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Abstract. Publicly available datasets for oil spill detection are scarce, making it difficult to compare the performance of

different detection algorithms. To address this, this paper introduces a comprehensive labeled dataset of oil slicks, look-alikes,

and other remarkable oceanic phenomena, derived from Sentinel-1 Synthetic Aperture Radar (SAR) products in the Eastern

Mediterranean Sea in 2019. The dataset contains 3225 oil objects across 1365 image patches, along with an additional 2290

image patches featuring look-alikes or other phenomena. Data are available at https://doi.pangaea.de/10.1594/PANGAEA.5

980773 (Yang and Singha, 2025).

This dataset enables researchers to evaluate their oil spill detection models and compare performance with other studies.

To facilitate this, the performance of an oil spill detector from a previous study on the dataset is provided as a baseline. In

addition, to help the researchers better understand what phenomena their object detector might be confusing with oil slicks,

the image patches without oil objects were sorted into several subgroups. On the other hand, for researchers looking to apply10

object detection models to oil slick detection but lacking a starting dataset, this dataset can serve as a valuable training resource.

Beyond dataset presentation, this paper also explains the formation of different oceanic phenomena and their SAR signatures,

supported by examples and supplementary materials. These insights help researchers from various backgrounds, such as remote

sensing, oceanography, and machine learning, better understand the sources of SAR signatures.

1 Introduction15

Spaceborne Synthetic Aperture Radar (SAR) has been widely applied to marine oil pollution detection. While airborne systems

play an important role in emergency response due to their flexibility in time of deployment and choice of sensors, with the

advantage of wide coverage and the ability to observe at night and through clouds, spaceborne SAR can be used to monitor oil

spills on a regular basis and provide early warning (Brown and Fingas, 2005; Brekke and Solberg, 2005). Oil slicks typically

appear as dark formations in SAR imagery, but other phenomena can also manifest dark formations that look similar and are20

difficult to distinguish. Distinguishing oil slicks from these look-alikes has long been a challenge.
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With the increasing computational capacity and the growing number of accessible SAR scenes since the launch of Sentinel-1

in 2014, many recent studies have used deep learning-based methods to detect oil spills and distinguish them from look-alikes.

However, due to the lack of publicly available oil spill datasets, most studies had to collect their own oil spill dataset for model

training. Some studies collected images of major accidents, such as the DeepWater Horizon incident, the Hebei Spirit oil tanker25

collision, and accidents reported in the local news, and cropped the acquired SAR images into multiple image patches (Chen

and Wang, 2022; Hasimoto-Beltran et al., 2023; Mahmoud et al., 2023). These studies employed a limited number of SAR

scenes, with less than 36 images, which means that the training dataset may not reflect the differences in radar backscatter

between different acquisitions well. Other studies relied on either manual inspection by the authors (Topouzelis and Psyllos,

2012; Amri et al., 2022; Chen et al., 2023) or local collaboration with other institutions or services (Konik and Bradtke, 2016;30

Cantorna et al., 2019; Zeng and Wang, 2020). These studies focused on the development of new oil spill detection models, but

the use of different datasets made it difficult to compare the performance of different studies.

Recognizing the challenges posed by the absence of a comprehensive dataset, Krestenitis et al. (2019) published an oil

spill detection dataset. It contains approximately 1000 Sentinel-1 SAR images with their corresponding ground truth masks,

indicating five classes: oil spill, look-alikes, land, ship, and sea areas. The oil spills were reported by the European Maritime35

Safety Agency (EMSA) through the CleanSeaNet service. However, it is not openly available, the proposal is required to

obtain the dataset. On the other hand, a recent work has contributed its training dataset to Zenodo, an open repository for

datasets (Trujillo-Acatitla et al., 2024). The dataset includes oil spills reported by the National Oceanic and Atmospheric

Administration (NOAA) and EMSA CleanSeaNet. There are 2850 image patches, half with oil spills inside, half without oil

spills but with background or look-alikes inside. These two datasets offer pixel-wise classification of the images. However,40

in low-wind conditions or in areas where there are frequent look-alikes, there may be large areas of dark formations. For this

reason, previous studies have proposed a two-step approach with coarse detection of oil slicks over a large area and refinement

of the results to a pixel-wise level (Nieto-Hidalgo et al., 2018; Yang et al., 2024). This approach can theoretically increase

efficiency, as the final detection is only performed if there are detections in the first step, and may therefore be helpful for a

near real-time (NRT) monitoring system. Therefore, the dataset presented in this paper provides an object-based annotation of45

the oil spills, which aims to support research that follows the idea of this approach.

