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Abstract. Terrace Terraces, as one of the most widely distributed and heavily invested soil and water conservation (SWC) 

measures in China, currently lacks lack a comprehensive database with containing spatiotemporal distribution and diverse 

classification types. This absence significantly hampers the accurate soil erosion assessment and SWC planning in China. To 15 

address this gap, we proposed developed a two-stage mapping framework for the different to classify various terrace 

measures classification to produce and produced a new dataset named the Soil and Water Conservation Terrace Measures 

Dataset (SWCTMD). The dataset, spanning the years 2000 to 2020, was produced by integrating using time-series Landsat 

satellite imagery and digital elevation model data. This dataset, spanning from 2000 to 2020, incorporated a fine 

classification system, providing both terrace data and SWC measure factor. The data incorporate SWC measure factors and 20 

four terrace types: level terraces, slope terraces, zig terraces, and slope-separated terraces. The terraces were classified into 

four types according to their features: level terrace, slope terrace, zig terrace, and slope-separated terrace. The results showed 

that the average overall accuracy (OA) of the terrace was 91.90% and the average F1 score was 76.75%. For different terrace 

types, the average OA was 83.50% and the average F1 score was 52.14%. On average, the SWCTMD achieved OA of 91.7% 

and F1 of 83.4% for terraces, and 89.4% OA and 78.9% F1 for different terrace types, underscoring its high accuracy in 25 

terrace mapping. Comparative analysis highlighted demonstrated the superiority and superior robustness of the SWCTMD 

compared to existing products. This dataset revealed demonstrated that terraces in China are predominantly concentrated in 

the Loess Plateau, Southwest and Southeast regions. From 2000 to 2020, the total terrace areas increased by 96,038.16 

41,594.1 km², with the largest increase occurring in slope terraces exhibiting the largest expansion, decreases were primarily 

observed in peri-urban areas. While terrace expansion was concentrated in the Loess Plateau, and southwest and southeast of 30 

China, decreases were concentrated around urban areas. Notably, the modeling results indicated that terraces had reduced 

soil erosion of cropland by about 818 1,390 million tons in 2020. The SWCTMD enhances can be employed to enhance the 
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accuracy of soil erosion simulations and support long-term analysis of soil erosion trends. Moreover, Furthermore, the 

dataset offers provides valuable applications in for earth system modelling and contributes to research on land resource 

management, food security, biodiversity, and water cycle. The SWCTMD is freely available at 35 

https://doi.org/10.11888/Terre.tpdc.302400 (Duan, 2025). 

1 Introduction 

Agricultural terraces are one of the most common cultivation techniques in mountainous and hilly areas, varying in shape 

and size. They consist of a flat cultivated section and nearly vertical riser risers. The riser is usually risers are typically 

protected by dry stone, grass, scrub, or trees, ranging and range from a few centimeters to several meters in height, and may 40 

be with continuous or intermittent profiles (Arnáez et al., 2015). As Terraces form an important soil and water conservation 

(SWC) measure, terraces have a significant effect on retaining water and soil (Wickama et al., 2014; Londero et al., 2018). 

Based on the structures of the field surface, terraces can be categorized into level terraces, slope terraces, zig terraces, and 

slope-separated terraces (Liu et al., 2013a). By reshaping the surface microtopography, terraces decreased slope length and 

gradient and changed specific alter hydrological paths pathways (Deng et al., 2021). These changes reduce soil erosion and 45 

runoff, improve conserving water and soil conservation, and increase crop yields (Adgo et al., 2013; Chen et al., 2017, 2020; 

Wei et al., 2021). Within established soil erosion assessment frameworks, terraces are shown have been incorporated as a 

support practice factor in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) 

(Wischmeier and Smith, 1978; Renard et al., 1997). In the Chinese Soil Loss Equation (CSLE), they terraces are specifically 

represented as an SWC engineering practice factor (Liu et al., 2020a). However, many large-scale assessments of soil 50 

erosion neglect this factor due to insufficient data on the spatial distribution of terraces (Gobin et al., 2004; Teng et al., 2016). 

Therefore, the mapping of terraces is crucial for soil erosion research.  

Efforts have been made to map terraces in China. Three primary methods are have been employed to obtain the spatial extent 

and location information of terraces. The first method is a government-initiated land resource survey. In Terraces were 

considered in paddy field surveys during the second and third nationwide land surveys of in China, terraces were considered 55 

in paddy field surveys. Terraces located in extensive drylands, particularly on steep slopes land, were often categorized 

simply as dryland or irrigated land, without distinguishing terrace types. The second method is to extract terrace information 

from land use data (Liu et al., 2021). Existing land use products in China, such as FROM-GLC, GlobeLand30, CLCD, 

CACD, and GLC_FCS30, generally classify terraces as cropland (Yu et al., 2013; Chen et al., 2015; Yang and Huang, 2021; 

Zhang et al., 2021; Tu et al., 2024). Among these, only the CNLUCC land use product further subdivides cropland into 60 

paddy field and dryland; but still however, this product also fails to distinguish terrace types on dryland (Liu et al., 2010). 

This limitation makes it challenging to extract information about terraces from existing land use data. The third method is to 

use employ satellite images to identify terraces. For instance, Lu et al. (2023) used employed deep learning methods to map 

terraces in the Loess Plateau based on high-resolution satellite images from October 2018 to February 2019. Li et al. (2024) 
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produced a 30-meter resolution terrace map for China using 2017 Sentinel-2 imagery and Landsat-8 imagery on the Google 65 

Earth Engine (GEE) platform through the random forest (RF) algorithm. Similarly, Cao et al. (2021) produced a 30-meter 

resolution terrace map using 2018 Landsat-8 imagery and the RF algorithm on the GEE platform (Table 1). Although these 

maps have been widely used in soil erosion research (Li et al., 2023; Zhang et al., 2023), the limited classification of terrace 

types and the lack of long-term coverage restrict broader application at regional or national scales. The effectiveness of 

terraces in SWC varies significantly by type, with level terraces exhibiting the most remarkable benefits (Oliveira et al., 70 

2012). Level terraces reduced runoff by 56.5% and sediment by 53.1% compared to slope terraces (Chen et al., 2017). 

Ignoring terrace types can lead to inaccuracies in soil erosion assessment. Furthermore, the absence of long-term terrace data 

hinders analyses of soil erosion trends and predictions. 
Table 1. Existing terrace products in China. 

Method Algorithm Study area Data Reference 

Deep learning 

Mapping terraces based 

on UNET++ deep 

learning network 

The Loess 

Plateau 

Google Earth images Lu et al. 

