≥ 192 
30% of the time, detecting wake turbulence generated by a 30m tall building 100m southwest of the 193 
tower. From these impacted wind directions, the fluxes measured are not within the inertial sublayer (i.e., 194 
constant flux layer) where traditional EC assumptions are potentially valid. 195 
 196 
Fluxes are also flagged for violating one or more conditions under which the measured vertical 197 
covariance can directly relate to the surface flux. Stationarity tests are conducted for each half-hour using 198 
the methodology of Foken and Wichura (1996) and Vickers and Mahrt (1997). Modeled integral 199 
turbulence characteristics from flux variance similarity theory are compared to measured variances of 200 
winds and scalars using the methods of Foken and Wichura (1996). Depending on the degree of 201 
nonstationarity and deviation from flux similarity theory, as determined by the Foken and Wichura (1996) 202 
tests, each averaging period is assigned a value (1-9) based on the scheme of Mauder and Foken (2004). 203 
Given the heterogeneity level across the urban landscape, measurements from a tall urban tower likely 204 
seldom, if ever, meet the underlying assumptions of EC. Despite this, the measured covariance provides 205 
invaluable information regarding the turbulent exchange at the measurement height. Additionally, when 206 
comparing measurements made at these tall urban towers to similarity prediction, it should be noted that 207 
aerodynamic parameters like displacement height are often directionally dependent (Kent et al., 2018). 208 
Thus, the similarity-based relationship should scale differently depending on the wind direction. These 209 
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subtle details are not included in the current version of EddyPro, but the software's default flags, 210 
generated (as discussed here), can still guide users in interpreting the data. 211 
 212 
For two agricultural sites, US-INn and US-INp, periods of the high-frequency data were lost, and only a 213 
version of the processed thirty-minute data using the default EddyPro settings was recovered. At US-INn, 214 
the period is from 04-21-2019 00:00 UTC to 01-10-2020 03:30 UTC, and at US-INp, it is from 05-23-215 
2020 21:30 UTC to 12-22-2020 16:00 UTC. For these periods, a double rotation rather than a planar fit is 216 
used, and fluxes are flagged based on a simplified version of the 1-9 scheme after the Spoleto agreement, 217 
2004, for CarboEurope-IP, shown in Mauder Foken (2004). These periods of missing high-frequency data 218 
have been combined with those where the high-frequency data is available, meaning that there is a 219 
mixture of flagging scheme and coordinate rotation in some columns. 220 
 221 
After calculating half-hourly fluxes, additional screening methods generate flags based on periods with 222 
weak gas analyzer signals, extreme flux values, or weak turbulence. The data are flagged if the signal 223 
strength reported by the gas analyzer for a half-hour period falls below the mean signal strength for a 224 
moving window of two weeks. Nighttime data (i.e., periods when the solar altitude is ≤ 0º) are flagged 225 
during low turbulent intensities based on the methods of Goulden et al. (1996). We acknowledge that the 226 
use of friction velocity filters in urban areas is still under question (Papale et al., 2022); a consensus has 227 
not been reached. We assert that this remains a valuable screening tool that we apply to this dataset. 228 
Finally, the flux data are flagged based on a threshold of N standard deviations from the mean, where N is 229 
a number specific to each site and is chosen to keep the variable magnitudes within geophysical limits. 230 

 231 
Figure 4. CO2 fluxes (panels (a)-(d)), sensible heat fluxes (H) (panels (e)-(h)), latent heat fluxes (LE) 232 
(panels (i)-(l)), and momentum fluxes (τ) (panels (m)-(p)) at Site US-INg for 2022 with different quality 233 
control flags applied. From left to right, filtering sets 1, 2, 3, and 4, for each of the fluxes, are shown, 234 
representing a range of filtering choices from least to most strict. The number of points remaining in the 235 
dataset after removing quality control flags is indicated on each panel. With no filtering applied, there are 236 
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13,779 CO2 flux data points, 13,969 sensible heat data points, 13,697 latent heat flux data points, and 237 
13,969 momentum flux data points.   238 

Table 3: Description of quality control flag combinations considered for CO2, sensible heat (H), latent 239 
heat (LE), and momentum (τ) fluxes. Hard flag is abbreviated to hf in the table.  240 

