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Abstract 12 

This study presents a comprehensive approach for reconstructing a high-quality, continuous 13 

monthly sea level time series at the Ieodo Ocean Research Station (IORS) from 1993 to 2023 14 

using advanced artificial intelligence (AI) and machine learning (ML) models. After applying 15 

quality control to the in-situ KIOST data, including inverse barometric effect correction, 3σ 16 

filtering, and a 75% data coverage threshold, we validated trends using nearby PSMSL tide 17 

gauges and four ocean reanalysis datasets (CMEMS, GLORYS, ORAS5, HYCOM). The trend 18 

analysis showed a higher rate of sea level rise from in-situ data (4.94 mm/yr, Oct 2003–Dec 19 

2023) compared to satellite and model-based estimates (e.g., CMEMS: 3.53 mm/yr, Jan 1993–20 

Dec 2023), suggesting localized sea level rise in the East China Sea. Initial gap-filling used 21 

statistical models such as harmonic regression and regression-based climatology. A blended 22 

approach combining climatology and trend components achieved the best accuracy (RMSE 23 

~0.056 m, R² = 0.688). We then implemented various AI/ML models through an Iterative 24 

Imputer framework. Ensemble models (e.g., XGBoost) performed perfectly after 2003 but did 25 

not generalize well before 2004. Deep learning models like LSTM and GRU effectively 26 

captured seasonal and nonlinear patterns post-2003, with LSTM achieving RMSE = 0.023 m 27 

and R² = 0.95. Time series models Prophet and SARIMA-SIN successfully reconstructed the 28 

full time series, with SARIMA-SIN estimating the highest trend (5.61 mm/yr). Multiple linear 29 

regression using reanalysis data served as a baseline, but AI/ML models outperformed it in both 30 

accuracy and generalization. This study provides a reproducible, interpretable, and physically 31 

consistent framework for reconstructing sea level variability in semi-enclosed coastal seas. 32 
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1. Introduction 36 

Long-term sea level observations are critical for monitoring regional oceanographic and 37 

climatic changes, particularly in coastal and marginal seas where variability is amplified by 38 

topographic and atmospheric forcing (Hamlington et al., 2020; Cazenave and Moreira, 2022). 39 

The Ieodo Ocean Research Station, located at the intersection of the East China Sea (ECS) and 40 

the Southern East Sea (Sea of Japan), plays a pivotal role in observing regional sea level 41 

variability and marine environmental conditions (Han, 2020; Byun et al., 2021). As a 42 

strategically important in-situ platform, its various interval sea level records provide valuable 43 

information for understanding the dynamics of the Kuroshio Current system, East Asian 44 

monsoon variability, and climate change-driven sea level rise (Ha et al., 2019; Xu et al., 2015; 45 

Chang and Oey, 2011). 46 

However, long-term in-situ observations are often interrupted by equipment failure, 47 

maintenance issues, or extreme weather conditions such as typhoons (Adebisi et al., 2021). 48 

These disruptions lead to temporal gaps in the observational records, which hinder the detection 49 

of trends, reconstruction of seasonal cycles, and validation of satellite and model-based 50 

products (Beguería et al., 2019). In regions like the ECS, where strong seasonal and interannual 51 

signals are present, accurate and realistic imputation of missing data is essential for scientific 52 

and operational applications (Lin et al., 2020; Han, 2020). 53 
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Various methods have been developed to address missing data in oceanographic and climate 54 

time series (Kolukula and Murty, 2025; Lee et al., 2022). Traditional approaches include linear 55 

interpolation, monthly climatological averages, and harmonic regression models (Schlegel et 56 

al., 2019; Risien et al., 2022; Okkaoğlu et al., 2020; Arguez and Applequist, 2013). More 57 

recently, advanced statistical and machine learning techniques have been proposed for gap-58 

filling, including Gaussian process regression, Kalman filtering, and neural networks (Vance 59 

et al., 2022; Wenzel and Schröter, 2010; Wang, 2023). While these methods offer improved 60 

flexibility and accuracy, they often require dense observations or training data, which may not 61 

be feasible in long-term sparse records (Lee et al., 2022; Sarafanov et al., 2022; Park et al., 62 

2023). Interpretable and statistically robust methods remain essential for operational and 63 

historical datasets such as IORS (Han and Lim, 2024; Han, 2020). 64 

This study focuses on imputing, filling, and predicting gaps in the monthly sea level data at the 65 

IORS over 1993-2023. We evaluate and compare three regression-based approaches: (1) 66 

harmonic regression with annual and semiannual cycles plus a linear trend (Okkaoğlu et al., 67 

2020), (2) a regression-based monthly climatology model with a trend using calendar year 68 

month dummy variables (Hyndman and Athanasopoulos, 2018), and (3) a pure climatology-69 

plus-trend approach based on aggregated monthly means and linear fitting (Brunetti et al., 70 

2014). Furthermore, we propose a realistic blending method that optimally combines harmonic 71 
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and climatological components to minimize reconstruction errors.  72 

Also, we implemented an ensemble of statistical and machine learning (ML) models to 73 

reconstruct missing monthly values at the IORS (Tong and Li, 2025; Bochow et al., 2025). 74 

These models were selected to span a broad range of algorithmic families, including ensemble 75 

tree-based methods (e.g., XGBoost, Random Forest, LightGBM, AdaBoost) (Niazkar et al., 76 

2024; Wu et al., 2024; Gan et al., 2021; Xiao et al., 2019), regularized linear models (Lasso, 77 

Ridge) (Pan et al., 2025), proximity-based models (K-Nearest Neighbors) (Latif et al., 2024), 78 

and neural networks (LSTM, GRU) (Sun et al., 2020; Tumse and Alcansoy, 2025). Each model 79 

was trained to impute missing values using only observed sea level data from the original 80 

dataset, applying the IterativeImputer framework with consistent hyperparameters for 81 

comparability (Ramirez et al., 2023). Complementing these were two timeseries specific 82 

models: Facebook’s Prophet (Elneel et al., 2024), which decomposes time series into seasonal 83 

and trend components, and SARIMA (Sun et al., 2020), which captures both non-seasonal and 84 

seasonal autocorrelation structures. All models were evaluated using root mean square error 85 

(RMSE) and coefficient of determination (R²), calculated against observed (non-missing) 86 

values (Boursalie et al., 2022; Siddig et al., 2021). 87 

To contextualize the reconstructed series, we further compared the IORS observations with 88 

monthly sea level data from four global ocean reanalysis products—Copernicus Marine 89 
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Environment Monitoring Service (CMEMS), Global Ocean Physics Reanalysis System 90 

(GLORYS), Ocean Reanalysis System 5 (ORAS5), and Hybrid Coordinate Ocean Model 91 

(HYCOM)—over 1993–2023 (Han et al., 2024; Long et al., 2023; Jin et al., 2023b; Cummings 92 

and Smedstad, 2014). Linear trends were estimated and visualized to assess the consistency 93 

and fidelity of in-situ observations relative to reanalysis-based records. 94 

Finally, we extended the imputation framework to a multivariate setting by incorporating these 95 

reanalysis datasets as auxiliary predictors, enabling more robust and physically informed gap-96 

filling. By leveraging both statistical and AI/ML-based techniques, this study provides a 97 

transparent, reproducible framework for reconstructing realistic monthly sea level time series 98 

in data-sparse coastal environments. 99 
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 100 

Figure 1. Map showing the locations of sea level observation stations used in this study, 101 

including the Ieodo Ocean Research Station (IORS, black square) and seven tide gauge 102 

stations (red circles) from the PSMSL and regional networks. The map spans the East 103 

China Sea, Yellow Sea, East Sea (Sea of Japan), and the western Pacific Ocean. Major 104 

geographic regions and oceanic features labelled, including Korea (KOR), China (CHN), 105 

Japan (JPN), and Taiwan (TWN); KS and TAS are Korea and Taiwan Straits, respectively. 106 

 107 
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2. Data and Methods 108 

2.1. Data and Preprocessing 109 

This study utilizes sea level observations from the IORS, collected between October 2003 and 110 

December 2023. The data, provided by the Korea Institute of Ocean Science and Technology 111 

(KIOST), include measurements at 1-minute, 10-minute, and hourly intervals (Kiost, 2025). 112 

Data gaps occur intermittently due to sensor malfunctions, scheduled maintenance, and severe 113 

weather events.  114 

To ensure physical consistency with satellite altimetry, numerical models, and reanalysis 115 

products, all sea level values were corrected for the inverse barometric effect (IBE) in Eq. (1) 116 

(Han et al., 2024). The correction was computed using collocated atmospheric pressure 117 

measurements: 118 

𝜂corrected = 𝜂raw +
(𝑃−𝑃0)

𝜌𝑔
       (1) 119 

Where 𝜂raw is the observed and uncorrected sea level (m), 𝑃 is local atmospheric pressure (Pa), 120 

𝑃0 is the standard atmospheric pressure (101300 Pa), 𝜌 is the assumed seawater density (1025 121 

kg/m³), and 𝑔 is gravitational acceleration (9.81 m/s²). 122 

A multi-tiered quality control protocol was implemented to construct reliable timeseries for 123 

subsequent analyses in Figures 2, 3 and 4: 124 

- Quality Flag Filtering: Only values flagged as “good” based on instrument diagnostics 125 
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and metadata were retained (Gouldman et al., 2017) (Figure 2). 126 