(2023) 

Machine learning 
Mapping terraces based 

on RF algorithm 

China Landsat-8 imagery and 

Sentinel-2 imagery 

Li et al. 

(2024) 

Machine learning 
Mapping terraces based 

on RF algorithm 

China Landsat-8 imagery Cao et al. 

(2021) 

 75 

The effectiveness of terraces in SWC varies according to type. Level terraces, characterized by flat cultivated surfaces, can 

effectively reduce the amount, velocity, and energy of surface runoff and increase water infiltration, thereby effectively 

preventing the transportation of sediment (Wei et al., 2012; Chen et al., 2013; Arnáez et al., 2015). Zig terraces increase 

water infiltration and reduce runoff by creating micro-catchments (Wang et al., 2004). Conversely, slope terraces, with their 

uneven surfaces, are more prone to generating runoff than level terraces or zig terraces (Wei et al., 2016). Level terraces 80 

exhibit the most effective SWC benefits (Oliveira et al., 2012). Compared to slope terraces, level terraces can reduce runoff 

by 56.5% and sediment by 53.1% (Chen et al., 2017). Ignoring terrace type can lead to inaccuracies in soil erosion 

assessment, and the absence of long-term terrace data hinders analyses of soil erosion trends. 

Steep slope land accounts for more than one-third of the total cropland area in China. Over In recent decades, the 

construction of agricultural terraces has been the primary engineering measure for managing steep slope cropland (Liu et al., 85 

2013b; Feng et al., 2017; Zhang et al., 2017). However, the existing terrace datasets lack detailed classification of terrace 

types and are limited to single-year data. These limitations have hindered soil erosion assessment, prediction, and SWC 

planning. To address this gap, we developed a two-stage mapping framework for the terrace classification was developed on 

the GEE platform. The first stage distinguishes terraces from non-terraces, while the second stage focuses on identifying 
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different terrace types. Using this mapping framework, we developed the first long-term (2000 to 2020) national Soil and 90 

Water Conservation Terrace Measures Dataset of China (SWCTMD) of China was produced using time-series Landsat 

satellite imagery and digital elevation model data, covering the period from 2000 to 2020. The dataset incorporates a detailed 

classification system. The accuracy of SWCTMD was evaluated using validation samples and compared with existing 

terrace maps. Additionally, the terrace dataset was used to identify spatial and temporal changes in terraces across China and 

to assess the SWC benefits provided by terraces. 95 

2 Methodology 

Figure 1 illustrates the framework of 30-meter resolution terrace mapping,. which The workflow includes sample collection, 

feature calculation, classification implementation, post-classification processing, and accuracy evaluation. Detailed 

information on each stage of the terrace mapping process is provided below. 

 100 
Figure 1. The framework for mapping terrace. 

2.1 The classification system and interpretation symbols 

According to the findings of China’s First National Census for Water (FNCW) (Liu et al., 2020a), we identified the four 

major types of terraces:, including level terrace, slope terrace, zig terrace, and slope-separated terrace. The interpretation 

keys for the different terrace types included shape, size, texture, color, and location (Table 2). 105 
Table 2. Image characteristics of different terrace types. 
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Terrace types Image characteristics 
Remote sensing 

image 

Level terrace 

Steep slope land transformed into a series of successively receding flat surfaces, with 

bunds constructed from soil or stones, ranging in width from 5 to 40 m, looking like 

the steps of a staircase in remote sensing images. In contrast to slope terraces, level 

terraces are predominantly found in low and flat areas.  

Slope terrace 

Similar to level terraces, but with wider and more uneven surfaces, these terraces 

exhibit irregular shapes in remote sensing images. They are primarily used for 

dryland agriculture and are mostly largely distributed the areas with slopes greater 

than 5°.  

Zig terrace 

Steep slope land has been transformed into step-like terraces, which that are narrower 

than level terraces. The surfaces of these terraces exhibit regular strip shapes in 

remote sensing images. These terraces are primarily found in sloping regions and are 

used for planting permanent crops such as tea. 
 

Slope-separated 

terrace 

Each flat surface constructed on steep slope land retains an a segment of the original 

slope segment above it, forming a composite structure that features a slope between 

flat surfaces. These terraces are primarily used for rubber plantations.  

2.2 Data and preprocessing 

In this study, we primarily used Landsat surface reflectance (SR) data, Shuttle Radar Topography Mission (SRTM) the 

Copernicus digital elevation model (DEM) data, and GlobeLand30. Detailed information about these datasets is provided in 

Table S1. 110 

2.2.1 Landsat SR data 

The study used Landsat-4/5/7/8 SR data, with a spatial resolution of 30 m and a temporal resolution of 16 days,. which The 

data were accessible through the GEE platform. The Landsat SR data from all the sensors have had been atmospherically 

corrected by the United States Geological Survey (USGS) utilizing the LEDAPS algorithm (Masek et al., 2006). These data 

included Quality Assessment (QA) masks that indicated the usability of the pixel data, produced using the CFMASK 115 

algorithm (Zhu and Woodcock, 2012). We used QA bands to identify and remove clouds and cloud shadows in each Landsat 

SR image, and the missing data within the year after cloud removal was were filled using images from the previous year. 

Due to the inconsistency in the wavelength of band among different Landsat sensors (Roy et al., 2016), we used only 

Landsat-8 SR imagery for the SWCTMD in 2020, and Landsat-4/5/7 SR imagery for the SWCTMD in 2000 and 2010. In 
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2010, we relied solely on Landsat-5 SR imagery for the SWCTMD due to the failure of the Scan Line Corrector in the 120 

Landsat-7 instrument in 2003 and the decommissioning of Landsat-4 in 2001. 

2.2.2 SRTM  Copernicus DEM 

Topographical features are essential characteristics that differentiate regular cropland and terrace, playing a crucial role in 

the identification of terraces. We used the SRTM Copernicus DEM data to calculate these topographical features. SRTM is a 

global research effort that acquired DEM with near-global coverage, achieving a resolution of 1 arcsecond. The SRTM DEM 125 

has been processed for void-filling utilizing various open-source DEM datasets. Compared to other DEM data, SRTM DEM 

is the most quality-controlled, broadest coverage, and highest accuracy DEM among open-source data (Farr et al., 2007; 

Dong et al., 2015). The Copernicus DEM is a Digital Surface Model with 30 m resolution, derived from radar satellite data 

acquired from 2010 to 2015 during the TanDEM-X mission. Compared to other DEM data (SRTM, ASTER GDEM, ALOS 

World 3D, and NASADEM), Copernicus DEM has the highest accuracy among open-source data (Guth and Geoffroy, 2021), 130 

exhibiting the greatest detail of terrain (Li et al., 2022a). The GEE platform provides access to the SRTM Copernicus DEM 

at 30 m resolution.  