Flux  Set 1 Set 2 Set 3 Set 4  
CO2  Friction velocity  

CO2 flux standard 
deviation  
 

Friction velocity  
CO2 flux standard 
deviation  
Spike hf w 
Amplitude resolution 
hf w 
Drop out hf w 
Absolute limits hf w  
Discontinuities hf w  
Spike hf CO2  
Amplitude resolution 
hf CO2  
Drop out hf CO2  
Absolute limits hf CO2  
Discontinuities hf CO2  
Signal strength 

Friction velocity  
CO2 flux standard 
deviation  
Spike hf w  
Amplitude resolution 
hf w  
Drop out hf w  
Absolute limits hf w  
Discontinuities hf w  
Spike hf CO2  
Amplitude resolution 
hf CO2  
Drop out hf CO2 
Absolute limits hf CO2  
Discontinuities hf CO2 
Signal strength  
CO2 QC greater than 5  

Friction velocity  
CO2 flux standard 
deviation  
Spike hf w  
Amplitude resolution 
hf w  
Drop out hf w 
Absolute limits hf w   
Skewness and kurtosis 
hf w  
Discontinuities hf w   
Spike hf CO2  
Amplitude resolution 
hf CO2  
Drop out hf CO2  
Absolute limits hf CO2  
Discontinuities hf CO2   
Signal strength  
CO2 QC greater than 5  
Attack angle hf 
Nonsteady wind hf 

H H standard deviation 
 
 
 

H standard deviation 
Spike hf w  
Amplitude resolution 
hf w  
Drop out hf w  
Absolute limits hf w  
Discontinuities hf w   

H standard deviation 
Spike hf w  
Amplitude resolution 
hf w  
Drop out hf w  
Absolute limits hf w 
Discontinuities hf w 
H QC greater than 5 

H standard deviation 
Spike hf w  
Amplitude resolution 
hf w 
Drop out hf w  
Absolute limits hf w  
Skewness and kurtosis 
hf w  
Discontinuities hf w 
H QC greater than 5 
Attack angle hf  
Nonsteady wind hf 

LE H2O flux standard 
deviation  
 
 

H2O flux standard 
deviation  
Spike hf w  
Amplitude resolution 
hf w 

H2O flux standard 
deviation  
Spike hf w 
Amplitude resolution 
hf w  

H2O flux standard 
deviation  
Spike hf w  
Amplitude resolution 
hf w  
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Drop out hf w  
Absolute limits hf w  
Discontinuities hf w  
Spike hf H2O  
Amplitude resolution 
hf H2O  
Drop out hf H2O 
Absolute limits hf H2O 
Skewness and kurtosis 
hf H2O  
Signal strength  

Drop out hf w  
Absolute limits hf w   
Discontinuities hf w  
Spike hf H2O  
Amplitude resolution 
hf H2O  
Drop out hf H2O 
Absolute limits hf H2O 
Skewness and kurtosis 
hf H2O  
Signal strength 
LE QC greater than 5 
 

Drop out hf w  
Absolute limits hf w   
Skewness and kurtosis 
hf w 
Discontinuities hf w  
Spike hf H2O  
Amplitude resolution 
hf H2O  
Drop out hf H2O 
Absolute limits hf H2O  
Skewness and kurtosis 
hf H2O  
Signal strength 
LE QC greater than 5 
Attack angle hf 
Nonsteady wind hf 

𝞽𝞽       Wind directions 
impacted by tower 
distortion  
 
 

Wind directions 
impacted by tower 
distortion  
Spike hf w  
Amplitude resolution 
hf w  
Drop out hf w  
Absolute limits hf w  
Discontinuities hf w  
Spike hf v  
Amplitude resolution 
hf v 
Drop out hf v 
Absolute limits hf v 
Discontinuities hf v  
Spike hf u 
Amplitude resolution 
hf u 
Drop out hf u 
Absolute limits hf u  
Discontinuities hf u  
Attack angle hf  
 

Wind directions 
impacted by tower 
distortion  
Spike hf w  
Amplitude resolution 
hf w  
Drop out hf w  
Absolute limits hf w  
Discontinuities hf w  
Spike hf v  
Amplitude resolution 
hf v 
Drop out hf v 
Absolute limits hf v 
Discontinuities hf v  
Spike hf u 
Amplitude resolution 
hf u 
Drop out hf u 
Absolute limits hf u  
Discontinuities hf u  
QC 𝞽𝞽 greater than 5 
Attack angle hf  
 