- 3σ statistical Filtering: Outliers exceeding ±3 standard deviations from the local mean 127 

were excluded (Oelsmann et al., 2021) (Figure 2). 128 

- 75% Threshold Rule: Daily and monthly averages were retained only if at least 75% 129 

of the corresponding observations passed the above filters (Epa, 2000) (Figures 3 and 130 

4). 131 

The resulting dataset comprises clean daily and monthly timeseries, exhibiting a clear seasonal 132 

cycle, interannual variability, and several data gaps that require reconstruction. These 133 

timeseries served as the foundation for further statistical modeling and machine learning-based 134 

gap-filling. 135 

 136 

Figure 2. Time series of inverse barometric effect (IBE)-corrected in-situ sea level 137 

observations at the IORS from 1993 to 2023. Gray dots represent 10-minute interval data 138 
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flagged as good quality. Green dots indicate corrected 10-minute data within ±3σ. Red 139 

dots denote daily means within ±3σ, and blue dots show monthly means within ±3σ. Data 140 

gaps reflect periods of sensor malfunction or data loss.  141 

 142 

Figure 3. Sea level time series at the IORS from 2003 to 2023, based on in-situ 143 

observations corrected for the IBE. Green dots represent 10-minute sea level data. Red 144 

dots show daily mean values calculated only when at least 75% of 10-minute observations 145 

per day are available and within ±3 standard deviations. Blue dots denote monthly mean 146 

sea level, computed from daily means that meet the same 75% availability and ±3 criteria. 147 
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 148 

Figure 4. Filtered daily and monthly sea level time series at the IORS from 2003 to 2023. 149 

Red dots represent daily mean values calculated when at least 75% of 10-minute in-situ 150 

observations are available and within ±3 standard deviations. Blue dots indicate 151 

monthly mean values derived from daily means that also meet the 75% data availability 152 

and ±3σ filtering criteria. 153 

 154 

2.2. Sea Level Reconstruction Using Regression Techniques 155 

We applied three regression-based approaches to reconstruct missing values and estimate long-156 

term sea level trends: 157 

 158 

2.2.1. Harmonic Regression with Trend (HR) 159 

This method models the sea level time series as a combination of a linear trend and periodic 160 
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seasonal components. Specifically, it includes annual and semiannual sine and cosine terms to 161 

capture seasonal variability in Eq. (2) (Young et al., 1999): 162 

𝑦𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2sin(𝜔𝑡) + 𝛽3cos(𝜔𝑡) + 𝛽4sin(2𝜔𝑡) + 𝛽5cos(2𝜔𝑡) + 𝜖𝑡   (2) 163 

where 𝜔 = 2𝜋/12, and 𝑡 is time in months since January 1993. It captures both long-term and 164 

seasonal variability and is especially suitable for periodic signals. 165 

 166 

2.2.2. Regression-Based Monthly Climatology with Trend (RC) 167 

This method models monthly sea level as a function of a linear time trend and monthly 168 

categorical effects. Multiple linear regression uses dummy variables 𝐷𝑚 (0 or 1) for calendar 169 

months (February through December), with January as the reference month. This allows the 170 

estimation of monthly climatology and trends simultaneously in Eq. (3). The model is 171 

expressed as (Hyndman and Athanasopoulos, 2018): 172 

𝑦𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝐷2 + 𝛽3𝐷3 + ⋯ + 𝛽12𝐷12 + 𝜖𝑡  173 

= 𝛽0 + 𝛽1𝑡 + ∑ 𝛽𝑚𝐷𝑚
12
𝑚=2 + 𝜖𝑡        (3) 174 

Where 𝑦𝑡 is the sea level at time 𝑡, 𝛽0 is the intercept, 𝛽1 captures the long-term linear trend, 175 

and 𝛽𝑚 quantifies the deviation of each month 𝑚 from January. This formulation allows for a 176 

flexible representation of the seasonal cycle without assuming a sinusoidal structure and can 177 

accommodate non-harmonic monthly anomalies while still estimating a long-term trend.  178 
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 179 

2.2.3. Pure Climatology with Trend (PC) 180 

In this method, seasonal climatology is first computed by averaging the observed sea level for 181 

each calendar month across all years (Jin et al., 2023a). A separate linear trend is then fitted to 182 

the full-time series. The two components are summed to reconstruct the entire series in Eq. (4). 183 

While simple and interpretable, this method assumes stationarity in the seasonal cycle and may 184 

miss interannual variations:  185 

𝑦𝑡 = 𝐶𝑚(𝑡) + (𝛼0 + 𝛼1𝑡)        (4) 186 

where 𝐶𝑚(𝑡) is the climatological mean for the month of 𝑡. This assumes a stationary seasonal 187 

cycle. 188 

 189 

2.2.4. Realistic Blending (RB) 190 

To enhance the realism of the reconstructed sea level time series, we implemented a Realistic 191 

Blending (RB) approach that combines the outputs of the Harmonic Regression with Trend 192 

(HR) and the Regression-Based Monthly Climatology with Trend (RC) models in Eq. (5). The 193 

final imputed value at each time step is computed as a weighted average of the two models 194 

(Krinner et al., 2005): 195 

𝑦𝑡
𝑅𝐵 = 𝛼𝑦𝑡

𝐻𝐵 + (1 − 𝛼)𝑦𝑡
𝑅𝐶       (5) 196 
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where 𝛼 ∈ [0,1] is an optimal blending weight selected to minimize the root mean square error 197 

(RMSE) between the blended estimate and the observed values. This method leverages the 198 

physical interpretability of harmonic modeling and the statistical flexibility of regression-based 199 

climatology, aiming to strike a balance between robustness and fidelity to observed variability. 200 

 201 

2.3 Machine Learning and Statistical Models for Data Gap Imputation 202 

To fill gaps in the monthly sea level record, we evaluate a range of machine learning and 203 

statistical models that have been effective for time series gap-filling in environmental datasets. 204 

Each model is described briefly below with supporting literature: 205 

 206 

2.3.1. Extreme Gradient Boosting (XGBoost) 207 

A powerful tree-based ensemble method that uses gradient boosting and inherently handles 208 

missing values by learning default split directions (Niazkar et al., 2024). XGBoost has 209 

demonstrated high accuracy in gap-filling environmental time series (e.g., used to impute 210 

significant gaps in aerosol optical depth data successfully) (Fan et al., 2020) 211 

 212 

2.3.2. Gradient Boosting Regressor 213 

A generic gradient boosting algorithm for regression that builds an ensemble of decision trees 214 

https://doi.org/10.5194/essd-2025-227
Preprint. Discussion started: 16 May 2025
c© Author(s) 2025. CC BY 4.0 License.



16 

 

iteratively to minimize prediction error. GBR has achieved low interpolation errors in climate 215 

data gap-filling, outperforming neural networks and multiple linear regression in one study of 216 

meteorological time series (Otchere et al., 2022; Körner et al., 2018). 217 

 218 

2.3.3. Random Forest (RF) 219 

 An ensemble of decision trees trained on bootstrapped samples, aggregating their results. 220 

Random forests can capture nonlinear relationships and have robust performance for missing 221 

data imputation (Wu et al., 2024; Tang and Ishwaran, 2017). In comparative experiments, tree-222 

based methods like RF rank among the top performers for reconstructing missing 223 

environmental time series data (Mahabbati et al., 2021). 224 

 225 

2.3.4. AdaBoost 226 

An adaptive boosting algorithm that sequentially combines many weak learners (often shallow 227 

trees) to improve prediction accuracy. The AdaBoost framework, while originally devised for 228 

classification, has a regression variant that has been applied to time series gap-filling, for 229 

example, by ensembling multiple neural-network base learners to impute missing traffic flow 230 

data, yielding improved accuracy and stability (Xiao et al., 2019; Shang et al., 2024). 231 

 232 
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2.3.5. LightGBM 233 

LightGBM is a gradient boosting machine algorithm optimized for computational efficiency 234 

and scalability, employing histogram-based feature binning and leaf-wise tree growth. It has 235 

demonstrated high predictive accuracy in forecasting tasks and is widely applied in 236 

hydrological gap-filling studies(Wang et al., 2025). Its ability to efficiently process large 237 

datasets and natively handle missing values makes it highly suitable for gap-filling in extended 238 

climate time series, while also effectively capturing the nonlinear interactions between tidal 239 

dynamics and river discharge (Gan et al., 2021). 240 

 241 

2.3.6. CatBoost (approximated via Gradient Boosting) 242 

CatBoost is a gradient-boosting algorithm specifically designed to handle categorical features 243 

effectively. It introduces innovative techniques such as ordered boosting and efficient encoding 244 

of categorical variables, which help in reducing overfitting and improving model performance 245 

(Hancock and Khoshgoftaar, 2020). In this study, due to library constraints, we approximate 246 

CatBoost's functionality using scikit-learn's Gradient Boosting Regressor. While this 247 

approximation does not fully replicate CatBoost's specialized handling of categorical data, it 248 

allows us to implement a gradient boosting approach within our existing framework. 249 

 250 
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2.3.7. K-Nearest Neighbors 251 

A non-parametric imputation approach that fills a missing value based on the values of its 252 

closest neighbors in feature space. KNN is simple yet effective for gap-filling; a study 253 

comparing time series imputation methods found that KNN achieved the highest reconstruction 254 

accuracy for missing data in several cases (Ahn et al., 2022). The method leverages spatial or 255 

temporal similarity, which can be particularly useful when neighboring station data or nearby 256 

time points correlate with the missing sea level values. 257 

 258 

2.3.8. Lasso and Ridge Regression 259 

These are regularized linear regression models that impose L1 (Lasso) and L2 (Ridge) penalties, 260 

respectively, to prevent overfitting. By shrinking coefficients, they provide stable estimates that 261 

can be used to predict and interpolate missing values from other correlated variables. 262 