2.2.3 GlobeLand30 

To improve the accuracy and efficiency of terrace identification, we used the union of cropland data from GlobeLand30 from 

2000 to 2020 as the range of for terrace identification. Then, remove cropland with a slope of less than or equal to 2° 135 

(Ministry of Natural Resources of the People’s Republic of China, 2019). GlobeLand30 is a widely global used land use 

dataset with 30 m resolution that adopts employs a pixel-object-knowledge classification method, effectively utilizing the 

advantages of various classification algorithms (Chen et al., 2015). The accuracy of cropland area and spatial location of 

GlobeLand30 is higher than the other four products (FROM-GLC, GlobCover, MODIS Collection 5, and MODIS Cropland) 

in China (Lu et al., 2016). The cropland from GlobeLand30 includes paddy fields, drylands, pastures, and permanent crop 140 

lands (such as e.g., tea and coffee plantations). Therefore, we adopted the cropland from GlobeLand30 as the range of terrace 

classification.  

2.3 Feature space construction 

Feature variables play a crucial role in the classification of remote sensing images classification. In this study, we 

constructed an input dataset comprising five aspects: spectrum, spectral indices, phenology, texture, and topography. The six 145 

optical bands (red, green, blue, near-infrared, shortwave infrared 1, and shortwave infrared 2) from Landsat SR imagery for a 

specific year, along with the corresponding spectral indices (NDVI, MNDWI, NDBI, BSI, LSWI, and EVI), were 

composited into the 25th, 50th, and 75th percentiles utilizing the metrics-composite method. The percentiles effectively 

represent phenological information while simplifying time series information, reducing annual time series noise, and 

contributing to enhanced classification accuracy (Duan et al., 2024). Additionally, texture features can notably improve 150 
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classification precision (Liu et al., 2020b; Maskell et al., 2021; Duan et al., 2022). Due to the high similarity among the six 

optical bands of Landsat SR imagery, only the texture features of the near-infrared band were considered in this study 

(Rodriguez-Galiano et al., 2012a; Zhang et al., 2021). Furthermore, to avoid redundancy among texture features, four texture 

features of the infrared band, including Angular Second Moment (ASM), Entropy, Contrast, and Correlation, were selected 

(Hou et al., 2013). In addition to the Landsat-based metrics, we incorporated seven frequently utilized topographic features, 155 

including: slope, aspect, slope of slope (SOS), relief (RF), slope shape (P), roughness (R), and elevation (Tang et al., 2016). 

In total, we acquired 55 features for each year (Table S2). The calculation method for feature variables is shown in Table S2. 

To eliminate multicollinearity among the feature variables, we removed highly correlated features based on two criteria: (a) a 

variance inflation factor (VIF) value for each feature less than 10, and (b) pairwise Pearson correlation coefficients are below 

0.7 (Liao et al., 2021). Detailed information about the used features is provided in Table S3, Table S4, and Table S5. 160 

 

2.4 Training and validation sample Collection of training samples 

Samples are a critical component in supervised classification. We used manual visual interpretation methods to collect obtain 

samples in from the years 2000, 2010, and 2020. To ensure that the collected samples are were evenly distributed across the 

study area, we implemented a strategy of gathering samples by subregions. The study area was divided into 1,641 subregions. 165 

Utilizing high-resolution images from Google Earth Pro software, we collected at least 10 samples from each subregion (Fig. 

2 S1). Through this method, we collected a total of 52,329 103,374 samples. Specifically, a total of 17,392 34,891 samples 

were collected in 2000, 17,417 34,072 samples in 2010, and 17,520 34,411 samples in 2020 (Table S3 S6). Subsequently, we 

split the annual samples into training (70%) and validation data (30%) (Figs. S1 and S2). 

 170 
Figure 2. The spatial distribution of samples in 2010. 

2.5 Ground-truth reference data 

The terrace validation data were derived from FNCW conducted between 2010 and 2012. These data were obtained through 

field surveys and provided detailed information about terraces, including terrace types and GPS coordinates. The survey 

covered cropland nationwide. A total of 14,986 survey sites were used for terrace accuracy validation in 2010, comprising 175 

3,706 terrace samples and 11,280 non-terrace samples (Fig. 2). The statistical information of different terrace type samples is 

shown in Table S7. Based on these data, the terrace validation samples for 2000 and 2020 were obtained by overlaying high-

resolution remote sensing imagery from Google Earth Pro for verification. 
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Figure 2. The spatial distribution of validation samples. 180 

2.56 Terrace classification on the GEE platform 

The GEE platform offers a variety of classification algorithms. We selected the widely used RF model for terrace 

classification, given as the algorithm has offers the advantages of remarkable performance, high efficiency, and 

interpretability (Rodriguez-Galiano et al., 2012b; Gong et al., 2019). Two essential parameters must be set for the RF model. 

In this study, we set the number of trees to 500 and determined the number of variables per split as the rounded square root 185 

of the feature number. Other parameters were maintained at their the default settings as specified by the GEE platform (He et 

al., 2017; Gong et al., 2020). To alleviate the impact of crop spectral variability on classification accuracy, the study area 

was divided into six subregions (Fig. 3). The different terrace types within each region were classified separately. Given the 

sensitivity of the RF model to the ratio of samples across different classes (Chen et al., 2024), we implemented a two-stage 

mapping approach for classifying terraces within each region. In the first stage, RF was utilized to differentiate between 190 

terrace and non-terrace classes. In the second stage, RF was utilized to classify various terrace types, including level terraces, 

slope terraces, zig terraces, and slope-separated terraces. In Stage I of the mapping process, samples from both terrace and 

non-terrace samples were used, whereas only terrace samples were utilized in Stage II. 
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Figure 3. Geographical regionalization in China. SW represents Southwest China. NW represents Northwest China. NENC represents 195 

Northeast and North China. SC represents South China. CC represents Central China. EC represents East China. 

 

2.67 Post-classification processing 

Both supervised and unsupervised classification methods in remote sensing rely on the spectral characteristics of image 

pixels. A critical issue is the presence of isolated pixels in the classification results, which exhibit high local spatial 200 

heterogeneity between neighboring pixels (Hirayama et al., 2019). This phenomenon, commonly known as the salt-and-

pepper effect, is regarded as noise affecting accuracy. Terraces, being primarily constructed in hilly or mountainous regions, 

often exhibit a scattered and irregular distribution, which leads to an obvious salt-and-pepper effect in classified images. 