Wind directions 
impacted by tower 
distortion  
Spike hf w  
Amplitude resolution 
hf w  
Drop out hf w  
Absolute limits hf w  
Skewness and kurtosis 
hf w  
Discontinuities hf w  
Spike hf v  
Amplitude resolution 
hf v 
Drop out hf v 
Absolute limits hf v 
Skewness and kurtosis 
hf v 
Discontinuities hf v  
Spike hf u 
Amplitude resolution 
hf u 
Drop out hf u 
Absolute limits hf u  
Skewness and kurtosis 
hf u 
Discontinuities hf u  
QC 𝞽𝞽 greater than 5 
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Attack angle hf  
Nonsteady wind hf  

 241 

We provide processed, half-hourly flux datasets for each of the eleven INFLUX sites through Penn State 242 
Data Commons and Ameriflux (See Section 3). We do not remove data based on the generated flag for the 243 
data set available on Penn State Data Commons; instead, we leave the filtering decisions to the user. For 244 
most use-cases, we do not recommend eliminating all points flagged using the quality control flags 245 
provided using the methods Vickers and Mahrt (1997) and Mauder and Foken (2004) because of the large 246 
proportion of physically reasonable data flagged. We give an example of four different quality control flag 247 
combinations for CO2, latent heat, sensible heat, and momentum fluxes using observations at Site US-INg 248 
in Fig. 4. The four quality control flag combinations for each of these fluxes are summarized in Table 3. 249 
We recommended at minimum filtering the data according to friction velocity and CO2 flux standard 250 
deviation flags for analysis of CO2 fluxes, sensible heat standard deviations flags for analysis of sensible 251 
heat fluxes, latent heat standard deviation flags for analysis of latent heat fluxes, and removing wind 252 
directions from which the measurement is impact by distortion due to the tower (for Site US-INg, 253 
observations from wind directions 30-135 should be removed) for momentum fluxes (Set 1 in Table 3). 254 
To remove additional outlier points, we suggest filtering by Sets 2 and 3 (Table 3) as shown in Fig. 4b and 255 
Fig. 4c for CO2 fluxes, Fig. 4f and Fig. 4g for sensible heat fluxes, Fig. 4j and Fig. 4k for latent heat 256 
fluxes, and Fig. 4n and Fig. 4o for momentum fluxes. Given the significant reduction of overall data 257 
points, we do not suggest the flagging combination of Set 4, as shown in Fig. 4d, h, l, and p, unless the 258 
application of the data requires the strictest turbulence screening, which is appropriate only if the most 259 
idealized conditions for EC flux measurements are needed. At the tall urban flux towers (US-INc and US-260 
INg), we recommend not removing CO2 flux data based on the Vickers and Mahrt (1997) higher-moment 261 
statistics (i.e., skewness and kurtosis) since at these sites, these flags commonly target realistic data (Järvi 262 
et al., 2018). This is due to the urban environment's spatial and temporal source heterogeneity, which can 263 
cause the distribution of the high-frequency CO2 measurement for a single period to often exceed the 264 
default skewness or kurtosis thresholds in EddyPro. 265 
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 266 
Figure 5. The average summer (JJA) diel cycle of CO2 fluxes for each agriculture site-year. Each column 267 
is also labeled with the surrounding vegetation. The numbers indicate the average value for each half-hour 268 
flux corresponding to the underlying color. Text color is for visual purposes only. 269 

2.4   Agricultural Sites 270 
 271 
Understanding the boundary layer dynamics and CO2 fluxes surrounding a city is important for 272 
understanding measurements collected within the city. The area surrounding Indianapolis is mainly 273 
composed of agricultural fields planted with a rotation of corn and soybeans. We deployed short-stature 274 
(~3-m AGL) flux towers at six locations in agricultural fields within 30-60 km of downtown Indianapolis 275 
(Fig. 1). The instrumentation for the agricultural sites (US-INd, US-INe, US-INn, US-INp) was, in most 276 
cases, relocated annually to sample a variety of fields. Each location was given a different site key. To 277 
supplement the flux measurements, soil cores were collected from US-INp, US-INn, US-INi, and US-INe 278 
and analyzed for percent nitrogen, carbon, pH, and concentrations of nutrients and trace elements (K, Mg, 279 
Ca, Zn, Cu, S). Additionally, Arable (Arable Mark 2, Arable, San Francisco, CA, USA) sensors were 280 
deployed at agricultural sites (US-INi, US-INj, US-INn, US-INp) beginning in 2020 to collect 281 
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biometeorological measurements (e.g., NDVI, VPD, incoming solar radiation). We collected data at the 282 
six agricultural sites for eleven growing seasons (Fig. 5). 283 
 284 

