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Abstract. Terraces, as one of the most widely distributed and heavily invested soil and water conservation (SWC) measures 

in China, currently lack a comprehensive database containing spatiotemporal distribution and diverse classification types. 

This absence significantly hampers the accurate soil erosion assessment and SWC planning in China. To address this gap, we 

developed a two-stage mapping framework to classify various terrace measures and produced a new dataset named the Soil 

and Water Conservation Terrace Measures Dataset (SWCTMD). The dataset, spanning the years 2000 to 2020, was 15 

produced by integrating time-series Landsat imagery and digital elevation model data. The data incorporate SWC measure 

factors and four terrace types: level terraces, slope terraces, zig terraces, and slope-separated terraces. On average, the 

SWCTMD achieved OA of 91.7% and F1 of 83.4% for terraces, and 89.4% OA and 78.9% F1 for different terrace types, 

underscoring its high accuracy in terrace mapping. Comparative analysis demonstrated the superior robustness of the 

SWCTMD compared to existing products. This dataset demonstrated that terraces in China are predominantly concentrated 20 

in the Loess Plateau, Southwest and Southeast regions. From 2000 to 2020, the total terrace area increased by 41,594.1 km², 

with slope terraces exhibiting the largest expansion, while decreases were primarily observed in peri-urban areas. Notably, 

the modeling results indicated that terraces had reduced soil erosion of cropland by approximately 1,390 million tons in 2020. 

The SWCTMD can be employed to enhance the accuracy of soil erosion simulations and support long-term analysis of soil 

erosion trends. Furthermore, the dataset provides valuable applications for earth system modelling and contributes to 25 

research on land resource management, food security, biodiversity, and water cycle. The SWCTMD is freely available at 

https://doi.org/10.11888/Terre.tpdc.302400 (Duan, 2025). 

1 Introduction 

Agricultural terraces are one of the most common cultivation techniques in mountainous and hilly areas, varying in shape 

and size. They consist of a flat cultivated section and nearly vertical risers. The risers are typically protected by dry stone, 30 

grass, scrub, or trees, and range from a few centimeters to several meters in height, with continuous or intermittent profiles 
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(Arnáez et al., 2015). Terraces form an important soil and water conservation (SWC) measure (Wickama et al., 2014; 

Londero et al., 2018). Based on the structures of the field surface, terraces can be categorized into level terraces, slope 

terraces, zig terraces, and slope-separated terraces (Liu et al., 2013a). By reshaping the surface microtopography, terraces 

decrease the slope length and gradient and alter hydrological pathways (Deng et al., 2021). These changes reduce soil 35 

erosion and runoff, improve water and soil conservation, and increase crop yields (Adgo et al., 2013; Chen et al., 2017, 2020; 

Wei et al., 2021). Within established soil erosion assessment frameworks, terraces have been incorporated as a support 

practice factor in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) 

(Wischmeier and Smith, 1978; Renard et al., 1997). In the Chinese Soil Loss Equation (CSLE), terraces are specifically 

represented as an SWC engineering practice factor (Liu et al., 2020). However, many large-scale assessments of soil erosion 40 

neglect this factor due to insufficient data on the spatial distribution of terraces (Gobin et al., 2004; Teng et al., 2016). 

Therefore, the mapping of terraces is crucial for soil erosion research.  

Efforts have been made to map terraces in China. Three primary methods have been  employed to obtain spatial extent and 

location information of terraces. The first method is a government-initiated land resource survey. Terraces were considered 

in paddy field surveys during the second and third nationwide land surveys in China. Terraces located in extensive drylands, 45 

particularly on steep slopes, were often categorized simply as dryland or irrigated land, without distinguishing terrace types. 

The second method is to extract terrace information from land use data (Liu et al., 2021). Existing land use products in China, 

such as FROM-GLC, GlobeLand30, CLCD, CACD, and GLC_FCS30, generally classify terraces as cropland (Yu et al., 

2013; Chen et al., 2015; Yang and Huang, 2021; Zhang et al., 2021; Tu et al., 2024). Among these, only the CNLUCC land 

use product further subdivides cropland into paddy field and dryland; however, this product also fails to distinguish terrace 50 

types on dryland (Liu et al., 2010). This limitation makes it challenging to extract information about terraces from existing 

land use data. The third method is to employ satellite images to identify terraces. For instance, Lu et al. (2023) employed 

deep learning methods to map terraces in the Loess Plateau based on high-resolution satellite images from October 2018 to 

February 2019. Li et al. (2024) produced a 30-meter resolution terrace map for China using 2017 Sentinel-2 imagery and 

Landsat-8 imagery on the Google Earth Engine (GEE) platform through the random forest (RF) algorithm. Similarly, Cao et 55 

al. (2021) produced a 30-meter resolution terrace map using 2018 Landsat-8 imagery and the RF algorithm on the GEE 

platform (Table 1). Although these maps have been widely used in soil erosion research (Li et al., 2023; Zhang et al., 2023), 

the limited classification of terrace types and the lack of long-term coverage restrict broader application at regional or 

national scales. 
Table 1. Existing terrace products in China. 60 

Method Algorithm Study area Data Reference 

Deep learning 

Mapping terraces based 

on the UNET++ deep 

learning network 

The Loess 

Plateau 

Google Earth images Lu et al. 