There are many different sources of look-alikes, such as low-wind areas, internal waves, mixing and vertical advection

in the ocean, and biogenic films, that modify the ocean surface and introduce signatures in SAR imagery. It is important to

understand which types of look-alikes the model cannot distinguish well, but this information is not available in previous

datasets. Therefore, the published dataset includes image patches of oil slicks and other prominent marine signatures, stored50

in oil set and no-oil set, respectively. For the image patches in no-oil set, the K-Means unsupervised clustering algorithm was

used to further sort the patches into several subgroups to help users better understand the performance of their algorithms on

different sources of look-alikes. Note that K-Means categorizes each image as a whole under a specific cluster. In other words,

unlike oil slicks in the oil set, which were labeled as objects, no annotation is attached to image patches in the no-oil set.

In addition, previous datasets used the reports from the existing service, but in many areas such services are not available.55

There is a lack of clear guidance on how to distinguish between different phenomena and what data can be used to support
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them. This paper gives examples of different phenomena and explains how SAR signatures are manifested and how they can

be interpreted with the help of other supplementary materials.

This published dataset focuses on the Eastern Mediterranean Sea, which is one of the marine oil pollution hotspots due to

its heavy maritime traffic (Carpenter and Kostianoy, 2016). There are 1365 image patches with 3225 oil objects in oil set and60

2990 image patches in no-oil set. Sect. 2 provides an overview of the dataset, including the spatial distribution of the data, the

preprocessing steps applied to the SAR scenes, the procedures used to collect the dataset, and the sources of supplementary

material used to understand the dark formations. Sect. 3 describes in detail how the oil slicks were annotated and the concept

of the K-Means clustering algorithm used to classify the image patches.

The dataset and this paper can be used for different purposes. For researchers wishing to start in an area where there are no65

existing services for the recording of oil spills (i.e. no ground truth oil spills available), Sect. 4 can be used as a reference as it

explains how oil slicks and different oceanic or atmospheric conditions contribute to SAR signatures. For studies that already

have their own object detector for oil slicks, this dataset can be used as a separate dataset to test their model performance.

Subsect. 5.1 provides an evaluation of the performance of an object detector used in an NRT automated oil spill detection

system developed in Yang et al. (2024). In addition, the clustered no-oil set can provide an indication of how to improve the70

model. Furthermore, the dataset can be used as a training dataset by researchers who are just starting to apply object detection

algorithms to oil spill detection applications. Although the dataset only covers oil spills in the Eastern Mediterranean Sea, a

previous study showed that with such a locally focused oil object detector, only a small additional dataset is needed to extend

the use of the detector to another region (Yang and Schnupfhagn, 2025). Additional technical information in the Subsect. 5.2

should be read before using the dataset. Section. 6 summarizes how this data descriptor and dataset can be used and add value75

to the community.

2 Materials

This section contains information about the dataset and has the following structure: Subsect. 2.1 lists general information about

the SAR products and explains the corrections applied to them. Subsect. 2.2 gives an overview of the dataset and explains the

procedures for preparing this dataset. Subsect. 2.3 shows a collection of different supplementary data that could help inspect80

dark formations. Note that all the time stamps shown in this paper and the dataset are in UTC. The map boundaries in figures

were derived from Wessel and Smith (1996).

2.1 Sentinel-1 Data

Sentinel-1 SAR Level-1 Ground Range Detected (GRD) products were obtained from the Copernicus Open Access Hub,

which provided data through the end of October 2023. The Copernicus Data Space Ecosystem operates as an improved and85

updated version of it and provides Earth observation data and services, including tools, graphical interfaces, and Application

Programming Interfaces (APIs).
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The dataset covers Sentinel-1A and Sentinel-1B products, which share the same orbit plane with a 180° orbital phasing

difference; the repeat cycle was six days. Note that Sentinel-1B stopped delivering data since 23 December 2021. Sentinel-1

products from 2019 covering the Eastern Mediterranean Sea were acquired and preprocessed. The acquisitions from ascending90

and descending orbits in the area were taken at around 15:30–16:05 and 03:30–04:05, respectively. Those scenes are in Inter-

ferometric Wide Swath (IW) acquisition mode with a swath width of 250 km, and the incidence angle ranges between 29.1°

and 46.0°. In this area, dual-polarization VV-VH products were provided. The data in cross-polarization mode (i.e., VH or HV)

generally exhibit lower backscattering and, therefore, are influenced more by background and instrument noise compared to

those in co-polarization mode (i.e., VV or HH) (Woodhouse, 2006). For this reason, only VV-polarized products were collected95

in the dataset.

A series of corrections, border noise removal, thermal noise removal, and calibration were applied to the SAR products.