Given the small areas of terraces, we applied a mode filter with 3 × 3 px for spatial filtering processing to mitigate the salt-

and-pepper effect from the classification results. To improve the overall quality of the mapping results, we conducted 205 

spatial-temporal consistency check to suppress illogical land use conversions. Specifically, for areas that were cropland in 

both the previous year and the current year (excluding grain-for-green areas), we modified those areas that were previously 

terraces but were identified as non-terraces in the current year to terraces. 
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2.78 Accuracy assessment 

It is an essential step to assess the accuracy of the products prior to utilizing data in related applications. The classification 210 

maps were evaluated using a confusion matrix calculated from validation samples. The confusion matrix is widely regarded 

as the standard method for evaluating the accuracy of classified images. This method offers quantitative assessment metrics, 

including the kappa coefficient (KA), overall accuracy (OA), producer’s accuracy (PA), and user’s accuracy (UA), which 

collectively assess the performance of the products. OA and KA measure the total map accuracy. PA and UA measure the 

omission and commission errors for each class. In addition, we calculated the F1 score, which reflects the balance between 215 

UA and PA. The KA, OA, PA, UA, and F1 metrics range from 0 to 1, where 1 indicates optimal performance and 0 

represents the poorest performance. The formula for the F1 metric is shown in Eq. (1): 

𝐹𝐹1 = 2 𝑃𝑃𝑃𝑃×𝑈𝑈𝑈𝑈
(𝑃𝑃𝑃𝑃+𝑈𝑈𝑈𝑈)

            (1) 

In this study, we constructed two confusion matrices: one for evaluating to evaluate the accuracy of terraces and non-terraces, 

and the other for assessing to assess the accuracy of various terrace types. 220 

3 Results 

3.1 Accuracy assessment of the dataset Overall accuracy assessment 

Using the validation samples, two Two confusion matrices corresponding to different terrace classification levels were 

generated using the validation samples. For the classification of terrace and non-terrace, the OA ranged from 91.7 91.7% to 

92.89 91.8%, with KA ranging from 64.83 77.7% to 76.75 78.2%, and F1-scores ranging from 70.14 83.1% to 95.62 94.6% 225 

(Table 3),. indicating that the classification performs well. For terrace class, the UA ranged from 87.83 77.6% to 92.09 

84.6%, and the PA ranged from 56.64 81.7% to 75.32 90.7%, and the F1 above 80%, indicating that the probability of 

misclassification for terrace was low overall classification performs well. 
Table 3. The accuracy matrix for the terrace and non-terrace. 

Year types UA (%) PA (%) F1 score (%) OA (%) Kappa (%) 

2000 
Non-terrace 90.21 97 98.80 92.1 94.31 94.5 90.44 

91.7 

64.83  

78.2 Terrace 92.09 77.6 56.64 90.7 70.14 83.6 

2010 
Non-terrace 92.61 94.1 98.22 95.1 95.33 94.6 92.37 

91.8 

74.45  

77.7 Terrace 91.06 84.6 69.79 81.7 79.02 83.1 

2020 
Non-terrace 93.95 96.8 97.35 92.2 95.62 94.5 92.89 

91.7 

76.75  

77.8 Terrace 87.83 77.7 75.32 89.8 81.09 83.3 

 230 
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For different terrace types, the OA ranged from 81.31 88.8% to 86.03 89.8%, KA ranged from 37.37 65.1% to 50.01 69.5%, 

and F1 scores ranged from 22.86 68.9% to 92.27 93.9% (Table 4). Slope Level terraces exhibited the highest classification 

accuracy, followed by slope-separated terraces, level terraces slope terrace, and zig terraces, respectively. From the UA and 

PA, the commission omission errors were lower than the commission omission errors for different types of terraces. Among 

all terrace types, slope Level terrace had the lowest misclassification error among the terrace types. 235 
Table 4. The accuracy matrix for the different types of terraces. 

Year types UA (%) PA (%) F1 score (%) OA (%) Kappa (%) 

2000 

Level terrace 66.67 93.7 18.18 94.1 28.57 93.9 

81.31 

89.7  

37.74  

66 

Slope terrace 84.03 70.1 97.98 70.6 90.47 70.3 

Zig terrace 44.44 74.6 15.38 64.1 22.86 68.9 

Slope-separated terrace 57.14 85.7 35.82 70.6 44.04 77.4 

2010 

Level terrace 90.00 93.8 22.50 94 36.00 93.9 

83.15  

89.8 

37.37  

69.5 

Slope terrace 84.08 73.1 98.26 73.2 90.62 73.2 

Zig terrace 62.50 77.6 15.15 68.6 24.39 72.8 

Slope-separated terrace 63.33 83.3 45.24 88.2 52.78 85.7 

2020 

Level terrace 77.27 93.7 24.64 92.9 37.36 93.3 

86.03  

88.8 

50.01  

65.1 

Slope terrace 87.00 67.8 98.23 71.3 92.27 69.5 

Zig terrace 41.18 70 18.42 68.8 25.45 69.4 

Slope-separated terrace 92.68 86.7 71.70 72.2 80.85 78.8 

 

We compared the 2020 terraces in the SWCTMD with two existing terrace data, the 2018 terrace map (Cao et al., 2021) and 

the 2017 terrace map (Li et al., 2024), finding that our results exhibit higher accuracy and robustness. Their research 

primarily focused on terraces found in paddy fields and drylands, whereas our research covers a broader range, including 240 

slope-separated terraces constructed in rubber plantation regions and zig terraces in orchard lands in southern China. Notably, 

we identified massive zig terraces such as Guangxi, where the terraces mapped by Cao and Li are relatively sparse (Fig. 3). 

This discrepancy indicates that our datasets offer more comprehensive coverage for recognizing terraces. Despite the 2 to 3-

year temporal gap between the datasets, the changes in terraces during this period were minimal, suggesting that the 

temporal disparity does not affect the comparative result.  245 

Figure 4 illustrates the spatial consistency between the SWCTMD and two existing datasets: the 2018 China Terrace Map 

(CTM2018) (Cao et al., 2021) and the 2017 China Terrace Map (CTM 2017) (Li et al., 2024). SWCTMD exhibited the 

highest accuracy. Compared to SWCTMD and CTM2018, CTM2017 exhibited relatively lower accuracy for both typical 

terrace and non-terraces areas (regions B, C, D F and G in Fig. 4b). For typical terraces, SWCTMD and CTM2018 show 

similar identification performance (regions A, B, C, D and F in Fig. 4b). However, for atypical terraces, such as zig terraces 250 
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located in Yunnan Province, SWCTM successfully identified these as terraces, whereas CTM2018 failed to identify them as 

terraces (regions E in Fig. 4b). Conversely, for non-terrace areas situated in the Middle-Lower Yangtze River, SWCTMD 

accurately classified these as non-terraces, while CTM2018 erroneously classified them as terrace areas (regions G in Fig. 

