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Abstract. Accurate assessment of leaf functional traits is crucial for a diverse range of applications from crop phenotyping to
parameterizing global climate models. Leaf reflectance spectroscopy offers a promising avenue to advance ecological and
agricultural research by complementing traditional, time-consuming gas exchange measurements. However, the development
of robust hyperspectral models for predicting leaf photosynthetic capacity and associated traits from reflectance data has been
hindered by limited data availability across species and environments. Here we introduce the Global Spectra-Trait Initiative
(GSTI), a collaborative repository of paired leaf hyperspectral and gas exchange measurements from diverse ecosystems. The
GSTI repository currently encompasses over 7500 observations from 397 species and 41 sites gathered from 36 published and
unpublished studies, thereby offering a key resource for developing and validating hyperspectral models of leaf photosynthetic
capacity. The GSTI database is developed on GitHub (https://github.com/plantphys/gsti) and published to ESS-DIVE
https://data.ess-dive.lbl.gov/datasets/doi:10.15485/2530733, Lamour et al., 2025). It includes gas exchange data, derived

photosynthetic parameters, and key leaf traits often associated with traditional gas exchange measurements such as leaf mass

per area and leaf elemental composition. By providing a standardized repository for data sharing and analysis, we present a
critical step towards creating hyperspectral models for predicting photosynthetic traits and associated leaf traits for terrestrial

plants.

1 Introduction

The structural, chemical, and physiological properties of plants, commonly known as plant traits or plant functional traits
(Violle et al., 2007), directly impact leaf, root, whole-plant, and ecosystem functioning as well as their responses to global and
environmental change (Kattge et al., 2020; Reich et al., 1997). Leaf traits have become increasingly important for crop
phenotyping, selection for breeding, precision agriculture, biodiversity conservation and for modeling plant and ecosystem
processes using land surface models (Bjorkman et al., 2018; Fu et al., 2022; Meacham-Hensold et al., 2020; Xiong and Flexas,
2018). Of note, photosynthetic traits and associated traits such as leaf nitrogen content are of particular value to these efforts
(Walker et al., 2014). This is in part due to their important role in determining leaf-to-global scale fluxes of carbon, water, and
energy, as well as the outsized impact photosynthetic traits have on key model outputs (Bonan et al., 2011; Ricciuto et al.,
2018; Rogers, 2014; Rogers et al., 2017a). Indeed, uncertainty in photosynthetic traits has been shown to have a greater impact
on future climate projections by land surface models than the uncertainty associated with global change (Liu et al., 2024;
Stinziano et al., 2018). Unfortunately, the global coverage of functional traits, especially physiological traits associated with
photosynthesis, is hampered by logistical constraints that limit their spatial, temporal, and environmental coverage, as well as
the diversity of species covered (Feng and Dietze, 2013; Keenan and Niinemets, 2016; Schimel et al., 2015).

Photosynthetic traits are traditionally inferred from a biochemical model of photosynthesis (Farquhar et al., 1980; Yin et al.,
2021) calibrated using leaf-level gas exchange techniques (Busch et al., 2024; Long and Bernacchi, 2003). The key traits
governing photosynthesis are the maximum carboxylation capacity of the enzyme rubisco (Vemax), the maximum potential rate

of electron transport (Jmax), the maximum capacity for triose phosphate utilization (TPU), and the rate of mitochondrial
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respiration in the dark (Rqark), all expressed at a reference temperature, typically 25°C. Estimation of Vcmax, Jmax, and TPU is
achieved by measuring the response of net CO, assimilation (A) to changes in the intercellular CO; concentration (Cj),
commonly known as an A-Ci curve. Raark is estimated from the rate of CO, released from dark-acclimated leaves. The A-Ci
and Rgark protocols typically take ~45 minutes each to complete (Busch et al., 2024; Rogers et al., 2017b). Although alternative
gas exchange approaches are faster (De Kauwe et al., 2016; Saathoff and Welles, 2021; Stinziano et al., 2017; Tejera-Nieves
et al., 2024), these approaches may also require a significant stabilization period prior to measurement (Burnett et al., 2019).
Photosynthetic traits are also inferred from their empirical relationships with other leaf traits that are easier to measure, such
as leaf mass per area (LMA) or leaf nitrogen (N), phosphorous (P), or chlorophyll content (Croft et al., 2017; Domingues et
al., 2010; Walker et al., 2014). Although these relationships are useful for scaling photosynthetic traits across broader scales
(Rogers et al., 2017a), they are often site- and species-specific (Feng and Dietze, 2013; Keenan and Niinemets, 2016; Yan et
al., 2021).

The structural, chemical, and physiological properties of a leaf impact its optical properties (Serbin and Townsend, 2020),
2020). Measuring the optical properties of a leaf, i.e., its reflectance across multiple wavelengths using spectroscopy, has
emerged as a tool for retrieving leaf traits, including photosynthetic and many other traits, in a non-destructive and high-
throughput manner (Coast et al., 2019; Lamour et al., 2021; Serbin et al., 2012; Wu et al., 2025, 2019; Yan et al., 2021). A
variety of statistical approaches can be used to retrieve leaf trait values from leaf reflectance measurements. These include
simple indices (Gitelson et al., 2003; Rouse et al., 1974), which relate specific wavelengths to traits of interest, to more
sophisticated multivariate techniques like partial least square regression (PLSR) and deep learning (Burnett et al., 2021;
Furbank et al., 2021; Wold et al., 2001) which are capable of using information from numerous wavelengths to predict traits.
Such approaches are effective at predicting chemical and structural leaf traits (Kothari et al., 2023; Serbin et al., 2019), as well
as photosynthetic traits (Heckmann et al., 2017; Montes et al., 2022; Wu et al., 2025, 2019). However, a significant bottleneck
for the estimation of traits from spectra is the development of models that can be used broadly across environments and species
where ideally, the broadest possible combination of structural, chemical, physiological and optical traits can be represented by
a single model. Often, models developed for a given biome, species, or growth environment perform poorly when used with
new species or in a different environment (Burnett et al., 2021; Coast et al., 2019; Lamour et al., 2021; Meacham-Hensold et
al., 2019). It is therefore increasingly clear that robust models require training data that covers the widest possible range of
values for a given trait, and the widest possible diversity in leaf optical properties that are correlated with that trait.

