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Abstract. Ferrace Terraces, as one of the most widely distributed and heavily invested soil and water conservation (SWC)
measures in China, currently faeks lack a comprehensive database wwith containing spatiotemporal distribution and diverse
classification types. This absence significantly hampers the accurate soil erosion assessment and SWC planning in China. To
address this gap, we prepesed developed a two-stage mapping framework fer—the—different to classify various terrace
measures elassificationto-preduee and produced a new dataset named the Soil and Water Conservation Terrace Measures
Dataset (SWCTMD). The dataset, spanning the years 2000 to 2020, was produced by integrating using time-series Landsat
satelite imagery and digital elevation model data. i i

elassifieationsystem;providing both-terrace-dataand SWC-measurefaetor- The data incorporate SWC measure factors and
four terrace types: level terraces, slope terraces, zig terraces, and slope-separated terraces. The-terraces—were-elassified-inte

o~ On average, the SWCTMD achieved OA of 91.7%
and F1 of 83.4% for terraces, and 89.4% OA and 78.9% F1 for different terrace types, underscoring its high accuracy in
terrace mapping. Comparative analysis highlighted demonstrated the superierity-and superior robustness of the SWCTMD
compared to existing products. This dataset revealed demonstrated that terraces in China are predominantly concentrated in
the Loess Plateau, Southwest and Southeast regions. From 2000 to 2020, the total terrace areas increased by 96503816
41,594.1 km?, with th%lra-fgest—mefe&s%eeeuﬁmg—m—slope terraces exhlbltmg the largest expansion, decreases were primarily
observed in peri-urban areas.
China,-deereases—wereconeentratedaround-urban-areas: Notably, the modeling results indicated that terraces had reduced
soil erosion of cropland by about 8§18 1,390 million tons in 2020. The SWCTMD enhanees-can be employed to enhance the
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accuracy of soil erosion simulations and support long-term analysis of soil erosion trends. Mereever,—Furthermore, the
dataset effers provides valuable applications in for earth system modelling and contributes to research on land resource
management, food security, biodiversity, and water cycle. The SWCTMD is freely available at

https://doi.org/10.11888/Terre.tpdc.302400 (Duan, 2025).

1 Introduction

Agricultural terraces are one of the most common cultivation techniques in mountainous and hilly areas, varying in shape
and size. They consist of a flat cultivated section and nearly vertical riser risers. The riser—is—usually risers are typically
protected by dry stone, grass, scrub, or trees, ranging and range from a few centimeters to several meters in height, and-may
be with continuous or intermittent profiles (Arnaez et al., 2015).-As-Terraces form an important soil and water conservation
(SWC) measure—terraces-have-a-significant-effect-onretaining-water-and-seil (Wickama et al., 2014; Londero et al., 2018).
Based on the structures of the field surface, terraces can be categorized into level terraces, slope terraces, zig terraces, and
slope-separated terraces (Liu et al., 2013a). By reshaping the surface microtopography, terraces decreaseé slope length and
gradient and ehanged-speeifie alter hydrological paths-pathways (Deng et al., 2021). These changes reduce soil erosion and
runoff, improve eenserving-water and soil conservation, and increase crop yields (Adgo et al., 2013; Chen et al., 2017, 2020;
Wei et al., 2021). Within established soil erosion assessment frameworks, terraces are-shown-have been incorporated as a
support practice factor in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE)
(Wischmeier and Smith, 1978; Renard et al., 1997). In the Chinese Soil Loss Equation (CSLE), they terraces are specifically
represented as an SWC engineering practice factor (Liu et al., 2020a). However, many large-scale assessments of soil
erosion neglect this factor due to insufficient data on the spatial distribution of terraces (Gobin et al., 2004; Teng et al., 2016).
Therefore, the mapping of terraces is crucial for soil erosion research.

Efforts have been made to map terraces in China. Three primary methods are have been employed to obtain the spatial extent
and location information of terraces. The first method is a government-initiated land resource survey. fa Terraces were
considered in paddy field surveys during the second and third nationwide land surveys efin China;-terraces-were-considered
in—paddy—field-surveys. Terraces located in extensive drylands, particularly on steep slopes land, were often categorized
simply as dryland or irrigated land, without distinguishing terrace types. The second method is to extract terrace information
from land use data (Liu et al., 2021). Existing land use products in China, such as FROM-GLC, GlobeLand30, CLCD,
CACD, and GLC_FCS30, generally classify terraces as cropland (Yu et al., 2013; Chen et al., 2015; Yang and Huang, 2021;
Zhang et al., 2021; Tu et al., 2024). Among these, only the CNLUCC land use product further subdivides cropland into
paddy field and dryland; butstil however, this product also fails to distinguish terrace types on dryland (Liu et al., 2010).
This limitation makes it challenging to extract information about terraces from existing land use data. The third method is to
use employ satellite images to identify terraces. For instance, Lu et al. (2023) used employed deep learning methods to map

terraces in the Loess Plateau based on high-resolution satellite images from October 2018 to February 2019. Li et al. (2024)
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produced a 30-meter resolution terrace map for China using 2017 Sentinel-2 imagery and Landsat-8 imagery on the Google
Earth Engine (GEE) platform through the random forest (RF) algorithm. Similarly, Cao et al. (2021) produced a 30-meter
resolution terrace map using 2018 Landsat-8 imagery and the RF algorithm on the GEE platform (Table 1). Although these
maps have been widely used in soil erosion research (Li et al., 2023; Zhang et al., 2023), the limited classification of terrace

types and the lack of long-term coverage restrict broader application at regional or national scales. The-effectiveness—of

Table 1. Existing terrace products in China.