Regularized regressions have been explored in gap-filling contexts to utilize correlations in 263 

environmental data while avoiding multicollinearity issues (Wijesekara and Liyanage, 2023). 264 

For instance, an elastic net (a combination of Lasso and Ridge) approach outperformed basic 265 

ARIMA-based methods in imputing large gaps of air quality data, highlighting the value of 266 

such penalized linear models. 267 

 268 
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2.3.9. Decision Tree 269 

A single decision tree can be used as a regression model to estimate missing values by learning 270 

piecewise constant relationships in the data. Although decision trees alone are prone to higher 271 

variance, they have been applied to gap-filling and can capture nonlinear dependencies in sea 272 

level time series. In practice, tree-based algorithms (and their ensembles) have been found 273 

superior to many conventional interpolation techniques for climate data gaps(Zhu et al., 2023). 274 

Simpler decision trees may serve as interpretable benchmarks, while often forming the building 275 

blocks of more complex ensemble methods used for imputation. 276 

 277 

2.3.10. Prophet 278 

A forecasting model based on additive decompositions of trend, seasonality, and holidays 279 

(developed by Facebook). Prophet is robust to missing data and irregular timing – it does not 280 

require regularly spaced observations and can model gaps without explicit interpolation (Elneel 281 

et al., 2024). It has been applied in environmental time series forecasting (e.g. for air quality 282 

and water levels) and can be used to predict and back-fill missing monthly sea level values by 283 

leveraging seasonal patterns and trends in the data. 284 

 285 

2.3.11. SARIMA-SIN (Seasonal ARIMA with Harmonic Regression Preprocessing) 286 
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To enhance the capacity of traditional SARIMA models in capturing periodic signals and long-287 

term trends in oceanographic time series, we implemented a hybrid approach known as 288 

SARIMA-SIN. This method integrates harmonic regression and SARIMA modelling (Wang et 289 

al., 2019). In the first stage, a deterministic seasonal component is modeled using a linear 290 

combination of sine and cosine basis functions representing annual and semi-annual cycles. 291 

This harmonic regression accounts for the primary seasonality, after which residuals are 292 

computed by subtracting the fitted seasonal signal from the original time series. This 293 

preprocessing alleviates the need for SARIMA to fit both trend and periodicity simultaneously, 294 

thereby improving model stability and interpretability. Compared to conventional SARIMA 295 

models, SARIMA-SIN reduces overfitting and better preserves long-term variability, making 296 

it particularly suitable for sea level gap filling where both seasonal dynamics and secular trends 297 

are essential. 298 

 299 

2.3.12. Neural Networks (LSTM and GRU) 300 

Recurrent neural networks, particularly Long Short-Term Memory (LSTM) and Gated 301 

Recurrent Unit (GRU) architectures, are well-suited for sequential data and have been 302 

successfully applied to gap-filling in complex time series. These networks maintain internal 303 

memory states that allow them to learn long-term dependencies, which is advantageous for 304 
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inferring missing segments of a sea level record. Studies have shown that LSTM models can 305 

achieve more accurate gap imputations than traditional methods for environmental sensor data 306 

(Song et al., 2020), and specialized RNN variants (e.g., GRU-D) are designed to handle 307 

sequences with missing values by learning decay rates for missing inputs (Che et al., 2018). In 308 

practice, LSTM/GRU networks can leverage the temporal patterns in sea level data (and 309 

potentially exogenous inputs) to predict missing monthly values with high fidelity. 310 

 311 

2.4. Evaluation Metrics and Implementation 312 

To assess the performance of each imputation model, we computed two widely adopted 313 

evaluation metrics: 314 

2.4.1. Root Mean Square Error (RMSE) 315 

RMSE quantifies the average magnitude of reconstruction error by penalizing large deviations 316 

more strongly in Eq. (6) (Montgomery et al., 2021). It is defined as 317 

RMSE = √
1

𝑁
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑁
𝑖=1        (6) 318 

where 𝑦𝑖 are the observed values and 𝑦𝑖̂ are the reconstructed values at non-missing time 319 

steps. 320 

2.4.2. Coefficient of Determination (R²) 321 

The coefficient of determination, 𝑅2 , quantifies the proportion of variance in the observed data 322 

that is explained by the model in Eq. (7) (Montgomery et al., 2021). It is calculated as: 323 
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𝑅2=1 −
∑ (𝑦𝑖−𝑦𝑖𝑖̂)2𝑁

𝑖=1

∑ (𝑦𝑖−𝑦𝑖̅)2𝑁
𝑖=1

        (7) 324 

Where 𝑦𝑖, 𝑦𝑖̂, 𝑦𝑖̅, and 𝑁 denote the observed values, the model-predicted values, the mean of 325 

observed values, and the number of valid (non-missing) observations. 326 

An 𝑅2 value of 1 indicates a perfect fit, meaning the model explains all the variance in the data. 327 

A value of 0 implies the model performs no better than simply predicting the mean, and 328 

negative values indicate that the model performs worse than the mean-based prediction. Thus, 329 

higher 𝑅2  values reflect stronger agreement between the reconstructed and observed time 330 

series. 331 

 332 

2.5. Comparison with Ocean Reanalysis Products 333 

To contextualize in-situ observations, monthly sea level data from four global ocean reanalysis 334 

products—CMEMS, GLORYS, ORAS5, and HYCOM—were compared with the KIOST in-335 

situ data at IORS over the period 1993–2023. All datasets were aggregated to monthly means 336 

and aligned in time for consistency. Linear trends (expressed in mm/year) were estimated using 337 

least squares regression and applied to each time series with NaN values masked. The trend 338 

slope was computed in meters per month and converted to millimeters per year by multiplying 339 

by 12,000. Each dataset was visualized on a same plot with annotated trend values to assess 340 

agreement and long-term consistency between in-situ and reanalysis records. The comparison 341 
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allowed us to assess model fidelity and characterize interannual-to-decadal sea level variability 342 

across observational and modeled sources. 343 

 344 

2.6. AI/ML-Guided Multivariate Imputation Using Ocean Reanalysis Data 345 

To improve the fidelity of gap-filling in the KIOST sea level time series, we implemented a 346 

multivariate imputation framework that integrates auxiliary predictors from four ocean 347 

reanalysis products: CMEMS, GLORYS, ORAS5, and HYCOM in Table 1. Specifically, we 348 

applied IterativeImputer from the scikit-learn package in Python, using multiple linear 349 

regression as the underlying estimator. In this configuration, the missing values in the KIOST 350 

in-situ observations were modeled as a function of the corresponding values from the reanalysis 351 

datasets, assuming linear dependence among variables. 352 

Each imputation process was iteratively updated over 20 cycles to ensure numerical 353 

convergence and stability of the imputed results. In parallel, univariate imputation was also 354 

conducted using standalone time series models—Prophet, SARIMA-SIN, LSTM, and GRU—355 

trained solely on the historical KIOST observations. These models capture temporal dynamics 356 

without external predictors. 357 

Model outputs were evaluated based on the consistency of reconstructed trends, visual 358 

coherence in the temporal structure, and alignment with physical expectations. The integration 359 
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of regression-based multivariate imputation and AI/ML models forms an ensemble-based 360 

approach that leverages both data-driven learning and physically informed predictors for robust 361 

reconstruction of missing values. 362 

 363 

Table 1. Overview of the datasets used in this study, including their temporal resolutions 364 

and time periods. 365 

Data Source Temporal Resolution Time Period 

IORS 1-min, 10-min, hourly Oct 2003 - Dec 2023 

CMEMS Daily, Monthly Jan 1993 - Dec 2023 

GLORYS Monthly Jan 1993 - Dec 2023 

ORAS5 Monthly Jan 1993 - Dec 2023 

HYCOM Monthly Jan 1994 - Dec 2023 

 366 

3. Results 367 

3.1. Comparison with Other Data 368 

A linear regression performed on the 3σ-filtered, IBE-corrected monthly mean time series 369 

revealed a significant upward trend of approximately 4.94 mm/yr from October 2003 to 370 

December 2023 and 5.43 mm/yr from January 2004 to December 2023. This value is consistent 371 

with other in-situ coastal tide gauge trends in the ECS and reflects regional steric and mass-372 
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driven contributions to sea level rise in Figure 5 and Table 2. 373 

 374 

Table 2. Monthly data availability for five PSMSL tide gauge stations from 1993 to 2023 375 

(372 months total). The table shows the available and missing data points, the total 376 

months considered, and the corresponding coverage percentage. These stations were 377 

used to compare sea level variability and trends with the IORS in the Northwest Pacific 378 

region. 379 

 

Available 
(Month) 

Missing 
(Month) 

Total 
(31 years) 

Coverage 
(%) 

Trend 
(mm/yr) 