Here we introduce the Global Spectra-Trait Initiative (GSTI), a collaborative repository of paired leaf reflectance and gas
exchange measurements from diverse ecosystems. Unlike existing databases for leaf traits (EcoSIS - Spectral Library, 2025;
Kattge et al., 2020), the GSTI is specifically focused on paired datasets of key leaf traits linked to leaf spectroscopy taken on
the same sample and where that link is preserved with unique identifiers. Furthermore, the GSTI includes the raw data that
underlies trait estimation, in this case, leaf-level gas exchange, leaf structural and compositional trait data, and leaf reflectance
spectra data. Furthermore, the GSTI provides an open workflow to process raw reflectance and gas exchange data ensuring

uniform and reproducible data processing and interpretation. The GSTI therefore enables and maximizes further reuse of the
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data, facilitates the ongoing refinement of spectra-trait models as new datasets are incorporated, supports comparisons of
diverse statistical approaches, and permits the reinterpretation of stored gas exchange data using alternative or new

photosynthetic models (Busch et al., 2018; Johnson and Berry, 2021; Méarquez et al., 2021).

2 Methods
2.1 Data sources

The primary aim of the GSTI is to collate paired leaf reflectance and gas exchange data that can be used to estimate the key
photosynthetic traits, namely Vcmax, Jmax, TPU and Rgark, and associated functional traits. Data from multiple biomes, species,
growth conditions, and plant types, including crops and wild species, have been collated into a single, open database with the
aim to capture a wide variety of leaf traits and their associated optical properties.

The GSTI database primarily focuses on gas exchange data measured with the conventional steady state A-Ci curve protocol
(Busch et al., 2024), where photosynthesis is modulated by changing the CO; concentration at the leaf surface using pre-
defined increments. However, the database also includes data measured with the simplified “one point” method (Burnett et al.,
2019; De Kauwe et al., 2016), where the photosynthesis rate is measured at saturating irradiance and ambient CO,, as well as
A-Ci curves measured with the non-steady state dynamic assimilation technique (Saathoff and Welles, 2021; Tejera-Nieves et
al., 2024).

Estimation of photosynthetic parameters from A-Ci curves depends on the choice of the biochemical model of photosynthesis,
its parametrization, and the statistical procedure of model fitting, all of which are likely to vary between studies (Rogers et al.,
2017a). Therefore, a requirement of data contributors was to provide the gas exchange measurements so that data could be
used to estimate photosynthetic traits using the same biochemical model, with the same assumptions and parameters. Each
dataset was curated to ensure that the data were organized, standardized and free of errors before inclusion in GSTI. Restricting
gas exchange data contributions to the raw gas exchange measurements vs. simply the fitted parameters (e.9., Vemax, Jmax, TPU)
avoided issues of mixed fitting approaches and assumptions, which would have increased uncertainties in the final spectral
models.

The other primary data contributions to the GSTI database were measurements of leaf reflectance. The reflectance data were
either collected with a leaf clip (i.e., a contact probe with an articulating backplate) or with an integrating sphere. Reflectance
data spanning the range from 400 to 2500 nm were preferred but data from reduced wavelength ranges (e.g., only the visible
spectrum through near-infrared) were also included.

In general, paired measurements of gas exchange and reflectance on the same leaves were preferred, to avoid leaf-to-leaf
variation in leaf traits. However, measurements on similar or “analog” leaves were also accepted in the GSTI database,

provided gas exchange and reflectance were taken on a similar leaf of identical age and appearance.
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Where available, other leaf traits complementary to gas exchange data were also added to GSTI. These included most of the
traits correlated with photosynthetic capacity (Domingues et al., 2010; Walker et al., 2014; Wang et al., 2022), such as LMA,
and leaf N and P content, as well as leaf water content (LWC).

For all contributed datasets, the materials and methods used for the study were described following standard scientific
requirements and are captured in the GSTI database metadata. This includes descriptions of the site, plant, protocols, and
equipment. Only Open Data (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/deed.en) from published and
unpublished studies were included in the GSTI database. These are free to use, reuse, share and adapt without restriction. By
limiting the GSTI database to Open Data only, it is our philosophy that the GSTI database will also facilitate scientific

collaboration, transparency, and reproducibility, as well as accelerate discovery and understanding in the areas of plant science.

2.2 Repository organisation
2.2.1 Overall organisation

The overall design philosophy of the GSTI database is to provide an easy, accessible, and interpretable repository of paired
spectroscopy and leaf functional traits. The GSTI repository and associated database are available on GitHub
(https://github.com/plantphys/gsti). The repository was designed to be flexible enough to accept data from many studies and
support raw data from a range of instruments in a free format. However, because the goal of GSTI is to provide a means of
synthesizing and standardizing data into common formats, units, and metadata, we provide a small but strict set of requirements
for data contributors to make it possible to process and then curate the raw data into a common format. Each contributed dataset
is stored in an individual folder (Fig. 1) that contains a description of the protocol for data measurement (required, free format),
a site information table (Table 1, required CSV file), a dataset information table (Table 1, required CSV file), the raw gas
exchange data (free format), the reflectance data (free format), and the leaf sample details (free format).

