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Abstract. Terrace, as one of the most widely distributed and heavily invested soil and water conservation (SWC) measures 

in China, currently lacks a comprehensive database with spatiotemporal distribution and diverse classification types. This 

absence significantly hampers accurate soil erosion assessment and SWC planning in China. To address this gap, we 

proposed a two-stage mapping framework for the different terrace measures classification to produce a new dataset named 

the Soil and Water Conservation Terrace Measures Dataset (SWCTMD) using time-series Landsat satellite imagery and 15 

digital elevation model data. This dataset, spanning from 2000 to 2020, incorporated a fine classification system, providing 

both terrace data and SWC measure factor. The terraces were classified into four types according to their features: level 

terrace, slope terrace, zig terrace, and slope-separated terrace. The results showed that the average overall accuracy (OA) of 

the terrace was 91.90% and the average F1 score was 76.75%. For different terrace types, the average OA was 83.50% and 

the average F1 score was 52.14%. Comparative analysis highlighted the superiority and robustness of the SWCTMD 20 

compared to existing products. This dataset revealed that terraces in China are predominantly concentrated in the Loess 

Plateau, Southwest and Southeast regions. From 2000 to 2020, the total terrace areas increased by 96,038.16 km², with the 

largest increase occurring in slope terraces. While terrace expansion was concentrated in the Loess Plateau, and southwest 

and southeast of China, decreases were concentrated around urban areas. Notably, terraces reduced soil erosion of cropland 

by about 818 million tons in 2020. The SWCTMD enhances the accuracy of soil erosion simulations and enables long-term 25 

analysis of soil erosion trends. Moreover, the dataset offers valuable applications in earth system modelling and contributes 

to research on land resource management, food security, biodiversity, and water cycle. The SWCTMD is freely available at 

https://doi.org/10.11888/Terre.tpdc.302400 (Duan, 2025). 

1 Introduction 

Agricultural terraces are one of the most common cultivation techniques in mountainous and hilly areas, varying in shape 30 

and size. They consist of flat cultivated section and nearly vertical riser. The riser is usually protected by dry stone, grass, 
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scrub or trees, ranging from a few centimeters to several meters in height and may be continuous or intermittent (Arnáez et 

al., 2015). As an important soil and water conservation (SWC) measure, terraces have a significant effect on retaining water 

and soil (Wickama et al., 2014; Londero et al., 2018). Based on the structures of the field surface, terraces can be categorized 

into level terrace, slope terrace, zig terrace, and slope-separated terrace (Liu et al., 2013a). By reshaping surface 35 

microtopography, terraces decreased slope length and gradient and changed specific hydrological paths (Deng et al., 2021). 

These changes reduce soil erosion and runoff, improve conserving water and soil, and increase crop yields (Adgo et al., 2013; 

Chen et al., 2017, 2020; Wei et al., 2021). Within established soil erosion assessment frameworks, terraces are shown as a 

support practice factor in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) 

(Wischmeier and Smith, 1978; Renard et al., 1997). In the Chinese Soil Loss Equation (CSLE), they are specifically 40 

represented as SWC engineering practice factor (Liu et al., 2020a). However, many large-scale assessments of soil erosion 

neglect this factor due to insufficient data on the spatial distribution of terraces (Gobin et al., 2004; Teng et al., 2016). 

Therefore, the mapping of terraces is crucial for soil erosion research.  

Efforts have been made to map terraces in China. Three primary methods are employed to obtain the spatial extent and 

location information of terraces. The first method is government-initiated land resource survey. In the second and third 45 

nationwide land survey of China, terraces were considered in paddy field surveys. Terraces located in extensive drylands, 

particularly on steep slope land, were often categorized simply as dryland or irrigated land, without distinguishing terrace 

types. The second method is to extract terrace information from land use data (Liu et al., 2021). Existing land use products in 

China, such as FROM-GLC, GlobeLand30, CLCD, CACD, and GLC_FCS30, generally classify terraces as cropland (Yu et 

al., 2013; Chen et al., 2015; Yang and Huang, 2021; Zhang et al., 2021; Tu et al., 2024). Among these, only the CNLUCC 50 

land use product further subdivides cropland into paddy field and dryland but still fails to distinguish terrace types on 

dryland (Liu et al., 2010). This limitation makes it challenging to extract terraces from existing land use data. The third 

method is to use satellite images to identify terraces. For instance, Lu et al. (2023) used deep learning methods to map 

terraces in the Loess Plateau based on high-resolution satellite images from October 2018 to February 2019. Li et al. (2024) 

produced a 30-meter resolution terrace map for China using 2017 Sentinel-2 imagery and Landsat-8 imagery on the Google 55 

