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Abstract 13 

Rapid warming across the Arctic is the primary driver of widespread permafrost thaw, with far-reaching 14 

consequences for local ecosystem resilience, the regional carbon budget, and the global climate system. Because 15 

permafrost characteristics and vulnerability are tightly linked to land cover, particularly vegetation type and surface 16 

properties, understanding these dynamics requires accurate and detailed land cover information. Spatial variation in 17 

vegetation cover influences energy balance, snow insulation, and soil moisture, factors that directly affect 18 

permafrost stability. Consequently, high-resolution land cover products are essential for assessing the ecological 19 

impacts of permafrost thaw and for improving the representation of permafrost-related processes in predictive 20 

models. However, many global land cover datasets fail to capture the spatial heterogeneity and fine-scale ecological 21 

features that influence permafrost dynamics, while more detailed regional products often lack coverage across 22 

broader, continental extents. This gap presents a challenge for large-scale assessments of permafrost vulnerability 23 

under accelerating climate change. 24 

To create a spatially cohesive land cover map that accurately represents the distribution of ecosystems 25 

across the Arctic-Boreal region, we integrated existing global and regional land cover datasets using a workflow 26 

including machine learning techniques. This approach seamlessly combines diverse data sources, enhancing 27 

representation and accuracy. The resulting map represents high-latitude land cover types at a 1km spatial resolution, 28 

better capturing the spatial heterogeneity of the landscape compared to coarser resolution land surface products, with 29 

a total of 35 land cover classes, including 20 forest types (e.g., Larch, Birch, Mixed forests), 6 shrubland classes, and 30 

wetlands subdivided into bog, fen, and marsh. To achieve this, we used a global land cover map, the European 31 

Space Agency Climate Change Initiative Land Cover data (ESA CCI-LC), as the base map and integrated regional 32 

maps across the circumpolar region with finer-resolution land cover information to capture the diversity of land 33 

cover types. This approach ensured consistent classification across geopolitical boundaries, while incorporating 34 

representative vegetation communities at a region-specific level. We show that regional land cover products can be 35 

successfully fused to yield a higher-resolution thematic content at the circumpolar scale in comparison to existing 36 

global products. The hybrid land cover product can be freely access via https://doi.org/10.5281/zenodo.15231293 37 

(Briones et al 2025). 38 

 39 

1. Introduction 40 

 As an expression of the interactions between climate, disturbances, landform, soil characteristics, land 41 

cover is a critical driver of the spatial heterogeneity of numerous ecological processes. Yet, existing land cover 42 

products often face trade-offs between spatial coverage and detailed classification. Global products provide cohesive 43 

spatial coverage but often represent land cover using broad generalized classes that may not capture the 44 
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heterogeneity and complexity of high-latitude systems. In contrast, regional products are often offered at a finer 45 

spatial resolution, with detailed classifications, but with limited spatial coverage. These limitations often present a 46 

challenge for large scale ecological investigations of the interactions between land cover and climate, disturbances, 47 

permafrost, energy balance, or biogeochemical cycles, that require both a cohesive product with detailed 48 

classification. The exponential increase in field observations are allowing significant advances in understanding and 49 

quantifying the role of vegetation composition on ecological processes for an ever increasing number of land cover 50 

classes across the Arctic (e.g.Euskirchen et al., 2016; Melvin et al., 2015; Oehri et al., 2022). However, the coarse 51 

classifications of circumpolar land cover products represent a significant boundary in upscaling new understanding 52 

about the influence of local vegetation composition at regional and global scales.  53 

These applications require detailed representations of vegetation communities and composition to improve the 54 

accuracy of climate projections, permafrost modeling, and disturbance impact analysis. However, many models 55 

continue to rely on coarse land cover classifications, which limits their ability to capture the heterogeneity of 56 

vegetation and, in turn, reduces confidence in projections of ecosystem vulnerability and climate feedbacks. This is 57 

particularly problematic when scaling from detailed site-level observations to regional or circumpolar models, as 58 

much of the ecological heterogeneity, critical differences in vegetation composition and structure between land 59 

cover types, is lost in coarse-resolution datasets.  60 

An approach to address this gap is the fusion of global and regional land cover products, an approach that 61 

has not yet been widely implemented. By integrating the broad spatial coverage of global datasets with the finer-62 

scale detail of regional classifications, this method can produce harmonized datasets that retain both spatial 63 

continuity of the global products and ecological relevance of the local and regional classifications (Pérez-Hoyos et 64 

al., 2012; Luo et al., 2024; Wang et al., 2023). In this study, we present a novel approach to address this challenge, 65 

focusing on the circumpolar high latitudes, where ecosystem models require relatively fine-scale land cover 66 

information to improve projections of carbon and energy fluxes. In high-latitude regions, climate change is 67 

reshaping the intricate interplay of biophysical and biogeochemical processes that regulate terrestrial carbon and 68 

energy balances (Heimann & Reichstein, 2008), contributing a positive feedback to warming of the global climate 69 

system (Intergovernmental Panel On Climate Change, 2022). Climate warming and changes in precipitation are 70 

affecting disturbance regimes across the Arctic and boreal biomes, including permafrost thaw and wildfires, 71 

increasing the vulnerability of ecosystems to state change (Johnstone et al., 2016; Schuur et al., 2022). Interactions 72 

between climate and disturbances are impacting vegetation composition, which in turn modulate ecosystem structure 73 

and functions, defining ecosystem vulnerability to change. These changes in vegetation affect land cover distribution 74 

and  can have significant impacts on climate feedback through above and below-ground carbon dynamics (Poulter et 75 

al., 2015) and surface energy exchange (Oehri et al., 2022; Thompson et al., 2004). For example, changes in Arctic-76 