KANMEN 348 24 372 93.5 5.5 

LUSI 291 81 372 78.2 6.2 

SEOGWIPO 368 4 372 98.9 3.6 

FUKUE 368 4 372 98.9 3.4 

NAKANO SIMA 351 21 372 94.4 4.2 

NASE III 352 20 372 94.6 2.6 

NAHA 370 2 372 99.5 3.0 

 380 

 381 

Figure 5. Monthly mean sea level time series from the IORS (bold black) and seven 382 
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PSMSL tide gauge stations (colored lines) from 1993 to 2023. PSMSL records are 383 

vertically adjusted by subtracting 5.8 m to align with IORS. Linear trends are indicated 384 

in the legend in millimeters per year (mm/yr), highlighting the long-term rise of sea level 385 

across the region. 386 

 387 

3.2. Statistical Gap-Filling Models 388 

To reconstruct missing values in the monthly sea level time series, five statistical gap-filling 389 

models were evaluated, as shown in Figure 6. These models include: 390 

- Harmonic Regression with Trend (HR): A model combining annual and semiannual 391 

sinusoidal harmonics with a linear trend (red line). 392 

- Regression-Based Monthly Climatology with Trend (RC): A linear regression using 393 

monthly dummy variables to represent the seasonal cycle with an added trend (green 394 

line). 395 

- Pure Climatology with Trend (PC): A model combining the monthly climatological 396 

mean and an original linear trend (cyan dashed line). 397 

- Realistic Blending (RB, 𝛼𝑦𝑡
𝐻𝐵 + (1 − 𝛼)𝑦𝑡

𝑅𝐶  when 𝛼 = 0.00) : An optimally 398 

weighted composite of HR and RC based on root-mean-square error (solid black line). 399 

- Forced Blending (FB, 𝛼 = 0.50): A non-optimized blend of HR and RC using a fixed 400 

mixing ratio (magenta dotted line). 401 
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Visual inspection reveals that the blended models, particularly the RB approach which is same 402 

to RC, closely align with the observed time series during periods of complete data. Among all 403 

candidates, the RB model (𝛼 = 0.00) demonstrated the best performance, achieving the lowest 404 

RMSE (0.0559 m) and the highest coefficient of determination (R² = 0.688) (Table 3). The RC 405 

model achieved identical metrics, followed by HR with RMSE = 0.0574 m and R² = 0.671. 406 

The PC underperformed relative to the others, with the highest RMSE (0.0633 m) and lowest 407 

R² (0.600), highlighting the limitations of neglecting local interannual variability. 408 

 409 

Figure 6. Monthly sea level reconstruction at the IORS from 1993 to 2023 using five 410 

statistical gap-filling models. Blue dots indicate the original in-situ observations. Colored 411 

lines represent different model reconstructions: Harmonic Regression with Trend (HR, 412 

red), Regression-Based Monthly Climatology with Trend (RC, green dashed), Pure 413 

Climatology with Trend (PC, cyan dash-dot), Realistic Blending (RB, α = 0.00, black 414 

dashed), and Forced Blending (FB, α = 0.50, magenta dotted). The comparison highlights 415 
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differences in seasonal and long-term signal reconstruction, with the RB model providing 416 

the most consistent alignment with observed values across the record. 417 

 418 

Table 3. Performance evaluation of five statistical models for monthly sea level 419 

reconstruction at the IORS (1993–2023). The table compares root mean square error 420 

(RMSE) and coefficient of determination (𝑅2) between observed and reconstructed sea 421 

levels. The Realistic Blending model (α = 0.00) achieved the lowest RMSE and highest 𝑅2, 422 

matching the Pure Climatology with Trend model, indicating that harmonic components 423 

did not improve reconstruction skill in this case.  424 

Model RMSE (m) R2 

Harmonic Regression with Trend (HR) 0.0574 0.671 

Regression-Based Monthly Climatology 

with Trend (RC) 0.0559 0.688 

Pure Climatology with Trend (PC) 0.0633 0.600 

Realistic Blending (RB, α=0.00) 0.0559 0.688 

Forced Blending (FB, α=0.50)  0.0563 0.684 

 425 

 426 

3.3. Artificial Intelligence and Machine Learning Imputation 427 

To enhance the reconstruction accuracy of missing monthly sea level data at the IORS, a 428 

comprehensive set of artificial intelligence (AI) and machine learning (ML) models was 429 
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implemented. These models were trained on the 3σ-filtered monthly KIOST time series with 430 

synthetically introduced gaps to enable rigorous validation. 431 

The methods included: 432 

- Ensemble learning models: XGBoost, LightGBM, CatBoost, Gradient Boosting, 433 

Random Forest, AdaBoost 434 

- Statistical models: SARIMA with sinusoidal regressors (SARIMA-SIN) and Prophet 435 

- Regularized regressions: Ridge and Lasso 436 

- Neural networks: Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) 437 

- Other models: K-Nearest Neighbors and Decision Trees 438 

Figure 7 visualizes the full reconstructed time series from each model alongside the original 439 

KIOST observations. Prophet (red solid line) and SARIMA-SIN (dark green dashed) are 440 

visually emphasized due to their ability to reconstruct the full 1993–2023 time span, 441 

consistently capturing both seasonal cycles and long-term trends. In contrast, XGBoost and 442 

Random Forest models preserved the observed values and interpolated missing data, resulting 443 

in perfect fit metrics (R² = 1) but lacking predictive reconstruction before 2004 (Table 4). 444 

As shown in Table 5, most machine learning models except Prophet, SARIMA-SIN, LSTM, 445 

and GRU achieved perfect scores (MAE = 0, RMSE = 0, R² = 1) because they directly reused 446 

observed values during imputation rather than making independent predictions, resulting in 447 
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artificially inflated performance metrics. Among the models that generated actual predictions, 448 

LSTM achieved the lowest MAE (0.018 m) and RMSE (0.023 m) with a high R² of 0.95, 449 

indicating its strength in capturing nonlinear temporal dynamics. GRU followed closely (MAE 450 

= 0.030 m, RMSE = 0.037 m, R² = 0.87), balancing interpretability and predictive capability. 451 

Prophet (MAE = 0.040 m, RMSE = 0.054 m, R² = 0.71) and SARIMA-SIN (MAE = 0.044 m, 452 

RMSE = 0.059 m, R² = 0.66) exhibited slightly higher error values but demonstrated strong 453 

consistency across the full time span (1993–2023), particularly in capturing seasonal and long-454 

term trends—even before the availability of observed data in 2004. Thus, while tree-based 455 

ensemble models appear most accurate numerically, deep learning and time series models offer 456 

true predictive value, especially in extrapolating missing or historical sea level variations. 457 

 458 

Table 4. Evaluation metrics for AI/ML-based sea level reconstruction models at the IORS 459 

from 1993 to 2023. Models were trained using the 3σ-filtered monthly KIOST data with 460 

artificially introduced gaps. Performance was assessed based on mean absolute error 461 

(MAE), root mean square error (RMSE), and coefficient of determination (R²), calculated 462 

using the valid observed values (N). Most models, including XGBoost, LightGBM, and 463 

CatBoost, produced near-perfect scores (MAE = 0, RMSE = 0, R² = 1) because they simply 464 

reused original values without generalizing to missing segments. In contrast, Prophet and 465 

SARIMA-SIN provided full-series predictions, capturing both seasonal and long-term 466 

variations. Deep learning models (LSTM, GRU) also exhibited strong predictive ability, 467 

though their outputs were limited to periods with sufficient training data. Notably, many 468 
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models performed poorly before 2004, where fewer observations were available to guide 469 

imputation. 470 

Model MAE (m) RMSE (m) R2 N 

XGBoost 0 0 1 183 

GradientBoosting 0 0 1 183 

CatBoost 0 0 1 183 

KNeighbors 0 0 1 183 

Lasso 0 0 1 183 

RandomForest 0 0 1 183 

LightGBM 0 0 1 183 

AdaBoost 0 0 1 183 

Ridge 0 0 1 183 

DecisionTree 0 0 1 183 

Prophet 0.040 0.054 0.71 183 

SARIMA_SIN 0.044 0.059 0.66 183 

LSTM 0.018 0.023 0.95 183 

GRU 0.030 0.037 0.87 183 

 471 

Tree-based models outperformed deep learning in both accuracy and training stability. 472 

However, LSTM showed strengths in capturing subtle nonlinear dependencies during seasonal 473 

transitions. 474 
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 475 

Figure 7. Monthly sea level time series at the IORS from 1993 to 2023 reconstructed using 476 

a suite of statistical and machine learning (AI/ML) models. Original observations (blue 477 

dots) contain data gaps that were filled using ensemble methods (XGBoost, LightGBM, 478 

CatBoost), regularized regressions (Ridge, Lasso), tree-based regressors (DecisionTree, 479 

RandomForest, AdaBoost), neural networks (LSTM, GRU), and time series models 480 

(Prophet, SARIMA-SIN). Prophet (red) and SARIMA-SIN (dark green dashed) are 481 

visually emphasized for their capacity to capture both seasonal cycles and long-term 482 

trends. The comparison illustrates model fidelity and divergence in reconstructing 483 

historical sea level variability at IORS. 484 

 485 

3.4. Comparison with Reanalysis and Satellite Data 486 

The monthly sea level time series at the Ieodo Ocean Research Station (IORS) was compared 487 

with satellite altimetry and four reanalysis products: CMEMS, GLORYS, ORAS5, and 488 

HYCOM (Figure 8). The in-situ tide gauge data from KIOST exhibited a linear sea level rise 489 
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of 4.94 mm yr⁻¹ during the period from October 2003 to December 2023, with a slightly steeper 490 

trend of 5.43 mm yr⁻¹ when computed from January 2004 onward (Table 5). These values 491 

exceed the trends derived from satellite and model-based datasets, suggesting possible biases 492 

due to local effects, datum inconsistencies, or limited assimilation in some models. Among the 493 

reanalyses, CMEMS showed the closest agreement with the observed seasonal and interannual 494 

variability, yielding a trend of 3.53 mm yr⁻¹. GLORYS and ORAS5 also captured similar 495 

variability, though with lower trends of 3.09 mm yr⁻¹ and 2.27 mm yr⁻¹, respectively. In contrast, 496 