The GSTI project uses a standardized approach to process and fit the raw reflectance and gas exchange data. This workflow is
defined in a series of sequential data processing scripts written in the R programming language (R Core Team, 2024) and
shown graphically in Fig. 1. Each R script has been designed to carry out a specific portion of the processing and model fitting
workflow and shares a common design and function naming convention. This structure allows users to easily track the
processing steps, from raw data to the final processed product. The repository offers several R tools and functions that can
help visualize and check the quality of the data. A primary component of the processing chain includes the R functions to
estimate photosynthetic traits from raw gas exchange measurements (f.fit_ACi() or f.fit_One_Point(), see section 2.2.2
“Photosynthetic gas exchange data and processing”) and check the compliance of a new dataset with the repository
requirements (f.Check_data()). A dataset creation guide is included in the repository

(https://github.com/plantphys/gsti/wiki/Dataset-creation-guide).
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Figure 1: Repository organization and process flow for each dataset. Each green rectangle represents one type of data. The asterisks
represent the required original data. Each yellow circle represents one process associated with one R code that can be adapted for
each dataset. Functions written in italics must be used to derive photosynthetic parameters (f.fit_ACi() or f.fit_One_Point()) and
check the dataset compliance with the repository requirements (f.Check_data()). The lists within the blue boxes represent the lists of
variables that need to be included in the database (e.g., Site variables) or produced by the R codes (e.g., Photosynthetic trait
variables).

Table 1 List of variables included in the GSTI database

Variables Definitions

Dataset metadata

Authors Dataset authors

Acknowledgment Acknowledgement of funding and help to generate the dataset
Dataset_DOI Dataset Digital Object Identifier

Publication_DOI Digital Object Identifier of the main publication associated with the data
Email Contact email for the dataset

Site

Site_name Site name

Latitude Latitude, decimal; positive=north, negative=south

Longitude Longitude, decimal; positive=east, negative=west

Elevation Elevation, m



Biome_number

Biome number, based on Olson et al. (2001) classification. See online documentation:

https://github.com/plantphys/gsti/wiki

Curated photosynthetic data

SamplelD Unique identifier of the sample leaf of a dataset as defined by the dataset authors in the raw gas exchange data
SamplelD_num Unique numerical identifier of the sample leaf of a dataset

Record Gas exchange observation record number

A Net CO:2 exchange per leaf area, pmol m2 s

Ci Intercellular CO2 concentration in air, umol mol-*

CO2s CO: concentration in wet air entering chamber, pmol mol*

CO2r CO: concentration in wet air inside chamber, pmol mol™

gsw Stomatal conductance to water vapor per leaf area, mol m2 s

Patm Atmospheric pressure, kPa

Qin In-chamber photosynthetic flux density incident on the leaf in quanta per area, umol m-2 st

RHs Relative humidity of air inside the chamber, % (0-100)

Tleaf Leaf surface temperature, °C

Photosynthetic traits

SamplelD_num Unique numerical identifier of the sample leaf of a dataset

Vcmax25 Maximum rate of carboxylation at the reference temperature 25°C, umol m2 st

Jmax25 Maximum rate of electron transport per leaf area at the reference temperature 25°C, pmol m=2 s
TPU25 Triose phosphate utilization rate per leaf area at the reference temperature 25°C, umol m=2 st
Rday25 CO:z release from the leaf in the light at the reference temperature of 25°C, umol m2 s

StdError_Vcmax25
StdError_Jmax25
StdError_TPU25
StdError_Rday25
Tleaf

RHs

Qin

Patm

sigma

AIC

Model
Fitting_method

Standard error of Vcmax25 estimation, pmol m2 s

Standard error of Jmax25 estimation, pumol m=2 s

Standard error of TPU25 estimation, umol m2 st

Standard error of Rday25 estimation, umol m2 st

Average leaf surface temperature of the gas exchange measurements, °C

Average relative humidity of air inside the chamber, % (0-100)

Average in-chamber photosynthetic flux density incident on the leaf in quanta per area, pmol m-2 s
Average atmospheric pressure, kPa

Standard error of the residuals of the fitted A-Ci curve, pmol m2 st

Akaike information criterion, umol m2 st

Photosynthetic limitations of the photosynthetic rate during the A-Ci curve: Ac, or Ac_Aj, or, Ac_Aj_Ap
Method for estimating Vecmax25: One_point or ACi_curve

Dark respiration
SamplelD
Rdark

Unique identifier of the sample leaf of a dataset as defined by the dataset authors in the raw gas exchange data

CO:z release or Oz consumption by the leaf in the dark at measurement temperature, pmol m-2 s

8
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Tleaf_Rdark

Leaf surface temperature, °C

Curated reflectance

SamplelD Unique identifier of the sample leaf of a dataset as defined by the dataset authors in the raw gas exchange data

Spectrometer Spectrometer model: SE PSR+ 3500, SVC HR-1024i, SVC XHR-1024i, ASD FieldSpec 3, ASD FieldSpec 4,
ASD FieldSpec 4 Hi-Res, ...

Probe_type Type of probe used to measure the reflectance: Integrating sphere, Leaf clip, or, Imager

Probe_model Probe model: SVC LC-RP, SVC LC-RP Pro, ASD Leaf Clip, ...