Method Algorithm Study area Data Reference
Mapping terraces based The Loess Google Earth images Lu et al
Deep learning on UNET++ deep Plateau (2023)
learning network
) Mapping terraces based China Landsat-8 imagery and Li et al
Machine learning ) ) )
on RF algorithm Sentinel-2 imagery (2024)
) ) Mapping terraces based China Landsat-8 imagery Cao et al.
Machine learning
on RF algorithm (2021)

The effectiveness of terraces in SWC varies according to type. Level terraces, characterized by flat cultivated surfaces, can
effectively reduce the amount, velocity, and energy of surface runoff and increase water infiltration, thereby effectively
preventing the transportation of sediment (Wei et al., 2012; Chen et al., 2013; Arndez et al., 2015). Zig terraces increase
water infiltration and reduce runoff by creating micro-catchments (Wang et al., 2004). Conversely, slope terraces, with their
uneven surfaces, are more prone to generating runoff than level terraces or zig terraces (Wei et al., 2016). Level terraces
exhibit the most effective SWC benefits (Oliveira et al., 2012). Compared to slope terraces, level terraces can reduce runoff
by 56.5% and sediment by 53.1% (Chen et al., 2017). Ignoring terrace type can lead to inaccuracies in soil erosion
assessment, and the absence of long-term terrace data hinders analyses of soil erosion trends.

Steep slope land accounts for more than one-third of the total cropland area in China. Over In recent decades, the
construction of agricultural terraces has been the primary engineering measure for managing steep slope cropland (Liu et al.,
2013b; Feng et al., 2017; Zhang et al., 2017). However, the existing terrace datasets lack detailed classification of terrace
types and are limited to single-year data. These limitations have hindered soil erosion assessment, prediction, and SWC
planning. To address this gap, we developed a two-stage mapping framework for the terrace classification was developed on

the GEE platform. The first stage distinguishes terraces from non-terraces, while the second stage focuses on identifying



90 different terrace types. Using this mapping framework, we developed the first long-term (2000 to 2020) national Soil and
Water Conservation Terrace Measures Dataset efChina (SWCTMD) of China was—predueced—using—time-series—andsat

. The dataset incorporates a detailed

classification system. The accuracy of SWCTMD was evaluated using validation samples and compared with existing
terrace maps. Additionally, the terrace dataset was used to identify spatial and temporal changes in terraces across China and

95  to assess the SWC benefits provided by terraces.

2 Methodology

Figure 1 illustrates the framework of 30-meter resolution terrace mapping;. whieh The workflow includes sample collection,
feature calculation, classification implementation, post-classification processing, and accuracy evaluation. Detailed

information on each stage of the terrace mapping process is provided below.
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Figure 1. The framework for mapping terrace.
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2.1 The classification system and interpretation symbols

According to the findings of China’s First National Census for Water (FNCW) (Liu et al., 2020a), we identified the four
major types of terraces:;—inelading level terrace, slope terrace, zig terrace, and slope-separated terrace. The interpretation
105 keys for the different terrace types included shape, size, texture, color, and location (Table 2).

Table 2. Image characteristics of different terrace types.
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. Remote sensing
Terrace types Image characteristics .
image

Steep slope land transformed into a series of successively receding flat surfaces, with

bunds constructed from soil or stones, ranging in width from 5 to 40 m, looking like
Level terrace ) . o

the steps of a staircase in remote sensing images. In contrast to slope terraces, level

terraces are predominantly found in low and flat areas.

Similar to level terraces, but with wider and more uneven surfaces, these terraces

exhibit irregular shapes in remote sensing images. They are primarily used for
Slope terrace ) o )

dryland agriculture and are mestly largely distributed the areas with slopes greater

than 5°.

Steep slope land has been transformed into step-like terraces, whieh that are narrower

) than level terraces. The surfaces of these terraces exhibit regular strip shapes in
Zig terrace L . . . .

remote sensing images. These terraces are primarily found in sloping regions and are

used for planting permanent crops such as tea.

Each flat surface constructed on steep slope land retains an a segment of the original
Slope-separated ] ] )

slope segment above-i, forming a composite structure that features a slope between
terrace

flat surfaces. These terraces are primarily used for rubber plantations.

2.2 Data and preprocessing

In this study, we primarily used Landsat surface reflectance (SR) data, Shuttle RadarFepographyMission(SRTM)-the
Copernicus digital elevation model (DEM) data, and GlobeLand30. Detailed information about these datasets is provided in

Table S1.