Boreal Zone (ABZ) vegetation composition are closely tied to carbon fluxes and stocks (e.g., Balshi et al., 2009; 77 

Mack et al., 2021; Virkkala et al., 2018), and increases in tree and shrub density and decrease in land surface albedo,  78 

accelerating regional warming (Betts, 2000; Bonfils et al., 2012; Miller & Smith, 2012), altering carbon and nitrogen 79 

feedbacks as well as snow and permafrost dynamics (Elmendorf et al., 2012; Tape et al., 2006; J. A. Wang et al., 80 

2020; Zhang et al., 2013). As Arctic warming accelerates, vegetation shifts and permafrost thaw, mapping land 81 

cover in high-latitude systems is becoming increasingly important to predict the implications of these changes at the 82 

regional and global scale (Horvath et al., 2021; Kåresdotter et al., 2021). 83 

Remotely sensed observations serve as a major data source for land cover mapping, allowing monitoring 84 

across global ecosystems (Joshi et al., 2016; Rogan & Chen, 2004). There have been extensive efforts to map 85 

vegetation communities across the Arctic biome to capture the heterogeneity and diversity of tundra vegetation 86 

communities (Bartsch et al., 2024; M. K. Raynolds et al., 2019; Walker et al., 2005). However, there is often a gap 87 

between the level of detail in land cover classification between these region-specific and global products, which 88 

mostly do not capture the diversity of these high-latitude vegetation communities, especially across wetlands and 89 

tundra (Bartsch et al., 2016). Advances in wetland maps have been made recently, including the Boreal-Arctic 90 

Wetland Lake Database (BAWLD, Olefeldt et al. 2021), which provides wetland classes characterized by different 91 

hydrology, species composition, and methane emissions. This classification includes 5 distinct wetland types (bog, 92 

fen, marsh, permafrost bog, tundra wetland), but offered at a coarse 1° spatial resolution (Olefeldt et al., 2021). 93 

https://doi.org/10.5194/essd-2025-226
Preprint. Discussion started: 15 May 2025
c© Author(s) 2025. CC BY 4.0 License.



3 
 

There have been great advances in the quantity and quality of land cover maps representative of the Arctic biome at 94 

finer-scale resolutions (Raynolds et al. 2019, Liu et al. 2023, Bartsch et al. 2024). one of which includes the 10-m 95 

resolution CircumArctic Land Cover Units map (CALU, Bartsch et al. 2024) representing the area north of the 96 

latitudinal treeline with 23 land cover classes and (Bartsch et al., 2024).  However, none of these maps cover the 97 

boreal biome. Despite the increasing availability of land cover products at regional and global scales with varying 98 

resolutions, there remains a need for a spatially continuous and harmonized classification that reflects the latest 99 

advances in land cover characterization and detection across the permafrost zone. Such a dataset must provide the 100 

necessary detail to represent the influence of land cover distribution on ecological processes while accurately 101 

capturing the spatial heterogeneity consistently across regional and geopolitical boundaries across the ABZ. In this 102 

study, we address the need for a wall-to-wall land cover map, by presenting our workflow for developing a hybrid 103 

land cover product. We fuse existing global and regional products through machine learning techniques, producing a 104 

detailed circumpolar land cover map at a 1 km2 spatial resolution, specifically optimized for modeling applications. 105 

While our primary focus is on the ABZ, the methods and approaches are broadly applicable to other regions. 106 

Additionally, we assess the limitations of existing land cover products and identify opportunities for enhancing the 107 

representation of high-latitude terrestrial systems and beyond.  108 

 109 

2. Material & Methods 110 

2.1 Study area 111 

Our study region encompasses the ABZ, a region characterized by diverse vegetation composition spanning 112 

the northern tundra and boreal biomes (Fig. 1, Dinerstein et al., 2017). The ABZ includes approximately 4.98 × 10⁶ 113 

km² of tundra ecosystems , 11.93 × 10⁶ km² of boreal ecosystems, and 2.45 × 10⁶ km² of other ecosystems (e.g. ice, 114 

barren …) (Neigh et al., 2013). The boreal zone transitions from tundra at its northern boundary to temperate forest, 115 

steppe, or prairie in the south. Boreal forests dominate this domain, with coniferous species including spruce, pine, 116 

larch, and fir constituting the majority (~61 %), followed by mixed wood forests (~24 %) (Neigh et al., 2013; 117 

USGCRP, 2018). Additionally, hardwood tree species (~3 %), including birch, alder, and aspen, contribute to the 118 

region’s vegetation diversity (USGCRP, 2018). Wetlands are also extensive across the ABZ  made up of 3.2 x 106 119 

km²of the domain, and if comprised of fens (29 %), non-permafrost bogs (28 %), permafrost bogs (27 %), marshes 120 

(5 %) and tundra wetlands (12 %) (Olefeldt et al 2021). Tundra ecosystems are largely treeless dominated by 121 

herbaceous plants, mosses, lichens and dwarf shrubs (USGCRP, 2018; Epstein et al., 2004). Vegetation structure 122 

ranges from low-lying moss and lichen-dominated areas in colder, drier regions to more productive graminoid and 123 

shrub tundra in milder zones. Tundra vegetation plays a critical role in modulating surface energy balance, snow 124 

insulation, and permafrost stability, making it a key element in predicting feedbacks to the global climate system 125 