Earth Engine (GEE) platform through the random forest (RF) algorithm. Similarly, Cao et al. (2021) produced a 30-meter 

resolution terrace map using 2018 Landsat-8 imagery and the RF algorithm on the GEE platform (Table 1). Although these 

maps have been widely used in soil erosion research (Li et al., 2023; Zhang et al., 2023), the limited classification of terrace 

types and lack of long-term coverage restrict broader application at regional or national scales. The effectiveness of terraces 

in SWC varies significantly by type, with level terraces exhibiting the most remarkable benefits (Oliveira et al., 2012). Level 60 

terraces reduced runoff by 56.5% and sediment by 53.1% compared to slope terraces (Chen et al., 2017). Ignoring terrace 

types can lead to inaccuracies in soil erosion assessment. Furthermore, the absence of long-term terrace data hinders analyses 

of soil erosion trends and predictions. 

 

 65 
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Table 1. Existing terrace products in China. 

Method Algorithm Study area Data Reference 

Deep learning 

Mapping terraces based 

on UNET++ deep 

learning network 

The Loess 

Plateau 

Google Earth images Lu et al. 

(2023) 

Machine learning 
Mapping terraces based 

on RF algorithm 

China Landsat-8 imagery and 

Sentinel-2 imagery 

Li et al. 

(2024) 

Machine learning 
Mapping terraces based 

on RF algorithm 

China Landsat-8 imagery Cao et al. 

(2021) 

 

Steep slope land accounts for more than one-third of the total cropland area in China. Over recent decades, the construction 

of agricultural terraces has been the primary engineering measure for managing steep slope cropland (Liu et al., 2013b; Feng 

et al., 2017; Zhang et al., 2017). However, the existing terrace datasets lack detailed classification of terrace types and are 70 

limited to single-year data. These limitations hinder soil erosion assessment, prediction, and SWC planning. To address this 

gap, a two-stage mapping framework for the terrace classification was developed on the GEE platform. The first stage 

distinguishes terraces from non-terraces, while the second stage focuses on identifying different terrace types. Using this 

mapping framework, the first Soil and Water Conservation Terrace Measures Dataset of China (SWCTMD) was produced 

using time-series Landsat satellite imagery and digital elevation model data, covering the period from 2000 to 2020. The 75 

dataset incorporates a detailed classification system. The accuracy of SWCTMD was evaluated using validation samples and 

compared with existing terrace maps. Additionally, the terrace dataset was used to identify spatial and temporal changes in 

terraces across China and to assess the SWC benefits provided by terraces. 

2 Methodology 

Figure 1 illustrates the framework of terrace mapping, which includes sample collection, feature calculation, classification 80 

implementation, post-classification processing, and accuracy evaluation. Detailed information on each stage of the terrace 

mapping process is provided below. 
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Figure 1. The framework for mapping terrace. 

2.1 The classification system and interpretation symbols 85 

According to the findings of China’s First National Census for Water (FNCW) (Liu et al., 2020a), we identified the major 

types of terraces, including level terrace, slope terrace, zig terrace, and slope-separated terrace. The interpretation keys for 

the different terrace types included shape, size, texture, color, and location (Table 2). 
Table 2. Image characteristics of different terrace types. 

Terrace types Image characteristics 
Remote sensing 

image 

Level terrace 

Steep slope land transformed into a series of successively receding flat surfaces, with 

bunds constructed from soil or stones, ranging in width from 5 to 40 m, looking like 

the steps of a staircase in remote sensing images. In contrast to slope terraces, level 

terraces are predominantly found in low and flat areas.  

Slope terrace 

Similar to level terraces, but with wider and more uneven surfaces, these terraces 

exhibit irregular shapes in remote sensing images. They are primarily used for 

dryland agriculture and are mostly distributed the areas with slopes greater than 5°. 
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Zig terrace 

Steep slope land has been transformed into step-like terraces, which are narrower 

than level terraces. The surfaces of these terraces exhibit regular strip shapes in 

remote sensing images. These terraces are primarily found in sloping regions and are 

used for planting permanent crops such as tea.  

Slope-separated 

terrace 

Each flat surface constructed on steep slope land retains an original slope segment 

above it, forming a composite structure that features a slope between flat surfaces. 

These terraces are primarily used for rubber plantations. 

 

2.2 Data and preprocessing 90 

In this study, we primarily used Landsat surface reflectance (SR) data, Shuttle Radar Topography Mission (SRTM) digital 

elevation model (DEM) data, and GlobeLand30. Detailed information about these datasets is provided in Table S1. 