2.2.1 Landsat SR data

The study used Landsat-4/5/7/8 SR data, with a spatial resolution of 30 m and a temporal resolution of 16 days;. whieh The
data were accessible through the GEE platform. The Landsat SR data from all the sensors have had been atmospherically
corrected by the United States Geological Survey (USGS) utilizing the LEDAPS algorithm (Masek et al., 2006). These data
included Quality Assessment (QA) masks that indicated the usability of the pixel data, produced using the CFMASK
algorithm (Zhu and Woodcock, 2012). We used QA bands to identify and remove clouds and cloud shadows in each Landsat
SR image, and the missing data within-the-year after cloud removal was were filled using images from the previous year.
Due to the inconsistency in the wavelength of band among different Landsat sensors (Roy et al., 2016), we used only

Landsat-8 SR imagery for the SWCTMD in 2020, and Landsat-4/5/7 SR imagery for the SWCTMD in 2000 and 2010. ia
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2.2.2 SRTM Copernicus DEM

Topographical features are essential characteristics that differentiate regular cropland and terrace, playing a crucial role in

the identification of terraces. We used the SRTFM Copernicus DEM data to calculate these topographical features. SRFM-isa
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Dengetal;2045)-The Copernicus DEM is a Digital Surface Model with 30 m resolution, derived from radar satellite data
acquired from 2010 to 2015 during the TanDEM-X mission. Compared to other DEM data (SRTM, ASTER GDEM, ALOS
World 3D, and NASADEM), Copernicus DEM has the highest accuracy among open-source data (Guth and Geoffroy, 2021),
exhibiting the greatest detail of terrain (Li et al., 2022a). The GEE platform provides access to the SRFM Copernicus DEM

at 30 m resolution.

2.2.3 GlobeLand30

To improve the accuracy and efficiency of terrace identification, we used the union of cropland data from GlobeLand30 from
2000 to 2020 as the range of for terrace identification. Then, remove cropland with a slope of less than or equal to 2°
(Ministry of Natural Resources of the People’s Republic of China, 2019). GlobeLand30 is a widely global used land use
dataset with 30 m resolution that adepts employs a pixel-object-knowledge classification method, effectively utilizing the
advantages of various classification algorithms (Chen et al., 2015). The accuracy of cropland area and spatial location of
GlobeLand30 is higher than the other four products (FROM-GLC, GlobCover, MODIS Collection 5, and MODIS Cropland)
in China (Lu et al., 2016). The cropland from GlobeLand30 includes paddy fields, drylands, pastures, and permanent crop
lands (saeh-as e.g., tea and coffee plantations). Therefore, we adopted the cropland from GlobeLand30 as the range of terrace

classification.

2.3 Feature space construction

Feature variables play a crucial role in the classification of remote sensing images elassifieation. In this study, we
constructed an input dataset comprising five aspects: spectrum, spectral indices, phenology, texture, and topography. The six
optical bands (red, green, blue, near-infrared, shortwave infrared 1, and shortwave infrared 2) from Landsat SR imagery for a
specific year, along with the corresponding spectral indices (NDVI, MNDWI, NDBI, BSI, LSWI, and EVI), were
composited into the 25th, 50th, and 75th percentiles utilizing the metrics-composite method. The percentiles effectively

represent phenological information while simplifying time series information, reducing annual time series noise, and

contributing to enhanced classification accuracy (Duan et al., 2024). Additionally,—texturefeatures—ean—notably—improve
6
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Hou-etal; 2043y In addition to the Landsat-based metrics, we incorporated seven frequently utilized topographic features;
inetluding: slope, aspect, slope of slope (SOS), relief (RF), slope shape (P), roughness (R), and elevation (Tang et al., 2016).
In-total-we-aequired-55-featuresfor-each-year(Fable-S2). The calculation method for feature variables is shown in Table S2.

To eliminate multicollinearity among the feature variables, we removed highly correlated features based on two criteria: (a) a

variance inflation factor (VIF) value for each feature less than 10, and (b) pairwise Pearson correlation coefficients are below

0.7 (Liao et al., 2021). Detailed information about the used features is provided in Table S3, Table S4, and Table S5.

2.4 Frainingand-validatien-sample-Collection of training samples

Samples are a critical component in supervised classification. We used manual visual interpretation methods to eeleet obtain
samples in from the years 2000, 2010, and 2020. To ensure that the collected samples are were evenly distributed across the
study area, we implemented a strategy of gathering samples by subregions. The study area was divided into 1,641 subregions.
Utilizing high-resolution images from Google Earth Pro software, we collected at least 10 samples from each subregion (Fig.
2 S1). Through this method, we collected a total of 52,329-103,374 samples. Specifically, a total of +7392 34,891 samples
were collected in 2000, +%44+7 34,072 samples in 2010, and +%526 34,411 samples in 2020 (Table S3 S6). Subsequenthy—we