Spectra_trait_pairing

Measurement pairing between gas exchange data and reflectance: Same, Similar, or Plant scale

Wave_XX Reflectance at wavelength XX, % (0-100)

Leaf details

SamplelD Unique identifier of the sample leaf of a dataset as defined by the dataset authors in the raw gas exchange data
Dataset_name Dataset name

Site_name Site name

Species Species name

Sun_Shade Leaf exposition in the canopy: Sun, Shade

Phenological_stage

Photosynthetic_pathway

Leaf phenological stage: Young, Mature, Old
Photosynthetic pathway: C3, C4, C2, CAM

Plant_type Plant type: Wild, Agricultural, Ornamental

Soil Soil type: Natural, Pot, Managed, Hydroponic

LMA Leaf dry mass per unit area of fresh leaf, g m

Narea Nitrogen content of leaf per unit area of fresh leaf, g m-
Nmass Nitrogen content of leaf by dry mass, mg g*

Parea Phosphorous content of leaf per unit area of fresh leaf, g m-
Pmass Phosphorous content of leaf by dry mass, mg g*

LWC Leaf water content, % (0-100)

2.2.2 Photosynthetic gas exchange data and processing

The gas exchange data are processed using three steps (Fig. 1). In the first step, the raw gas exchange data are imported,
compiled, and transformed into a standard format that follows the naming and metadata convention of (Ely et al., 2021). This
step defines names and harmonizes the units of the gas exchange variables. In the second step, the data quality is analyzed and
invalid data (abnormal CO; concentration, relative humidity, temperature or stomatal conductance data, and duplicated values)
235 are removed. Due to variations in gas exchange equipment formats, data storage practices, and laboratory protocols, R scripts
for both the first and second steps require customization for each new dataset to capture and properly handle idiosyncrasies
associated with the data. After passing through the initial GSTI formatting steps, a curated dataset with a standard format for

all datasets is generated (Table 1).
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Finally, the gas exchange parameters are estimated from the curated gas exchange data files using the model fitting code (Fig.
1). This code uses the function “f.fit_ACi()” to estimate the parameters Vemaxzs, Jmaxes, TPU2s, and their standard error at a
reference temperature of 25°C by fitting the Farquhar, von Caemmerer, and Berry (FvCB) model of photosynthesis to the data
(Bernacchi et al., 2001; Farquhar et al., 1980; Harley et al., 1992; Sharkey, 1985). The FvCB model assumes that the
photosynthesis rate is the minimum of three potentially limiting rates: (1) the Rubisco-limited assimilation rate (Ac), which
depends on Vemaxes, (2) the electron transport-limited assimilation rate (A;), which depends on Jmaxes, and (3) the triose
phosphate utilization (TPU) -limited assimilation rate (Ap). The transition from Ac to Ajand Aj to A, is determined automatically
to optimize the fitting. Depending on the range of CO» concentrations used to perform the A-Ci curves and the conditions of
measurements, A;j or Ap do not necessarily limit A. The A; and A, limitations are only considered if they improve the fitting
according to the AIC criterion. The Vemaxes, Jmaxes, and TPUas values are discarded when estimated with less than two points
within the Ac, Aj, or Ap-limited regions. Vemaxes can also be estimated with the one-point method (Burnett et al., 2019; De Kauwe
et al., 2016) using the function ‘f.fit_One_Point()’. The FvCB model intrinsically assumes infinite mesophyll conductance;
thus, estimated parameters Vemaxzs, Jmaxzs and TPUqs represent apparent values based on intercellular as opposed to chloroplastic

CO; concentration.

2.2.3 Dark respiration gas exchange data and processing

In addition to fitted gas exchange parameters, the GSTI database also includes dark-adapted leaf respiration (Reark). The leaf
Raark could have been measured on the same leaf used for estimating photosynthetic capacity, or on independent leaves. The
raw gas exchange data used for Ryark estimation is imported and transformed following (Ely et al., 2021) (Table 1). Most studies
measure Rqark (i.€., negative A values) as CO; release. We also chose to report Raark as a positive value. Some studies also
measure the rate of O, consumption (Coast et al., 2019). Conversion from O, uptake to CO; release requires an estimate of the
respiratory quotient (a number around 1) that should be detailed in the contributed dataset protocol. All data were normalized

to a reference leaf temperature of 25°C using a common approach (Leuning, 2002).

2.2.4 Leaf reflectance data and processing

The leaf reflectance data were imported from the contributed format and units and processed into a standard format. The GSTI
repository only includes measurements of leaf reflectance corrected against a white reference and measured with a black
background. It does not support other measurements such as so-called “transflectance” data, measured with a white
background. GSTI currently uses standardized reflectance measurements interpolated to 1 nm wavelength resolution, either
by the data contributor before supplying the data or during the GSTI data pre-processing using a simple linear wavelength
interpolation that can be added manually to the dataset-specific processing code, or using approaches provided in available R
packages, e.g., spectrolab (Meireles and Schweiger, 2021). If specific corrections are deemed necessary based on the

instrumentation, they should be applied before the data are provided. For some examples of pre-processing for use in spectra-
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trait models, please refer to Burnett et al. (2021). Such procedures include calculating reflectance from measured irradiance

and correcting for sensor biases across wavelength ranges.

2.2.5 Leaf sample and site information

Within GSTI, the latitude, longitude, and elevation of sites where the data were collected need to be specified (Table 1). The
biome needs to be provided following Olson et al. (2001)’s list of 14 terrestrial biomes of the world, which we extended with
five managed environments (managed grasslands, field crop ecosystems, tree crop ecosystems, greenhouse ecosystems, and
other managed ecosystems). The leaf information includes the light environment (sun or shade), leaf phenological stages
(young, mature, old), species identity, plant type (wild, ornamental, agricultural), and soil type (natural, pot, managed,
hydroponic). Associated leaf properties can also be added, including LMA, LWC, and the nutrient content of N and P on a per

leaf area or mass basis. The addition of associated leaf properties to the GSTI database is encouraged but optional.