Flux footprint analyses are used to identify averaging periods when these agricultural towers may 285 
have been strongly influenced by vegetation other than the crops to be sampled. These conditions arise 286 
because of the practical need to place the flux towers close to but not directly within the actively managed 287 
crop fields. The fractional coverage of the agricultural crop of interest (corn or soybean) within the 288 
estimated tower footprint was calculated for each agricultural flux site in the INFLUX network. The 289 
calculated fractional coverage values allow a data user to select thresholds for which they would consider 290 
the half-hourly flux value representative of the vegetation of interest. The Flux Footprint Prediction (FFP) 291 
model by Kljun et al. (2015) is used to produce the vegetation fraction for each point in the data record. 292 
Imagery from Google Earth and ArcGIS Pro software is used to visually select areas covered with the 293 
vegetation of interest. Areas with the vegetation type of interest are assigned a value of one, while other 294 
areas are assigned a value of zero. For all half hours during which the required input data are available, 295 
the FFP climatology function simulates footprints at a 1 m grid spacing for a 501 m by 501 m domain. 296 
The site map distinguishing landcover types and the footprint estimate is multiplied to obtain a gridded 297 
map representing only the footprint attributable to the vegetation of interest. For every possible half hour, 298 
two values are computed using the predicted footprints: a value representing the footprint attributable to 299 
the vegetation of interest and a value for the total footprint. The former is calculated by summing over the 300 
footprint attributable to the vegetation of interest, and the latter by summing the footprint over the entire 301 
domain. The ratio of these values represents the fraction of the footprint attributable to the vegetation of 302 
interest. 303 
 304 
2.5   Turfgrass Sites 305 
 306 
Turfgrass is a common urban land cover (Milesi et al., 2005). Only a handful of towers have previously 307 
been deployed to measure turfgrass lawns (i.e., mixed species low-stature vegetation often artificially 308 
managed through irrigation, fertilization, and/or mowing) (Ng et al., 2015; Pahari et al., 2018; Pérez-Ruiz 309 
et al., 2020; Peters and McFadden, 2012) despite these lawns being an abundant vegetative community in 310 
urban areas (Horne et al., 2025). We deployed two flux towers (US-INa and US-INb) to monitor turfgrass 311 
lawns. The two INFLUX turfgrass towers captured different levels of management intensity. US-INa 312 
measured fluxes over a cemetery lawn (Fig. 6) with lower intensity management (i.e., infrequent mowing, 313 
no fertilization, and no irrigation), and US-INb measured fluxes over a golf course (i.e., frequent mowing, 314 
fertilization, and irrigation). These towers were of low stature and sited to minimize contributions to the 315 
flux footprint from anything other than turfgrass. We have used the CO2 flux data from these two turfgrass 316 
towers to evaluate the Vegetation Photosynthesis and Respiration Model (VPRM) performance at 317 
reproducing seasonal turfgrass fluxes, finding that these lawns require a unique representation in the 318 
VPRM (Horne et al., 2025). 319 
 320 
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321 
Figure 6. The average winter (DJF) (a) and summer (JJA) (b) diel cycle of latent heat (LE), sensible heat 322 
(H), and CO2 fluxes for US-INa (cemetery lawn). Data for averaging are taken from the periods over the 323 
site deployment (Aug 2017 – April 2019). 324 
 325 
2.6   Heterogeneous Footprint (Mixed) Urban Flux Towers 326 
 327 
Three communications towers with EC instrumentation at 30 to 43 m AGL were instrumented to measure 328 
fluxes from the complex, mixed land cover typical of urban environments. These higher altitude 329 
measurements are necessary to measure fluxes above the trees and buildings commonly found across the 330 
metropolitan area. As mentioned, these towers host flux instrumentation and mole fraction measurements 331 
that are part of the INFLUX urban GHG testbed monitoring network (Miles et al., 2017a; Davis et al., 332 
2017). Footprint climatologies for the INFLUX mixed urban flux towers are shown in Figs. 7 - 9. We 333 
include footprint climatologies for these sites alone to show the level of heterogeneity at each site and the 334 
estimated area measured by these towers. These footprint climatologies guide our characterization of the 335 
regions sampled by these towers. We describe broad characteristics of the urban landscapes in their flux 336 
footprints following the example of the Urban-PLUMBER project (https://urban-plumber.github.io/, 337 
Lipson et al., 2022). Table 4 provides metadata for the area surrounding the three heterogeneous urban 338 
flux towers (US-INc, US-INf, US-INg). 339 
 340 
Table 4. Metadata for the surrounding land cover at the three tall flux towers. The domain is 4 km2 341 
centered around the respective tower and separated into quadrants NE [0-90°), SE [90-180°), SW [180-342 
270°), and NW [270-360°) to capture heterogeneity surrounding the tower. Data for percent impervious 343 
and canopy fractions come from the National Land Cover Database (NLCD) using data for 2021 (US-INc 344 
and US-INg) and 2013 (US-INf) (doi.org/10.5066/P9JZ7AO3). LiDAR data used to estimate roughness 345 
elements (RE) (buildings and trees ≥2m) characteristics comes from the 2016 Indiana Statewide 3DEP 346 
LiDAR Data Products for Marion County (USDA, 2016). Roughness element density is the ratio of 347 
surface area occupied by REs to total surface area (i.e., planar area index). 348 