The continuous products were assembled and multilooked with a factor of 2. The final backscattering coefficient, σ0, is given

in decibels (dB). These preprocessing steps were done with the help of the Sentinel Application Platform (SNAP) Graph

Processing Framework (GPF) (European Space Agency, 2020). Note that the data were preprocessed with SNAP version 8,100

and certain circular patterns were produced at regions with relatively low backscattering in a few images; Figure 1 shows

such an example from 27 August 2019. Therefore, some image patches collected in the dataset also contain such artifacts (see

Figure 2). As they should not be the bottleneck of the detection algorithm, these image patches are kept in the dataset.

Afterwards, the preprocessed data were normalized to 0–255 for training the object detector. The normalized image, IN , is

calculated by the sigmoid function:105

IN =
255

1 + e

−(I −β)
α

, (1)

where I is the original image value. In this study, β and α equal to the median and three times the standard deviation (3 ·σ),

respectively, of the original image values in the corresponding preprocessed data.

2.2 Dataset

The published dataset utilized the annotation of oil objects in the framework of our previous study (Yang et al., 2024), where110

all preprocessed Sentinel-1 data covering the Southeastern Mediterranean Sea in 2019 were inspected jointly by two human

interpreters. Image patches including these labeled oil objects were generated and stored in the oil set. However, without ground

truth oil spills available, the labeled oil objects might not only belong to oil spills but also to other possible chemical spills. A

successful oil spill detection system should be able to distinguish oil slicks from look-alikes; therefore, it is essential to take

into account the image patches without oil slicks in them. In addition to the oil set, the published dataset also includes a no-oil115

set, which provides image patches without oil slicks but with look-alikes or other remarkable SAR signatures present.

Sources of pollution and other phenomena could differ between coastal and offshore areas. Hence, depending on whether

the image patch covers land areas or not, image patches in the oil and no-oil sets are further split into coast and water subsets.

The structure of the different subsets can be understood as follows:
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Figure 1. Preprocessed data with certain artifact produced after applying thermal noise removal in SNAP version 8. Note that the figure is a

zoom-in of the entire preprocessed scene.

Figure 2. Image patches in the dataset with artifact as shown in Figure 1. The tags for these image patches (from left to right) for referring

to their information in the provided data table are nw-0603-03-000100, nw-0609-03-000106, nw-0547-03-000044, and nw-0553-03-000050

(see also Subsect. 2.2 and Appendix B).

oil/120

coast/

water/
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Figure 3. Numbers of image patches in different clusters by K-Mean algorithm.

no_oil/

coast/

water/125

To efficiently collect image patches for the no-oil set, an object detector, custom-trained with oil objects but lacking images

with look-alikes, was employed to target dark formations in the collected SAR scenes. These detections were compared to the

locations of the inspected oil slicks, and those that have no intersection with the oil objects were regarded as look-alikes and

stored in the no-oil set.

To include look-alikes from different sources equally, these image patches were categorized by the K-Means unsupervised130

clustering algorithm (see Subsect. 3.2 for algorithm explanations). The water and coast subsets were first separated with

the help of a land mask, and then they were clustered into 12 and 5 subgroups, respectively. Afterwards, 2100 and 500 image
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Figure 4. Heatmap of the image patches in the (a) oil and (b) no-oil sets. The base map was obtained from Stevens (2020).

patches were randomly chosen from the two subsets, respectively. As offshore regions are of more interest, more image patches

from the water subset were kept in the dataset. Each cluster contains a similar number of selected image patches compared to

the other cluster from the same subset. Figure 3 shows the numbers of image patches in each cluster; the red vertical lines show135

the number of image patches being randomly picked. It should be noted that one image patch might have dark formations from

more than one source due to the complex manifestation of oceanographic phenomena on SAR imagery. Each subgroup should

not be regarded as look-alikes from one specific source; the users should only consider the categories as a reference to help

comprehend what kinds of SAR signatures are likely to be misinterpreted by their algorithms.

Sect. 4 provides explanations for SAR signatures from different ocean phenomena. The dataset includes image patches in140

JPG format, and the corresponding annotations are in Pascal VOC XML format (Everingham et al., 2010). Figure 4 shows the

heatmap of image patches in the oil and no-oil sets. The oil spill inspection area is defined from 34.7° N to the south and 36° E

to the east until the coastline and marked as a blue boundary in the figure. However, all the Sentinel-1 SAR products from

2019 covering the area in longitude from 30° E to 36° E and in latitude from 31° N to 34.7° N were automatically examined

while collecting image patches for the no-oil set. As the oil inspection area is smaller than the distribution extent of the image145

patches in the no-oil set, these image patches were manually inspected, and the ones with oil spills or unknown and unsure

dark formations were removed from the dataset to avoid confusion. Table 1 gives the final statistics of the published dataset.