2.2.1 Landsat SR data 

The study used Landsat-4/5/7/8 SR data, with a spatial resolution of 30 m and a temporal resolution of 16d, which were 

accessible through the GEE platform. The Landsat SR data from all the sensors have been atmospherically corrected by the 95 

United States Geological Survey (USGS) utilizing the LEDAPS algorithm (Masek et al., 2006). These data included Quality 

Assessment (QA) masks that indicated the usability of the pixel data, produced using the CFMASK algorithm (Zhu and 

Woodcock, 2012). We used QA bands to identify and remove clouds and cloud shadows in each Landsat SR image, and the 

missing data within the year after cloud removal was filled using images from the previous year. Due to the inconsistency in 

the wavelength of band among different Landsat sensors (Roy et al., 2016), we used only Landsat-8 SR imagery for the 100 

SWCTMD in 2020, and Landsat-4/5/7 SR imagery for the SWCTMD in 2000. In 2010, we relied solely on Landsat-5 SR 

imagery for the SWCTMD due to the failure of the Scan Line Corrector in the Landsat-7 instrument in 2003 and the 

decommissioning of Landsat-4 in 2001. 

2.2.2 SRTM DEM 

Topographical features are essential characteristics that differentiate regular cropland and terrace, playing a crucial role in 105 

the identification of terraces. We used the SRTM DEM data to calculate these topographical features. SRTM is a global 

research effort that acquired DEM with near-global coverage, achieving a resolution of 1 arcsecond. The SRTM DEM has 

been processed for void-filling utilizing various open-source DEM datasets. Compared to other DEM data, SRTM DEM is 

the most quality-controlled, broadest coverage, and highest accuracy DEM among open-source data (Farr et al., 2007; Dong 

et al., 2015). The GEE platform provides access to the SRTM DEM at 30 m resolution.  110 

https://doi.org/10.5194/essd-2025-215
Preprint. Discussion started: 15 May 2025
c© Author(s) 2025. CC BY 4.0 License.



6 
 

2.2.3 GlobeLand30 

To improve the accuracy and efficiency of terrace identification, we use the union of cropland data from GlobeLand30 from 

2000 to 2020 as the range of terrace identification. GlobeLand30 is a widely global used land use dataset that adopts a pixel-

object-knowledge classification method, effectively utilizing the advantages of various classification algorithms (Chen et al., 

2015). The accuracy of cropland area and spatial location of GlobeLand30 is higher than the other four products (FROM-115 

GLC, GlobCover, MODIS Collection 5, and MODIS Cropland) in China (Lu et al., 2016). The cropland from GlobeLand30 

includes paddy fields, drylands, pastures, and permanent crop lands (such as tea and coffee). Therefore, we adopt the 

cropland from GlobeLand30 as the range of terrace classification.  

2.3 Feature space construction 

Feature variables play a crucial role in remote sensing image classification. In this study, we constructed an input dataset 120 

comprising five aspects: spectrum, spectral indices, phenology, texture, and topography. The six optical bands (red, green, 

blue, near-infrared, shortwave infrared 1, and shortwave infrared 2) from Landsat SR imagery for a specific year, along with 

the corresponding spectral indices (NDVI, MNDWI, NDBI, BSI, LSWI, and EVI), were composited into the 25th, 50th, and 

75th percentiles utilizing the metrics-composite method. The percentiles effectively represent phenological information 

while simplifying time series information, reducing annual time series noise, and contributing to enhanced classification 125 

accuracy (Duan et al., 2024). Additionally, texture features can notably improve classification precision (Liu et al., 2020b; 

Maskell et al., 2021; Duan et al., 2022). Due to the high similarity among the six optical bands of Landsat SR imagery, only 

the texture features of the near-infrared band were considered in this study (Rodriguez-Galiano et al., 2012a; Zhang et al., 

2021). Furthermore, to avoid redundancy among texture features, four texture features of the infrared band, including 

Angular Second Moment (ASM), Entropy, Contrast, and Correlation, were selected (Hou et al., 2013). In addition to the 130 

Landsat-based metrics, we incorporated seven frequently utilized topographic features, including slope, aspect, slope of 

slope, relief, slope shape, roughness, and elevation (Tang et al., 2016). In total, we acquired 55 features for each year (Table 

S2). 