(2023) 
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Machine learning 
Mapping terraces based 

on the RF algorithm 

China Landsat-8 imagery and 

Sentinel-2 imagery 

Li et al. 

(2024) 

Machine learning 
Mapping terraces based 

on the RF algorithm 

China Landsat-8 imagery Cao et al. 

(2021) 

 

The effectiveness of terraces in SWC varies according to type. Level terraces, characterized by flat cultivated surfaces, can 

effectively reduce the amount, velocity, and energy of surface runoff and increase water infiltration, thereby effectively 

preventing the transportation of sediment (Wei et al., 2012; Chen et al., 2013; Arnáez et al., 2015). Zig terraces increase 

water infiltration and reduce runoff by creating micro-catchments (Wang et al., 2004). Conversely, slope terraces, with their 65 

uneven surfaces, are more prone to generating runoff than level terraces or zig terraces (Wei et al., 2016). Level terraces 

exhibit the most effective SWC benefits (Oliveira et al., 2012). Compared to slope terraces, level terraces can reduce runoff 

by 56.5% and sediment by 53.1% (Chen et al., 2017). Ignoring terrace type can lead to inaccuracies in soil erosion 

assessment, and the absence of long-term terrace data hinders analyses of soil erosion trends. 

Steep slope land accounts for more than one-third of the total cropland area in China. In recent decades, the construction of 70 

agricultural terraces has been the primary engineering measure for managing steep slope cropland (Liu et al., 2013b; Feng et 

al., 2017; Zhang et al., 2017). However, the existing terrace datasets lack detailed classification of terrace types and are 

limited to single-year data. These limitations have hindered soil erosion assessment, prediction, and SWC planning. To 

address this gap, we developed a two-stage mapping framework for terrace classification on the GEE platform. The first 

stage distinguishes terraces from non-terraces, while the second stage focuses on identifying different terrace types. Using 75 

this mapping framework, we developed the first long-term (2000 to 2020) national Soil and Water Conservation Terrace 

Measures Dataset (SWCTMD) of China. The dataset incorporates a detailed classification system. The accuracy of 

SWCTMD was evaluated using validation samples and compared with existing terrace maps. Additionally, the terrace 

dataset was used to identify spatial and temporal changes in terraces across China and to assess the SWC benefits provided 

by terraces. 80 

2 Methodology 

Figure 1 illustrates the framework of 30-meter resolution terrace mapping. The workflow includes sample collection, feature 

calculation, classification implementation, post-classification processing, and accuracy evaluation. Detailed information on 

each stage of the terrace mapping process is provided below. 
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 85 
Figure 1. The framework for mapping terrace. 

2.1 The classification system and interpretation symbols 

According to the findings of China’s First National Census for Water (FNCW) (Liu et al., 2020), we identified the four 

major types of terraces: level terrace, slope terrace, zig terrace, and slope-separated terrace. The interpretation keys for the 

different terrace types included shape, size, texture, color, and location (Table 2). 90 
Table 2. Image characteristics of different terrace types. 

Terrace types Image characteristics 
Remote sensing 

image 

Level terrace 

Steep slope land transformed into a series of successively receding flat 

surfaces, with bunds constructed from soil or stones, ranging in width from 5 

to 40 m, looking like the steps of a staircase in remote sensing images. In 

contrast to slope terraces, level terraces are predominantly found in low and 

flat areas. 
 

Slope terrace 

Similar to level terraces, but with wider and more uneven surfaces, these 

terraces exhibit irregular shapes in remote sensing images. They are primarily 

used for dryland agriculture and are largely distributed the areas with slopes 

greater than 5°.  
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Zig terrace 

Steep slope land has been transformed into step-like terraces that are narrower 

than level terraces. The surfaces of these terraces exhibit regular strip shapes 

in remote sensing images. These terraces are primarily found in sloping 

regions and are used for planting permanent crops such as tea. 
 

Slope-separated 

terrace 

Each flat surface constructed on steep slope land retains a segment of the 

original slope above, forming a composite structure that features a slope 

between flat surfaces. These terraces are primarily used for rubber 

plantations. 
 

2.2 Data and preprocessing 

In this study, we primarily used Landsat surface reflectance (SR) data, the Copernicus digital elevation model (DEM) data, 

and GlobeLand30. Detailed information about these datasets is provided in Table S1. 