Information about image patches in the dataset is recorded in a data table in Excel format; different subsets are recorded in
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separate sheets. Appendix B provides an extracted data table recording the information of image patches displayed in this

article. For users who would like to preprocess SAR products themselves, Sentinel-1 product IDs and the corner coordinates150

of the image patches are provided. The data table includes the following fields relating to image patches:

• patch name,

• Sentinel-1 product start and stop date time,

• Sentinel-1 product ID,

• dimension of the image patch in pixels,155

• corner coordinates of the image patch in longitude and latitude (WGS84).

The patch name follows the naming convention:

MM_YYYYMMDD_HHMMSS_HHMMSS_PP_i

where MM refers to satellite mission, in this dataset, all the data are from Sentinel-1 mission, S1; YYYYMMDD shows the date

of the product and HHMMSS shows the start and stop time of the product; PP indicates the polarization mode (e.g., VV); i is a160

series of numbers assigned when generated the image patches.

In the preprocessing step, continuous SAR products were assembled. Therefore, image patches might be located at the

overlapping areas of the two products; in this case, both Sentinel-1 product IDs would be listed in the data table. The dimension

of the image patch is default to 640× 640 px, which is the same as the model input size for our object detector; but to keep

the original shapes of some large oil slicks, there are a few image patches that have dimensions greater than the default. In this165

case, the object detector would rescale these image patches, but oil slicks should still be detectable.

The tie points grids in Sentinel-1 products provide the geolocation information in WGS84 geocentric coordinate system. To

calculate the geolocation of the four corner points, upper left (ul), upper right (ur), bottom right (br), and bottom left (bl), of

each image patch, its surrounding tie points were loaded, and the corner coordinates were estimated by the least squares fitting.

The same procedure was used to obtain the object coordinates in oil set. For the oil set, additional fields for oil objects are170

provided:

• corner coordinates of the oil objects in longitude and latitude (WGS84),

• image coordinates of the oil objects referred to their corresponding image patch,

• the size (in pixels) of the bounding box annotating the oil object.

The data tables for oil set are sorted by objects; that is, if there are four oil objects in one image patch, there will be four175

separate rows for the four oil objects, and they should have the exactly same image patch information, such as patch name,

Sentinel-1 product ID, and geolocation of the image patch. On the other hand, as there is no object in the no-oil set, each row
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Table 1. Statistics of the oil set and no-oil set.

Dataset oil set no-oil set

Subset water coast water coast

Number of

image patches
990 375

00 172 00 76

01 171 01 84

02 160 02 75

03 162 03 44

04 81 04 72

05 166

06 166

07 171

08 175

09 168

10 174

11 173

1939 351

Number of

oil objects
2284 941 N/A N/A

N/A: not applicable

refers to the information of its corresponding image patch. On top of all the fields explained earlier, each row in the table is

referred to a unique tag with one image tag and an additional object tag or cluster tag.

The image tag is a two-letter subset tag followed by four-digit image serial number. The first letter of the subset tag is either180

o or n, referring to oil set and no-oil set, respectively; the second letter, w or c, stands for the subset water or coast. The image

serial number is a sequence of numbers starting from 0001 for each subset, ordered by patch names.

In the oil set, each object gets an object tag with a two-digit object index and a six-digit object serial number. The object

index numbers the objects in each image patch, counting from 01; the object serial number is a sequence of objects for all

the objects in one subset, counting from 000001. As an example, ow-0795-01-001867 is a tag with an image tag ow-0795 and185

an object tag 01-001867, meaning that the object is the first object in the 795th image patch and the 1867th object in the ow

subset.

To follow the same tag format, a cluster tag with two-digit cluster index and a six-digit cluster patch serial number is assigned

to each image patch in the no-oil set. The cluster index refers to the class assigned by K-Means clustering methods, with 12 and

5 classes for nw and nc subsets, respectively; the index counts from 00. The cluster patch serial number is a sequence of image190

patches for all the image patches in one class, counting from 000001. Take nc-0308-04-000029 as an example, the image tag
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Table 2. Platforms for supplementary data.