4b). At the provincial scale, the majority of provinces exhibit larger terrace areas in SWCTMD compared to both CTM2018 

and CTM2017 (Tables S8 and S9). 255 

 

 

 

 
Figure 3. Regional comparisons of the three terraces data. 260 

Figure 4. Regional comparisons of the three terraces datasets. (a) The distribution of cropland in China in 2020. (b) The spatial 
distributions of the three terraces datasets. 

3.2 Accuracy assessment in different regions 

The classification of terraces across different regions performed well, but there were significant differences in accuracy 

among the regions. The Southwest and Northwest had the highest concentrations of terraces. Southwest China achieved 265 

superior classification performance due to its pronounced terrace morphology and spectral characteristics. Southwest China 

demonstrated the highest classification precision, with average values of UA, PA, F1, OA, and KA at 89.8%, 95.8%, 92.7%, 

90.2%, and 77.9%, respectively (Table S10). Northwest China followed closely, with corresponding average values of 
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75.2%, 91.6%, 82.3%, 89.6%, and 75.1%. In contrast, Northeast and North China, South China, Central China, and East 

China have relatively flat terrain, with terraces being similar to the surrounding cropland, resulting in relatively lower 270 

classification accuracy. The mean F1 scores were 70.6%, 77.5%, 81%, and 73.8%, respectively. The mean OA scores were 

94.5%, 91.3%, 87.8%, and 91.7%, respectively, and the KA were around 70% (Table S10). 

The overall classification accuracy for different terrace types across all regions was well. Northwest China, Northeast and 

North China, Central China, and South China had the highest classification accuracy, followed by Southwest China and East 

China. The average UA, PA, F1, OA, and KA values of Northwest China, Northeast and North China, Central China, and 275 

South China were 82.3%, 81.1%, 81.5%, 90.4%, 67.9%. The average UA, PA, F1, OA, and KA values for Southwest China 

and East China were 76.5%, 77.9%, 77.1%, 90%, 64.4% (Table S11). Among all terrace types, level terraces had the highest 

classification accuracy across all regions, followed by slope-separated terraces, slope terraces, and zigzag terraces. 

3.2 3 Spatiotemporal variation of terraces in China 

Terraces are primarily distributed across the hills, basins, and plateaus of China (Figs. 4a and S3). The Sichuan Basin 280 

exhibits exhibited the highest concentration of terraces, followed by the Yunnan-KweichouGuizhou Plateau and the Loess 

Plateau. Furthermore, terraces Terraces are also extensively found in the hilly regions of central and southeastern China. 

From terrace types, level Level terraces are distributed in the gentler slopes of hilly regions in southern China. Sloped 

terraces are most extensively densely distributed across the Sichuan Basin Yunnan, Yunnan-Kweichou Plateau, and the 

Loess Plateau, with smaller occurrences lesser occurrence in the hilly regions of central and southeastern China. Zig terraces 285 

are mostly distributed in the central and southeastern hilly areas Southwest China and Northwest China, while slope-

separated terraces are mainly located in southwest China (Figs. 4 5a and 4 5b). In terms of spatial changes, the increasing 

terraces are mainly distributed in the Yunnan-KweichouGuizhou Plateau, the Loess Plateau, and the Sichuan Basin from 

2000 to 2020 (Fig. 5 6a). These areas are severely affected by soil erosion and are key areas of soil erosion in China. Yunnan 

and Gansu Guangxi are the provinces with the largest increase in terraces (Fig. 5 6b). The decreasing terraces are mainly 290 

distributed around urban areas from 2000 to 2020, where urban expansion has occupied some terrace areas. 
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Figure 4 5. The spatial patterns of different terrace types at the pixel and provincial. (a) The spatial distribution of different terraces in 

China in  2020. (b) The different terrace areas in different provinces in 2020. 

 295 
Figure 5 6. The spatial changes of the terrace at the pixel and provincial. (a) The spatial changes in terraces from 2000 to 2020. (b) The 

changes Changes in the terrace areas in different provinces from 2000 to 2020. 

The provinces with the largest terrace areas are were Sichuan, Yunnan, Guizhou, Gansu, Shanxi, Hunan, Shaanxi, and 

Chongqing, while other provinces have had relatively smaller terrace areas (Fig. 6 7a). Among these, Chongqing, Sichuan, 

Guizhou, and Yunnan exhibited the highest percentage of terraces, with over 70 80% of cropland converted to terraces (Fig. 300 

6 7b). From 2000 to 2020, Yunnan, Gansu, Guangxi, Shanxi, and Guizhou Shaanxi experienced the most significant 

increases in terrace areas, with the terrace areas increasing by 22,877.35 km², 6,822.40 km², 8,095.66 km², and 6,235.54 km², 
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11,372.4 km² (13.1%), 5,192.4 km² (32.9%), 2,395 km² (6.1%), and 2,295.0 km² (6.2%), respectively (Fig. 6 7a). In terms of 

terrace types, the areas of level terraces, slope terraces, zig terraces and slope separated terraces increased by 2,275.26 km², 

86,186.26 km², 1,536.28 km², and 6,040.36 km², 5,701.4 km² (1.3%), 29,876.3 km² (18.9%), 5,886.5 km² (31.4%), and 129.9 305 

km² (24.9%), respectively, with the slope terrace having the largest increasing areas increase (Figs. 6 7c, d, e and f). Overall, 

China’s total terrace area expanded from 400,895.68 612,885.4  km² in 2000 to 496,933.84 654,479.5 km² in 2020, an 

increase of 6.8%  (Fig. 6 7g). 

  
Figure 6 7. The changes of terrace areas at provincial and types from 2000 to 2020. (a) The changes of terrace area in different provinces. 310 

(b) The proportion of terraces to cropland in different provinces. (c-f) The areas of level terrace, slope terrace, zig terrace, and slope-
separated terrace, respectively. (g) The total terrace areas of China. 