ALt tha oo nlec inta aing (700/\ and datinn J 00/ (Tig ad

2.5 Ground-truth reference data

The terrace validation data were derived from FNCW conducted between 2010 and 2012. These data were obtained through
field surveys and provided detailed information about terraces, including terrace types and GPS coordinates. The survey
covered cropland nationwide. A total of 14,986 survey sites were used for terrace accuracy validation in 2010, comprising
3,706 terrace samples and 11,280 non-terrace samples (Fig. 2). The statistical information of different terrace type samples is
shown in Table S7. Based on these data, the terrace validation samples for 2000 and 2020 were obtained by overlaying high-

resolution remote sensing imagery from Google Earth Pro for verification.
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Figure 2. The spatial distribution of validation samples.
2.56 Terrace classification on the GEE platform

The GEE platform offers a variety of classification algorithms. We selected the widely used RF model for terrace
classification, given as the algorithm has offers the advantages of remarkable performance, high efficiency, and
interpretability (Rodriguez-Galiano et al., 2012b; Gong et al., 2019). Two essential parameters must be set for the RF model.
In this study, we set the number of trees to 500 and determined the number of variables per split as the rounded square root
of the feature number. Other parameters were maintained at their the default settings-as specified by the GEE platform (He et
al., 2017; Gong et al., 2020). To alleviate the impact of crop spectral variability on classification accuracy, the study area
was divided into six subregions (Fig. 3). The different terrace types within each region were classified separately. Given the
sensitivity of the RF model to the ratio of samples across different classes (Chen et al., 2024), we implemented a two-stage
mapping approach for classifying terraces within each region. In the first stage, RF was utilized to differentiate between
terrace and non-terrace classes. In the second stage, RF was utilized to classify various terrace types, including level terraces,
slope terraces, zig terraces, and slope-separated terraces. In Stage I of the mapping process, samples from both terrace and

non-terrace samples were used, whereas only terrace samples were utilized in Stage II.
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Figure 3. Geographical regionalization in China. SW represents Southwest China. NW represents Northwest China. NENC represents
Northeast and North China. SC represents South China. CC represents Central China. EC represents East China.

2.67 Post-classification processing

Both supervised and unsupervised classification methods in remote sensing rely on the spectral characteristics of image
pixels. A critical issue is the presence of isolated pixels in the classification results, which exhibit high local spatial
heterogeneity between neighboring pixels (Hirayama et al., 2019). This phenomenon, commonly known as the salt-and-
pepper effect, is regarded as noise affecting accuracy. Terraces, being primarily constructed in hilly or mountainous regions,
often exhibit a scattered and irregular distribution, which leads to an obvious salt-and-pepper effect in classified images.
Given the small areas of terraces, we applied a mode filter with 3 x 3 px for spatial filtering processing to mitigate the salt-
and-pepper effect from the classification results. To improve the overall quality of the mapping results, we conducted
spatial-temporal consistency check to suppress illogical land use conversions. Specifically, for areas that were cropland in
both the previous year and the current year (excluding grain-for-green areas), we modified those areas that were previously

terraces but were identified as non-terraces in the current year to terraces.
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2.78 Accuracy assessment

It is an essential step to assess the accuracy of the products prior to utilizing data in related applications. The classification
maps were evaluated using a confusion matrix calculated from validation samples. The confusion matrix is widely regarded
as the standard method for evaluating the accuracy of classified images. This method offers quantitative assessment metrics,
including the kappa coefficient (KA), overall accuracy (OA), producer’s accuracy (PA), and user’s accuracy (UA), which
collectively assess the performance of the products. OA and KA measure the total map accuracy. PA and UA measure the
omission and commission errors for each class. In addition, we calculated the F1 score, which reflects the balance between
UA and PA. The KA, OA, PA, UA, and F1 metrics range from 0 to 1, where 1 indicates optimal performance and 0

represents the poorest performance. The formula for the F1 metric is shown in Eq. (1):

Fl = PAXUA
(PA+UA)

()

In this study, we constructed two confusion matrices: one forevaluating to evaluate the accuracy of terraces and non-terraces,

and the other fer-assessing to assess the accuracy of various terrace types.

3 Results

3.1 Aeeuracy-assessment-of the-dataset Overall accuracy assessment

Usingthe—validation—samples;—twe Two confusion matrices corresponding to different terrace classification levels were

generated using the validation samples. For the classification of terrace and non-terrace, the OA ranged from 947 91.7% to
92.89 91.8%, with KA ranging from 64-83 77.7% to 76-75 78.2%, and F1-scores ranging from 7614 83.1% to 95:62 94.6%
(Table 3);. indicating—that-the—elassification—performs—well: For terrace class, the UA ranged from 8783 77.6% to 92.09
84.6%, and the PA ranged from 56-64 81.7% to 7532 90.7%, and the F1 above 80%, indicating that the prebability—ef
riselassificationforterrace-wastow overall classification performs well.

Table 3. The accuracy matrix for the terrace and non-terrace.