(Walker et al., 2005; Schuur et al., 2022).  126 

 127 

 128 

 129 

 130 

 131 

 132 

 133 
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 134 

Figure 1: The permafrost map (Brown et al., 1997) overlaid over the study region highlighting the Tundra and Boreal extent of 135 
the study region, with the Arctic and Boreal regions highlighted in red. Map adapted from (USGCRP, 2018).  136 

2.2  Methods Overview 137 

Our goal was to develop a hybrid land cover product that combines the fine-scale land cover information 138 
from regional products with a global land cover layer that provides consistency across regional boundaries, in our case 139 
for the circumpolar ABZ. The workflow (Fig. 2) is comprised of five major steps: (1) pre-processing and re-projecting 140 
select land cover products to a 1 km grid using a majority rule approach, (2) reclassifying and combining global and 141 
regional products to a common legend based on agreement between global and regional products, (3) reclassifying 142 
pixels that were inconsistent between global and regional products using random forest machine learning and ancillary 143 
data variables, (4) post-classification comparison, and (5) final product compilation at 1 km resolution. 144 

2.3  Land Cover Products and Classes 145 

To develop the hybrid land cover product, we used a global map as the base layer to ensure a spatially 146 

continuous land cover classification. Region-specific land cover products were then selected and integrated to 147 

provide a finer-scale land cover classification scheme and to inform the reclassification process for the final product 148 

(Table 1). We chose the The European Space Agency (ESA) Climate Change Initiative Land Cover (CCI-LC)  (ESA 149 

CCI-LC) as the global base map as it represents the relevant key land cover classes representative of ecosystem 150 

dynamics used in other studies related to carbon flux modeling (Virkkala et al., 2021). The global ESA CCI-LC is 151 

an annual 300 m spatial resolution land cover dataset with a time series of annual maps from 1992-2020. The map 152 

includes 22 general land cover classes defined using the Land Cover Classification System (ESA, 2016), of which 153 

include 7 forest type (i.e. Tree cover, needle leaved, Tree cover broadleaved), as well as shrublands, mosaic 154 

vegetation and sparse vegetation, with an overall accuracy of 71.5 % (ESA, 2017) (Table S2). To represent Arctic 155 

tundra vegetation community types, we incorporated the CALU map, which is an extension to the ESA Permafrost 156 

CCI at a 10 m resolution (ESA CCI Permafrost, Bartsch et al., 2024). The CALU map includes 23 land cover units 157 
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derived from a fusion of Sentinel-1 and Sentinel-2 and separates between water bodies, wetlands, and soil moisture 158 

conditions useful for the parameterization of permafrost processes. Of the 23 vegetation classes within CALU there 159 

are 20 vegetated units including 3 wetlands classes, 2 lichen/moss, 10 classes of various shrub tundra types, 3 forest 160 

types and classes for graminoids and barren tundra. CALU is able to capture the fine-scale heterogeneity of the 161 

Arctic landscapes, which allows for a better representation of high-latitude systems and processes. We grouped the 162 

20 vegetated land cover types in CALU into five major land cover types based on the CAVM map units: barrens, 163 

graminoid tundra, prostrate-shrub tundra, erect-shrub tundra, tall-shrub tundra, and wet-sedge tundra (M. K. 164 

Raynolds et al., 2019). CALU also has three forested land cover classifications (evergreen, deciduous, mixed), 165 

which we further classified to a specific forest type ( i.e. black spruce, birch forest) depending on the classification 166 

of overlapping regional land cover products. Since CALU primarily represents the tundra biome, its applicability is 167 

limited and does not adequately capture the land cover types found within the expansive boreal region, which 168 

constitutes the majority of our study area (Table S3).  169 

Regional products used for the boreal biome in the study were selected based on their spatial resolution, 170 

coverage, and the representativeness of land cover classes. Across North America, the main land cover products 171 

selected include the Landscape Fire and Resource Management Planning Tools (LANDFIRE) Existing Vegetation 172 

Type (EVT) map covering all of Alaska as well as a 90 km buffer zone across the Alaska-Canada border. The 173 

LANDFIRE EVT map is derived from field observations and Landsat images at a 30 m resolution and includes over 174 

130 land cover classes for Alaska (e.g., North American Arctic lichen tundra, Western North American boreal mesic 175 

birch-aspen forest) (LANDFIRE, 2023, Rollins, 2009) (Please see Table S4 for a full list of land cover classes). For 176 

Canada, we selected the Virtual Land Cover Engine (VLCE) product mapped annually from 1984 to 2022 across 177 

Canada’s forested systems, derived from Landsat surface-reflectance best-available-pixel image composites 178 

(Hermosilla et al., 2022). The VLCE map consists of 12 land cover classes at a 30-m spatial resolution, including 3 179 

forested classes (broadleaf, coniferous, mixedwood), and 2 wetland classes (wetland, wetland-treed) (Hermosilla et 180 

al., 2018) (Table S5). To supplement the Canada VLCE, we included the lead tree species map of Canada, 181 

consisting of 37 tree species mapped across Canada at a 30-m spatial resolution, with a reported overall accuracy of 182 

70.3 % (brus) (Table S6). The leading tree species map provides the distribution of dominant tree species per pixel 183 

derived from Landsat image composites and ancillary predictor layers such as data derived from Canada’s Forest 184 