2.4 Training and validation sample collection 

Samples are a critical component in supervised classification. We used manual visual interpretation methods to collect 135 

samples in the years 2000, 2010, and 2020. To ensure that the collected samples are evenly distributed across the study area, 

we implemented a strategy of gathering samples by subregions. The study area was divided into 1,641 subregions. Utilizing 

high-resolution images from Google Earth Pro software, we collected at least 10 samples from each subregion (Fig. 2). 

Through this method, we collected a total of 52,329 samples. Specifically, a total of 17,392 samples were collected in 2000, 

17,417 samples in 2010, and 17,520 samples in 2020 (Table S3). Subsequently, we split the annual samples into training 140 

(70%) and validation data (30%) (Figs. S1 and S2). 
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Figure 2. The spatial distribution of samples in 2010. 

2.5 Terrace classification on the GEE platform 

The GEE platform offers a variety of classification algorithms. We select the widely used RF model for terrace classification, 145 

given the algorithm has the advantages of remarkable performance, high efficiency, and interpretability (Rodriguez-Galiano 

et al., 2012b; Gong et al., 2019). Two essential parameters must be set for the RF model. In this study, we set the number of 

trees to 500 and determined the number of variables per split as the rounded square root of the feature number. Other 

parameters were maintained at their default settings as specified by the GEE platform (He et al., 2017; Gong et al., 2020). 

Given the sensitivity of the RF model to the ratio of samples across different classes (Chen et al., 2024), we implemented a 150 

two-stage mapping approach for classifying terraces. In the first stage, RF was utilized to differentiate between terrace and 

non-terrace classes. In the second stage, RF was utilized to classify various terrace types, including level terrace, slope 

terrace, zig terrace, and slope-separated terrace. In Stage I of the mapping process, samples from both terrace and non-terrace 

samples were used, whereas only terrace samples were utilized in Stage II. 

2.6 Post-classification processing 155 

Both supervised and unsupervised classification methods in remote sensing rely on the spectral characteristics of image 

pixels. A critical issue is the presence of isolated pixels in the classification results, which exhibit high local spatial 

heterogeneity between neighboring pixels (Hirayama et al., 2019). This phenomenon, commonly known as the salt-and-

pepper effect, is regarded as noise affecting accuracy. Terraces, primarily constructed in hilly or mountainous regions, 
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exhibit a scattered and irregular distribution, which leads to an obvious salt-and-pepper effect in classified images. Given the 160 

small area of terraces, we applied a mode filter with 3 × 3 px for spatial filtering processing to mitigate the salt-and-pepper 

effect from the classification results. To improve the overall quality of the mapping results, we conducted spatial-temporal 

consistency check to suppress illogical land use conversions. Specifically, for areas that were cropland in both the previous 

year and the current year (excluding grain-for-green areas), we modified those areas that were previously terraces but were 

identified as non-terraces in the current year to terraces. 165 

2.7 Accuracy assessment 

It is an essential step to assess the accuracy of the products prior to utilizing data in related applications. The classification 

maps were evaluated using a confusion matrix calculated from validation samples. The confusion matrix is widely regarded 

as the standard method for evaluating the accuracy of classified images. This method offers quantitative assessment metrics, 

including the kappa coefficient (KA), overall accuracy (OA), producer’s accuracy (PA), and user’s accuracy (UA), which 170 

collectively assess the performance of the products. In addition, we calculated the F1 score, which reflects the balance 

between UA and PA. The formula is Eq. (1): 

𝐹𝐹1 = 2 𝑃𝑃𝑃𝑃×𝑈𝑈𝑃𝑃
(𝑃𝑃𝑃𝑃+𝑈𝑈𝑃𝑃)

            (1) 

 

In this study, we constructed two confusion matrices: one for evaluating the accuracy of terraces and non-terraces, and the 175 

other for assessing the accuracy of various terrace types. 

3 Results 

3.1 Accuracy assessment of the dataset 

Using the validation samples, two confusion matrices corresponding to different terrace classification levels were generated. 

For the classification of terrace and non-terrace, the OA ranged from 90.44% to 92.89%, with KA ranging from 64.83% to 180 

76.75%, and F1-scores ranging from 70.14% to 95.62% (Table 3), indicating that the classification performs well. For 

terrace class, the UA ranged from 87.83% to 92.09%, and the PA ranged from 56.64% to 75.32%, indicating that the 

probability of misclassification for terrace was low. 
Table 3. The accuracy matrix for the terrace and non-terrace. 