Year types UA (%) PA (%) F1 score (%) OA (%)  Kappa (%)
Non-terrace 9021 97 98:80692.1 9431945 90.44 6483

2000 Terrace 92:0977.6  56:6490.7 701483.6 91.7 78.2

2010 Non-terrace 92:61 94.1 982295.1 953394.6 9237 T445
Terrace 9106 84.6  6979-81.7 7902 83.1 91.8 77.7

2020 Non-terrace 930596.8 9735922 9562945 9289 F675
Terrace 87.8377.7  753289.8 8109833 91.7 778

10



For different terrace types, the OA ranged from 8+31 88.8% to 86-03 89.8%, KA ranged from 3737 65.1% to 56-64+ 69.5%,

and F1 scores ranged from 22-86 68.9% to 9227 93.9% (Table 4). Slepe Level terraces exhibited the highest classification

accuracy, followed by slope-separated terraces,level-terraeces slope terrace, and zig terraces, respectively. From the UA and

PA, the commission esissien errors were lower than the eemmaission omission errors for different types of terraces. Ameng
235 allterrace-types;slope Level terrace had the lowest misclassification error among the terrace types.

Table 4. The accuracy matrix for the different types of terraces.

Year types UA (%) PA (%) F1 score (%) OA (%) Kappa (%)
Level terrace 66:67 93.7 1818 94.1 2857939

2000 Slope terrace 84-03 70.1 9798 70.6 90-4770.3 &34+ 37+74
Zig terrace 44:4474.6 1538 64.1 22.86 68.9 89.7 66
Slope-separated terrace 5744 85.7 3582 70.6 4404774
Level terrace 90:00 93.8 22.50 94 36:0093.9
Slope terrace 8408 73.1 9826 73.2 90-62 73.2 8315 3737

2010 Zig terrace 6250 77.6 1545 68.6 2439728 808 69.5
Slope-separated terrace 6333833 4524 88.2 5278 85.7
Level terrace 7727 93.7 24-6492.9 3736933

2020 Slope terrace 8700 67.8 9823 71.3 9227 69.5 3603 50-64+
Zig terrace HA8 70 1842 68.8 2545 69.4 88.8 65.1
Slope-separated terrace 9268 86.7 HF072.2 8085 78.8

Figure 4 illustrates the spatial consistency between the SWCTMD and two existing datasets: the 2018 China Terrace Map
(CTM2018) (Cao et al., 2021) and the 2017 China Terrace Map (CTM 2017) (Li et al., 2024). SWCTMD exhibited the
highest accuracy. Compared to SWCTMD and CTM2018, CTM2017 exhibited relatively lower accuracy for both typical

terrace and non-terraces areas (regions B, C, D F and G in Fig. 4b). For typical terraces, SWCTMD and CTM2018 show

250 similar identification performance (regions A, B, C, D and F in Fig. 4b). However, for atypical terraces, such as zig terraces

11



located in Yunnan Province, SWCTM successfully identified these as terraces, whereas CTM2018 failed to identify them as

terraces (regions E in Fig. 4b). Conversely, for non-terrace areas situated in the Middle-Lower Yangtze River, SWCTMD

accurately classified these as non-terraces, while CTM2018 erroneously classified them as terrace areas (regions G in Fig.

4b). At the provincial scale, the majority of provinces exhibit larger terrace areas in SWCTMD compared to both CTM2018
255 and CTM2017 (Tables S8 and S9).

2\

N

I Cropland
0 1075 2150 |
km

o Terrace [0 Level terrace [ Slope terrace
B Slope-separated terrace [ Zig terrace

260

Figure 4. Regional comparisons of the three terraces datasets. (a) The distribution of cropland in China in 2020. (b) The spatial
distributions of the three terraces datasets.

3.2 Accuracy assessment in different regions

The classification of terraces across different regions performed well, but there were significant differences in accuracy
265 among the regions. The Southwest and Northwest had the highest concentrations of terraces. Southwest China achieved
superior classification performance due to its pronounced terrace morphology and spectral characteristics. Southwest China
demonstrated the highest classification precision, with average values of UA, PA, F1, OA, and KA at 89.8%, 95.8%, 92.7%,
90.2%, and 77.9%, respectively (Table S10). Northwest China followed closely, with corresponding average values of

12
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75.2%, 91.6%, 82.3%, 89.6%, and 75.1%. In contrast, Northeast and North China, South China, Central China, and East
China have relatively flat terrain, with terraces being similar to the surrounding cropland, resulting in relatively lower
classification accuracy. The mean F1 scores were 70.6%, 77.5%, 81%, and 73.8%, respectively. The mean OA scores were
94.5%, 91.3%, 87.8%, and 91.7%, respectively, and the KA were around 70% (Table S10).

The overall classification accuracy for different terrace types across all regions was well. Northwest China, Northeast and
North China, Central China, and South China had the highest classification accuracy, followed by Southwest China and East
China. The average UA, PA, F1, OA, and KA values of Northwest China, Northeast and North China, Central China, and
South China were 82.3%, 81.1%, 81.5%, 90.4%, 67.9%. The average UA, PA, F1, OA, and KA values for Southwest China
and East China were 76.5%, 77.9%, 77.1%, 90%, 64.4% (Table S11). Among all terrace types, level terraces had the highest

classification accuracy across all regions, followed by slope-separated terraces, slope terraces, and zigzag terraces.