Site Quadrant  LCZ 
Percent   
impervious 
(%) 

Percent 
tree 
canopy  

RE 
density 

Mean RE 
height (m) 

RE 
standard 
deviation 
(m) 

Maximum 
RE 
height (m) 
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cover 
(%) 

US-INc  
(43m 
AGL) 

NE LCZ 8 
(Large low-rise) 86 1 0.29 10.6 8.9 53 

 SE 
LCZ 8 
(Large low-rise) 85 2 0.32 9.4 8.7 57 

 SW LCZ 6 
(Open low-rise) 69 5 0.33 6.9 5.2 36 

  NW LCZ 6 
(Open low-rise) 

58 6 0.23 5.8 3.7 25 

US-INf 
(30m 
AGL) 

NE 

LCZ 8Bc 

(Large low-rise 
with scattered 
trees) 

67 4 0.27 6.1 2.7 30 

 SE LCZ 6 
(Open low-rise) 41 12 0.31 5.1 2.4 25 

 SW LCZ 6 
(Open low-rise) 

41 14 0.43 5.2 2.4 31 

  NW 
LCZ 6 
(Open low-rise) 49 11 0.35 5 2.1 23 

US-INg 
(41m 
AGL) 

NE 

LCZ 8B 

(Large low-rise 
with scattered 
trees) 

64 4 0.19 5.4 2.1 25 

 SE LCZ 6 
(Open low-rise) 

50 6 0.22 5.4 2.2 22 

 SW 
LCZ 6 
(Open low-rise) 35 12 0.33 5.4 2.6 34 

  NW LCZ 6 
(Open low-rise) 42 15 0.33 4.9 2.2 22 

 349 
A complication with EC measurements of atmospheric constituents in urban areas is that urban systems 350 
are influenced by both anthropogenic and biogenic components. Wu et al. (2022) demonstrated a method 351 
of disaggregation using INFLUX EC data and the mole fraction measurement profiles available at the 352 
three INFLUX mixed urban flux towers (Richardson et al., 2017; Miles et al., 2017a) and tracer ratio 353 
methods. This methodology estimates the fossil fuel component of the CO2 flux using carbon monoxide 354 
(CO) flux estimates combined with measurements of the CO to CO2 flux ratio from fossil fuel combustion 355 
(Turnbull et al., 2015). The biogenic CO2 flux is then determined by subtracting the fossil fuel flux from 356 
the total CO2 flux measured via EC. Wu et al. (2022) demonstrated the promise of this technique via 357 
comparisons to the Hestia urban emissions inventory. Vogel et al. (2024) applied this methodology to 358 
study changes in emissions caused by the COVID-19 lockdown. 359 
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 360 
Figure 7. The left image shows a footprint climatology over a satellite image (2022) for US-INc (43m 361 
AGL), produced using all data from 2022, and the Kljun et al. (2015) flux footprint prediction (FFP) 362 
model. The outermost footprint boundary represents 90% of the footprint area. Wind directions impacted 363 
by the building wake (Fig. 2) are removed. The right image shows a zoomed-in image of a satellite image 364 
from 2022, whose boundary is marked by the dashed line on the left figure. Service layer credits go to 365 
Maxar, Microsoft, Esri, DigitalGlobe, FSA, USGS, and Earthstar. 366 