2.2.1 Landsat SR data 95 

The study used Landsat-5/8 SR data, with a spatial resolution of 30 m and a temporal resolution of 16 days. The data were 

accessible through the GEE platform. The Landsat SR data from the sensors had been atmospherically corrected by the 

United States Geological Survey (USGS) utilizing the LEDAPS algorithm (Masek et al., 2006). These data included Quality 

Assessment (QA) masks that indicated the usability of the pixel data, produced using the CFMASK algorithm (Zhu and 

Woodcock, 2012). We used QA bands to identify and remove clouds and cloud shadows in each Landsat SR image, and 100 

missing data after cloud removal were filled using images from the previous year. Due to the inconsistency in the 

wavelength of band among different Landsat sensors (Roy et al., 2016), we used only Landsat-8 SR imagery for the 

SWCTMD in 2020, and Landsat-5 SR imagery for the SWCTMD in 2000 and 2010. 

2.2.2 Copernicus DEM 

Topographical features are essential characteristics that differentiate regular cropland and terrace, playing a crucial role in 105 

the identification of terraces. We used the Copernicus DEM data to calculate these topographical features. The Copernicus 

DEM is a Digital Surface Model with 30 m resolution, derived from radar satellite data acquired from 2010 to 2015 during 

the TanDEM-X mission. Compared to other DEM data (SRTM, ASTER GDEM, ALOS World 3D, and NASADEM), 

Copernicus DEM has the highest accuracy among open-source data (Guth and Geoffroy, 2021), exhibiting the greatest detail 

of terrain (Li et al., 2022a). The GEE platform provides access to the Copernicus DEM at 30 m resolution. 110 
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2.2.3 GlobeLand30 

To improve the accuracy and efficiency of terrace identification, we used the union of cropland data from GlobeLand30 from 

2000 to 2020 as the range for terrace identification. Then, we removed cropland with a slope of less than or equal to 2° 

(Ministry of Natural Resources of the People’s Republic of China, 2019). GlobeLand30 is a widely used land use dataset 

with 30 m resolution that employs a pixel-object-knowledge classification method, effectively utilizing the advantages of 115 

various classification algorithms (Chen et al., 2015). The accuracy of cropland area and spatial location of GlobeLand30 is 

higher than the other four products (FROM-GLC, GlobCover, MODIS Collection 5, and MODIS Cropland) in China (Lu et 

al., 2016). The cropland from GlobeLand30 includes paddy fields, drylands, pastures, and permanent crop lands (e.g., tea 

and coffee plantations). Therefore, we adopted the cropland from GlobeLand30 as the range of terrace classification. 

2.3 Feature space construction 120 

Feature variables play a crucial role in the classification of remote sensing images. In this study, we constructed an input 

dataset comprising four aspects: spectrum, spectral indices, phenology, and topography. The six optical bands (red, green, 

blue, near-infrared, shortwave infrared 1, and shortwave infrared 2) from Landsat SR imagery for a specific year, along with 

the corresponding spectral indices (NDVI, MNDWI, NDBI, BSI, LSWI, and EVI), were composited into the 25th, 50th, and 

75th percentiles utilizing the metrics-composite method. The percentiles effectively represent phenological information 125 

while simplifying time series information, thereby reducing annual time series noise and enhancing the accuracy of 

classification (Duan et al., 2024). In addition to the Landsat-based metrics, we incorporated seven frequently utilized 

topographic features: slope, aspect, slope of slope (SOS), relief (RF), slope shape (P), roughness (R), and elevation (Tang et 

al., 2016). The calculation method for feature variables is shown in Table S2. To eliminate multicollinearity among the 

feature variables, we removed highly correlated features based on two criteria: (a) a variance inflation factor (VIF) value for 130 

each feature less than 10, and (b) pairwise Pearson correlation coefficients are below 0.7 (Liao et al., 2021). Detailed 

information about the used features is provided in Table S3, Table S4, and Table S5. 

2.4 Collection of training samples 

Samples are a critical component in supervised classification. We used manual visual interpretation methods to obtain 

samples from the years 2000, 2010, and 2020. To ensure that the collected samples were evenly distributed across the study 135 

area, we implemented a strategy of gathering samples by subregions. The study area was divided into 1,641 subregions. 

Utilizing high-resolution images from Google Earth Pro software, we collected at least five samples from each subregion 

(Fig. S1). Through this method, we collected a total of 103,374 samples. Specifically, 34,891 samples were obtained in 2000, 

34,072 samples were obtained in 2010, and 34,411 samples were obtained in 2020 (Table S6). 
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2.5 Ground-truth reference data 140 

The terrace validation data were derived from the FNCW conducted between 2010 and 2012. These data were obtained 

through field surveys and provide detailed information about terraces, including terrace types and GPS coordinates. The 

survey covered croplands nationwide. A total of 14,986 survey sites were used for validation of terrace accuracy in 2010, 

comprising 3,706 terrace samples and 11,280 non-terrace samples (Fig. 2). The statistics for different terrace types are listed 

in Table S7. Based on these data, the terrace validation samples for 2000 and 2020 were obtained by overlaying high-145 

resolution remote sensing imagery from Google Earth Pro for verification. 