2.2.6 Dataset data quality checks

Most dataset quality verification is performed by the dataset authors in the preliminary steps of the data curation. In addition,
the functions f.fit_ACi() and f.fit_One_Point() perform basic data quality checks to ensure that the photosynthetic data do not
include abnormal C; or temperature values. If such values are found, the functions terminate and return an error. Finally, the
function f.Check_data() is used to validate the format of the curated dataset and verify that all needed files are complete. It
also checks the range of values for most traits and warns users if they are outside the expected range, possibly due to unit
issues. When this occurs, users are advised to check the data units and quality, but the function does not block them from
adding the dataset to the database.

The standard error associated with the photosynthetic parameters (e.g., StdError_Vcemax25, StdError_Jmax25, Table 1) as well
as the standard error of the residuals of the A-Ci curve-fitting (sigma, Table 1) can be used to filter the datasets and only
include the most reliable data for building spectra-trait models. For this purpose, the variable “Spectra_trait pairing” is also
important as it indicates whether or not the spectra and traits were derived on the same leaves or distinct but similar leaves.

This information can be used for uncertainty analysis based on different sources of possible error.

2.3 Overview of the database and illustrative examples

The climate space covered by the GSTI database was evaluated using the mean annual temperature and precipitation of the
sites extracted using the Worldclim climate surface data (Fick and Hijmans, 2017) at the site positions and interpreted in the
Whittaker biome classification (Stefan and Levin, 2018; Whittaker, 1970).

For illustrative purposes and to show the extent of the GSTI database, we evaluated the correlations between Vemaxes and other
gas exchange variables (Jmaxzs, Raarkes) as well as leaf biochemical, elemental, and morphological traits using Pearson
correlation tests. We also evaluated the relationship between Vemaxes and an estimate of the chlorophyll a and b content (Chlingex)

derived using spectroscopy. This estimate was derived using an index proposed by (Gitelson et al., 2003), calculated as the
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ratio of reflectance in the spectral range of 750 to 800 nm (R7s0-s00) t0 the reflectance in the range 695 to 740 nm (Rggs-740,

Equation 1).

CHLipgeyx = 259750 — 1 (1)

Re95-740

One use of this GSTI database is to develop broadly applicable models of photosynthetic traits using reflectance data. Here,
we used a partial least-squares regression (PLSR) modeling approach (Wold et al., 2001) to derive photosynthetic spectra-trait
models following a previously described approach (Burnett et al., 2021). We focused on paired spectra-trait observations
collected from the same leaves with full-range reflectance. Separate PLSR models were developed for Vemaxes, Jmaxes, TPUzs,
and Ruarkes. The variables were square root-transformed and the database was divided into a calibration and a validation dataset
by randomly selecting 80% of observations from each dataset for training and reserving the other 20% for external validation
(stratified random sampling by source dataset). To train the PLSR models, 1000 random subsets of the training dataset were
generated, each one containing 70% of the training observations. A PLSR model was fitted on each random subset and its
performance was assessed on the remaining 30% of observations (internal validation). The number of components to use in
our final PLSR models was selected based on the predicted residual sum of squares (PRESS). We chose the smallest number
of components that brought the PRESS one standard error away from the global minimum. The 1000 PLSR models were then
applied to the external validation dataset and we calculated the mean prediction as well as the confidence interval of the
prediction. The RZ and root mean square error (RMSE) of prediction of the validation dataset were used to assess each model,
as well as the %RMSE calculated as the ratio of RMSE to the range of variation of the trait of interest and expressed in percent
(0-100).

3. Results

The current release of the GSTI database contains 36 datasets (Fig. 2) and a total of 7525 observations of paired leaf reflectance
and gas exchange data. Within the database, there are 4873 estimates of photosynthetic traits and 5075 estimates of Ryark. 2447
of these data have both photosynthetic traits and Rqak measured on the same leaf. Of the data used to estimate photosynthetic
properties, 78% are A-Ci curves and 22% are one-point measurements. Among the A-Ci curves, three datasets were measured
using the Dynamic Assimilation Technique (309 observations), and the others were measured using the common steady-state
protocol. Most datasets were measured with full-range spectrometers (350 — 2500 nm, Fig. 3), and four were measured with

shorter-range spectrometers (889 observations in total).
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330 Figure 2: Location of the datasets included in the database. Datasets represented with a circle were measured in a managed
environment (greenhouse, growth chamber, field, etc.) whereas datasets represented with a triangle were measured in natural
ecosystems. The map represents the 14 terrestrial biomes listed in Olson et al. (2001), updated by Dinerstein et al. (2017).
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335 The observations were collected from 397 species, with the majority (293 species) coming from highly diverse ecosystems,
including tropical and subtropical moist broadleaf forests (Figs. 2, 4, and 5). While the GSTI database also includes
observations from tundra and temperate mixed broadleaf forests, it currently lacks data from several critical biomes, including
Mediterranean forests, woodlands and scrub, other dryland ecosystems, montane grasslands and shrublands, and coniferous
forests (Olson et al., 2001). Analysis of the climate space covered by the datasets within GSTI revealed that the sites were

340 mostly concentrated along a diagonal axis on the Whittaker plot (Fig. 4), missing the dry and warm biomes (bottom right
corner of the plot) as well as the temperate wet environments (above the diagonal). A total of 23 species in the database are
crops (Fig. 5), including wheat, rice, tomato, wine grapes, and tobacco. Although they belong to only a few species, the

agricultural data represent 50% of the total observations in the database.

Whittaker biomes
4000 Tundra
Boreal forest
. Temperate seasonal forest
. Temperate rain forest
3000 B Tropical rain forest
. Tropical seasonal forest/savanna
Subtropical desert

Temperate grassland/desert

B Woodiandishrubland
20001

Mean annual precipitation (mm)

10001

10 0 10 20 30
Mean annual temperature (°C
345 perature ()

Figure 4: Mean annual rainfall and mean annual temperature for the 20 natural sites included in the GSTI1 database plotted within
the climatic boundaries of Whittaker's biomes.
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350 Figure 5 Number of observations and species per biome. The list of biomes derives from Olson et al., (2001) list of 14 terrestrial
biomes that we completed with 5 managed environment classes (managed grasslands, field crop ecosystems, tree crop ecosystems,
greenhouse ecosystems, and other managed ecosystems).