HYCOM presented almost no net sea level rise (−0.09 mm yr⁻¹), likely due to limitations in 497 

boundary conditions or lack of data assimilation in the East China Sea. Figure 8 clearly shows 498 

consistent seasonal patterns across all datasets, though the amplitude and interannual signals 499 

vary. The observed KIOST time series displayed greater interannual variability after 2003, 500 

corresponding to the availability of continuous in-situ measurements. Cross-correlation 501 

analysis further supports the consistency between CMEMS and other datasets (Table 6). The 502 

correlation between CMEMS and KIOST reached 0.90, with similar values for GLORYS (0.93) 503 

and ORAS5 (0.90). Correlation with HYCOM was slightly lower at 0.86, reflecting its weaker 504 

agreement with observed variability. Separate correlations using only post-2003 KIOST 505 

records confirmed similarly strong relationships. These results underscore the importance of 506 

in-situ validation for semi-enclosed marginal seas like the East China Sea, where regional 507 
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processes and bathymetry can significantly affect long-term sea level trends and their 508 

representation in models. 509 

 510 

Table 5. Linear sea level trends (mm yr⁻¹) at the Ieodo Ocean Research Station (IORS) 511 

from multiple observational and reanalysis datasets. Trends are calculated using monthly 512 

data from tide gauge observations (KIOST), satellite altimetry (CMEMS), and ocean 513 

reanalysis/model outputs (GLORYS, ORAS5, HYCOM). The table includes trends for 514 

KIOST over two periods: October 2003–December 2023 and January 2004–December 515 

2023, to assess sensitivity to the start date. 516 

Dataset Category Period Trend (mm yr⁻¹) 

In-situ Tide Gauge (KIOST) Oct 2003 - Dec 2023 4.94 

In-situ Tide Gauge (KIOST) Jan 2004 - Dec 2023 5.43 

CMEMS Satellite Altimetry Jan 1993 - Dec 2023 3.53 

GLORYS Ocean Reanalysis Jan 1993 - Dec 2023 3.09 

ORAS5 Ocean Reanalysis Jan 1993 - Dec 2023 2.27 

HYCOM Ocean Model Output Jan 1994 - Dec 2023 -0.09 

 517 

Table 6.  Cross-correlation coefficients between CMEMS satellite altimetry and other 518 

sea level datasets at the IORS (1993–2023). The comparison includes in-situ tide gauge 519 

data (KIOST), ocean reanalysis products (GLORYS, ORAS5), and a numerical ocean 520 
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model (HYCOM). All values are based on monthly mean anomalies. 521 

Data type Data type 

Cross-correlation 

coefficient 

CMEMS (1993–2023) In-situ (2003–2023 and 2004–2023) 0.90 

CMEMS (1993–2023) GLORYS (1993–2023) 0.93 

CMEMS (1993–2023) ORAS5 (1993–2023) 0.90 

CMEMS (1993–2023) HYCOM (1994–2023) 0.86 

 522 

 523 

 524 

 525 

Figure 8. Comparison of monthly sea level time series at the IORS from 1993 to 2023, 526 

using in-situ observations (KIOST) and four ocean reanalysis products: CMEMS, 527 

GLORYS, ORAS5, and HYCOM. Each dataset is plotted with its respective linear trend 528 

estimated over the entire period. The observed sea level trend from KIOST (4.94 mm/yr) 529 
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is higher than those from CMEMS (3.53 mm/yr), GLORYS (3.09 mm/yr), ORAS5 (2.27 530 

mm/yr), and HYCOM (−0.09 mm/yr), indicating significant discrepancies in modeled 531 

versus observed trends at this location. Differences may reflect varying assimilation 532 

schemes, vertical resolutions, or forcing mechanisms in each reanalysis system. 533 

 534 

3.5. Comparison with AI/ML-Based Reconstruction 535 

Before implementing machine learning-based imputation methods, we applied multiple linear 536 

regression using four reanalysis datasets (CMEMS, GLORYS, ORAS5, HYCOM) to evaluate 537 

their explanatory power for observed sea level variability at the IORS. This regression served 538 

as a preliminary benchmark to assess how well physically-based reanalysis products capture 539 

regional sea level dynamics. Following this, a suite of AI/ML models was employed to 540 

reconstruct the monthly sea level anomalies at the IORS from 1993 to 2023 (Fig. 9). Each 541 

model’s time series was compared with the original KIOST observations, and corresponding 542 

linear trends (mm/year) were computed to assess long-term performance. The original KIOST 543 

dataset exhibits a 4.94 mm/yr trend, serving as a reference benchmark. Among ensemble 544 

learning methods, XGBoost (4.42 mm/yr), GradientBoosting (4.32 mm/yr), CatBoost (4.32 545 

mm/yr), and RandomForest (4.26 mm/yr) closely reproduced the observed trend and temporal 546 

variability. The Prophet model yielded a slightly higher trend estimate (4.51 mm/yr) and 547 

consistently reconstructed the seasonal cycle and interannual variations. Its smooth, 548 
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interpretable structure made it effective for long-term monitoring, despite slightly larger 549 

residuals than ensemble models. The SARIMA-SIN approach, which integrates harmonic 550 

seasonal components with ARIMA modeling of residuals, produced the highest trend estimate 551 

(5.61 mm/yr). While effectively modeling periodic signals, its slight overestimation may stem 552 

from residual autocorrelation or the rigid seasonal structure embedded in the model. In contrast, 553 

linear regularized models, such as Lasso (3.74 mm/yr) and Ridge (2.98 mm/yr), underestimated 554 

the long-term trend and failed to capture higher-order seasonal and nonlinear dynamics. Neural 555 

network-based deep learning models showed intermediate performance: LSTM (3.90 mm/yr) 556 

and GRU (2.94 mm/yr) successfully captured high-frequency variability but smoothed long-557 

term trends. Their underestimation may reflect challenges in extrapolating temporal 558 

dependencies across extended historical periods. Overall, ensemble models and Prophet 559 

offered the most balanced performance regarding accuracy, trend reconstruction, and 560 

robustness to missing data. SARIMA-SIN remains a promising alternative for seasonality-561 

focused applications. At the same time, deep learning methods may benefit from additional 562 

architecture optimization and hyperparameter tuning to better preserve secular trends in semi-563 

enclosed regions like the East China Sea. 564 

 565 
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 566 

Figure 9. Monthly sea level time series at the IORS from 1993 to 2023 reconstructed using 567 

various AI/ML models. The original KIOST observations (blue) are compared with 568 

estimates from ensemble methods (XGBoost, GradientBoosting, CatBoost, 569 

RandomForest, AdaBoost), regularized regression (Ridge, Lasso), decision trees, nearest 570 

neighbors, Prophet, and deep learning (LSTM, GRU). A seasonal-harmonic SARIMA-571 

SIN model is also included. Linear trends (in mm/yr) are indicated in the legend. The 572 

comparison highlights each model’s capability to capture seasonal and interannual sea 573 

level variability. 574 

 575 

4. Discussion 576 

This study demonstrates a comprehensive approach to reconstructing monthly sea level 577 

variability at the Ieodo Ocean Research Station (IORS) over the period 1993–2023 using a 578 

suite of statistical, machine learning (ML), and artificial intelligence (AI) models. The 579 
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reconstruction framework was motivated by the need to address temporal discontinuities in 580 

long-term in-situ observations, which are often caused by instrument failure, extreme weather, 581 

or logistical constraints (Adebisi et al., 2021). These data gaps significantly hinder trend 582 

detection, seasonal analysis, and validation against satellite and reanalysis products in the East 583 

China Sea (ECS)—a region characterized by strong seasonal and interannual variability 584 

(Hamlington et al., 2020; Lin et al., 2020). 585 

 586 

4.1. Data Sources and Preprocessing 587 

A diverse set of observational and reanalysis datasets was employed, spanning from high-588 

resolution in-situ KIOST observations to global oceanographic products such as CMEMS, 589 

GLORYS, ORAS5, and HYCOM (Table 1). Preprocessing involved inverse barometric effect 590 

(IBE) correction, 3σ filtering, and 75% coverage thresholds to ensure consistency and quality 591 

in derived monthly means. These preprocessing steps align with established best practices for 592 

climate-quality oceanographic datasets (Cazenave and Moreira, 2022). Figures 1–3 illustrate 593 

the geographical coverage and temporal continuity achieved after these steps. 594 

 595 

4.2. Regional Validation with PSMSL Tide Gauges 596 

To assess the validity of the reconstructed IORS series, comparisons were made with seven 597 
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nearby PSMSL tide gauge stations across the Northwest Pacific. The high correlation and 598 

consistent linear trends (2.6–6.2 mm/yr) observed in these stations (Table 2, Fig. 5) reinforce 599 

the regional representativeness of IORS data. This agreement supports the premise that well-600 

maintained tide gauge records are invaluable for benchmarking reconstructions in semi-601 

enclosed seas (Han, 2020). 602 

 603 

4.3. Statistical Model Performance 604 

We evaluated five classical statistical gap-filling techniques, including harmonic regression and 605 

regression climatology. Realistic Blending (RB) and Regression Climatology (RC) achieved 606 

the best results, with RMSE of 0.0559 m and R² = 0.688 (Table 3; Fig. 6). These findings are 607 

consistent with prior literature that emphasizes the effectiveness of incorporating seasonal 608 

structure and linear trends in climatic time series (Okkaoğlu et al., 2020; Hyndman and 609 