3.3 Spatiotemporal pattern of E in China 

The SWC engineering practices indicate the ratio of the amount of soil erosion with specific measures to the corresponding 

amount without measures, denoted by E. The values of E range from 0 to 1, with lower values showing  better SWC benefits. 315 

We generated spatial distribution maps of E values based on the SWCTMD for the years 2000, 2010, and 2020 (Fig. 7). The 

E values for different terrace types were determined based on existing studies (Duan et al., 2020; Liu et al., 2020a). The 

measures with the worst SWC benefit were mainly distributed in southwest China. The measures with the best SWC benefit 

were scattered in the gentler slopes of among hills, and southeastern China. Overall, the Yunnan-Kweichou Plateau, the 

Sichuan Basin, and the Loess Plateau exhibited the best performance for SWC (Figs. 7a, b and c). 320 
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Figure 7. Spatial variances of the value of E. (a-c) Spatial variation of E value in 2000, 2010, and 2020, respectively. 

3.4 Responses of soil erosion to terraces in China SWC measure factor and responses of soil erosion to terraces 

We utilized the CSLE to assess the soil erosion modulus of cropland in China for the year 2020 using the SWCTMD (Note 

S1). The soil erosion area was calculated according to the standards for classification and gradation of soil erosion (Note S2). 325 

Figure 8 illustrates the soil erosion modulus under a terrace scenario in 2020. The average soil erosion modulus for cropland 

was 10.82 t·ha-1·y-1, with a total eroded area is 1,010,986.69 km². The impact of terraces on soil erosion was assessed by the 

differences between scenarios with and without terraces. Compared to the scenario without terrace measures, the average soil 

erosion modulus of cropland decreased by 4.18 t·ha-1·y-1, and the erosion area was reduced by 54,833.06 km² (Figs. S4a and 

b). In terms of spatial distribution, the Yunnan-Kweichou Plateau, Sichuan Basin, and Loess Plateau exhibit the most 330 

significant reduction in soil erosion. The reductions in soil erosion modulus for Chongqing, Sichuan, Guizhou, Yunnan, 

Shanxi, Gansu, and Shaanxi were 22.83 t·ha-1·y-1, 21.31 t·ha-1·y-1, 18.64 t·ha-1·y-1, 14.61 t·ha-1·y-1, 6.48 t·ha-1·y-1, 4.52 t·ha-

1·y-1, 3.81 t·ha-1·y-1, respectively, with corresponding reductions in erosion area of 3,702.75 km², 12,774.31 km², 4,023.94 

km², 7,169.19 km², 2,515.31 km², 6,108.56 km², and 2,980.56 km² (Fig. 8a). According to our estimation, the terrace 

measures reduced approximately 818 million tons of soil erosion on cropland, accounting for 37.61% of the total erosion on 335 

cropland. In comparison to the scenario without terrace measures, the amount of soil erosion in the regions of Yunnan, 

Sichuan, Chongqing, Guizhou, Gansu, Shanxi, and Shaanxi regions decreased by 47.47%, 46.02%, 45.57%, 45.25%, 35.48%, 

29.75%, and 27.80%, respectively (Fig. 8b). In contrast, other regions had fewer SWC measures, and the difference in soil 

erosion with and without measures was small. 

The SWC measure factor (E) value for each terrace measure was given according to the FNCW and published literature 340 

(Table S12) (Duan et al., 2020; Liu et al., 2020). Using these parameters, we generated spatial distribution maps of E for the 

years 2000, 2010, and 2020 (Fig. S3). With these data, we utilized the CSLE to assess cropland soil erosion across China in 

2020 (Notes S1, S2 and S3). Figure 8 illustrates the soil erosion modulus under the terrace scenario in 2020. The average soil 

erosion modulus for cropland was 8.03 t·ha-1·y-1, with a total eroded area of 842,685 km². Compared to the scenario without 

terrace measures, the average soil erosion modulus of cropland decreased by 7 t·ha-1·y-1 (46.5%), and the erosion area was 345 

reduced by 223,134.8 km² (20.9%) (Figs. S4a and b). Collectively, terrace measures reduced approximately 1,390 million 

tons of cropland soil erosion, accounting for 46.5% of the total erosion on croplands. Spatially, the reduction in erosion was 

primarily concentrated in the Loess Plateau, Sichuan Basin, and Yunnan-Guizhou Plateau. Ningxia, Gansu, Sichuan, 

Chongqing, Qinghai, Guizhou, Shanxi, and Yunnan exhibited the largest decreases, with reductions of about 65%–75%. 
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 350 
Figure 8. The effects of terraces on soil erosion in different provinces. (a) The soil erosion is alleviated by terraces. (b) The percentage 

represents the amount of soil erosion alleviated by terraces as a proportion of the total soil erosion without terraces. 

4 Discussion 

4.1 Comprehensive and Reliability of SWCTMD 

We compared the 2020 terrace area estimated by SWCTMD with those from CTM2018 and CTM2017. SWCTMD exhibited 355 

the largest terrace area compared to CTM2018 and CTM2017. The areal discrepancies can be attributed to the following 

reasons. First, CTM2017 and CTM2018 predominantly focused on the most typical level terraces, whereas our research 

encompasses a broader range of terrace types, including non-typical terraces such as slope terraces, zig terraces, and slope-

separated terrace. Second, each dataset employed distinct cropland for terrace classification. SWCTMD utilized the union of 

cropland with slopes exceeding 2° from the 2000, 2010, and 2020 GlobeLand30 cropland data, whereas CTM2018 employed 360 

only the 2010 GlobeLand30 cropland data, and CTM2017 adopted FROM-GLC cropland data. Third, CTM2018 excluded 

isolated patches smaller than 9,000 m² from its classification scheme. However, since SWCTMD constrains its classification 

to cropland with slopes exceeding 2°, the identified terrace areas in Anhui, Fujian, Jiangxi, and Zhejiang provinces were 

smaller than those from CTM2018. In these provinces, CTM2018 included terraces with slopes below 2°, which is classified 
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as non-terraces according to the technical regulations of the third nationwide land survey. Overall, our dataset provides more 365 

comprehensive coverage for terraces and exhibits higher accuracy and robustness. 

4.1 2 Spatial pattern of terraces  

The Sichuan Basin, Loess Plateau, and the Yunnan-KweichouGuizhou Plateau are the three regions with the highest 

concentration of terraces in China. Other areas, characterized by relatively gentle slopes, have fewer terraces. In the hilly 

areas of the Sichuan Basin and the Yunnan-KweichouGuizhou Plateau, terraces are primarily humans have constructed by 370 

humans in the terraces through a long-term process of adapting to nature through the by reshaping of mountainous 

landscapes (Zhang et al., 2008; Duan et al., 2020). This process has also fostered unique cultural and social practices 

associated with terraces (Zhan and Jin, 2015; Zhang et al., 2024). These regions face challenges such as limited cultivated 

land resources, steep slopes, and intense precipitation (Liu et al., 2014; Li et al., 2016; Wang and Dai, 2020). The 

construction of terraces not only acquires produces additional cultivable land but also optimizes water resource utilization 375 

and reduces soil erosion (Wei et al., 2017).  