The distributions of the main traits included in the database are shown in Fig. 6. For Vemaxzs, 95% of the values range from 3.7
to 186 pmol m2 s%, with an average of 67 pmol m2 s (Fig. 6a), while 95% of Raarkes are in the range of 0.2 to 2.7 pumol m-2

355 s?, with an average of 1.1 pmol m?2 s (Fig. 6d). LMA was measured for 4553 observations and nitrogen content (Narea) for
3576 observations (Figs. 6e & 6f). LWC (Fig. 6h) and leaf P content (Parea, Fig. 6g) were measured less frequently, with 1849
and 785 observations, respectively. For LMA values, 95% fall within the range of 19 g m- to 172 g m? (Fig. 6e), while for
Narea values, 95% fall within the range of 0.5 g m?to 3.3 g m (Fig. 6f).
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Figure 6: Frequency distributions of observations for the main leaf traits. a) Maximum carboxylation rate at 25 °C (Vemaxs). b)
Maximum potential electron transport rate at 25 °C (Jmaes). C) Triose phosphate utilization rate at 25 °C (TPUzs). d) Dark-adapted
leaf respiration rate at 25 °C (Ruares). €) Leaf dry mass per unit area of fresh leaf (LMA). f) Nitrogen content per surface area (Narea).
g) Phosphorus content per surface area (Parea). h) Leaf water content (LWC).

Figure 7 illustrates the bivariate relationships between Vemaxzs and the other key variables including Jmaxzs, TPU2s, Raarkes, LMA,

Narea, and Chlingex, providing an overview of the scope and statistical properties of the current database. A strong correlation

was observed between TPUzs and Vemaxes (r = 0.86, Fig. 7) and between Jmaxzs and Vemaxes (F = 0.94, Fig. 7d) with @ Jmaxes:Vemaxzs

ratio averaging 1.75. While Vcmaxzs exhibited significant correlations with all other traits, the strength of these relationships

was weak (|r| < 0.25), except for Narea, which demonstrated a moderate strength (|r| = 0.56, Fig. 7b).
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370 Figure 7: Scatter plot between the photosynthetic capacity (Vcmaxzs) and other leaf traits included in the GSTI database. a) Leaf mass
per surface area (LMA). b) Nitrogen content on an area basis (Narea). ¢) Chlorophyll index derived from the reflectance data using

Gitelson et al. (2003) index. d) Maximum potential electron transport rate at 25°C (Jmaxzs). €) Dark-adapted leaf respiration rate at
25 °C (Rdarkes). T) Triose phosphate utilization rate at 25 °C (TPUzs). The blue lines are linear regression fits.
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375 A key goal of the GSTI project is to evaluate and test spectral models of leaf photosynthetic capacity and functional traits

380

385

across a wide range of user-contributed datasets, spanning a wide range of ecosystems, species, growth conditions, and

geographical locations. Therefore, in Fig. 8, we show an example of four spectra-trait models fitted between measured spectra

and physiological traits including Vemaxzs, Jmaxes, TPU2s, and Raares Using a PLSR approach. The performance of the spectra-

trait models, evaluated on the 20% of observations from each dataset that were not used to train the models, were very strong
showing a R? of 0.77 for Vemaxzs, 0.78 for Jmaxzs, 0.79 for TPU,s and 0.76 for Raarkes. The RMSE values of the models were
always below 10% of the range of variation of the traits (Yo0RMSE, Fig. 8).

a
( )300- R2=0.78
RMSE = 21
%RMSE = 7.1 .
§200~ N comp =18 .-. Ll
>o :.‘e .
_o 4 ..... ®, .
[ o % o%e 4 .
e o® b 2 ".
3 o .0 |"
8 100 ‘.)" oo,
% .." .
s
- : -
0A ., - ®
0 100 200 300
Predicted Va5
(o] J
( ) 25 R2=0.78
RMSE =1.8
207 %RMSE = 8.5 !
§ Ncomp=19 ,t- 7
L 154 o .“-. -
E P .‘ ) .
k) e
2 ' by
O . ..."‘!o
5 o... .: .
.O .'.......
.. ”
O—
0 5 10 15 20 25

Predicted TPU 5

b) 500
( )500 Rz = 08 |
RMSE = 33.4
4007 o%RMSE =7.3 7
§ Ncomp=24 o
55 3001 s
? ':'? : ':
2 2004 o, ."'.-..f'
S K
.se »
100+ o .
> ..o;.
0_
6 160 260 360 460 560
Predicted J a5
d) -
@ s Reo76
RMSE = 0.3
41 %RMSE = 6.4 v
s .
g N comp =25 i AP
g o . .
kel P .
[} . e
2 s 3
o oz ;:*
1- 3 :
wd -.\:
- ST,
04 ®
0 1 2 3 4 5

Predicted R yarko5

Figure 8: Observed photosynthetic properties obtained from gas exchange measurements vs reflectance-based partial least square
regression prediction. a) Maximum carboxylation rate of Rubisco (Vemaes). b) Maximum potential rate of electron transport (Jmaes).
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¢) Triose phosphate utilization rate (TPU:s). ¢) Dark-adapted leaf dark respiration (Reres). The partial least square regressions were
trained using 80% of the data from each dataset and validated with the remaining 20% of observations (points) following the best
practice guide and protocol from Burnett et al. (2021). The validation points are shown with + 95% confidence interval error bars.
RMSE = Root Mean Square Error (umol m? s1), %RMSE is the root mean square error divided by the range of variation of the
trait of interest in percent (0-100), and N comp is the number of components used in the partial least square regression.