 
Figure 2. The Spatial distribution of validation samples. 

2.6 Terrace classification on the GEE platform  

The GEE platform offers a variety of classification algorithms. We selected the widely used RF model for terrace 150 

classification, as the algorithm offers the advantages of remarkable performance, high efficiency, and interpretability 

(Rodriguez-Galiano et al., 2012; Gong et al., 2019). Two essential parameters must be set for the RF model. In this study, we 

set the number of trees to 500 and determined the number of variables per split as the rounded square root of the feature 

number. Other parameters were maintained at the default settings specified by the GEE platform (He et al., 2017; Gong et al., 

2020). To alleviate the impact of crop spectral variability on classification accuracy, the study area was divided into six 155 

subregions (Fig. 3) (Li et al., 2024). The different terrace types within each region were classified separately. Given the 

sensitivity of the RF model to the ratio of samples across different classes (Chen et al., 2024), we implemented a two-stage 
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mapping approach for classifying terraces within each region. In the first stage, RF was utilized to differentiate between 

terrace and non-terrace classes. In the second stage, RF was utilized to classify various terrace types, including level terraces, 

slope terraces, zig terraces, and slope-separated terraces. In Stage I of the mapping process, samples from both terrace and 160 

non-terrace samples were used, whereas only terrace samples were utilized in Stage II. 

 
Figure 3. Geographical regionalization in China. SW represents Southwest China. NW represents Northwest China. NENC represents 

Northeast and North China. SC represents South China. CC represents Central China. EC represents East China. 

2.7 Post-classification processing 165 

Both supervised and unsupervised classification methods in remote sensing rely on the spectral characteristics of image 

pixels. A critical issue is the presence of isolated pixels in the classification results, which exhibit high local spatial 

heterogeneity between neighboring pixels (Hirayama et al., 2019). This phenomenon, commonly known as the salt-and-

pepper effect, is regarded as noise affecting accuracy. Terraces, being primarily constructed in hilly or mountainous regions, 

often exhibit a scattered and irregular distribution, which leads to an obvious salt-and-pepper effect in classified images. 170 

Given the small areas of terraces, we applied a mode filter with 3 × 3 px for spatial filtering processing to mitigate the salt-

and-pepper effect from the classification results. To improve the overall quality of the mapping results, we conducted 

spatial-temporal consistency checks to suppress illogical land use conversions. Specifically, for areas that were cropland in 

both the previous year and the current year (excluding grain-for-green areas), we modified those areas that were previously 

terraces but were identified as non-terraces in the current year to terraces. 175 
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2.8 Accuracy assessment 

It is an essential step to assess the accuracy of the products prior to utilizing data in related applications. The classification 

maps were evaluated using a confusion matrix calculated from validation samples. The confusion matrix is widely regarded 

as the standard method for evaluating the accuracy of classified images. This method offers quantitative assessment metrics, 

including the kappa coefficient (KA), overall accuracy (OA), the producer’s accuracy (PA), and the user’s accuracy (UA), 180 

which collectively assess the performance of the products. OA and KA measure the total map accuracy. PA and UA measure 

the omission and commission errors for each class. In addition, we calculated the F1 score, which reflects the balance 

between UA and PA. The KA, OA, PA, UA, and F1 metrics range from 0 to 1, where 1 indicates optimal performance and 0 

represents the poorest performance. The formula for the F1 metric is shown in Eq. (1): 

𝐹𝐹1 = 2 𝑃𝑃𝑃𝑃×𝑈𝑈𝑈𝑈
(𝑃𝑃𝑃𝑃+𝑈𝑈𝑈𝑈)

            (1) 185 

In this study, we constructed two confusion matrices: one to evaluate the accuracy of terraces and non-terraces, and the other 

to assess the accuracy of various terrace types. 

3 Results 

3.1 Overall accuracy assessment 

Two confusion matrices corresponding to different terrace classification levels were generated using the validation samples. 190 

For the classification of terrace and non-terrace, the OA ranged from 91.7% to 91.8%, with KA ranging from 77.7% to 

78.2%, and F1-scores ranging from 83.1% to 94.6% (Table 3). For terrace class, the UA ranged from 77.6% to 84.6%, and 

the PA ranged from 81.7% to 90.7%, and the F1 above 80%, indicating that the overall classification performs well. 
 

Table 3. The accuracy matrix for the terrace and non-terrace. 195 

Year types UA (%) PA (%) F1 score (%) OA (%) KA (%) 

2000 
Non-terrace 97 92.1 94.5 

91.7 78.2 
Terrace 77.6 90.7 83.6 

2010 
Non-terrace 94.1 95.1 94.6 

91.8 77.7 
Terrace 84.6 81.7 83.1 

2020 
Non-terrace 96.8 92.2 94.5 

91.7 77.8 
Terrace 77.7 89.8 83.3 

 

For different terrace types, the OA ranged from 88.8% to 89.8%, KA ranged from 65.1% to 69.5%, and F1 scores ranged 

from 68.9% to 93.9% (Table 4). Level terraces exhibited the highest classification accuracy, followed by slope-separated 
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terraces, slope terraces, and zig terraces. From the UA and PA, the commission errors were lower than the omission errors 

for different types of terraces. Level terraces had the lowest misclassification error among the terrace types. 200 
Table 4. The accuracy matrix for the different types of terraces. 