Platform url Reference

Ocean Virtual Laboratory (OVL) portal https://ovl.oceandatalab.com/

Copernicus Marine Data Store (MDS) https://data.marine.copernicus.eu/

• Mediterranean Sea - High Resolution and Ultra High

Resolution L3S Sea Surface Temperature

https://doi.org/10.48670/moi-00171 CMEMS (a)

• Mediterranean Sea, Bio-Geo-Chemical, L3, daily

Satellite Observations (1997–ongoing)

https://doi.org/10.48670/moi-00299 CMEMS (b)

• Global Ocean Hourly Sea Surface Wind and Stress

from Scatterometer and Model

https://doi.org/10.48670/moi-00305 CMEMS (c)

Copernicus Climate Data Store (CDS) https://cds.climate.copernicus.eu/

Israel Meteorological Service https://ims.gov.il/en Ministry of Transport and

Road Safety, Israel

General Bathymetric Chart of the Oceans https://www.gebco.net/ GEBCO (2023)

nc-0308 shows that this is the 308th image patch in the nc subset and the cluster tag tells that this is the 29th image patch in

the 04 class.

The patch name was assigned when the image patch was generated; it contains information about the date and time of the

acquisition. Since the data publisher prefers a dataset without folders, the tags are used as filenames and the folders have been195

removed. However, users are encouraged to rename the filenames to the patch names if they prefer. However, it should be noted

that image patches from the oil and no-oil sets were generated separately, so in some rare cases the image patches may have

the same names. Therefore, it is recommended to create a folder structure as explained at the beginning of this subsection.

2.3 Supplementary Data

Dark formations in SAR imagery can be caused by oil spills or look-alikes. Deliberate oil spills are mainly associated with200

human activities, such as offshore oil operations and oil transport. Some existing services, such as the Global Oil and Gas

Extraction Tracker (GOGEC) and the European Marine Observation and Data Network (EMODnet), provide locations of oil,

gas and offshore installations. These services can help to identify areas with a high potential for platform spillage. On the other

hand, look-alikes can be related to a variety of oceanic, atmospheric, and geological factors that modulate the roughness of

the sea surface. Supplementary materials may be used to help in cross-comparison to better comprehend the sources of dark205

formations. Table 2 directs the reader to various services that the authors found valuable in explaining SAR signatures or that

are used in the examples shown in Sect. 2.1.
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Ocean information such as wind speed, waves, sea surface temperature (SST), and chlorophyll a (chl-a) concentration can

be obtained from satellite, model, and in-situ data. The Ocean Virtual Laboratory (OVL) portal, funded by the European

Space Agency (ESA), provides a quick and broad overview of ocean monitoring through its visualization tool. Additional210

information such as SAR roughness and bathymetry is also available. The other service, the Copernicus Marine Data Store

(MDS) from the E.U. Copernicus Marine Service Information (CMEMS; acronym derived from its former name, Copernicus

Marine Environment Monitoring Service), is an ocean data catalog with products at global and regional scales. Similar to the

OVL portal, MDS provides MyOcean Viewer, which allows users to add different products to the map viewer. Moreover, the

dataset can be easily retrieved with commands using the Copernicus Marine Toolbox.215

Another Copernicus service, the Climate Data Store (CDS), provides climate data such as global precipitation data; this

service is implemented by the European Centre for Medium-Range Weather Forecasts (ECMWF). However, the rainfall data

used in this article were obtained from the coastal weather stations obtained from the Israel Meteorological Service, provided

by the Ministry of Transport and Road Safety, Israel. The service provides daily rainfall and rainfall automated recorded every

10 minutes. Note that these systems tend to underestimate the rainfall in major events according to the information provided220

by the service.

The General Bathymetric Chart of the Oceans (GEBCO) has released several global bathymetric and topography grids with

a spatial resolution of 15 arc seconds since 2003. This model is especially useful for providing context to SAR data in areas

with varying bathymetry, which can affect the interpretation of ocean surface roughness in satellite imagery.

Sect. 4 explains different SAR signatures and provides examples of explanations on different dark formations with the help225

of the supplementary data. A summary list for those examples along with the supplementary data is provided in Subsect. 4.9

(see Table 3). Note that not all the data in the dataset were confirmed with the supplementary data but with the experience of

the human inspectors and their understanding of the study area.

3 Methods

3.1 Manual Inspection230

As stated in Subsect. 2.2, the annotations were initially done in the framework of our previous study (Yang et al., 2024) with

the help of an open source image annotation tool, LabelImg (Tzutalin, 2015). Those image patches were geolocated, as in

this case, referring to other supplementary materials and understanding the location of the spills is easier. However, the image

patches and the oil objects in the published dataset were provided in the range and azimuth direction of the corresponding SAR

products.235

Continuous oil spillage from one source can be like multiple oil slicks after the physical processes. Therefore, definitions

of those oil objects might be tricky; one can interpret them as one oil object or several oil objects. In addition, the extent of

an oil slick might not be easy to define; for example, the evaporation of oil could make it look like it is fading away in SAR

scenes. It shall be noted that different definitions of the extent of one oil object can play a vital role in model performance

calculations. For example, if there is one oil object in the dataset, but the object detector considers it to be two nearby objects,240
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(a) ow-0267 (b) ow-0276 (c) ow-0438