Year types UA (%) PA (%) F1 score (%) OA (%) Kappa (%) 

2000 
Non-terrace 90.21 98.80 94.31 

90.44 64.83 
Terrace 92.09 56.64 70.14 

2010 Non-terrace 92.61 98.22 95.33 92.37 74.45 
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Terrace 91.06 69.79 79.02 

2020 
Non-terrace 93.95 97.35 95.62 

92.89 76.75 
Terrace 87.83 75.32 81.09 

 185 

For different terrace types, the OA ranged from 81.31% to 86.03%, KA ranged from 37.37% to 50.01%, and F1 scores 

ranged from 22.86% to 92.27% (Table 4). Slope terraces exhibited the highest classification accuracy, followed by slope-

separated terraces, level terraces, and zig terraces, respectively. From the UA and PA, the omission errors were lower than 

the commission errors for different types of terraces. Among all terrace types, slope terrace had the lowest misclassification 

error. 190 
Table 4. The accuracy matrix for the different types of terraces. 

Year types UA (%) PA (%) F1 score (%) OA (%) Kappa (%) 

2000 

Level terrace 66.67 18.18 28.57 

81.31 37.74 
Slope terrace 84.03 97.98 90.47 

Zig terrace 44.44 15.38 22.86 

Slope-separated terrace 57.14 35.82 44.04 

2010 

Level terrace 90.00 22.50 36.00 

83.15 37.37 
Slope terrace 84.08 98.26 90.62 

Zig terrace 62.50 15.15 24.39 

Slope-separated terrace 63.33 45.24 52.78 

2020 

Level terrace 77.27 24.64 37.36 

86.03 50.01 
Slope terrace 87.00 98.23 92.27 

Zig terrace 41.18 18.42 25.45 

Slope-separated terrace 92.68 71.70 80.85 

 

We compared the 2020 terraces in the SWCTMD with two existing terrace data, the 2018 terrace map (Cao et al., 2021) and 

the 2017 terrace map (Li et al., 2024), finding that our results exhibit higher accuracy and robustness. Their research 

primarily focused on terraces found in paddy fields and drylands, whereas our research covers a broader range, including 195 

slope-separated terraces constructed in rubber plantation regions and zig terraces in orchard lands in southern China. Notably, 

we identified massive zig terraces such as Guangxi, where the terraces mapped by Cao and Li are relatively sparse (Fig. 3). 

This discrepancy indicates that our datasets offer more comprehensive coverage for recognizing terraces. Despite the 2 to 3-

year temporal gap between the datasets, the changes in terraces during this period were minimal, suggesting that the 

temporal disparity does not affect the comparative result.  200 
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Figure 3. Regional comparisons of the three terraces data. 

3.2 Spatiotemporal variation of terraces in China 

Terraces are primarily distributed across the hills, basins, and plateaus of China (Figs. 4a and S3). The Sichuan Basin 

exhibits the highest concentration of terraces, followed by the Yunnan-Kweichou Plateau and the Loess Plateau. 205 

Furthermore, terraces are also extensively found in the hilly regions of central and southeastern China. From terrace types, 

level terraces are distributed in the gentler slopes of hilly regions in southern China. Sloped terraces are most extensively 

distributed across the Sichuan Basin, Yunnan-Kweichou Plateau, and Loess Plateau, with smaller occurrences in the hilly 

regions of central and southeastern China. Zig terraces are mostly distributed in the central and southeastern hilly areas, 

while slope-separated terraces are mainly located in southwest China (Figs. 4a and 4b). In terms of spatial changes, the 210 

increasing terraces are mainly distributed in the Yunnan-Kweichou Plateau, Loess Plateau, and Sichuan Basin from 2000 to 

2020 (Fig. 5a). These areas are severely affected by soil erosion and are key areas of soil erosion in China. Yunnan and 

Gansu are the provinces with the largest increase in terraces (Fig. 5b). The decreasing terraces are mainly distributed around 

urban areas from 2000 to 2020, where urban expansion has occupied some terrace areas. 
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 215 
Figure 4. The spatial patterns of different terrace types at pixel and provincial. (a) The spatial distribution of different terraces in China in 

2020. (b) The different terrace areas in different provinces in 2020. 

 
Figure 5. The spatial changes of the terrace at pixel and provincial. (a) The spatial changes in terraces from 2000 to 2020. (b) The changes 

in the terrace areas in different provinces from 2000 to 2020. 220 

The provinces with the largest terrace areas are Sichuan, Yunnan, Guizhou, Gansu, and Chongqing, while other provinces 

have relatively smaller terrace areas (Fig. 6a). Among these, Chongqing, Sichuan, Guizhou, and Yunnan exhibited the 

highest percentage of terraces, with over 70% of cropland converted to terraces (Fig. 6b). From 2000 to 2020, Yunnan, 

Gansu, Guangxi, and Guizhou experienced the most significant increases in terrace areas, with the terrace areas increasing 

by 22,877.35 km², 6,822.40 km², 8,095.66 km², and 6,235.54 km², respectively (Fig. 6a). In terms of terrace types, the areas 225 

https://doi.org/10.5194/essd-2025-215
Preprint. Discussion started: 15 May 2025
c© Author(s) 2025. CC BY 4.0 License.