Year types UA (%) PA (%) F1 score (%) OA (%) KA (%) 

2000 

Level terrace 93.7 94.1 93.9 

89.7 66 
Slope terrace 70.1 70.6 70.3 

Zig terrace 74.6 64.1 68.9 

Slope-separated terrace 85.7 70.6 77.4 

2010 

Level terrace 93.8 94 93.9 

89.8 69.5 
Slope terrace 73.1 73.2 73.2 

Zig terrace 77.6 68.6 72.8 

Slope-separated terrace 83.3 88.2 85.7 

2020 

Level terrace 93.7 92.9 93.3 

88.8 65.1 
Slope terrace 67.8 71.3 69.5 

Zig terrace 70 68.8 69.4 

Slope-separated terrace 86.7 72.2 78.8 

 

Figure 4 illustrates the spatial consistency between the SWCTMD and two existing datasets: the 2018 China Terrace Map 

(CTM2018) (Cao et al., 2021) and the 2017 China Terrace Map (CTM 2017) (Li et al., 2024). SWCTMD exhibited the 

highest accuracy. Compared to SWCTMD and CTM2018, CTM2017 exhibited relatively lower accuracy for both typical 205 

terrace and non-terraces areas (regions B, C, D F and G in Fig. 4b). For typical terraces, SWCTMD and CTM2018 show 

similar identification performance (regions A, B, C, D and F in Fig. 4b). However, for atypical terraces, such as zig terraces 

located in Yunnan Province, SWCTM successfully identified these as terraces, whereas CTM2018 failed to identify them as 

terraces (regions E in Fig. 4b). Conversely, for non-terrace areas situated in the Middle-Lower Yangtze River, SWCTMD 

accurately classified these as non-terraces, while CTM2018 erroneously classified them as terrace areas (regions G in Fig. 210 

4b). At the provincial scale, the majority of provinces exhibit larger terrace areas in SWCTMD compared to both CTM2018 

and CTM2017 (Tables S8 and S9). 
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Figure 4. Regional comparisons of the three terraces datasets. (a) The distribution of cropland in China in 2020. (b) The spatial 

distributions of the three terraces datasets. 215 

3.2 Accuracy assessment in different regions 

The classification of terraces across different regions performed well, but there were significant differences in accuracy 

among the regions. The Southwest and Northwest had the highest concentrations of terraces. Southwest China achieved 

superior classification performance due to its pronounced terrace morphology and spectral characteristics. Southwest China 

demonstrated the highest classification precision, with average values of UA, PA, F1, OA, and KA at 89.8%, 95.8%, 92.7%, 220 

90.2%, and 77.9%, respectively (Table S10). Northwest China followed closely, with corresponding average values of 

75.2%, 91.6%, 82.3%, 89.6%, and 75.1%. In contrast, Northeast and North China, South China, Central China, and East 

China have relatively flat terrain, with terraces being similar to the surrounding cropland, resulting in relatively lower 

classification accuracy. The mean F1 scores were 70.6%, 77.5%, 81%, and 73.8%, respectively. The mean OA scores were 

94.5%, 91.3%, 87.8%, and 91.7%, respectively, and the KA were around 70% (Table S10). 225 

The overall classification accuracy for different terrace types across all regions was well. Northwest China, Northeast and 

North China, Central China, and South China had the highest classification accuracy, followed by Southwest China and East 

China. The average UA, PA, F1, OA, and KA values of Northwest China, Northeast and North China, Central China, and 

South China were 82.3%, 81.1%, 81.5%, 90.4%, 67.9%. The average UA, PA, F1, OA, and KA values for Southwest China 
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and East China were 76.5%, 77.9%, 77.1%, 90%, 64.4% (Table S11). Among all terrace types, level terraces had the highest 230 

classification accuracy across all regions, followed by slope-separated terraces, slope terraces, and zigzag terraces. 

3.3 Spatiotemporal variation of terraces in China 

Terraces are primarily distributed across the hills, basins, and plateaus of China (Figs. 4a and S3). The Sichuan Basin 

exhibited the highest concentration of terraces, followed by the Yunnan-Guizhou Plateau and the Loess Plateau. Terraces are 

also extensively found in the hilly regions of central and southeastern China. Level terraces are distributed in the gentler 235 

slopes of hilly regions in China. Sloped terraces are most densely distributed across Yunnan and the Loess Plateau, with 

lesser occurrence in the hilly regions of central and southeastern China. Zig terraces are mostly distributed in Southwest 

China and Northwest China, while slope-separated terraces are mostly located in Southwest China and Central China (Figs. 