4. Discussion

The goal of the Global Spectra Trait Initiative is to enable a dramatic increase in the ability of the plant science community to
estimate leaf traits using spectra-trait models developed with the richest possible datasets, in an open environment where all
the data and tools to do so are freely available. The GSTI repository is focused on the preservation of paired leaf gas exchange
and leaf reflectance data to facilitate the development and iterative improvement of spectra-trait models. It is designed to be
collaborative, open access, and FAIR (findable, accessible, interoperable, and reproducible; Wilkinson et al., (2016)) following
CC-BY 4.0 license protocols. A key feature of the GSTI repository is the preservation of the raw data and the provision of
open workflows to process reflectance and gas exchange data, thereby ensuring uniform, reproducible data analysis and
interpretation. The use of raw data also enables users to easily apply new techniques or alternative assumptions to their analysis

and preserves the value of the repository for future unanticipated uses.

4.1 Data coverage

This initial GSTI version comprises 36 individual curated datasets, measured across 41 sites, spanning more than 390 species
in arctic, temperate, subtropical, and tropical ecosystems. Given its breadth, this pooled dataset significantly expands upon
previous photosynthetic and other spectra-trait modeling studies (Lamour et al., 2021; Serbin et al., 2012; Wu et al., 2025,
2019; Yan et al., 2021) and covers a wide range of climatological regions (Fig. 4). We hope that the expanding data coverage
will ultimately enable the development of robust globally applicable models.

The spatial distribution of the current GSTI database is uneven. The majority of the datasets were measured on the American
continent (Fig. 2), while Asia, Europe, and Australia have relatively limited data representation. African datasets are
completely absent. Furthermore, of the 14 natural ecosystems categorized by Olson et al. (2001), only four are represented in
the GSTI repository. These unrepresented biomes play key ecological roles and are likely to have distinct leaf spectral
properties and associated traits, the absence of which likely limits the generalizability of spectra-trait models. The coverage of
the four represented biomes is also incomplete and likely misses important functional groups and species. For example, few
data cover needle-leaf coniferous plants (32 observations), none of which include full range reflectance spectra. Other plant
groups such as ferns are also missing. Additionally, the database is biased towards a few dominant agricultural species,
especially for Rgak Observations. These data limitations likely stem from several factors, including the high cost of
spectrometers and gas exchange instruments. Additionally, challenges arise for certain plant types with very tiny or narrow

leaves due to limitations of commercially available instruments designed for standard leaf sizes. Nevertheless, this underscores
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the need to acquire observations spanning a broader spectrum of species diversity for increasing the leaf spectral and functional

diversity as well as the development and testing of universally applicable photosynthetic spectra-trait models.

Tthe GSTI repository is currently limited to gas exchange data for leaves of the C3 photosynthetic pathway, the most prevalent
photosynthetic pathway among plants. C4 plants, predominantly grasses, comprise less than 5% of known plant species (Sage,
2016), but they contribute to nearly a fifth of global photosynthesis (Luo et al., 2024). In addition, C4 crops like maize, millet,
sorghum, and sugarcane account for nearly a quarter of the harvested area worldwide (Luo et al., 2024). Currently, spectra-
trait studies for predicting C4 photosynthetic traits are primarily focused on maize (Heckmann et al., 2017; Wang et al., 2021;
Yendrek et al., 2017). The crassulacean acid metabolism (CAM) pathway is another photosynthetic pathway used by around
6% of higher plants (Winter, 2019). To our knowledge, photosynthetic spectra-trait data have never been measured on such
species, in part because measuring photosynthesis traits on these plants is also a challenge. The GSTI repository can therefore
be expanded to accommodate other photosynthetic pathways in future updates. See Section 7 for how to contribute to future
versions of the GSTI. We hope that highlighting the data gaps above will spur new data collection, improve the global coverage

of the GSTI, and enhance its comprehensiveness.

4.2 Photosynthesis and dark respiration models

A single photosynthesis model (i.e., the same equations, Kinetic constants and temperature response functions, and a
standardized parameter estimation procedure) is used for all datasets within the GSTI database. This imposes a constraint on
the datasets that can be added to GSTI; i.e., the raw gas exchange data must be supplied, not just the estimated photosynthetic
parameters. Although this may limit the number of observations and datasets added to the GSTI repository, it avoids
introducing biases between datasets that could arise from differences in parameterization of the photosynthesis model and the
parameter estimation procedure. This standardization is beneficial for preserving the relationships between parameters, in
particular between Vemaxes and Jmaxes (Fig. 7d), that depend upon the constants used in the photosynthesis model (Rogers et al.,
2017a; Walker et al., 2014). Our approach to standardization within the GSTI database may also help reduce noise in trait-
spectra relationships.

We acknowledge that other photosynthesis equations and parameterisations could be used. Fundamental processes of the C3
photosynthesis reactions are an active research area, and there are alternative formulations to the original model (Farquhar et
al., 1980; Kumarathunge et al., 2019; Silva-Pérez et al., 2017; Yin et al., 2021). For example, other models consider a finite
mesophyll conductance (Flexas et al., 2008), the cuticular pathway for gas transport between the leaf and the atmosphere
(Lamour et al., 2022; Marquez et al., 2021), or a more mechanistic representation of electron transport rate (Johnson and Berry,
2021). Since the raw gas exchange data are saved in the GSTI database using a standard format (Ely et al., 2021), it is possible
to reanalyze the data using other photosynthesis models. In fact, it is recommended to use the same set of equations and
parameters for estimating photosynthetic traits and simulating photosynthesis, i.e., avoid mixing and matching equations

(Rogers et al., 2017a). For instance, using an apparent Vcmaxes in a photosynthesis model with finite mesophyll conductance

20



455

460

465

470

475

480

would introduce errors. This consideration is also true when using traits estimated from spectral trait models. We recommend
retraining the spectral trait model using the same photosynthesis model framework for both trait estimation and photosynthesis
simulation. In addition, we have used a universal set of parameters to fit the gas exchange data. Better gas exchange fits may
be obtained when species-specific (Sargent et al., 2024; Silva-Pérez et al., 2017) or environment-specific parameters
(Kumarathunge et al., 2019) are used, although it has yet to be demonstrated if this improves spectra-trait predictions.