 367 
Figure 8. The left image shows a footprint climatology over a satellite image (2022) for US-INg (41m 368 
AGL), produced using all data from the 2022 annual year, and the Kljun et al. (2015) flux footprint 369 
prediction (FFP) model. The outermost footprint boundary represents 90% of the footprint area. The right 370 
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image shows a zoomed-in image of a satellite image from 2022, whose boundary is marked by the dashed 371 
line on the left figure. Service layer credits go to Maxar, Microsoft, Esri, DigitalGlobe, FSA, USGS, and 372 
Earthstar.   373 

 374 
Figure 9. The left image shows a footprint climatology over a satellite image (2013) for US-INf (30m 375 
AGL), produced using all data available for US-INf, and the Kljun et al. (2015) flux footprint prediction 376 
(FFP) model. The outermost footprint boundary represents 90% of the footprint area. The right image 377 
shows a zoomed-in image of a satellite image from 2013, whose boundary is marked by the dashed line 378 
on the left figure. Service layer credits go to Maxar, Microsoft, Esri, DigitalGlobe, FSA, USGS, and 379 
Earthstar.  380 

Two mixed urban flux towers, US-INf and US-INg, can each be interpreted as two distinct flux tower 381 
sites. We describe these differences in terms of building and vegetation cover (Table 4) and local climate 382 
zones (LCZ) (Stewart and Oke, 2012). The EC instruments at US-INg, for example, are set between a 383 
highway (LCZ E – Bare rock or paved) and commercial buildings (LCZ 8B – Large low-rise with 384 
scattered trees) to the east and a forested residential neighborhood (LCZ 6 - Open low-rise) to the west. 385 
The two sectors exhibit dissimilar diel patterns of CO2 fluxes (Fig. 10). To the west, we observe a 386 
photosynthetic drawdown from the suburban forest during the growing season. To the east, we can see 387 
two distinct peaks in net emissions corresponding to morning and evening rush hour traffic (Vogel et al., 388 
2024). We suggest interpreting these data independently, essentially as two distinct flux towers, each of 389 
which senses a somewhat homogeneous (though mixed source) flux footprint. Similarly, the footprint at 390 
US-INf is divided roughly into northerly and southerly sectors (Table 4), with highway and commercial 391 
areas to the north and residences to the south. 392 
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 393 
Figure 10. Isopleths of measured CO2 flux at US-INg (April 2019 - January 2023) as a function of time 394 
of year (x-axis) and time of day (y-axis) for a) westerly wind directions (180 - 360º] and b) easterly wind 395 
directions (0 - 180º]. Positive values indicate net emissions of CO2; negative values indicate a net uptake 396 
of CO2. 397 

We have not divided the flux data from US-INf and US-INg into two distinct records, nor have we posted 398 
flux footprint data sets to accompany each flux tower. However, the flux tower records contain all the 399 
data needed to subdivide the data sets and produce flux footprints. We note that urban systems frequently 400 
violate the assumptions implicit in current flux footprint models (e.g., homogeneous turbulence forcing in 401 
the flux footprint). We argue that existing footprint models (e.g., Kljun et al., 2015) are still quite helpful 402 
in interpreting these data sets, but that more research into the sensitivity of these models to complex urban 403 
systems is warranted. 404 