Athanasopoulos, 2018). 610 

 611 

4.4. AI/ML Model Evaluation 612 

Following statistical baseline evaluation, we implemented 14 AI/ML models using an Iterative 613 

Imputer framework. Ensemble learners such as XGBoost and LightGBM achieved perfect 614 

post-September 2003 metrics by reusing observed values, but lacked extrapolation capability 615 
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during earlier data gaps. In contrast, deep learning models like LSTM and GRU generated 616 

realistic, nonlinear predictions (LSTM: RMSE = 0.023 m, R² = 0.95), although they 617 

underperformed in estimating long-term trends and were limited to the post-September 2003 618 

data range (Sun et al., 2020). 619 

 620 

Time series-specific models Prophet and SARIMA-SIN produced full-period reconstructions 621 

with moderate accuracy (R² = 0.71 and 0.66, respectively), but demonstrated superior ability 622 

to capture seasonal and long-term variability, making them suitable for regions with sparse data 623 

(Elneel et al., 2024; Tumse and Alcansoy, 2025). Their trend estimates (4.51–5.61 mm/yr) 624 

approximate observational trends better than most ML alternatives (Fig. 7). 625 

 626 

4.5. Cross-Dataset Trend and Correlation Analysis 627 

Trend comparisons across observational, satellite, and model-based datasets (Table 5; Fig. 8) 628 

revealed that the IORS trends (4.94 mm/yr from October 2003 and 5.43 mm/yr from January 629 

2004) are substantially higher than CMEMS (3.53 mm/yr) and GLORYS (3.09 mm/yr). 630 

HYCOM, notably, displayed a negative trend (−0.09 mm/yr), likely due to boundary condition 631 

limitations such as excluding glaciers and land ice sheets melting (Han et al., 2024; Jin et al., 632 

2023b; Hycom, 2025). Cross-correlation analysis (Table 6) showed that CMEMS correlated 633 
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strongly with in-situ (r = 0.90), GLORYS (r = 0.93), and ORAS5 (r = 0.90), consistent with 634 

prior findings on their reliability in coastal sea level analysis (Cummings and Smedstad, 2014). 635 

 636 

4.6. AI/ML Gap-Filling After Regression with Reanalysis 637 

Prior to ML-based reconstruction, we conducted multiple linear regression using CMEMS, 638 

GLORYS, ORAS5, and HYCOM to gauge their ability to explain IORS variability (Fig. 9). 639 

The regression models underestimated the observed trend, underscoring their limitations in 640 

data-sparse, dynamically complex environments like the ECS. Subsequent AI/ML 641 

reconstructions—especially from Prophet, XGBoost, and SARIMA-SIN—outperformed these 642 

baseline models in both fidelity and interpretability. SARIMA-SIN provided the highest trend 643 

(5.61 mm/yr), while ensemble methods such as CatBoost and RandomForest approximated the 644 

KIOST trend closely (4.3–4.4 mm/yr). Deep learning models like GRU underpredicted trends 645 

(2.94 mm/yr), suggesting the need for further hyperparameter tuning or auxiliary input 646 

inclusion. 647 

 648 

In summary, this study responds to the challenges outlined in the introduction—such as sparse 649 

long-term observational data and limitations of traditional gap-filling—by offering a 650 

transparent, interpretable, and data-driven framework for sea level reconstruction. Through the 651 
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integration of AI/ML techniques and reanalysis validation, we provide new insights into local 652 

sea level rise trends and offer a practical methodology for monitoring climate change effects in 653 

marginal seas. 654 

 655 

5. Conclusion 656 

This study developed and validated a robust methodology for reconstructing the monthly sea 657 

level record at the Ieodo Ocean Research Station (IORS) from 1993 to 2023 using a 658 

combination of statistical techniques, machine learning models, and auxiliary reanalysis 659 

datasets. Preprocessing steps, including inverse barometric effect (IBE) correction, 3s filtering, 660 

and data coverage thresholds, allowed for the construction of reliable time series from high-661 

resolution in-situ observations. Comparison with seven nearby PSMSL tide gauges confirmed 662 

the regional validity of the observed trends. The IORS sea level trends (4.94 mm/yr for 2003–663 

2023 and 5.43 mm/yr for 2004–2023) were significantly higher than those from satellite and 664 

reanalysis datasets, highlighting localized sea level rise. High correlations between CMEMS 665 

and other reanalysis products (r = 0.90) affirm their utility for sea level reconstruction, although 666 

they underestimated trends compared to in-situ observations. Statistical models such as 667 

regression climatology and realistic blending provided accurate reconstructions, achieving the 668 

best performance in RMSE and R² metrics. Among AI/ML models, ensemble learners (e.g., 669 

XGBoost, RandomForest) achieved perfect reconstruction metrics after September 2003 but 670 

failed to predict values in earlier periods. Deep learning models, particularly LSTM (RMSE = 671 

0.023 m, R² = 0.95), effectively modeled nonlinear and seasonal variability, though their ability 672 

was restricted to after September 2003, and their trend estimation remained underestimated 673 
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compared to statistical benchmarks. Time series models, Prophet and SARIMA-SIN, 674 

demonstrated the strongest capability for full-period imputation, delivering consistent seasonal 675 

cycles and long-term trend estimates, with SARIMA-SIN reaching 5.61 mm/yr. Before 676 

applying ML models, multiple linear regression using four reanalysis datasets was conducted 677 

as a baseline. The AI/ML reconstructions outperformed reanalysis-based approaches in both 678 

accuracy and consistency with the observed KIOST trend. Overall, this study provides a 679 

scientifically grounded and computationally robust workflow for gap-filling, trend detection, 680 

and sea level variability analysis. The framework offers a valuable tool for long-term sea level 681 

monitoring, climate diagnostics, and policy planning in marginal seas and other observationally 682 

limited regions. 683 

 684 
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datasets, please contact the data provider by writing to ycmin@kiost.ac.kr. 688 

 689 

7. Author contribution 690 

MH writing – original draft, visualization, data collection, investigation. HL writing – review 691 

and editing, supervision. 692 

  693 

https://doi.org/10.5194/essd-2025-227
Preprint. Discussion started: 16 May 2025
c© Author(s) 2025. CC BY 4.0 License.



45 

 

8. Competing interests 694 

The contact author has declared that none of the authors has any competing interests. 695 

 696 

9. Acknowledgments 697 

Oceanic and atmospheric data at the IORS 698 

(http://www.khoa.go.kr/oceangrid/gis/category/reference/distribution.do#none) were used in 699 

this study. This research was funded by the Ministry of Trade, Industry, and Energy (MOTIE) 700 

of Korea under the “Regional Innovation Cluster Development Program (PN92300, 701 

P0025418)”, supervised by the Korea Institute for Advancement of Technology (KIAT). It was 702 

also supported by the Korea Institute of Ocean Science and Technology (PEA0231). 703 

Additionally, this study was supported by the project “Sustainable Research and Development 704 

of Dokdo (PG54141)” under the Ministry of Oceans and Fisheries, Korea. 705 

 706 

8. References 707 

Adebisi, N., Balogun, A. L., Min, T. H., and Tella, A.: Advances in estimating sea level rise: A 708 

review of tide gauge, satellite altimetry and spatial data science approaches, Ocean & Coastal 709 

Management, 208, 105632, https://doi.org/10.1016/j.ocecoaman.2021.105632, 2021. 710 

Ahn, H., Sun, K., and Kim, K. P.: Comparison of missing data imputation methods in time 711 

series forecasting, Computers, Materials & Continua, 70, 767-779, 712 

https://doi.org/10.32604/cmc.2022.019369, 2022. 713 

Arguez, A. and Applequist, S.: A harmonic approach for calculating daily temperature normals 714 

constrained by homogenized monthly temperature normals, Journal of Atmospheric and 715 

Oceanic Technology, 30, 1259-1265, https://doi.org/10.1175/JTECH-D-12-00195.1, 2013. 716 

Beguería, S., Tomas-Burguera, M., Serrano-Notivoli, R., Peña-Angulo, D., Vicente-Serrano, S. 717 

https://doi.org/10.5194/essd-2025-227
Preprint. Discussion started: 16 May 2025
c© Author(s) 2025. CC BY 4.0 License.