Inventory plots, and provides an overall accuracy of approximately 93 % (Hermosilla et al., 2022; Stinson et al., 185 

2016; White et al., 2014).  186 

We selected several regional products to cover Arctic-boreal Eurasia For Europe, we selected the CORINE 187 

Land Cover dataset, which is a pan-European product at a 100-m spatial resolution produced from Landsat and Spot 188 

images (CORINE, 2018) (Table S7). The CORINE product contains 44 unique land cover classes (level 3) including 189 

3 main forest types (mixed, coniferous, and broad-leaved forest) and 5 wetland classes (inland marshes, peat bogs, 190 

salt marshes, intertidal flats, and salines) with a reported 85 % overall accuracy, with the accuracy of individual 191 

classes ranging from 95 % to 70 % (Aune-Lundberg and Strand 2021). To enhance the classification of specific 192 

forest types across Fennoscandia, we incorporated the Tree Species Map of Europe (Table S8). This map was 193 

developed by integrating plot data from the International Co-operative Programme on Assessment and Monitoring 194 

of Air Pollution Effects on Forests (ICP-Level I) and National Forest Inventory (NFI) data, resulting in a 1 km 195 

resolution product representing 20 unique species groups across Europe, with an estimated accuracy of 43–57 % 196 

(Brus et al., 2012). To supplement the classification of wetlands across Fennoscandia, we integrated the European 197 

Environmental Agency (EEA) Extended wetland ecosystem layer map, which includes 20 wetland classes across 198 

Europe at a 100 m spatial resolution for the year 2018 (EEA, 2018). For Russia, we used the land cover map of 199 

Northern Eurasia, which was created in 2000 from SPOT-4 Vegetation products and contains 26 classes at a 1km 200 

spatial resolution (Bartalev et al., 2003) (Table S9). To supplement the product with specific forest species, we 201 

incorporated the dominant tree species of Russian forests map from the Space Research Institute of the Russian 202 

Academy of Sciences which consists of 20 forest classes at a spatial resolution of 230 m (Balashov et al., 2020; 203 

Bartalev et al., 2016).  204 

  205 

 206 

https://doi.org/10.5194/essd-2025-226
Preprint. Discussion started: 15 May 2025
c© Author(s) 2025. CC BY 4.0 License.



6 
 

Table 1: Characteristics of the land cover products used in this study. 207 
 208 

* Denotes land cover products that are available at an annual time scale, but a single year was selected for the project. 209 

 210 

2.4  Pre-Processing and Initial Agreement Classification 211 

The datasets used in this study were inconsistent in their temporal and spatial resolutions as well as the land 212 

cover classifications. We addressed these differences by pre-processing the datasets to a uniform projection and 213 

spatial resolution (1 km), as well as developing a crosswalk, as discussed in the following section, of land cover 214 

classes to translate from the original classes of each regional product to that of the final product. To account for the 215 

geographical extents of each product, we approached this reclassification region by region: Alaska, Canada, Iceland, 216 

Fennoscandia, Russia, and Greenland. The final list of classes and their descriptions can be found in Table 2. 217 

Each land cover product was reprojected to WGS 1984 NSIDC EASE-Grid Global to match the projection 218 

of our input data and resampled to 1 km using a majority-rule approach. We developed a crosswalk between the 219 

regional products and the global base map to align with the general land cover classification (i.e., herbaceous). This 220 

involved grouping similar land cover classes (i.e., grasslands, croplands) within the more broad group (i.e., 221 

herbaceous). The reclassification created a harmonized classification scheme while maintaining the main 222 

representative land cover classes (forest, shrubland, herbaceous/grassland, barren, and wetland). 223 

The first step of reclassification is based on the agreement of major land cover classifications between 224 

global and regional maps (Fig. 2). A given pixel is grouped into a new classification if both the global and regional 225 

map pixels agree at the specific land cover classification, such as evergreen needleleaf forest, broadleaf forest, 226 

shrubland, herbaceous, barren or wetland. The classification is then further refined by reassigning each pixel to a 227 

final land cover class based on its regional classification. For example, if both the global and regional maps classify 228 

the pixel as coniferous forest and a supplemental regional product identifies it as a Black Spruce Forest, then the 229 

final classification is Black Spruce Forest (the general schematic can be seen in Fig. 2). However, if the global 230 

Dataset  Spatial 

Resoluti

on 

Extent Zone Reference 

Year(s) 

Number of 

Classes 

Reference 

ESA CCI Land Cover 2016 300 m Global Global 2016 22 Lamarche et al., 2017 

ESA CCI Permafrost Circumpolar 

Arctic Land cover Units (CALU) 

10 m Circumpolar Arctic 2016-2023* 23 Bartsch et al. 2024 

LANDFIRE 30 m Alaska Arctic-Boreal 2023 130 Rollins, 2009 

Leading Tree Species 30 m Canada Boreal 2019 37 Hermosilla et al., 2022 

Canada Virtual Land Cover 

Engine (VLCE) 

30 m Canada Boreal 2016 23 Hermosilla et al., 2018 

Canadian Wetland Inventory Map  10 m Canada Arctic-Boreal 2000-2016* 4 Mahdianpari et al., 2020 