5a and 5b). In terms of spatial changes, the increasing terraces are mainly distributed in the Yunnan-Guizhou Plateau, the 

Loess Plateau, the Sichuan Basin, and South China from 2000 to 2020 (Fig. 6a). These areas are severely affected by soil 240 

erosion. Yunnan and Guangxi are the provinces with the largest increase in terraces (Fig. 6b). The decreasing terraces are 

mainly distributed around urban areas from 2000 to 2020, where urban expansion has occupied some terrace areas. 

 
Figure 5. The spatial patterns of different terrace types at the pixel and provincial. (a) The spatial distribution of different terraces in China 

in 2020. (b) The different terrace areas in provinces in 2020. 245 
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Figure 6. The spatial changes of the terrace at the pixel and provincial. (a) The spatial changes in terraces from 2000 to 2020. (b) Changes 

in the terrace areas across different provinces from 2000 to 2020. 

The provinces with the largest terrace areas were Sichuan, Yunnan, Guizhou, Gansu, Shanxi, Hunan, Shaanxi, and 

Chongqing, while other provinces had relatively smaller terrace areas (Fig. 7a). Among these, Chongqing, Sichuan, Guizhou, 250 

and Yunnan exhibited the highest percentage of terraces, with over 80% of cropland converted to terraces (Fig. 7b). From 

2000 to 2020, Yunnan, Guangxi, Shanxi, and Shaanxi experienced the most significant increases in terrace areas, increasing 

by 11,372.4 km² (13.1%), 5,192.4 km² (32.9%), 2,395 km² (6.1%), and 2,295.0 km² (6.2%), respectively (Fig. 7a). In terms 

of terrace types, the areas of level terraces, slope terraces, zig terraces and slope separated terraces increased by 5,701.4 km² 

(1.3%), 29,876.3 km² (18.9%), 5,886.5 km² (31.4%), and 129.9 km² (24.9%), respectively, with the slope terrace having the 255 

largest increase (Figs. 7c, d, e and f). Overall, China’s total terrace area expanded from 612,885.4 km² in 2000 to 654,479.5 

km² in 2020, an increase of 6.8% (Fig. 7g). 
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Figure 7. The changes of terrace areas at provincial and types from 2000 to 2020. (a) The changes of terrace area in different provinces. (b) 
The proportion of terraces to cropland in different provinces. (c-f) The areas of level terrace, slope terrace, zig terrace, and slope-separated 260 

terrace. (g) The total terrace areas of China. 

3.4 SWC measure factor and responses of soil erosion to terraces 

The SWC measure factor (E) value for each terrace measure was given according to the FNCW and published literature 

(Table S12) (Duan et al., 2020; Liu et al., 2020). Using these parameters, we generated spatial distribution maps of E for the 

years 2000, 2010, and 2020 (Fig. S3). With these data, we utilized the CSLE to assess cropland soil erosion across China in 265 

2020 (Notes S1, S2 and S3). Figure 8 illustrates the soil erosion modulus under the terrace scenario in 2020. The average soil 

erosion modulus for cropland was 8.03 t·ha-1·y-1, with a total eroded area of 842,685 km². Compared to the scenario without 

terrace measures, the average soil erosion modulus of cropland decreased by 7 t·ha-1·y-1 (46.5%), and the erosion area was 

reduced by 223,134.8 km² (20.9%) (Figs. S4a and b). Collectively, terrace measures reduced approximately 1,390 million 

tons of cropland soil erosion, accounting for 46.5% of the total erosion on croplands. Spatially, the reduction in erosion was 270 

primarily concentrated in the Loess Plateau, Sichuan Basin, and Yunnan-Guizhou Plateau. Ningxia, Gansu, Sichuan, 

Chongqing, Qinghai, Guizhou, Shanxi, and Yunnan exhibited the largest decreases, with reductions of about 65%–75%. 
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Figure 8. The effects of terraces on soil erosion in different provinces. (a) The soil erosion alleviated by terraces. (b) The percentage 

represents the amount of soil erosion alleviated by terraces as a proportion of the total soil erosion without terraces. 275 

4 Discussion 

4.1 Comprehensive and Reliability of SWCTMD 

We compared the 2020 terrace area estimated by SWCTMD with those from CTM2018 and CTM2017. SWCTMD exhibited 

the largest terrace area compared to CTM2018 and CTM2017. The areal discrepancies can be attributed to the following 

reasons. First, CTM2017 and CTM2018 predominantly focused on the most typical level terraces, whereas our research 280 

encompasses a broader range of terrace types, including non-typical terraces such as slope terraces, zig terraces, and slope-

separated terrace. Second, each dataset employed distinct cropland for terrace classification. SWCTMD utilized the union of 

cropland with slopes exceeding 2° from the 2000, 2010, and 2020 GlobeLand30 cropland data, whereas CTM2018 employed 

only the 2010 GlobeLand30 cropland data, and CTM2017 adopted FROM-GLC cropland data. Third, CTM2018 excluded 

isolated patches smaller than 9,000 m² from its classification scheme. However, since SWCTMD constrains its classification 285 

to cropland with slopes exceeding 2°, the identified terrace areas in Anhui, Fujian, Jiangxi, and Zhejiang provinces were 

smaller than those from CTM2018. In these provinces, CTM2018 included terraces with slopes below 2°, which is classified 
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as non-terraces according to the technical regulations of the third nationwide land survey. Overall, our dataset provides more 

comprehensive coverage for terraces and exhibits higher accuracy and robustness. 