(d) ow-0447 (e) ow-0463 (f) ow-0643

Figure 5. Image patches from the published dataset along with the labels of the oil objects marked with white bounding boxes. Their

corresponding image tags (explained in Subsect. 2.2) are also provided as captions, the readers can find their further information recorded in

the data table (see Appendix B).

they may be considered false positives if they do not pass the threshold used to define true positives (see Subsect. 5.1 for

performance evaluation). Figure 5 provides some image patches inside the published dataset with oil object labels to illustrate

how the authors annotated the oil slicks. The tags of these image patches are provided as captions, and the explanations for

tags are shown in Subsect. 2.2; readers can find an extracted data table in Appendix B.

3.2 K-Means Clustering245

K-Means (Lloyd, 1982; MacQueen, 1967) is an unsupervised algorithm to partition a set of observations into a specific number,

k, of clusters. The concept is to obtain k clusters by satisfying that the sum of the distance between each observation and the

mean vector (centroid) of its corresponding cluster is minimum; the Euclidean distance is a common way of calculating such
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distance. To achieve this idea, the algorithm first randomly partitions observations into k sets and calculates their centroids.

Based on these centroids, each observation is assigned to its nearest cluster. Afterwards, the algorithm iteratively updates the250

centroid and assign observations of each cluster to a new cluster until convergence is achieved.

In image clustering, each image is represented as a feature vector in the vector space that contains the features of the image,

such as texture and shape. To extract features of the image patches in the no-oil set, the InceptionV3 model (Szegedy et al.,

2015) pre-trained with a large visual database, ImageNet (Deng et al., 2009), was used. K-Means clustering was then applied

to categorize the image patches with the help of the Scikit-learn K-Means module. Figure 6 shows examples of image patches255

from each cluster (see Appendix B for the patch information).

4 SAR Signatures

The radar transmits microwave pulses and some of them are reflected back to the radar, the normalized power of the received

signals over the actual ground area is known as radar backscatter, σ0. The radar backscatter depends on radar system charac-

teristics (e.g., polarization, wavelength, and radar geometry) and the properties of the target (e.g., shape, dielectric constant,260

and roughness) (Woodhouse, 2006).

For ocean applications, sea surface roughness is generally regarded as a key factor; variations in surface roughness are

closely related to wind speed and direction (Robinson, 2004; Woodhouse, 2006). Winds form friction between air and water

and cause small capillary waves in millimeter-to-centimeter scales. These wind-induced capillary waves are usually regular

over a large area and act as resonant Bragg scatterers, which can interfere constructively if the Bragg condition is satisfied as265

defined:

2d · sinθ = nλ, (2)

where d is the spacing of the scatterers, θ is the incidence angle, λ is the radar wavelength, and n is an integer. The spacing of

the scatters can be regarded as ocean wavelength. The incidence angle of Sentinel-1 IW mode ranges between 29.1° and 46.0°;

therefore, according to the equation, the resonant ocean wavelength is at a similar scale as radar wavelength. In addition, the270

waves should travel along the range direction (either parallel or anti-parallel) to obtain the strongest resonance. This construc-

tive interference is also known as resonant Bragg scattering or the coherence scattering mechanism. On the other hand, if the

condition is not fulfilled, destructive interference occurs, and the scattered power is reduced.

The ocean surface contains small-scale capillary waves, gravity waves in meter scales, swell, and large-scale currents;

therefore, the ocean surface is considered a complicated summation of a wave spectrum of different wavelengths. However, the275

radar returns come from these short capillary waves, which have wavelengths similar to the radar wavelengths, rather than the

longer waves; hence the Bragg mechanism is often used to interpret radar backscatter at the ocean surface (Robinson, 2004).

The following subsections illustrate and explain SAR signatures due to oil slicks, different oceanic or atmospheric phenom-

ena, or human-related activities. Some supporting materials listed in Table 2 are used to comprehend the phenomena and to

better interpret the SAR signatures. If users need more detailed information about the supporting data, they should check the280

13

https://doi.org/10.5194/essd-2025-208
Preprint. Discussion started: 16 April 2025
c© Author(s) 2025. CC BY 4.0 License.



nw-0165-00-000165 nw-0307-01-000135 nw-0446-02-000103 nw-0651-03-000148 nw-0687-04-000022

nw-0763-05-000017 nw-0997-06-000085 nw-1203-07-000125 nw-1331-08-000082 nw-1523-09-000099

nw-1679-10-000087 nw-1883-11-000117 nc-0009-00-000009 nc-0140-01-000064 nc-0207-02-000047

nc-0253-03-000018 nc-0325-04-000046

Figure 6. Image patches from different clusters in the no-oil set. Their corresponding tags (explained in Subsect. 2.2) are also provided as

captions, the readers can find their further information recorded in the data table (see Appendix B).

descriptions in Sect. 2.3 or refer to the websites in Table 2. Note that these examples are not provided in the published dataset.