Tree Species Map for European 

Forests 
1 km Europe Boreal 

 
- 20 Brus et al., 2012 

Corine Land Cover (CLC) 100 m Europe Boreal  2018 44 CORINE, 2018 

European Environment Agency 

(EEA) Extend wetland 

ecossytem layer 

100 m Europe Boreal 2018 20 EEA, 2018 

Land Cover of Northern Eurasia 250 Russia Arctic-Boreal 2000 26 Bartalev et al., 2003 

Russia’s Forests Map 300 m Russia Arctic-Boreal 2016 20 Bartalev et al. 2016 
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dataset classifies a pixel as evergreen needleleaf forest while the regional product identifies it as a broadleaf forest, 231 

they are in disagreement and require further processing. When such disagreements occur, we implement a random 232 

forest classification to determine the final classification of a given pixel.  This further refines the classification to the 233 

final target legend of the hybrid product for a region.  234 

 235 

Figure 2: An overview of the crosswalk between the global base map (ESA CCI-LC) and regional map(s) land cover 236 
classifications used to develop the classification scheme for the final hybrid land cover product classifications, specifically in the 237 
case when there is overlap agreement between products. 238 
 239 

2.5  Random Forest Classification 240 

When global and regional land cover products showed inconsistencies in classification for a given pixel, we 241 

applied a machine-learning approach to ensure consistency in vegetation classes. This was achieved by training the 242 

model with successfully classified pixels from the initial agreement step and incorporating predictor data. Random 243 

Forest is one of the most widely used supervised machine learning algorithms for land cover mapping and 244 

classification because of its ability to handle noisy and multi-source datasets (Jin et al., 2018; Maxwell et al., 2019). 245 

The random forest method is an ensemble-based classifier that uses decision trees for training and prediction. In 246 

Google Earth Engine, we used the random forest classifier. We optimized the number of trees (ntrees), selecting 247 

values between 200 and 300 based on the lowest out-of-bag (OOB) error across regions. Other hyperparameters, 248 

such as mtry (the number of variables considered at each split), were left at their default values, approximately the 249 

square root of the total number of predictor variables used in the model, which ranged from 2 to 3. We also 250 

calculated the importance score of the predictor data within the random forest classifier. The value of the importance 251 

scores are not uniform, but instead change depending on the number of sampling data and variables included within 252 

the classifier (C. Liu et al., 2020). The importance scores for each major region can be found in Fig. S1. 253 

Predictor included within the random forest model are those strongly linked to vegetation dynamics and 254 

characteristics. Climate variables, specifically the 19 Bioclimatic variables from WorldClim, were included to 255 

represent aspects of temperature, precipitation and seasonality (Hijmans et al., 2005). Other variables included 256 

topography (i.e. elevation, slope, aspect), as well as descriptors of vegetation and moisture including Normalized 257 
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Difference Vegetation Index (NDVI) and Normalized Difference Infrared Index (NDII) (Table S1). Training and 258 

testing data came from pixels that agreed during the initial classification agreement step between the global land 259 

cover and regional layers. We created a collection of samples that were then randomly split into groups of training 260 

(80 %) and testing (20 %) data. In total, between 500-1,200  pixels per land cover class were collected within each 261 

region. We adapted each random forest machine learning model to be region-specific to map the distribution of land 262 

cover class.  263 

 264 

2.6 Assessment 265 

The accuracy of the final hybrid land cover product (including the classifications from random forest) was 266 

dependent on the quality, level of detail, and spatial extent of the regional land cover products. We compared the 267 

proportion of agreement between the global base dataset (ESA CCI-LC) and each respective regional dataset. This 268 

comparison was conducted at a coarser land cover classification level than our final hybrid product (e.g., agreement 269 

between deciduous forest type was compared), as the ESA CCI-LC does not provide detailed information on, e.g., 270 

forest species or wetland types comparable to regional products. For each region we used the confusion matrix 271 

reports to estimate accuracy metrics such as the overall accuracy (OA), producer accuracy (PA), and user accuracy 272 

(UA) (Olofsson et al., 2014) which can be found in Fig. S2. In addition, we estimated the proportion of each land 273 

cover class of the hybrid product to compare to the global and regional products for each region, and show the 274 

accuracy metrics for the random forest classifications (Sect. 2.5). 275 

3.  RESULTS 276 

 We present our final hybrid land cover product at a 1-km spatial resolution, developed by fusing both 277 

global and regional land cover datasets across the circumpolar region (Fig. 3). You can find an in-depth 278 

classification for each individual major region within Fig. S3.  279 

 280 

 281 
Figure 3: Final Hybrid product at 1 km resolution across the Arctic-Boreal Zone, with the integrated Circumpolar Arctic Land 282 
cover Units Map (CALU) map covering the pan-Arctic.  283 

3.1 Overlap 284 
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When assessing the overlap between the global and regional products across the ABZ, our results show a 285 

majority agreement for each region (Fig. 4). In Alaska, the global and regional products show a 82.68 % agreement 286 

(17.32 % disagreement) across the land cover products (Fig. 4a), while in Canada there is a 79.86 % agreement 287 

(20.14 % disagreement) (Fig. 4b). There is a 79.51 % agreement (20.49 % disagreement) between global and 288 

regional products for Fennoscandia (Fig. 4c), while Russia has a 90.82 % agreement (9.18 % disagreement) amongst 289 

the land cover products, showing a large majority agreement across the region (Fig. 4d).  290 