3.2-3 Spatiotemporal variation of terraces in China

Terraces are primarily distributed across the hills, basins, and plateaus of China (Figs. 4a and S3). The Sichuan Basin
exhibits exhibited the highest concentration of terraces, followed by the Yunnan-KsweicheuGuizhou Plateau and the Loess
Plateau.—Furthermore—terraces Terraces are also extensively found in the hilly regions of central and southeastern China-
Erom-terrace—types;tevel Level terraces are distributed in the gentler slopes of hilly regions in-seuthersa China. Sloped
terraces are most extensively densely distributed across the SichuanBasin Yunnan,—YunnantoweichouPlatean, and the
Loess Plateau, with smaler-oeeurrenees lesser occurrence in the hilly regions of central and southeastern China. Zig terraces
are mostly distributed in the eentral-and-seutheastern—hilly—areas Southwest China and Northwest China, while slope-
separated terraces are mainly located in southwest China (Figs.4-5a and-4-5b). In terms of spatial changes, the increasing
terraces are mainly distributed in the Yunnan-KsweieheuGuizhou Plateau, the Loess Plateau, and the Sichuan Basin from
2000 to 2020 (Fig. 5-6a). These areas are severely affected by soil erosion-and-are-key-areas-of sotl-erosionin-China. Yunnan
and Gansue Guangxi are the provinces with the largest increase in terraces (Fig. 5-6b). The decreasing terraces are mainly

distributed around urban areas from 2000 to 2020, where urban expansion has occupied some terrace areas.
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The provinces with the largest terrace areas are were Sichuan, Yunnan, Guizhou, Gansu, Shanxi, Hunan, Shaanxi, and
Chongqing, while other provinces hawve had relatively smaller terrace areas (Fig.-6-7a). Among these, Chongqing, Sichuan,
Guizhou, and Yunnan exhibited the highest percentage of terraces, with over 76-80% of cropland converted to terraces (Fig.
6-7b). From 2000 to 2020, Yunnan, Gansy; Guangxi, Shanxi, and Guizheu Shaanxi experienced the most significant
increases in terrace areas, with the terrace areas increasing by 22;87735-km2-6;822.40-4am?-8;095-66-km2-and-6;235544am?;
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11,372.4 km? (13.1%), 5,192.4 km? (32.9%), 2,395 km? (6.1%), and 2,295.0 km? (6.2%), respectively (Fig. 6-7a). In terms of

terrace types, the areas of level terraces, slope terraces, zig terraces and slope separated terraces increased by 2.275-26-km2;
86,18626-km% 153628 kmZ-and-6;040-36-km?; 5,701.4 km? (1.3%), 29,876.3 km? (18.9%), 5,886.5 km? (31.4%), and 129.9
km? (24.9%), respectively, with the slope terrace having the largest-inereasing-areas-increase (Figs. 6-7c, d, e and f). Overall,
China’s total terrace area expanded from 466;895.:68 612,885.4 km? in 2000 to 496;933-84 654,479.5 km? in 2020, an
increase of 6.8% (Fig. 6-7g).
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Figure 6 7. The changes of terrace areas at provincial and types from 2000 to 2020. (a) The changes of terrace area in different provinces.

(b) The proportion of terraces to cropland in different provinces. (c-f) The areas of level terrace, slope terrace, zig terrace, and slope-
separated terracesrespeetively. (g) The total terrace areas of China.
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The SWC measure factor (E) value for each terrace measure was given according to the FNCW and published literature

(Table S12) (Duan et al., 2020; Liu et al., 2020). Using these parameters, we generated spatial distribution maps of E for the
years 2000, 2010, and 2020 (Fig. S3). With these data, we utilized the CSLE to assess cropland soil erosion across China in
2020 (Notes S1, S2 and S3). Figure 8 illustrates the soil erosion modulus under the terrace scenario in 2020. The average soil
erosion modulus for cropland was 8.03 t-ha™!'y!, with a total eroded area of 842,685 km?. Compared to the scenario without
terrace measures, the average soil erosion modulus of cropland decreased by 7 t-ha’l-y! (46.5%), and the erosion area was
reduced by 223,134.8 km? (20.9%) (Figs. S4a and b). Collectively, terrace measures reduced approximately 1,390 million
tons of cropland soil erosion, accounting for 46.5% of the total erosion on croplands. Spatially, the reduction in erosion was
primarily concentrated in the Loess Plateau, Sichuan Basin, and Yunnan-Guizhou Plateau. Ningxia, Gansu, Sichuan,

Chonggqing, Qinghai, Guizhou, Shanxi, and Yunnan exhibited the largest decreases, with reductions of about 65%—75%.
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4 Discussion
4.1 Comprehensive and Reliability of SWCTMD