12 
 

of level terraces, slope terraces, zig terraces and slope separated terraces increased by 2,275.26 km², 86,186.26 km², 1,536.28 

km², and 6,040.36 km², respectively, with the slope terrace having the largest increasing areas (Figs. 6c, d, e and f). Overall, 

China’s total terrace area expanded from 400,895.68 km² in 2000 to 496,933.84 km² in 2020 (Fig. 6g). 

 
Figure 6. The changes of terrace areas at provincial and types from 2000 to 2020. (a) The changes of terrace area in different provinces. (b) 230 
The proportion of terraces to cropland in different provinces. (c-f) The areas of level terrace, slope terrace, zig terrace, and slope-separated 

terrace, respectively. (g) The total terrace areas of China. 

3.3 Spatiotemporal pattern of E in China 

The SWC engineering practices indicate the ratio of the amount of soil erosion with specific measures to the corresponding 

amount without measures, denoted by E. The values of E range from 0 to 1, with lower values showing  better SWC benefits. 235 

We generated spatial distribution maps of E values based on the SWCTMD for the years 2000, 2010, and 2020 (Fig. 7). The 

E values for different terrace types were determined based on existing studies (Duan et al., 2020; Liu et al., 2020a). The 

measures with the worst SWC benefit were mainly distributed in southwest China. The measures with the best SWC benefit 

were scattered in the gentler slopes of among hills, and southeastern China. Overall, the Yunnan-Kweichou Plateau, the 

Sichuan Basin, and the Loess Plateau exhibited the best performance for SWC (Figs. 7a, b and c). 240 

https://doi.org/10.5194/essd-2025-215
Preprint. Discussion started: 15 May 2025
c© Author(s) 2025. CC BY 4.0 License.



13 
 

 
Figure 7. Spatial variances of the value of E. (a-c) Spatial variation of E value in 2000, 2010, and 2020, respectively. 

3.4 Responses of soil erosion to terraces in China 

We utilized the CSLE to assess the soil erosion modulus of cropland in China for the year 2020 using the SWCTMD (Note 

S1). The soil erosion area was calculated according to the standards for classification and gradation of soil erosion (Note S2). 245 

Figure 8 illustrates the soil erosion modulus under a terrace scenario in 2020. The average soil erosion modulus for cropland 

was 10.82 t·ha-1·y-1, with a total eroded area is 1,010,986.69 km². The impact of terraces on soil erosion was assessed by the 

differences between scenarios with and without terraces. Compared to the scenario without terrace measures, the average soil 

erosion modulus of cropland decreased by 4.18 t·ha-1·y-1, and the erosion area was reduced by 54,833.06 km² (Figs. S4a and 

b). In terms of spatial distribution, the Yunnan-Kweichou Plateau, Sichuan Basin, and Loess Plateau exhibit the most 250 

significant reduction in soil erosion. The reductions in soil erosion modulus for Chongqing, Sichuan, Guizhou, Yunnan, 

Shanxi, Gansu, and Shaanxi were 22.83 t·ha-1·y-1, 21.31 t·ha-1·y-1, 18.64 t·ha-1·y-1, 14.61 t·ha-1·y-1, 6.48 t·ha-1·y-1, 4.52 t·ha-

1·y-1, 3.81 t·ha-1·y-1, respectively, with corresponding reductions in erosion area of 3,702.75 km², 12,774.31 km², 4,023.94 

km², 7,169.19 km², 2,515.31 km², 6,108.56 km², and 2,980.56 km² (Fig. 8a). According to our estimation, the terrace 
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measures reduced approximately 818 million tons of soil erosion on cropland, accounting for 37.61% of the total erosion on 255 

cropland. In comparison to the scenario without terrace measures, the amount of soil erosion in the regions of Yunnan, 

Sichuan, Chongqing, Guizhou, Gansu, Shanxi, and Shaanxi regions decreased by 47.47%, 46.02%, 45.57%, 45.25%, 35.48%, 

29.75%, and 27.80%, respectively (Fig. 8b). In contrast, other regions had fewer SWC measures, and the difference in soil 

erosion with and without measures was small. 