 291 

 292 
Figure 4: Agreement between the global ESA CCI-LC map and region-specific land cover products including: LANDFIRE 293 
EVT, VLCE, CORINE, Bartalev et al. 2003) across the circumpolar region at a 1 km spatial resolution. Major regions include 294 
Alaska (a), Canada (b), Fennoscandia (c), and Russia (d). 295 
3.2 Accuracy 296 

The pixels classified using the random forest machine learning model were further assessed for each of the 297 

major regions. The producer’s and user’s accuracy metrics were derived from the confusion matrix (Fig. 5). Due to 298 

the fact that a majority of the pixels within each regional map were classified within the first agreement-based 299 

classification step, the performance of the random forest classifier was relatively accurate in classifying the 300 

remaining unclassified pixels.  301 
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 302 
Figure 5: Confusion Matrix for the Random Forest Model used to classify unclassified pixels from the initial agreement 303 
classification step for all major regions, displaying the User’s Accuracy (UA), and Producer’s Accuracy (PA).  304 
 305 
For class-specific accuracies of the unclassified pixels, predominantly forested land cover classes are mapped with 306 

very high accuracies (>82 %). The class accuracies of herbaceous vegetation, wetlands, and tundra classes within the 307 

ABZ transition zone were classified with moderate accuracy (>50 %). Specifically, herbaceous vegetation and 308 

shrubs have high confusion errors with forest and herbaceous vegetation classes. This is expected considering the 309 

spectral similarity of these classes. Some land cover classes generated more confusion within the classifier, such as 310 

Barren tundra across most regions except Iceland, with the lowest PA at 66 % in Fennoscandia and 76 % in Russia. 311 

Within these regions the classification of Barren tundra often had higher confusion errors with other tundra classes 312 

(i.e. Graminoid tundra).  Detailed confusion matrices for each region are shown in Fig. S2. 313 

 314 

3.3 Assessment 315 

When comparing the proportion of major land cover classes across the boreal domain (Fig. 6c, d) of the 316 

final hybrid product at a 1 km resolution, Alaska shows a forest composition of 44% in comparison to 44 % and 48 317 

% for the regional LANDFIRE and global ESA CCI-LC maps, respectively. Total forest composition in the boreal 318 

region of Canada was 50 % in our final product compared to 50 % and 71 % for the regional VLCE and ESA CCI-319 

LC maps, respectively. Boreal Alaska shrublands represented 44 % of the total vegetation cover compared to 41 % 320 

and 24 % represented in LANDFIRE and ESA CCI-LC, respectively. Total shrublands were less prominent across 321 

boreal Canada with values of 23 % in the hybrid product compared to 21 % and 8 % from the VLCE and ESA CCI-322 

LC maps, respectively.  323 

 324 
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 325 

 326 
Figure 6: Assessment of major land cover class types for our hybrid land cover product grouped by biome, Arctic (a,b) and 327 
Boreal (c,d). Panels show the total proportion of each class over the entire extent (a,c), and further subdivided by major region 328 
(b,d) including Alaska (AK), Canada (CAN), Iceland (ICE), Greenland (GRE), Fennoscandia (FEN), and Russia (RUS).  329 
 330 
We compared the representation of five dominant land cover classes (forest, shrubland, herbaceous, sparsely 331 

vegetated, and wetlands) of the hybrid land cover product land cover types to the global and regional land cover 332 

products in their original spatial resolution.  Figure 7 shows the comparison of land cover products and their 333 

classification at four established research sites including a (a) shrub tussock tundra at Eight Mile Lake in Alaska 334 

(63.8784° N, -149.2536°W), (b), black spruce peat plateau at Scotty Creek in Canada (61.3079°, 121.299° W), (c) 335 

Larch forest at Yakutsk Spasskaya in Russia (62.55° N, 129.241°E) and (d) shrub tundra at Seida in Russia (67.05° 336 

N, 62.94°E).  337 
 338 

 339 
Figure 7: Comparison of the final hybrid land cover product to the regional and global products used within the study. The sites 340 
selected includes (a) shrub tundra at Eight Mile Lake in Alaska, (b) Black Spruce peat plateau at Scotty Creek in Canada, (c) 341 
Larch forest at Yakutsk Spasskaya in Russia, and (d) a shrub tundra at Seida in Russia. 342 
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 343 

4. Discussion 344 

The development of the hybrid land cover product at a 1 km spatial resolution provides a valuable synthesis 345 

of both global and regional land cover datasets across the ABZ. The results indicate a high degree of agreement 346 

between global and regional products, yet notable differences emerge both regionally and across specific land cover 347 

classes. 348 

4.1 Integration Approach for a Hybrid Land Cover Product 349 

We present an integration approach to generate a hybrid land cover product at a 1 km spatial resolution, 350 

specifically tailored to vegetation classifications for regional model applications and other research investigations. 351 