46 

 

M., and González-Hidalgo, J.-C.: Gap filling of monthly temperature data and its effect on 718 

climatic variability and trends, Journal of Climate, 32, 7797-7821, 719 

https://doi.org/10.1175/JCLI-D-19-0244.1, 2019. 720 

Bochow, N., Poltronieri, A., Rypdal, M., and Boers, N.: Reconstructing historical climate fields 721 

with deep learning, Science Advances, 11, eadp0558, https://doi.org/10.1126/sciadv.adp0558, 722 

2025. 723 

Boursalie, O., Samavi, R., and Doyle, T. E.: Evaluation methodology for deep learning 724 

imputation models, Experimental Biology and Medicine, 247, 1972-1987, 725 

https://doi.org/10.1177/15353702221121602, 2022. 726 

Brunetti, M., Maugeri, M., Nanni, T., Simolo, C., and Spinoni, J.: High‐resolution temperature 727 

climatology for Italy: interpolation method intercomparison, International Journal of 728 

Climatology, 34, 1278-1296, https://doi.org/10.1002/joc.3764, 2014. 729 

Byun, D. S., Jeong, J. Y., Kim, D. J., Hong, S., Lee, K. T., and Lee, K.: Ocean and atmospheric 730 

observations at the remote Ieodo Ocean Research Station in the northern East China Sea, 731 

Frontiers in Marine Science, 8, 618500, https://doi.org/10.3389/fmars.2021.618500, 2021. 732 

Cazenave, A. and Moreira, L.: Contemporary sea-level changes from global to local scales: a 733 

review, Proceedings of the Royal Society A, 478, 20220049, 734 

https://doi.org/10.1098/rspa.2022.0049, 2022. 735 

Chang, Y. L. and Oey, L. Y.: Interannual and seasonal variations of Kuroshio transport east of 736 

Taiwan inferred from 29 years of tide‐gauge data, Geophysical Research Letters, 38, 737 

https://doi.org/10.1029/2011GL047062, 2011. 738 

Che, Z., Purushotham, S., Cho, K., Sontag, D., and Liu, Y.: Recurrent neural networks for 739 

multivariate time series with missing values, Scientific reports, 8, 6085, 740 

https://doi.org/10.1038/s41598-018-24271-9, 2018. 741 

Cummings, J. A. and Smedstad, O. M.: Ocean data impacts in global HYCOM, Journal of 742 

Atmospheric and Oceanic Technology, 31, 1771-1791, https://doi.org/10.1175/JTECH-D-14-743 

00011.1, 2014. 744 

Elneel, L., Zitouni, M. S., Mukhtar, H., and Al-Ahmad, H.: Examining sea levels forecasting 745 

using autoregressive and prophet models, Scientific Reports, 14, 14337, 746 

https://doi.org/10.1038/s41598-024-65184-0, 2024. 747 

Guidance for Data Quality Assessment: Practical Methods for Data Analysis: EPA QA/G9: 748 

QA00 Update: July 2000: https://www.epa.gov/sites/default/files/2015-06/documents/g9-749 

final.pdf, last access: 05 May 2025. 750 

Fan, Z., Zhan, Q., Yang, C., Liu, H., and Bilal, M.: Estimating PM2. 5 concentrations using 751 

spatially local Xgboost based on full-covered SARA AOD at the urban scale, Remote Sensing, 752 

12, 3368, https://doi.org/10.3390/rs12203368, 2020. 753 

Gan, M., Pan, S., Chen, Y., Cheng, C., Pan, H., and Zhu, X.: Application of the machine 754 

https://doi.org/10.5194/essd-2025-227
Preprint. Discussion started: 16 May 2025
c© Author(s) 2025. CC BY 4.0 License.



47 

 

learning lightgbm model to the prediction of the water levels of the lower columbia river, 755 

Journal of Marine Science and Engineering, 9, 496, https://doi.org/10.3390/jmse9050496, 2021. 756 

Manual for real-time oceanographic data quality control flags: 757 

https://cdn.ioos.noaa.gov/media/2017/12/QARTOD-Data-Flags-758 

Manual_Final_version1.1.pdf, last access: 05 May 2025. 759 

Ha, K.-J., Nam, S., Jeong, J.-Y., Moon, I.-J., Lee, M., Yun, J., Jang, C. J., Kim, Y. S., Byun, D.-760 

S., and Heo, K.-Y.: Observations utilizing Korea Ocean Research Stations and their 761 

applications for process studies, Bulletin of the American Meteorological Society, 100, 2061-762 

2075, https://doi.org/10.1175/BAMS-D-18-0305.1, 2019. 763 

Hamlington, B. D., Gardner, A. S., Ivins, E., Lenaerts, J. T., Reager, J. T., Trossman, D. S., 764 

Zaron, E. D., Adhikari, S., Arendt, A., Aschwanden, A., and Beckley, B. D.: Understanding of 765 

contemporary regional sea-level change and the implications for the future, Reviews of 766 

Geophysics, 58, e2019RG000672, https://doi.org/10.1029/2019RG000672, 2020. 767 

Han, M.: Status of Observation Data at Ieodo Ocean Research Station for Sea Level Study, 768 

Journal of the Korean earth science society, 41, 323-343, 769 

https://doi.org/10.5467/JKESS.2020.41.4.323, 2020. 770 

Han, M. and Lim, H.-S.: Enhancing Data Accessibility and Usability: Insights from 771 

Observation Data at the Ieodo Ocean Research Station (2005-2023), Journal of Coastal Disaster 772 

Prevention, 11, 59-70, https://doi.org/10.20481/kscdp.2024.11.3.59, 2024. 773 

Han, M., Nam, S., and Lim, H.-S.: Regional Mean Sea Level Variability Due to Tropical 774 

Cyclones: Insights from August Typhoons, Journal of Marine Science and Engineering, 12, 775 

1830, https://doi.org/10.3390/jmse12101830, 2024. 776 

Hancock, J. T. and Khoshgoftaar, T. M.: CatBoost for big data: an interdisciplinary review, 777 

Journal of big data, 7, 94, https://doi.org/10.1186/s40537-020-00369-8, 2020. 778 

HYCOM.org Forum: https://groups.google.com/a/hycom.org/g/forum/c/QK-779 

nlXqfQdE/m/6gCq-Eh3CwAJ, last access: April 15, 2025. 780 

Hyndman, R. J. and Athanasopoulos, G.: Forecasting: Principles and Practice, OTexts, 2018. 781 

Jeong, K., Kwon, S., Oh, H., Ham, H., Park, H., Roh, J., Kim, Y., Lee, Y., Jeong, J., and Min, 782 

Y.: Ieodo Ocean Research Station (Ieodo ORS): delayed mode dataset, annual release (2022), 783 

SEANOE, https://doi.org/10.17882/97666, 2023. 784 

Jin, C., Liu, H., and Lin, P.: Evaluation of the seasonal to decadal variability in dynamic sea 785 

level simulations from CMIP5 to CMIP6, Geoscience Letters, 10, 35, 786 

https://doi.org/10.1186/s40562-023-00291-w, 2023a. 787 

Jin, Y., Chen, M., Yan, H., Wang, T., and Yang, J.: Sea level variation in the Arctic Ocean since 788 

1979 based on ORAS5 data, Frontiers in Marine Science, 10, 1197456, 789 

https://doi.org/10.3389/fmars.2023.1197456, 2023b. 790 

KIOST Data Access Portal: https://kors.kiost.ac.kr/eng/accessData, last access: April 15, 2025. 791 

https://doi.org/10.5194/essd-2025-227
Preprint. Discussion started: 16 May 2025
c© Author(s) 2025. CC BY 4.0 License.



48 

 

Kolukula, S. S. and Murty, P. L. N.: Enhancing observations data: A machine-learning approach 792 

to fill gaps in the moored buoy data, Results in Engineering, 26, 104708, 793 

https://doi.org/10.1016/j.rineng.2025.104708, 2025. 794 

Körner, P., Kronenberg, R., Genzel, S., and Bernhofer, C.: Introducing Gradient Boosting as a 795 

universal gap filling tool for meteorological time series, Meteorologische Zeitschrift, 27, 369-796 

376, https://doi.org/10.1127/metz/2018/0908, 2018. 797 

Krinner, G., Viovy, N., de Noblet‐Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., Ciais, 798 

P., Sitch, S., and Prentice, I. C.: A dynamic global vegetation model for studies of the coupled 799 

atmosphere‐biosphere system, Global biogeochemical cycles, 19, 800 

https://doi.org/10.1029/2003GB002199, 2005. 801 

Latif, S. D., Almubaidin, M. A., Shen, C. G., Sapitang, M., Birima, A. H., Ahmed, A. N., Sherif, 802 

M., and El-Shafie, A.: Improving sea level prediction in coastal areas using machine learning 803 

techniques, Ain Shams Engineering Journal, 15, 102916, 804 

https://doi.org/10.1016/j.asej.2024.102916, 2024. 805 

Lee, E. J., Kim, K., and Park, J. H.: Reconstruction of long-term sea-level data gaps of tide 806 

gauge records using a neural network operator, Frontiers in Marine Science, 9, 1037697, 807 

https://doi.org/10.3389/fmars.2022.1037697, 2022. 808 

Lin, T., He, Q., Zhan, W., and Zhan, H.: Persistent data gap in ocean color observations over 809 

the East China Sea in winter: causes and reconstructions, Remote Sensing Letters, 11, 667-676, 810 

https://doi.org/10.1080/2150704X.2020.1754491, 2020. 811 

Long, X., Shin, S. I., and Newman, M.: Statistical downscaling of seasonal forecasts of sea 812 

level anomalies for US coasts, Geophysical Research Letters, 50, e2022GL100271, 813 

https://doi.org/10.1029/2022GL100271, 2023. 814 

Mahabbati, A., Beringer, J., Leopold, M., McHugh, I., Cleverly, J., Isaac, P., and Izady, A.: A 815 

comparison of gap-filling algorithms for eddy covariance fluxes and their drivers, Geoscientific 816 

Instrumentation, Methods and Data Systems, 10, 123-140, https://doi.org/10.5194/gi-10-123-817 

2021, 2021. 818 

Montgomery, D. C., Peck, E. A., and Vining, G. G.: Introduction to linear regression analysis, 819 

John Wiley & Sons, 2021. 820 

Niazkar, M., Menapace, A., Brentan, B., Piraei, R., Jimenez, D., Dhawan, P., and Righetti, M.: 821 

Applications of XGBoost in water resources engineering: A systematic literature review (Dec 822 

2018–May 2023), Environmental Modelling & Software, 174, 105971, 823 

https://doi.org/10.1016/j.envsoft.2024.105971, 2024. 824 

Oelsmann, J., Passaro, M., Dettmering, D., Schwatke, C., Sánchez, L., and Seitz, F.: The zone 825 

of influence: matching sea level variability from coastal altimetry and tide gauges for vertical 826 

land motion estimation, Ocean Science, 17, 35-57, https://doi.org/10.5194/os-17-35-2021, 827 

2021. 828 

https://doi.org/10.5194/essd-2025-227
Preprint. Discussion started: 16 May 2025
c© Author(s) 2025. CC BY 4.0 License.