 260 

 

 
Figure 8. The effects of terraces on soil erosion in different provinces. (a) The soil erosion is alleviated by terraces. (b) The percentage 

represents the amount of soil erosion alleviated by terraces as a proportion of the total soil erosion without terraces. 

4 Discussion 265 

4.1 Spatial pattern of terraces 

The Sichuan Basin, Loess Plateau, and the Yunnan-Kweichou Plateau are the three regions with the highest concentration of 

terraces in China. Other areas, characterized by relatively gentle slopes, have fewer terraces. In the hilly areas of the Sichuan 

Basin and the Yunnan-Kweichou Plateau, terraces are primarily constructed by humans in the long-term process of adapting 

to nature through the reshaping of mountainous landscapes (Zhang et al., 2008; Duan et al., 2020). This process has also 270 
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fostered unique cultural and social practices associated with terraces (Zhan and Jin, 2015; Zhang et al., 2024). These regions 

face challenges such as limited cultivated land resources, steep slopes, and intense precipitation (Liu et al., 2014; Li et al., 

2016; Wang and Dai, 2020). The construction of terraces not only acquires additional cultivable land but also optimizes 

water resource utilization and reduces soil erosion (Wei et al., 2017). In recent years, the Chinese Land Consolidation 

projects and the Well-facilitated Farmland projects have prioritized slope-to-terrace conversion as the primary land 275 

consolidation strategy in mountainous regions (Tang et al., 2019), significantly increasing the terrace area in southwestern 

China. In the Loess Plateau, terraces are mainly constructed for SWC and ecological restoration. Natural factors such as 

fragmented mountainous terrain, loose soil, and intense rainfall, coupled with human activities like deforestation, 

overgrazing, and cultivation on steep slope, have made the Loess Plateau one of China’s most severely eroded regions 

(Wang et al., 2010; Liang et al., 2015). Over the past few decades, large-scale programs such as Grain-for-Green and terrace 280 

construction initiatives have been implemented to combat soil and water loss (Fu et al., 2017). Most terraces in the Loess 

Plateau are dryland terraces, predominantly located in Gansu, Ningxia, Shanxi, and Shaanxi. In northeast China, cropland 

has long slope lengths but gentle slope degrees (Liu et al., 2020a), resulting in fewer terraces being built. In contrast, in the 

hilly regions of central and southeastern China, terraces have also been constructed despite gentler slopes. Unlike the 

Sichuan Basin, Loess Plateau, and Yunnan-Guizhou Plateau, where terraces serve as a necessity for managing steep terrain, 285 

the primary motivation in these areas is to expand the cropland for the cultivation of economic crops such as tea and fruit 

trees (Adgo et al., 2013). 

4.2 Soil erosion and conservation of terraces 

The soil conservation benefits of terraces in China perform well generally. The Yunnan-Kweichou Plateau, the Sichuan 

Basin and the Loess Plateau are the regions with the best soil conservation benefits of terraces. In the past, the soil 290 

conservation benefits of terraces were often overlooked in large-scale soil erosion assessments due to the difficulty in 

obtaining spatial distribution of terraces. The soil erosion modulus of cropland was estimated as potential erosion under 

conditions without SWC, leading to an overestimation of the erosion modulus compared to assessments with conservation 

measures. For instance, the assessment of soil erosion on Chinese cropland by Wang et al. (2021). Indeed, soil erosion 

assessments in Europe, Australia, and Africa have similarly failed to consider the impact of terraces (Gobin et al., 2004; 295 

Teng et al., 2016; Salhi et al., 2025). Although the latest soil erosion assessment in Europe has considered terraces, it often 

extrapolates the survey results from sampled terraces to a regional scale through spatial interpolation, resulting in significant 

uncertainties in the localized erosion assessment of cropland (Panagos et al., 2015). Therefore, accurate and detailed 

information on terrace extent is crucial for the accurate assessment of soil erosion. 

According to our estimation, the soil erosion of the Loess Plateau accounts for only 10.95% of the total cropland erosion in 300 

China, indicating that the SWC measures previously implemented have achieved good governance. The focus of SWC 

efforts in the Loess Plateau could transition from extensive engineering projects to tillage practice and biological practice 

aimed at increasing crop yields. Instead, cropland in northeastern China, characterized by long slope lengths but gentle slope 

https://doi.org/10.5194/essd-2025-215
Preprint. Discussion started: 15 May 2025
c© Author(s) 2025. CC BY 4.0 License.