Our main objective was to introduce an adaptable approach that enables the combination of multiple land-cover 352 

datasets with varying spatial resolutions, thematic content, and sources, resulting in a unified hybrid classification 353 

system. Our final product exhibited reasonable accuracy across regions when compared to both the global and 354 

corresponding regional maps. 355 

The general harmonization approach of our workflow is reproducible and can be applied to other study 356 

regions at both regional and global scales. To accurately represent the diverse vegetation communities of the ABZ, 357 

integrating multiple local and regional land cover maps is essential. Compared to the Arctic region, where 358 

substantial efforts have been made to represent tundra vegetation in detail and at high spatial resolutions (Bartsch et 359 

al., 2024; A. Liu et al., 2023; Raynolds & Walker, 2008), boreal vegetation has remained more challenging to 360 

classify consistently. As new or updated regional and global products become available, our approach remains 361 

flexible enough to incorporate these data, leading to continuous refinement and enhancement of the final product 362 

and providing more detailed land cover classifications. 363 

 364 

4.2 Regional Disparities in Agreement and Model Performance 365 

Agreement between global and regional products varies by region, with Alaska and Canada exhibiting 366 

higher disagreement rates (17.32 % and 20.14 %, respectively) compared to Russia (9.49 %). This suggests that 367 

regional land cover datasets in North America capture fine-scale variations in vegetation classes that global products 368 

fail to represent. Russia performs relatively better in terms of agreement rate, likely due to limited availability in 369 

region-specific land cover products, therefore reducing the chance of disagreement across various products, 370 

compared to regions such as Alaska and Canada, which have more available land cover products at fine spatial 371 

resolution. Across the Alaskan Boreal extent, in areas where there was higher disagreement between global (ESA 372 

CCI-LC) and regional products (LANDFIRE), the greatest source of disagreement came from misclassification 373 

between coniferous forest and mixed forest, at 13 % of pixel disagreement. Similarly, across the Canadian Boreal 374 

extent, the areas of highest disagreement were those between shrublands (VLCE) and coniferous forest (ESA CCI-375 

LC) at 8 %, and disagreement between coniferous forest and mixed forest classifications at 6 %. This disagreement 376 

among similar land cover classes has often been attributed to confusion from similar spectral signatures in the 377 

satellite imagery. This is especially true for differences between mixed and coniferous forest, as well as deciduous 378 

forest, shrublands, shrub-covered wetlands, and herbaceous classes (Latifovic et al., 2017; Wang et al., 2019).  379 

Comparisons of land cover class representation reveal discrepancies in the total coverage of different 380 

classes across datasets. For instance, boreal Alaska’s forest composition aligns closely between the hybrid and 381 

LANDFIRE datasets (both at 44 %), yet the global ESA dataset estimates forest extent at 48 %. Similarly, shrubland 382 

representation is higher in the hybrid product (44 %) compared to ESA (24 %), suggesting the importance of 383 

integrating regional datasets to more accurately reflect dominant vegetation classifications. These differences in 384 

classification can be observed across the ABZ as shown in Fig. 6, specifically showcasing the general 385 

underestimation of wetlands within the ESA CCI-LC product. These differences have significant implications for 386 

ecological modeling, as over- or underestimation of land cover classes directly affects simulations of ecosystem 387 
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processes, such as carbon fluxes and vegetation dynamics (Jung et al., 2006; Pérez-Hoyos et al., 2012).Wetlands, in 388 

particular, remain one of the most challenging land cover types to classify accurately due to their fine-scale 389 

heterogeneity, seasonal variability, and often ambiguous spectral signatures. Our hybrid product takes advantage of 390 

regional classification schemes and ancillary data layers to improve the delineation of wetland classes. For example, 391 

in North America across the boreal extent, our hybrid map estimates wetlands at 21 %, which is closely aligned with 392 

the 22 % wetland extent reported in BAWLD, while our hybrid map shows 21 % and BAWLD 28 % across Eurasia 393 

boreal extent (Olefeldt et al., 2021). This consistency suggests that our approach can effectively capture the spatial 394 

distribution of wetlands, enhancing the reliability of wetland representation for process-based models and climate 395 

assessments. A more refined understanding of wetland extent and distribution is particularly critical for permafrost 396 

modeling and methane emission projections, where wetland dynamics play a disproportionate role in influencing 397 

carbon-climate feedbacks. 398 

Certain regions exhibit higher levels of disagreement, particularly in transitional zones where land cover 399 

classes are more challenging to delineate (Heiskanen, 2008; Herold et al., 2008; Prestele et al., 2016). For example, 400 

shrub tundra and herbaceous wetlands demonstrate higher classification errors due to spectral similarities with 401 

adjacent vegetation classes (Latifovic et al., 2017). The confusion matrix highlight how barren tundra, particularly in 402 

Fennoscandia and Russia, is frequently misclassified as graminoid tundra by the random forest model. This 403 

misclassification underscores the limitations of optical remote sensing in distinguishing subtle land cover transitions. 404 

The application of the random forest classifier was crucial for resolving unclassified pixels, especially in 405 

regions with sparse or inconsistent data coverage. Notably, locations such as black spruce peat plateaus in Canada 406 

and larch forests in Russia required machine learning-based estimations due to their unique spectral and structural 407 

characteristics. While the classifier performed well for forested classes (>82 % accuracy), moderate accuracies (>50 408 

%) were observed for herbaceous wetlands and tundra, reflecting inherent classification challenges in these 409 

environments. 410 

Relevance for Carbon Modeling and Ecosystem Dynamics 411 

From a carbon modeling perspective, land cover maps that contain a detailed and accurate classification of 412 

various vegetation community types are important due to their unique contributions to carbon and methane 413 

dynamics. Forested and shrubland regions play a crucial role in CO₂ sequestration due to their high biomass density 414 

and substantial carbon storage in both aboveground and belowground pools. Forests act as significant carbon sinks, 415 

with global estimates indicating that they sequester approximately 7.6 ± 49 Pg C annually (Pan et al., 2011). Boreal 416 

and temperate forests, in particular, store vast amounts of carbon in biomass and soils, with permafrost-associated 417 

forests having long-term carbon storage potential (Hugelius et al., 2020), while shrublands also contribute to carbon 418 

dynamics by storing carbon in woody biomass and organic soils. Shrub expansion in high-latitude tundra regions 419 

due to climate change has been linked to increased CO₂ uptake during the growing season (Myers-Smith et al., 420 