49 

 

Okkaoğlu, Y., Akdi, Y., and Ünlü, K. D.: Daily PM10, periodicity and harmonic regression 829 

model: The case of London, Atmospheric Environment, 238, 117755, 830 

https://doi.org/10.1016/j.atmosenv.2020.117755, 2020. 831 

Otchere, D. A., Ganat, T. O. A., Ojero, J. O., Tackie-Otoo, B. N., and Taki, M. Y.: Application 832 

of gradient boosting regression model for the evaluation of feature selection techniques in 833 

improving reservoir characterisation predictions, Journal of Petroleum Science and 834 

Engineering, 208, 109244, https://doi.org/10.1016/j.petrol.2021.109244, 2022. 835 

Pan, H., Sun, J., Gao, X., Teng, F., Xu, T., and Wei, Z.: Can we accurately extract ocean tides 836 

from satellite altimeter records with substantial missing values in shallow bays?, Estuarine, 837 

Coastal and Shelf Science, 109280, https://doi.org/10.1016/j.ecss.2025.109280, 2025. 838 

Park, J., Müller, J., Arora, B., Faybishenko, B., Pastorello, G., Varadharajan, C., Sahu, R., and 839 

Agarwal, D.: Long-term missing value imputation for time series data using deep neural 840 

networks, Neural Computing and Applications, 35, 9071-9091, 841 

https://doi.org/10.1007/s00521-022-08165-6 842 

2023. 843 

Ramirez, S. G., Williams, G. P., Jones, N. L., Ames, D. P., and Radebaugh, J.: Improving 844 

groundwater imputation through iterative refinement using spatial and temporal correlations 845 

from in situ data with machine learning, Water, 15, 1236, https://doi.org/10.3390/w15061236, 846 

2023. 847 

Risien, C. M., Fewings, M. R., Fisher, J. L., Peterson, J. O., and Morgan, C. A.: Spatially 848 

gridded cross-shelf hydrographic sections and monthly climatologies from shipboard survey 849 

data collected along the Newport Hydrographic Line, 1997–2021, Data in Brief, 41, 107922, 850 

https://doi.org/10.1016/j.dib.2022.107922, 2022. 851 

Sarafanov, M., Nikitin, N. O., and Kalyuzhnaya, A. V.: Automated data-driven approach for 852 

gap filling in the time series using evolutionary learning, 16th International Conference on Soft 853 

Computing Models in Industrial and Environmental Applications (SOCO 2021), 633-642,  854 

https://doi.org/10.1007/978-3-030-87869-6_60,  855 

Schlegel, R. W., Oliver, E. C., Hobday, A. J., and Smit, A. J.: Detecting marine heatwaves with 856 

sub-optimal data, Frontiers in Marine Science, 6, 737, 857 

https://doi.org/10.3389/fmars.2019.00737, 2019. 858 

Shang, Q., Tang, Y., and Yin, L.: A hybrid model for missing traffic flow data imputation based 859 

on clustering and attention mechanism optimizing LSTM and AdaBoost, Scientific Reports, 860 

14, 26473, https://doi.org/10.1038/s41598-024-77748-1, 2024. 861 

Siddig, N. A., Al-Subhi, A. M., Alsaafani, M. A., and Alraddadi, T. M.: Applying empirical 862 

orthogonal function and determination coefficient methods for determining major contributing 863 

factors of satellite sea level anomalies variability in the Arabian Gulf, Arabian Journal for 864 

Science and Engineering, 1-10, https://doi.org/10.1007/s13369-021-05612-9 865 

https://doi.org/10.5194/essd-2025-227
Preprint. Discussion started: 16 May 2025
c© Author(s) 2025. CC BY 4.0 License.



50 

 

2021. 866 

Song, W., Gao, C., Zhao, Y., and Zhao, Y.: A time series data filling method based on LSTM—867 

Taking the stem moisture as an example, Sensors, 20, 5045, https://doi.org/10.3390/s20185045, 868 

2020. 869 

Sun, Q., Wan, J., and Liu, S.: Estimation of sea level variability in the China Sea and its vicinity 870 

using the SARIMA and LSTM models, IEEE Journal of Selected Topics in Applied Earth 871 

Observations and Remote Sensing, 13, 3317-3326, 872 

https://doi.org/10.1109/JSTARS.2020.2997817, 2020. 873 

Tang, F. and Ishwaran, H.: Random forest missing data algorithms, Statistical Analysis and 874 

Data Mining: The ASA Data Science Journal, 10, 363-377, https://doi.org/10.1002/sam.11348, 875 

2017. 876 

Tong, T. and Li, Z.: Predicting learning achievement using ensemble learning with result 877 

explanation, PloS one, 20, e0312124, https://doi.org/10.1371/journal.pone.0312124, 2025. 878 

Tumse, S. and Alcansoy, U.: Statistical and deep learning approaches in estimating present and 879 

future global mean sea level rise, Natural Hazards, 1-28, https://doi.org/10.1007/s11069-025-880 

07203-5 881 

2025. 882 

Vance, J. M., Currie, K. I., Zeldis, J., Dillingham, P. W., and Law, C. S.: An empirical MLR for 883 

estimating surface-layer DIC and a comparative assessment of gap-filling techniques for ocean 884 

carbon time series, Biogeosciences, 19, 241–269, https://doi.org/10.5194/bg-19-241-2022, 885 

2022, 2022. 886 

Wang, J.: An intuitive tutorial to Gaussian process regression, Computing in Science & 887 

Engineering, 25, 4-11, https://doi.org/10.1109/MCSE.2023.3342149, 2023. 888 

Wang, L., Dong, L., and Zhang, Q.: Coupling Interpretable Feature Selection with Machine 889 

Learning for Evapotranspiration Gap Filling, Water, 17, 748, 890 

https://doi.org/10.3390/w17050748, 2025. 891 

Wang, S., Li, C., and Lim, A.: Why are the ARIMA and SARIMA not sufficient, arXiv preprint 892 

arXiv:1904.07632,  893 

https://doi.org/10.48550/arXiv.1904.07632, 2019. 894 

Wenzel, M. and Schröter, J.: Reconstruction of regional mean sea level anomalies from tide 895 

gauges using neural networks, Journal of Geophysical Research: Oceans, 115, C08013, 896 

https://doi.org/10.1029/2009JC005630, 2010. 897 

Wijesekara, L. and Liyanage, L.: Mind the large gap: Novel algorithm using seasonal 898 

decomposition and elastic net regression to impute large intervals of missing data in air quality 899 

data, Atmosphere, 14, 355, https://doi.org/10.3390/atmos14020355, 2023. 900 

Wu, H., Wang, L., Ling, X., Cui, L., Sun, R., and Jiang, N.: Spatiotemporal reconstruction of 901 

global ocean surface pCO2 based on optimized random forest, Science of The Total 902 

https://doi.org/10.5194/essd-2025-227
Preprint. Discussion started: 16 May 2025
c© Author(s) 2025. CC BY 4.0 License.



51 

 

Environment, 912, 169209, https://doi.org/10.1016/j.scitotenv.2023.169209, 2024. 903 

Xiao, C., Chen, N., Hu, C., Wang, K., Gong, J., and Chen, Z.: Short and mid-term sea surface 904 

temperature prediction using time-series satellite data and LSTM-AdaBoost combination 905 

approach, Remote Sensing of Environment, 233, 111358, 906 

https://doi.org/10.1016/j.rse.2019.111358, 2019. 907 

Xu, Y., Lin, M., Zheng, Q., Ye, X., Li, J., and Zhu, B.: A study of long-term sea level variability 908 

in the East China Sea, Acta Oceanologica Sinica, 34, 109–117, https://doi.org/10.1007/s13131-909 

015-0754-0, 2015. 910 

Young, P. C., Pedregal, D. J., and Tych, W.: Dynamic harmonic regression, Journal of 911 

forecasting, 18, 369-394, https://doi.org/10.1002/(SICI)1099-131X(199911)18:6<369::AID-912 

FOR748>3.0.CO;2-K, 1999. 913 

Zhu, S., McCalmont, J., Cardenas, L. M., Cunliffe, A. M., Olde, L., Signori-Müller, C., Litvak, 914 

M. E., and Hill, T.: Gap-filling carbon dioxide, water, energy, and methane fluxes in 915 

challenging ecosystems: Comparing between methods, drivers, and gap-lengths, Agricultural 916 

and Forest Meteorology, 332, 109365, https://doi.org/10.1016/j.agrformet.2023.109365, 2023. 917 

 918 

 919 

https://doi.org/10.5194/essd-2025-227
Preprint. Discussion started: 16 May 2025
c© Author(s) 2025. CC BY 4.0 License.