The published dataset only includes image patches from 2019; however, the examples are not limited to the time interval. The

selections are mainly based on the accessibility of the supplementary materials and are to avoid SAR signatures due to multiple

phenomena, which make it challenging to interpret. These examples are not cropped into image patches as most phenomena

influence an area larger than the size of an image patch. In addition, instead of displaying them in SAR geometry in range and285

azimuth, they were projected to the World Geodetic System 1984 (WGS84), making it easier to compare them with different
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Figure 7. Examples of an oil slick appearing in SAR acquisitions around 12 hours apart, showing its changes overtime. The profiles illustrate

the radar backscatter along the red line, and the shadowed area highlights approximately where the oil-induced dark formation is located.

supplementary data. All the example scenes are listed at the end of this section (Subsect. 4.9), so that users can download SAR

scenes themselves from the Copernicus Data Space Ecosystem.

4.1 Oil slicks

The presence of oil slicks decreases the surface tension of the water and lowers wind friction; therefore, short gravity and290

capillary waves are dampened, which reduces the radar backscatter and results in dark formation in SAR imagery. Spaceborne

SAR sensors can observe a large area on a regular basis; however, to investigate the quantity, type, and thickness of the oil, it

usually requires multiple sensors, such as infrared, ultraviolet, microwave radiometer, and laser fluorosensors (Ferraro et al.,

2009; Fingas and Brown, 2017). This dataset was inspected without data from other sensors available; therefore, the distinction

between oil spills and other possible chemical spills is not clearly defined.295

Figure 7 shows SAR scenes covering an oil slick in two separate acquisitions taken at 15:49 on 3 November 2022 and at

03:52 on 4 November 2022. Separate charts show the profiles of radar backscatter sampled along the red lines, the shadowed

areas mark the approximate locations of oil-induced dark formations. Wind speeds at 16:00 on 3 November 2022 and 04:00 on
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4 November 2022 were acquired from CMEMS (c); the corresponding average wind speeds of the shown area were 3.94 m s−1

and 3.90 m s−1, both blowing in the southeastward direction. The first acquisition shows an oil slick with apparent differences300

in backscattering compared to its surrounding areas. Though the wind conditions seemed similar, the two acquisitions had

different heading and look angles; therefore, the wind-induced signatures differed and resulted in lower overall backscattering

in the second acquisition. This example illustrates the dynamicity of an oil spill over time in SAR data and how oil properties,

ambient wind speed and direction relative to the SAR azimuth make oil slicks appear differently in SAR data.

Reports or records are usually not provided for smaller deliberate oil discharges, meaning that there is no ground truth;305

thus, inspecting oil slicks should carefully consider the possibilities of dark formations from other phenomena. The following

subsections introduce those look-alikes and provide supplementary materials to better understand the signatures.

4.2 Wind

As explained at the beginning of this section, wind is closely related to the sea surface roughness, which is a key element for

SAR signatures. Under low winds, the sea surface is smooth and calm, and the backscattering will be close to the SAR noise310

floor; therefore, the modulation of backscattering from oil slicks can not be revealed. On the other hand, if the sea surface is

too rough under high winds, oil slicks are also not possible to be indicated. Previous studies suggested optimal wind speed

ranges between 2–3 m s−1 and 7–12 m s−1 for oil slick detection using SAR (Gade et al., 2000; Robinson, 2004; Brekke and

Solberg, 2005). As the visibility of oil slicks depends on not only SAR sensors but also the age and type of the oil, the upper

and lower limits differ in different studies; this range should be considered a hint. Oil slicks can still be observed outside this315

range in some circumstances.

Some atmospheric phenomena can influence ocean surface roughness and result in certain SAR signatures; examples of

these phenomena are the atmospheric front, phenomena related to geographic features, unstable atmospheric boundary layer

(ABL), and atmospheric gravity waves (AGWs, also known as atmospheric internal waves) (Robinson, 2004). Since AGWs

form similar patterns as oceanic internal waves (OIWs), they are both explained in Subsect. 4.3.320