Respiration, like photosynthesis, is a key physiological process that underpins plant growth and influences the global carbon
budget and crop yields. However, unlike photosynthesis, which can be modeled using the FVCB photosynthesis equations
(Farquhar et al., 1980), there is no comparable mechanistic model for respiration (Bruhn et al., 2022; Fan et al., 2024). This is
partly due to our limited understanding of the complex metabolic processes underlying respiration and the difficulty in
estimating the complex networks of respiratory fluxes. In current crop growth and land surface models, leaf dark respiration
is considered a temperature sensitive constant. These models use a range of temperature dependence functions (Huntingford
etal., 2017; Niu et al., 2024). In the GSTI database, Rqark and the leaf temperature during measurement are stored, facilitating

the reuse of the data with alternative temperature response functions and parameterization.

4.3 Spectra-trait models

We have developed spectra-trait models for three photosynthetic traits (Vemaxzs, Jmaxes, TPU2s) and Raarkes as illustrative
examples. These models were obtained using paired full-range spectral and trait observations on the same leaves. The
predictive accuracy of these models aligns with previous studies (Barnes et al., 2017; Coast et al., 2019; Meacham-Hensold et
al., 2019; Silva-Perez et al., 2018) despite incorporating a larger dataset spanning a wider range of species and environmental
conditions and using datasets obtained with a range of instrumentation. This demonstrates the potential for such models to be
applied broadly, across diverse ecosystems and instruments. However, to optimize model performance for specific ecological
contexts, the training dataset could be tailored to particular biomes or species. The training dataset used here exhibits an
overrepresentation of certain species, especially agricultural ones, potentially biasing the model towards cultivated species and
reducing its accuracy for other species.

A wide variety of statistical methods have been used to study the relationships between leaf spectra and traits. These include
PLSR, least absolute shrinkage and selection operator (LASSO), support vector machines (SVM), and deep learning (Burnett
et al., 2021; Fu et al., 2019, 2022; Furbank et al., 2021; Ji et al., 2024; Vasseur et al., 2022). These approaches consider the
specific features of reflectance spectra, i.e., a high dimensionality (hundreds of wavelengths) and a strong autocorrelation of
the reflectance at each wavelength. They differ on how to reduce the signal dimension and on the form of the relationship
between the signal and the trait of interest (linear or non-linear). The GSTI database offers a breadth of data to compare and
evaluate these different approaches.

An improved understanding of the mechanisms explaining the correlation between leaf reflectance spectra and photosynthetic
performance is key to understanding the range of applications and the limitations of such models. Several hypotheses have

been proposed to explain the relationship between leaf optical properties and photosynthetic traits such as Vcmaxes. The
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reflectance spectra are probably not strongly influenced by the quantity and activation state of rubisco that biologically
determines Vcmaxes, but more likely by a constellation of biochemical and structural leaf properties associated with
photosynthetic performance that jointly shape the spectral signature associated with carboxylation capacity (Chadwick and
Asner, 2016; Wu et al., 2019; Yan et al., 2021). The correlations between leaf reflectance spectra and nitrogen (Meacham-
Hensold et al., 2019) or chlorophyll (Croft et al., 2017) content have been identified as important signals, although many other
leaf structural and biochemical components are likely to play a role. Indeed, spectra-trait models often outperform trait-trait
empirical relationships (Wu et al., 2025; Yan et al., 2021), even when multiple leaf traits are used for prediction. Since rubisco
plays a role in carbon assimilation across all three photosynthetic pathways (C3, C4, and CAM), including these pathways in
future analysis could be informative because the biochemical limitations on assimilation, leaf anatomy and elemental

composition are different and will provide new axis of plant trait variation.

5. Conclusions

The Global Spectra-Trait Initiative (GST]I) is a collaborative and open-access database designed to facilitate the development
and improvement of spectra-trait models for estimating leaf traits, focusing on photosynthetic capacity. The initial release of
GSTI includes data from over 390 species and 41 sites, encompassing more than 7500 observations and covering a wide range
of environmental conditions and plant functional types. It dramatically increases the data available for the plant science
community. Furthermore, the standardized approach used in GSTI ensures uniform and reproducible data processing and
interpretation, maximizing the reuse of data and facilitating ongoing refinement of spectra-trait models as new datasets are
incorporated. Future developments of the GSTI will focus on expanding data coverage, incorporating data from under-

represented biomes and plant functional types.

6. Data and code availability

The GSTI data and code are available in the public GitHub repository at https://github.com/plantphys/gsti, and published
versions of GSTI are released to ESS-DIVE (https://data.ess-dive.lbl.gov/datasets/doi:10.15485/2530733, Lamour et al.,
2025).

7. How to contribute to future versions of the GSTI

We encourage the community to contribute new datasets to expand the scope and utility of the GSTI project. To ensure
consistency and maintain data quality, contributions should adhere to the standards and guidelines outlined in this paper.
Detailed instructions for contributing datasets, including formatting specifications and submission procedures, are available in

the project's GitHub repository: https://github.com/plantphys/gsti.
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