In recent years, the Chinese Land Consolidation projects and the Well-fFacilitated Farmland projects have prioritized slope-

to-terrace conversion as the primary land consolidation strategy in mountainous regions (Tang et al., 2019),. This initiative 

has significantly increased increasing the terrace area in southwestern China. In the Loess Plateau, terraces are mainly 

primarily constructed for SWC and ecological restoration. Natural factors such as fragmented mountainous terrain, loose soil, 380 

and intense rainfall, coupled combined with human activities like of deforestation, overgrazing, and cultivation on steep 

slope, have made the Loess Plateau one of China’s most severely eroded regions (Wang et al., 2010; Liang et al., 2015). 

Over the past few decades, large-scale programs such as Grain-for-Green and terrace construction initiatives have been 

implemented to combat soil and water loss (Fu et al., 2017). Most terraces in the Loess Plateau are dryland terraces, 

predominantly located in Gansu, Ningxia, Shanxi, and Shaanxi Provinces. In northeast China, cropland has have long slope 385 

lengths but, and gentle slope degrees (Liu et al., 2020a), resulting in fewer terraces being built. In contrast, in the hilly 

regions of central and southeastern China, terraces have also been constructed despite gentler slopes. Unlike the Sichuan 

Basin, Loess Plateau, and Yunnan-Guizhou Plateau, where terraces serve as a necessity for managing steep terrain, the 

primary motivation in these areas is to expand the amount of land cropland for the cultivation of economic crops such as tea 

and fruit trees (Adgo et al., 2013 Li et al., 2022b). However, in mountainous and hilly regions, urban expansion has occupied 390 

some formerly terraced areas. 

4.2 3 Soil erosion and conservation of terraces 

The soil conservation benefits of terraces in China perform well generally. The Yunnan-Kweichou Plateau, the Sichuan 

Basin and the Loess Plateau are the regions with the best soil conservation benefits of terraces. In the past, the soil 

conservation benefits of terraces were often overlooked in large-scale soil erosion assessments due to the difficulty in 395 

obtaining spatial distribution of terraces. The soil erosion modulus of cropland was estimated as potential erosion under 



19 
 

conditions without SWC, leading to an overestimation of the erosion modulus compared to assessments with conservation 

measures. For instance, the assessment of soil erosion on Chinese cropland by Wang et al. (2021). Indeed, soil erosion 

assessments in Europe, Australia, and Africa have similarly failed to consider the impact of terraces (Gobin et al., 2004; 

Teng et al., 2016; Salhi et al., 2025). Although the latest soil erosion assessment in Europe has considered terraces, it often 400 

extrapolates the survey results from sampled terraces to a regional scale through spatial interpolation, resulting in significant 

uncertainties in the localized erosion assessment of cropland (Panagos et al., 2015). Therefore, accurate and detailed 

information on terrace extent is crucial for the accurate assessment of soil erosion. 

According to our estimation, the soil erosion of the Loess Plateau accounts for only 10.95% of the total cropland erosion in 

China, indicating that the SWC measures previously implemented have achieved good governance. The focus of SWC 405 

efforts in the Loess Plateau could transition from extensive engineering projects to tillage practice and biological practice 

aimed at increasing crop yields. Instead, cropland in northeastern China, characterized by long slope lengths but gentle slope 

degrees, experiences severe erosion, representing 20.63% of the total cropland erosion. In southwest China, although the 

proportion of terraces exceeds 70%, the widely distributed sloping cropland results in an average soil erosion modulus that 

exceeds 15 t·ha-1·y-1, contributing 31.27% of the total cropland erosion. The effect of SWC engineering measures in 410 

northeast and southwest China still has great room for improvement, which should be key areas of focus in future 

conservation efforts. Although Hebei, Henan and Shandong feature gentle terrain, the extensive cropland and high planting 

intensity contribute to soil erosion, which accounts for 15.48% of the total cropland erosion and warrants attention. From a 

temporal changes perspective, with economic development and the implementation of national policies, China’s SWC 

measures have consistently shown an increasing trend, which no doubt decreased soil erosion and increased grain production 415 

(Li et al., 2014; Liu et al., 2020a). 

Due to the lack of large-scale terrace distribution data, many previous continental-scale soil erosion assessments have 

generally not considered the influence of terraces, such as Europe, Australia, and Africa (Gobin et al., 2004; Teng et al., 

2016; Salhi et al., 2025). This has led to overestimation of cropland soil erosion. Wang et al. (2021b) estimated cropland 

erosion at 1,939.7×106 tons in 2015 without accounting for terraces. Conversely, our study indicated cropland erosion at 420 

1,599.4×106 tons in 2020, closely aligning with the 2011 FNCW result of 1,640.0×106 tons. Regarding the erosion reduction 

effects of terraces, Li et al. (2024) mapped terrace in 2017 and found that terraces reduced cropland erosion by 950 million 

tons. In contrast, our study estimates that terraces reduced cropland erosion by 1,390 million tons in 2020. The discrepancy 

between the two results from Li et al. (2024) failure to distinguish between terrace types, resulting in an underestimation of 

terrace benefits. 425 

According to our estimate, soil erosion of the Loess Plateau accounted for only 12.6% of the total cropland erosion. Terraces 

in this region contributed to 17.4% of the total reduction of cropland soil erosion, demonstrating the benefits of terraces to 

SWC. In Northeast China, terraces are sparse, and cropland is characterized by long slope lengths and gentle slope degrees, 

with erosion accounting for 27.6% of the total cropland erosion. In Southwest China, erosion amount accounted for 23.4% of 

total cropland erosion. Northeast and Southwest China should be the key areas for future soil erosion protection efforts. In 430 
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Hebei, Henan, and Shandong Provinces, extensive cultivation and high crop planting intensity contributed 16.3% of the total 

cropland erosion, which warrants attention. In this study, each terrace type was assigned a fixed E value to facilitate the 

estimation of large-scale soil erosion. However, this approach overlooks spatial heterogeneity in terrace structure, 

maintenance status, field management, climate, and topography. Future research should incorporate regional characteristics 

and adjust the E-value accordingly. 435 

4.3 4 Limitations and prospects 

The average OA for classifying terraces and non-terraces is 91.90%, with an average F1 score of 85.92%, indicating 

satisfactory overall performance. However, for specific terrace types, the UA and PA of level terraces and zig terraces were 

lower, resulting in relatively lower overall accuracy metrics such as OA and KA (Pontius, 2000). In mountainous and hilly 

areas, the surface width of a level terrace generally ranges from 5 to 15 m, while the surface width of zig terrace is between 440 