We compared the 2020 terrace area estimated by SWCTMD with those from CTM2018 and CTM2017. SWCTMD exhibited
the largest terrace area compared to CTM2018 and CTM2017. The areal discrepancies can be attributed to the following
reasons. First, CTM2017 and CTM2018 predominantly focused on the most typical level terraces, whereas our research
encompasses a broader range of terrace types, including non-typical terraces such as slope terraces, zig terraces, and slope-
separated terrace. Second, each dataset employed distinct cropland for terrace classification. SWCTMD utilized the union of
cropland with slopes exceeding 2° from the 2000, 2010, and 2020 GlobeLand30 cropland data, whereas CTM2018 employed
only the 2010 GlobeLand30 cropland data, and CTM2017 adopted FROM-GLC cropland data. Third, CTM2018 excluded
isolated patches smaller than 9,000 m? from its classification scheme. However, since SWCTMD constrains its classification
to cropland with slopes exceeding 2°, the identified terrace areas in Anhui, Fujian, Jiangxi, and Zhejiang provinces were

smaller than those from CTM2018. In these provinces, CTM2018 included terraces with slopes below 2°, which is classified
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as non-terraces according to the technical regulations of the third nationwide land survey. Overall, our dataset provides more

comprehensive coverage for terraces and exhibits higher accuracy and robustness.

4.1-2 Spatial pattern of terraces

The Sichuan Basin, Loess Plateau, and the Yunnan-KsweicheuGuizhou Plateau are the three regions with the highest
concentration of terraces in China. Other areas, characterized by relatively gentle slopes, have fewer terraces. In the hilly
areas of the Sichuan Basin and the Yunnan-KweichouGuizhou Plateau, terraces-areprimariby-humans have constructed by
humans—in—the terraces through a long-term process of adapting to nature threugh—the by reshaping of mountainous
landscapes (Zhang et al., 2008; Duan et al., 2020). This process has also fostered unique cultural and social practices
associated with terraces (Zhan and Jin, 2015; Zhang et al., 2024). These regions face challenges such as limited cultivated
land resources, steep slopes, and intense precipitation (Liu et al., 2014; Li et al.,, 2016; Wang and Dai, 2020). The
construction of terraces not only aequires produces additional cultivable land but also optimizes water resource utilization
and reduces soil erosion (Wei et al., 2017).

In recent years, the Chinese Land Consolidation projects and the Well-fFacilitated Farmland projects have prioritized slope-
to-terrace conversion as the primary land consolidation strategy in mountainous regions (Tang et al., 2019);. This initiative
has significantly increased inereasing the terrace area in southwestern China. In the Loess Plateau, terraces are mainly
primarily constructed for SWC and ecological restoration. Natural factors such as fragmented mountainous terrain, loose soil,
and intense rainfall, eeupled combined with human activities—tike of deforestation, overgrazing, and cultivation on steep
slope, have made the Loess Plateau one of China’s most severely eroded regions (Wang et al., 2010; Liang et al., 2015).
Over the past few decades, large-scale programs such as Grain-for-Green and terrace construction initiatives have been
implemented to combat soil and water loss (Fu et al., 2017). Most terraces in the Loess Plateau are dryland terraces,
predominantly located in Gansu, Ningxia, Shanxi, and Shaanxi Provinces. In northeast China, cropland-has-have long slope
lengths but, and gentle slope degrees (Liu et al., 2020a), resulting in fewer terraces being built. In contrast, in the hilly
regions of central and southeastern China, terraces have also been constructed despite gentler slopes. Unlike the Sichuan
Basin, Loess Plateau, and Yunnan-Guizhou Plateau, where terraces serve as a necessity for managing steep terrain, the
primary motivation in these areas is to expand the amount of land erepland for the cultivation of economic crops such as tea
and fruit trees (Adge-et-al;2043 Li et al., 2022b). However, in mountainous and hilly regions, urban expansion has occupied

some formerly terraced areas.

4.2-3 Soil eresion-and conservation of terraces
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Due to the lack of large-scale terrace distribution data, many previous continental-scale soil erosion assessments have

generally not considered the influence of terraces, such as Europe, Australia, and Africa (Gobin et al., 2004; Teng et al.,
2016; Salhi et al., 2025). This has led to overestimation of cropland soil erosion. Wang et al. (2021b) estimated cropland
erosion at 1,939.7x106 tons in 2015 without accounting for terraces. Conversely, our study indicated cropland erosion at
1,599.4x106 tons in 2020, closely aligning with the 2011 FNCW result of 1,640.0x106 tons. Regarding the erosion reduction
effects of terraces, Li et al. (2024) mapped terrace in 2017 and found that terraces reduced cropland erosion by 950 million
tons. In contrast, our study estimates that terraces reduced cropland erosion by 1,390 million tons in 2020. The discrepancy
between the two results from Li et al. (2024) failure to distinguish between terrace types, resulting in an underestimation of
terrace benefits.

According to our estimate, soil erosion of the Loess Plateau accounted for only 12.6% of the total cropland erosion. Terraces
in this region contributed to 17.4% of the total reduction of cropland soil erosion, demonstrating the benefits of terraces to
SWC. In Northeast China, terraces are sparse, and cropland is characterized by long slope lengths and gentle slope degrees,
with erosion accounting for 27.6% of the total cropland erosion. In Southwest China, erosion amount accounted for 23.4% of

total cropland erosion. Northeast and Southwest China should be the key areas for future soil erosion protection efforts. In
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Hebei, Henan, and Shandong Provinces, extensive cultivation and high crop planting intensity contributed 16.3% of the total
cropland erosion, which warrants attention. In this study, each terrace type was assigned a fixed E value to facilitate the
estimation of large-scale soil erosion. However, this approach overlooks spatial heterogeneity in terrace structure,
maintenance status, field management, climate, and topography. Future research should incorporate regional characteristics

and adjust the E-value accordingly.