16 
 

degrees, experiences severe erosion, representing 20.63% of the total cropland erosion. In southwest China, although the 

proportion of terraces exceeds 70%, the widely distributed sloping cropland results in an average soil erosion modulus that 305 

exceeds 15 t·ha-1·y-1, contributing 31.27% of the total cropland erosion. The effect of SWC engineering measures in 

northeast and southwest China still has great room for improvement, which should be key areas of focus in future 

conservation efforts. Although Hebei, Henan and Shandong feature gentle terrain, the extensive cropland and high planting 

intensity contribute to soil erosion, which accounts for 15.48% of the total cropland erosion and warrants attention. From a 

temporal changes perspective, with economic development and the implementation of national policies, China’s SWC 310 

measures have consistently shown an increasing trend, which no doubt decreased soil erosion and increased grain production 

(Li et al., 2014; Liu et al., 2020a). 

4.3 Limitations and prospects 

The average OA for classifying terraces and non-terraces is 91.90%, with an average F1 score of 85.92%, indicating 

satisfactory overall performance. However, for specific terrace types, the UA and PA of level terraces and zig terraces were 315 

lower, resulting in relatively lower overall accuracy metrics such as OA and KA (Pontius, 2000). In mountainous and hilly 

areas, the surface width of a level terrace generally ranges from 5 to 15 m, while the surface width of zig terrace is between 

1.0 and 1.5 m, with both types having more sporadic (Duan et al., 2020). In this study, the 30 m resolution remote sensing 

image effectively identified level terraces and zig terraces only when they exhibited concentrated and continuous 

distributions, making it challenging to detect fragmented patches. In terms of UA, the probability of misclassification of 320 

level terraces and zig terraces was low, indicating that the identified level terraces and zig terraces are reliable. However, 

their numbers were underestimated. In 2000, the UA and PA of the slope-separated terrace were lower (Li et al., 2021). This 

is mainly due to their small areas, which led to lower classification accuracy. To improve classification accuracy and 

efficiency, cropland data from GlobeLand30 (2000-2020) was used as the basis for terrace identification. Inevitably, the 

accuracy of GlobeLand30’s cropland data impacts the terrace mapping process, as errors in cropland data propagate into the 325 

terrace maps. Despite this limitation, the resulting error is deemed acceptable for terrace identification at the national scale 

(Cao et al., 2021). Future studies could address these limitations by employing high-resolution remote sensing imagery, 

which would enable improved detection of subpixel terrace distributions. Additionally, using more accurate cropland 

datasets could further reduce errors and improve the overall accuracy of terrace mapping. 

5 Data availability 330 

The Landsat imagery and SRTM DEM data were acquired from the Google Earth Engine. The GlobeLand30 can be 

downloaded from the National Geomatics Center of China. The 1 km spatial resolution SWCTMD (calculated from the 30 m 

resolution SWCTMD) can be accessed at https://doi.org/10.11888/Terre.tpdc.302400 (Duan, 2025). The 30 m resolution 

SWCTMD will be available after publication. 
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6 Conclusions 335 

This study developed the first SWC terrace measures dataset for China with a fine classification system at a spatial 

resolution of 30 m. The dataset includes data for each decade from 2000 to 2020. It was generated by combining the full 

archive of Landsat imagery, digital elevation model, and nationally scaled samples of manual visualization, using a two-

stage random forest classification on the GEE platform. The average OA and average F1 score for identifying terraces and 

non-terraces were 91.90 % and 85.92%, respectively. For different terrace types, the average OA and average F1 score were 340 

83.50% and 52.14%, respectively. 

Compared to existing terrace datasets, the newly developed dataset provides more comprehensive coverage, especially in 

identifying zig terraces in southeastern China. The dataset reveals that, terraces are primarily distributed in the Loess Plateau, 

Southwest China, and Southeast China. From 2000 to 2020, the total terrace areas expanded by 96,038.16 km², with level 

terraces increasing by 2,275.26 km², slope terraces by 86,186.26 km², slope-separated terraces by 6,040.36 km², and zig 345 

terraces by 1,536.28 km². Terrace expansion was mainly concentrated in the Loess Plateau and southwest and Southeast 

regions of China, while the terrace decrease was mainly observed around urban areas.  

Terraces in China are estimated to have reduced soil erosion on cropland by approximately 818 million tons. Further analysis 

highlighted benefits of SWC in the Yunnan-Guizhou Plateau and Loess Plateau are the best. The terrace dataset, with its 

detailed classification system is expected to provide a cornerstone for national and regional soil erosion assessment and 350 

prediction, SWC planning, and evaluations of various ecosystem services related to terraces. 
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