4.2 Spatial pattern of terraces 290 

The Sichuan Basin, Loess Plateau, and the Yunnan-Guizhou Plateau are the three regions with the highest concentration of 

terraces in China. Other areas, characterized by relatively gentle slopes, have fewer terraces. In the hilly areas of the Sichuan 

Basin and the Yunnan-Guizhou Plateau, humans have constructed terraces through a long-term process of adapting to nature 

by reshaping mountainous landscapes (Zhang et al., 2008; Duan et al., 2020). This process has also fostered unique cultural 

and social practices associated with terraces (Zhan and Jin, 2015; Zhang et al., 2024). These regions face challenges such as 295 

limited cultivated land resources, steep slopes, and intense precipitation (Liu et al., 2014; Li et al., 2016; Wang and Dai, 

2020). The construction of terraces not only produces additional cultivable land but also optimizes water resource utilization 

and reduces soil erosion (Wei et al., 2017).  

In recent years, the Chinese Land Consolidation projects and the Well-Facilitated Farmland projects have prioritized slope-

to-terrace conversion as the primary land consolidation strategy in mountainous regions (Tang et al., 2019). This initiative 300 

has significantly increased the terrace area in southwestern China. In the Loess Plateau, terraces are primarily constructed for 

SWC and ecological restoration. Natural factors such as fragmented mountainous terrain, loose soil, and intense rainfall, 

combined with human activities of deforestation, overgrazing, and cultivation on steep slope, have made the Loess Plateau 

one of China’s most severely eroded regions (Wang et al., 2010; Liang et al., 2015). Over the past few decades, large-scale 

programs such as Grain-for-Green and terrace construction initiatives have been implemented to combat soil and water loss 305 

(Fu et al., 2017). Most terraces in the Loess Plateau are dryland terraces, predominantly located in Gansu, Ningxia, Shanxi, 

and Shaanxi Provinces. In northeast China, cropland have long slope lengths, and gentle slope degrees (Liu et al., 2020), 

resulting in fewer terraces being built. In contrast, in the hilly regions of central and southeastern China, terraces have also 

been constructed despite gentler slopes. Unlike the Sichuan Basin, Loess Plateau, and Yunnan-Guizhou Plateau, where 

terraces serve as a necessity for managing steep terrain, the primary motivation in these areas is to expand the amount of land 310 

for the cultivation of economic crops such as tea and fruit trees (Li et al., 2022b). However, in mountainous and hilly regions, 

urban expansion has occupied some formerly terraced areas. 

4.3 Soil conservation of terraces 

Due to the lack of large-scale terrace distribution data, many previous continental-scale soil erosion assessments have 

generally not considered the influence of terraces, such as Europe, Australia, and Africa (Gobin et al., 2004; Teng et al., 315 

2016; Salhi et al., 2025). This has led to overestimation of cropland soil erosion. Wang et al. (2021b) estimated cropland 

erosion at 1,939.7×106 tons in 2015 without accounting for terraces. Conversely, our study indicated cropland erosion at 

1,599.4×106 tons in 2020, closely aligning with the 2011 FNCW result of 1,640.0×106 tons. Regarding the erosion reduction 

effects of terraces, Li et al. (2024) mapped terrace in 2017 and found that terraces reduced cropland erosion by 950 million 
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tons. In contrast, our study estimates that terraces reduced cropland erosion by 1,390 million tons in 2020. The discrepancy 320 

between the two results from Li et al. (2024) failure to distinguish between terrace types, resulting in an underestimation of 

terrace benefits. 

According to our estimate, soil erosion of the Loess Plateau accounted for only 12.6% of the total cropland erosion. Terraces 

in this region contributed to 17.4% of the total reduction of cropland soil erosion, demonstrating the benefits of terraces to 

SWC. In Northeast China, terraces are sparse, and cropland is characterized by long slope lengths and gentle slope degrees, 325 

with erosion accounting for 27.6% of the total cropland erosion. In Southwest China, erosion amount accounted for 23.4% of 

total cropland erosion. Northeast and Southwest China should be the key areas for future soil erosion protection efforts. In 

Hebei, Henan, and Shandong Provinces, extensive cultivation and high crop planting intensity contributed 16.3% of the total 

cropland erosion, which warrants attention. In this study, each terrace type was assigned a fixed E value to facilitate the 

estimation of large-scale soil erosion. However, this approach overlooks spatial heterogeneity in terrace structure, 330 

maintenance status, field management, climate, and topography. Future research should incorporate regional characteristics 

and adjust the E-value accordingly. 