1.0 and 1.5 m, with both types having more sporadic (Duan et al., 2020). In this study, the 30 m resolution remote sensing 

image effectively identified level terraces and zig terraces only when they exhibited concentrated and continuous 

distributions, making it challenging to detect fragmented patches. In terms of UA, the probability of misclassification of 

level terraces and zig terraces was low, indicating that the identified level terraces and zig terraces are reliable. However, 

their numbers were underestimated. In 2000, the UA and PA of the slope-separated terrace were lower (Li et al., 2021). This 445 

is mainly due to their small areas, which led to lower classification accuracy. To improve classification accuracy and 

efficiency, cropland data from GlobeLand30 (2000-2020) was used as the basis for terrace identification. Inevitably, the 

accuracy of GlobeLand30’s cropland data impacts the terrace mapping process, as errors in cropland data propagate into the 

terrace maps. Despite this limitation, the resulting error is deemed acceptable for terrace identification at the national scale 

(Cao et al., 2021). Future studies could address these limitations by employing high-resolution remote sensing imagery, 450 

which would enable improved detection of subpixel terrace distributions. Additionally, using more accurate cropland 

datasets could further reduce errors and improve the overall accuracy of terrace mapping. 

The spatial heterogeneity of land types frequently leads to class imbalance in remote sensing classification, consequently 

diminishing classification accuracy for minority classes that occupy a smaller area (Xiao et al., 2024). The models tend to 

favor majority classes during training, reducing their ability to accurately identify minority classes (Chen et al., 2025). When 455 

the ratio of samples across different classes remains balanced, classification performance typically falls short of optimal 

accuracy thresholds (Deng et al., 2025). A common strategy to alleviate this negative effect is to divide the study area into 

multiple sub-regions for localized classification, thereby reducing the impact of sample imbalance on model accuracy 

(Zhang et al., 2020). In this study, we employed a partitioned two-stage RF approach to reduce the effects of sample 

imbalance on classification accuracy. The results demonstrated that classification for terrace and different terrace types 460 

achieved satisfactory accuracy in both the entire study area and individual subregions. However, the accuracy metrics of the 

majority class were still higher than those of the minority class. In future studies, sample optimization techniques and more 

advanced classification methods could be combined to further improve the accuracy of minority class classification.  
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The complex and diversity diverse landform types have resulted in differences in the spectral information and topographic 

features of terraces in different regions. In Southwest and Northwest China, terraces exhibit concentrated distributions with 465 

clearly defined characteristics, making them easily identifiable. However, South China, Central China, and East China have 

relatively low topographic relief. Some terraces have spectral and topographic features similar to those of sloping farmland 

and flatland. This similarity, combined with the presence of mixed pixels in medium-resolution imagery (Wang et al., 2021a), 

makes it challenging to detect the terrace patches. Although the classification used 30-meter Landsat imagery in this study 

was generally robust, some fragmented and narrow terraces were omitted. Future research could employ high-resolution 470 

remote sensing images to effectively identify fragmented and narrow terraces. Previous small-scale studies have 

demonstrated that the use of high-resolution remote sensing imagery, combined with object-based classification methods and 

deep learning approaches, can significantly enhance classification accuracy and reduce the impact of spectral confusion and 

mixed pixels on terrace identification (Diaz-Varela et al., 2014; Wang et al., 2023; Kan et al., 2025). To improve 

classification accuracy and efficiency, cropland data were used as the basis for terrace identification. Inevitably, the accuracy 475 

of cropland data impacts the terrace mapping process, as errors in cropland data propagate into the terrace maps. In summary, 

future studies could utilize high-resolution remote sensing imagery and more accurate cropland datasets, and adopt sample 

optimization techniques and more advanced classification algorithms to improve the detection of subpixel terrace 

distributions. 

5 Data availability 480 

The Landsat imagery and SRTM DEM data were acquired from the Google Earth Engine. The GlobeLand30 data can be 

downloaded from the National Geomatics Center of China. The 1 km spatial resolution SWCTMD (calculated from the 30 m 

resolution SWCTMD) can be accessed at https://doi.org/10.11888/Terre.tpdc.302400 (Duan, 2025). The 30 m resolution 

SWCTMD will be available after publication. 

6 Conclusions 485 

This study developed the first SWC terrace measures dataset for China with a fine classification system at a spatial 

resolution of 30 m. The dataset includes data for each decade from 2000 to 2020. It The dataset was generated by combining 

the full archive of Landsat imagery, digital elevation model DEM, and nationally scaled samples of manual visualization, 

using a two-stage random forest classification on the GEE platform. The average OA and average F1 scores for identifying 

terraces and non-terraces were 91.90 91.7% and 85.92 88.9%, respectively. For different terrace types, the average OA and 490 

average F1 scores were 83.50 89.4% and 52.14 78.9%, respectively. 

Compared to existing terrace datasets, the newly developed dataset provides more comprehensive coverage, especially in 

identifying zig terraces in southeastern southwest China. The dataset reveals that, analysis revealed terraces are were 
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primarily distributed in the Loess Plateau, Southwest China, and Southeast China. From 2000 to 2020, the total terrace areas 

expanded by 96,038.16 41,594.1 km², with level terraces increasing by 2,275.26 5,701.4 km², slope terraces by 86,186.26 495 

29,876.3 km², slope-separated terraces by 6,040.36 129.9 km², and zig terraces by 1,536.28 5,886.5km². Terrace expansion 

was mainly concentrated in the Loess Plateau and southwest Southwest and Southeast regions of China, while the terrace 

decrease was mainly observed decreases in terraced area primarily occurred around urban areas.  

Terraces in China are estimated to have reduced soil erosion on cropland by approximately 818 1,390 million tons. Further 

analysis highlighted the benefits of SWC in the Yunnan-Guizhou Plateau and Loess Plateau are the best areas. The terrace 500 

dataset, with its detailed classification system is expected to provide a cornerstone for national and regional soil erosion 

assessment and prediction, SWC planning, and evaluations of various ecosystem services related to terraces. 
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