3   Data availability 405 
  406 
Unprocessed 10Hz data and processed INFLUX data are available on Penn State Data Commons (Table 407 
5). This version contains all the processed data with flagging, but no data has been removed based on 408 
flagging. This processed data also included a metadata file describing the naming convention of variables 409 
and flagging. Data from all agriculture sites includes calculated fractional coverage and ancillary 410 
biometeorological data collected using the Arable sensors on site. 411 
 412 
Table 5. Citations for each INFLUX tower. The raw data collected directly from the instruments, a 413 
processed version of the data available on Ameriflux, and a processed version with no flagged data 414 
removed are available through Penn State Data Commons. 415 

Site 10Hz Data/full processed dataset Ameriflux 
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US-INa Richardson et al. (2023a) - 
https://doi.org/10.26208/CJTC-KS26 Davis (2023a) - https://doi.org/10.17190/AMF/2001300 

US-INb Richardson et al. (2023a) - 
https://doi.org/10.26208/CJTC-KS26 Davis (2023b) - https://doi.org/10.17190/AMF/2001301 

US-INc Richardson et al. (2023b) - 
https://doi.org/10.26208/fsy8-h855 Davis (2023c) - https://doi.org/10.17190/AMF/1987603 

US-INd Richardson et al. (2023c) - 
https://doi.org/10.26208/2NT2-RS82 Davis (2023d) - https://doi.org/10.17190/AMF/2001302 

US-INe Richardson et al. (2023c) - 
https://doi.org/10.26208/2NT2-RS82 Davis (2023e) - https://doi.org/10.17190/AMF/2001303 

US-INf Sarmiento and Davis (2017) - 
https://doi.org/10.17190/AMF/2001304 Davis (2023f) - https://doi.org/10.17190/AMF/2001304 

US-INg Richardson et al. (2023b) - 
https://doi.org/10.26208/fsy8-h855 Davis (2023g) - https://doi.org/10.17190/AMF/2001305 

US-INi Richardson et al. (2023c) - 
https://doi.org/10.26208/2NT2-RS82 Davis (2023h) - https://doi.org/10.17190/AMF/2001306 

US-INj Richardson et al. (2023c) - 
https://doi.org/10.26208/2NT2-RS82 Davis (2023i) - https://doi.org/10.17190/AMF/2001307 

US-INn Richardson et al. (2023c) - 
https://doi.org/10.26208/2NT2-RS82 Davis (2023j) - https://doi.org/10.17190/AMF/2001308 

US-INp Richardson et al. (2023c) - 
https://doi.org/10.26208/2NT2-RS82 Davis (2023k) - https://doi.org/10.17190/AMF/2001309 

 416 
In addition, all INFLUX EC datasets are available through the Ameriflux network 417 
(https://ameriflux.lbl.gov/, Table 5). As of May 2025, two of the eleven INFLUX flux locations (US-INc 418 
and US-INg) are actively collecting data. Data collected from active sites will be processed, updated, and 419 
made available through the Ameriflux network annually. 420 
 421 
These flux measurements are a component of a broader research effort, the Indianapolis Flux Experiment 422 
(INFLUX). Multiple additional measurements and model data sets exist, creating a more complete 423 
experimental data set to assess urban greenhouse gases in Indianapolis, IN. These include mole fraction 424 
measurements (Miles et al., 2017b), flask measurements (https://gml.noaa.gov/dv/site/?stacode=INX), 425 
Doppler lidar measurements (https://csl.noaa.gov/projects/influx/), anthropogenic inventories (Gurney et 426 
al., 2018), and aircraft measurements (https://influx.psu.edu/influx/data/flight/), Vegetation 427 
Photosynthesis and Respiration Model (VPRM) simulations (Horne and Davis, 2024; Murphy et al., 428 
2024), and Weather Research and Forecast (WRF) Reanalysis (Deng et al., 2020), which are not 429 
described in detail here. For more information concerning the INFLUX Project and the data collected, 430 
please visit https://influx.psu.edu. 431 

4   Conclusions 432 
 433 
The INFLUX EC network has become a vital component of the multivariate INFLUX data set. 434 
Micrometeorological methods like EC can bridge the gap between land surface modeling and atmospheric 435 
inverse methods used to quantify urban GHG fluxes. The INFLUX EC flux data expands the growing 436 
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database of urban flux measurements. Data representative of the range of land-atmosphere fluxes 437 
encountered in this region was obtained by deploying multiple sites representative of the land cover of the 438 
city and its surroundings. We hope the data availability will support cross-collaboration between projects 439 
involving urban environments.  440 
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