4.4 Limitations and prospects 

The spatial heterogeneity of land types frequently leads to class imbalance in remote sensing classification, consequently 

diminishing classification accuracy for minority classes that occupy a smaller area (Xiao et al., 2024). The models tend to 335 

favor majority classes during training, reducing their ability to accurately identify minority classes (Chen et al., 2025). When 

the ratio of samples across different classes remains balanced, classification performance typically falls short of optimal 

accuracy thresholds (Deng et al., 2025). A common strategy to alleviate this negative effect is to divide the study area into 

multiple sub-regions for localized classification, thereby reducing the impact of sample imbalance on model accuracy 

(Zhang et al., 2020). In this study, we employed a partitioned two-stage RF approach to reduce the effects of sample 340 

imbalance on classification accuracy. The results demonstrated that classification for terrace and different terrace types 

achieved satisfactory accuracy in both the entire study area and individual subregions. However, the accuracy metrics of the 

majority class were still higher than those of the minority class. In future studies, sample optimization techniques and more 

advanced classification methods could be combined to further improve the accuracy of minority class classification.  

The complex and diversity diverse landform types have resulted in differences in the spectral information and topographic 345 

features of terraces in different regions. In Southwest and Northwest China, terraces exhibit concentrated distributions with 

clearly defined characteristics, making them easily identifiable. However, South China, Central China, and East China have 

relatively low topographic relief. Some terraces have spectral and topographic features similar to those of sloping farmland 

and flatland. This similarity, combined with the presence of mixed pixels in medium-resolution imagery (Wang et al., 2021a), 

makes it challenging to detect the terrace patches. Although the classification used 30-meter Landsat imagery in this study 350 

was generally robust, some fragmented and narrow terraces were omitted. Future research could employ high-resolution 

remote sensing images to effectively identify fragmented and narrow terraces. Previous small-scale studies have 
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demonstrated that the use of high-resolution remote sensing imagery, combined with object-based classification methods and 

deep learning approaches, can significantly enhance classification accuracy and reduce the impact of spectral confusion and 

mixed pixels on terrace identification (Diaz-Varela et al., 2014; Wang et al., 2023; Kan et al., 2025). To improve 355 

classification accuracy and efficiency, cropland data were used as the basis for terrace identification. Inevitably, the accuracy 

of cropland data impacts the terrace mapping process, as errors in cropland data propagate into the terrace maps. In summary, 

future studies could utilize high-resolution remote sensing imagery and more accurate cropland datasets, and adopt sample 

optimization techniques and more advanced classification algorithms to improve the detection of subpixel terrace 

distributions. 360 

5 Data availability 

The Landsat imagery and SRTM DEM data were acquired from the Google Earth Engine. The GlobeLand30 data can be 

downloaded from the National Geomatics Center of China. The 1 km spatial resolution SWCTMD (calculated from the 30 m 

resolution SWCTMD) can be accessed at https://doi.org/10.11888/Terre.tpdc.302400 (Duan, 2025). The 30 m resolution 

SWCTMD will be available after publication. 365 

6 Conclusions 

This study developed the first SWC terrace measures dataset for China with a fine classification system at a spatial 

resolution of 30 m. The dataset includes data for each decade from 2000 to 2020. The dataset was generated by combining 

the full archive of Landsat imagery, DEM, and nationally scaled samples obtained by  manual visualization, using a two-

stage random forest classification on the GEE platform. The average OA and average F1 scores for identifying terraces and 370 

non-terraces were 91.7% and 88.9%, respectively. For different terrace types, the average OA and F1 scores were 89.4% and 

78.9%, respectively. 

Compared to existing terrace datasets, the newly developed dataset provides more comprehensive coverage, especially in 

identifying zig terraces in southwest China. The analysis revealed that terraces were primarily distributed in the Loess 

Plateau, Southwest China, and Southeast China. From 2000 to 2020, the total terrace areas expanded by 41,594.1 km², with 375 

level terraces increasing by 5,701.4 km², slope terraces by 29,876.3 km², slope-separated terraces by 129.9 km², and zig 

terraces by 5,886.5 km². Terrace expansion was mainly concentrated in the Loess Plateau and the Southwest and Southeast 

regions of China, while the decreases in terraced area primarily occurred around urban areas. 

Terraces in China are estimated to have reduced soil erosion on cropland by approximately 1,390 million tons. Further 

analysis highlighted the benefits of SWC in the Yunnan-Guizhou Plateau and Loess Plateau areas. The terrace dataset, with 380 

its detailed classification system is expected to provide a cornerstone for national and regional soil erosion assessment and 

prediction, SWC planning, and evaluations of various ecosystem services related to terraces. 
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