2011), however, these ecosystems can also act as sources of methane under conditions of water saturation, 421 

particularly in permafrost regions (Treat et al., 2018). In contrast, wetlands and peatlands, which store about one-422 

third of the world’s soil carbon (Yu, 2012), are also significant sources of methane emissions, especially under 423 

warmer and wetter conditions (Turetsky et al., 2014).  424 

Improving the spatial resolution of wetland land cover mapping can significantly enhance model accuracy 425 

by reducing the amount of heterogeneity not captured within pixels, leading to more accurate ecosystem 426 

representation (e.g., Kuhn et al., 2021). Land cover products, such as BAWLD and the Circumpolar Arctic Land 427 

Cover Unit (CALU) dataset, provide refined classifications of wetland, lake, and river ecosystems (Bartsch et al., 428 

2024; Olefeldt et al., 2021). These datasets incorporate expert knowledge and spatial data to differentiate landscape 429 

classes based on distinct hydrological and biogeochemical characteristics, enabling improved modeling of current 430 

and future methane emissions. However, global models disagree as to the magnitude and spatial distribution of 431 

emissions, due to uncertainties in wetland area and emissions per unit area (Bohn et al 2015). 432 

Accurate representation of these dynamics in carbon cycle models is crucial for improving projections of 433 

future climate, and understanding these distributions accurately is fundamental for process-based models that 434 
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simulate greenhouse gas fluxes in Arctic and boreal ecosystems. The hybrid land cover product, with its improved 435 

representation of fine-scale vegetation classes, enhances the capacity of these models to capture spatial variability in 436 

these complex systems. Despite its advantages, uncertainties remain with this approach. Differences in time periods 437 

and methodologies across the global and regional datasets introduce inconsistencies in land cover classification. 438 

Additionally, classification errors due to spectral similarities between vegetation classes highlight the need for 439 

continued refinement, potentially through the integration of ancillary datasets such as LiDAR or SAR imagery.  440 

 441 

Uncertainties 442 

 While integrating multiple land cover datasets may enhance spatial representation, it introduces challenges 443 

related to classification consistency/harmonization, scale and accurate representation of changes in vegetation 444 

dynamics. The fusion of global and regional land cover products can lead to boundary mismatches, particularly in 445 

transition zones. Studies have shown that the classification accuracy of global land cover products varies across 446 

different regions. For example the ESA CCI-LC product shows an overally accuracy of 63.5 % in the Arctic region, 447 

thus highlights the need for careful consideration when integrating more detailed regional products to supplement 448 

the classification of these regions (Liang et al 2019).  449 

 Our hybrid land cover product’s 1 km resolution balances spatial detail with computational efficiency, but 450 

may not capture fine scale heterogeneity in certain landscapes. Less represented land cover types, such as fens or 451 

patchy wetlands may be underrepresented when aggregated to coarser resolutions. Resampling from finer 452 

resolutions (i.e. 10 m to 10 km) can significantly alter the proportion of these heterogeneous classes. For instance, 453 

the proportion of wetland cover in the CALU dataset decreases from approximately 9 % at 10 m resolution to 6.3 % 454 

at 1km and further to 5.5 % at 10 km. These changes should be considered when integrating datasets at varying 455 

resolutions or when applying the datasets to broad regions.  456 

 Given these uncertainties, users applying this dataset for carbon flux modeling, biodiversity assessments, or 457 

land cover change analyses should account for potential biases introduced by classification errors, resolution 458 

limitations, and temporal inconsistencies. While this hybrid dataset improves Arctic and boreal land cover 459 

representation compared to global datasets alone, ongoing refinements are needed to enhance the accuracy of 460 

underrepresented classes and transitional zones. Understanding these dataset uncertainties is essential for informed 461 

application in ecological and climate research. By acknowledging and addressing these limitations, users can better 462 

interpret the data and contribute to ongoing efforts to refine land cover mapping in Arctic and boreal regions. 463 

 464 

Conclusion 465 

Accurate land cover maps are essential for understanding ecosystem structure, dynamics, and change, yet 466 

comprehensive, high-resolution maps remain scarce across many of Earth’s biomes, including the ABZ. To address 467 

this gap, we present a new hybrid land cover dataset spanning the entire ABZ at a moderate spatial resolution of 1 468 

km. This circumpolar product integrates and harmonizes multiple existing global and regional land cover datasets, 469 

improving representation of key vegetation types, including shrub tundra and boreal forest communities, which are 470 

often underrepresented or misclassified in coarser-resolution products. Our dataset distinguishes 35 land cover 471 

classes tailored to ecological and modeling applications, offering improved accuracy and spatial consistency across 472 

geopolitical boundaries. 473 

The underlying methodology combines a multi-step integration process with machine learning-based 474 

refinement, leveraging agreement between validated products to enhance reliability. While this workflow supports 475 

the dataset's development, our primary contribution is the hybrid product itself—designed to support ecosystem 476 

modeling, permafrost and carbon assessments, and land-atmosphere interaction studies. This dataset serves as a 477 

valuable resource for the scientific community working in the ABZ, and future updates may incorporate additional 478 

observational inputs to further improve resolution and thematic detail. 479 
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