4.3-4 Limitations and prospects

The spatial heterogeneity of land types frequently leads to class imbalance in remote sensing classification, consequently

diminishing classification accuracy for minority classes that occupy a smaller area (Xiao et al., 2024). The models tend to
favor majority classes during training, reducing their ability to accurately identify minority classes (Chen et al., 2025). When
the ratio of samples across different classes remains balanced, classification performance typically falls short of optimal
accuracy thresholds (Deng et al., 2025). A common strategy to alleviate this negative effect is to divide the study area into
multiple sub-regions for localized classification, thereby reducing the impact of sample imbalance on model accuracy
(Zhang et al., 2020). In this study, we employed a partitioned two-stage RF approach to reduce the effects of sample
imbalance on classification accuracy. The results demonstrated that classification for terrace and different terrace types
achieved satisfactory accuracy in both the entire study area and individual subregions. However, the accuracy metrics of the
majority class were still higher than those of the minority class. In future studies, sample optimization techniques and more

advanced classification methods could be combined to further improve the accuracy of minority class classification.
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The complex and diversity diverse landform types have resulted in differences in the spectral information and topographic
features of terraces in different regions. In Southwest and Northwest China, terraces exhibit concentrated distributions with
clearly defined characteristics, making them easily identifiable. However, South China, Central China, and East China have
relatively low topographic relief. Some terraces have spectral and topographic features similar to those of sloping farmland
and flatland. This similarity, combined with the presence of mixed pixels in medium-resolution imagery (Wang et al., 2021a),
makes it challenging to detect the terrace patches. Although the classification used 30-meter Landsat imagery in this study
was generally robust, some fragmented and narrow terraces were omitted. Future research could employ high-resolution
remote sensing images to effectively identify fragmented and narrow terraces. Previous small-scale studies have
demonstrated that the use of high-resolution remote sensing imagery, combined with object-based classification methods and
deep learning approaches, can significantly enhance classification accuracy and reduce the impact of spectral confusion and
mixed pixels on terrace identification (Diaz-Varela et al., 2014; Wang et al., 2023; Kan et al., 2025). To improve
classification accuracy and efficiency, cropland data were used as the basis for terrace identification. Inevitably, the accuracy
of cropland data impacts the terrace mapping process, as errors in cropland data propagate into the terrace maps. In summary,
future studies could utilize high-resolution remote sensing imagery and more accurate cropland datasets, and adopt sample
optimization techniques and more advanced classification algorithms to improve the detection of subpixel terrace

distributions.

5 Data availability

The Landsat imagery and SRTM DEM data were acquired from the Google Earth Engine. The GlobeLand30 data can be
downloaded from the National Geomatics Center of China. The 1 km spatial resolution SWCTMD (calculated from the 30 m
resolution SWCTMD) can be accessed at https://doi.org/10.11888/Terre.tpdc.302400 (Duan, 2025). The 30 m resolution
SWCTMD will be available after publication.

6 Conclusions

This study developed the first SWC terrace measures dataset for China with a fine classification system at a spatial
resolution of 30 m. The dataset includes data for each decade from 2000 to 2020. # The dataset was generated by combining
the full archive of Landsat imagery, digital-elevation-medel DEM, and nationally scaled samples of manual visualization,
using a two-stage random forest classification on the GEE platform. The average OA and average F1 scores for identifying
terraces and non-terraces were-94+-99 91.7% and 85-92 88.9%, respectively. For different terrace types, the average OA and
average F1 scores were 3-50 89.4% and 5234 78.9%, respectively.

Compared to existing terrace datasets, the newly developed dataset provides more comprehensive coverage, especially in

identifying zig terraces in seutheastern southwest China. The dataset—reveals—that—analysis revealed terraces are were
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primarily distributed in the Loess Plateau, Southwest China, and Southeast China. From 2000 to 2020, the total terrace areas
expanded by 96;0381+6 41,594.1 km?, with level terraces increasing by 2;275:26 5,701.4 km?, slope terraces by 86;186-26
29,876.3 km?, slope-separated terraces by 6;040-36 129.9 km?, and zig terraces by +536-28 5,886.5km?. Terrace expansion
was mainly concentrated in the Loess Plateau and seuthwest Southwest and Southeast regions of China, while the terrace

deerease-was-mainly-observed decreases in terraced area primarily occurred around urban areas.

Terraces in China are estimated to have reduced soil erosion on cropland by approximately 8+8 1,390 million tons. Further
analysis highlighted the benefits of SWC in the Yunnan-Guizhou Plateau and Loess Plateau are-the-best-areas. The terrace
dataset, with its detailed classification system is expected to provide a cornerstone for national and regional soil erosion

assessment and prediction, SWC planning, and evaluations of various ecosystem services related to terraces.
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