Sudden changes in wind speed and direction can create an atmospheric front that separates two air masses and is shown as

a boundary between weaker and stronger radar backscatter. Similar signatures of the fronts can also be seen where winds blow

from land to sea through coastal terrain. The land usually cools down during the night, but the temperature over the adjacent

sea may remain, in which case the air pressure over the land would be higher than that over the sea, resulting in the wind

blowing offshore. This cooler and denser air from the land rolls out to the sea and pushes the warm air over the sea upwards,325

creating a cold land breeze front (Robinson, 2004). Land breeze fronts usually create near-shore bands of modulated surface

roughness parallel to the coast, as shown in Figure 8. Similarly, during the night, the cool air mass from the mountains could

flow down the valley driven by the density flow; this is known as the katabatic wind. If the mountains are located in coastal

areas, the winds would blow toward the sea and spread out in a fan shape, as shown in Figure 9 (a). Figure 9 (b) indicates

the topography with mountains and valleys close to the shore in Lebanon; the terrain and bathymetry model is obtained from330

GEBCO (2023). These katabatic wind-induced signatures tend to reoccur at roughly the same places since they are related to
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Figure 8. An example of land breeze fronts in the SAR scenes taken at 03:44 on 2 August 2023 near Egypt, plotted with the simulated wind

speed at 04:00 obtain from CMEMS (c).

the topography (Robinson, 2004). Note that the bright pixels are especially distinct at the bottom part of Figure 9 (a) was due

to radio frequency interference (RFI), which will be explained in Subsect. 4.8.

Figures 8 and 9 (a) were both taken at about 03:44 UTC, which should be 06:44 local time (UTC+3, considering daylight

saving time); shortly after sunrise at about 06:03 and 06:29 local time, respectively. Land breeze and katabatic winds usu-335

ally occur during the night, when the land has cooled down a lot, and before the air warms up during the day. Based on our

experience inspecting SAR images in this area, the katabitic wind fronts are commonly observed in SAR images in the de-

scending orbit (taken at around 03:45 UTC) covering the coastal areas of Lebanon and Israel. In addition, wind shelters and

wind shadows can also appear as low radar backscatter along the coast or off an island.

Dynamics in the ABL driven by surface wind can increase surface roughness and lead to phenomena seen in SAR imagery.340

When the air is heated by a warmer sea surface, it expands and becomes less dense than the air above it. The resulting ABL

instability drives convective cells in which warm and humid air rises in updrafts and is replaced by descending cooler air. The

downflow of the cold air induces a radial outflow; coupled with the wind flow, they lead to the fluctuations of surface roughness

and form cellular patterns in SAR images (Robinson, 2004); such patterns can be observed in Figures 8 and 9 (a).
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(b) Bathymetry and terrain models

Figure 9. An example of katabatic wind-induced signatures in the SAR scenes taken at 03:43 on 24 September 2022 near Lebanon, plotted

with the simulated wind speed at 04:00 obtain from CMEMS (c).

The unstable stratification and convective instability in ABL, such as cold air outbreak over the sea, can lead to the occurrence345

of helical roll vortices, which are approximately parallel to the wind direction (Langmuir, 1938; Etling and Brown, 1993). These

helical rolls appear alternatively as the right and left helices, resulting in upward and downward flows between the rolls, which

lead to higher and lower surface roughness and are shown as dark and bright streaks in SAR (Langmuir, 1938; Robinson,

2004). These wind streaks enable the estimation of wind direction by using SAR (Lehner et al., 1998). Figure 10 presents such

wind streaks that are aligned well with the wind.350

4.3 Internal Waves in the Ocean and Atmosphere

Internal waves can occur in any stratified medium, such as fluids with varying density. In the ocean and atmosphere, two

restoring forces act on internal waves: gravity and the Coriolis force. Thus, perturbations of the vertical density gradient will

generate internal waves with frequencies between the Brunt-Väisälä frequency and the Coriolis parameter.
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Figure 10. An example of wind streaks in the SAR scene taken at 03:52 on 27 January 2023 near Egypt, plotted with the simulated wind

speed at 04:00 obtain from CMEMS (c).

The primary drivers of internal waves in the ocean are tides, closely followed by the wind. The particle motion of the355

oceanic internal waves (OIWs) produces surface convergence and divergence that modulate the short gravity and capillary

waves, resulting in amplification and attenuation of these waves, respectively. As a result, the alternating convergence and

divergence zones on the sea surface lead to patterns of bright and dark strips in SAR imagery (Alpers et al., 2008; Robinson,

2010; Alpers and Huang, 2011). Similar to the ocean, disturbances in atmospheric stratification also generate internal waves,

often referred to as atmospheric gravity waves (AGWs).360

When for example external forces push the air upward, the air gets cooler, and the water vapor saturation point is likely to

be reached, which leads to the formation of clouds. On the other hand, when the air gets warmer, water evaporates, resulting

in a clear sky. Therefore, when the moisture content of the air is sufficient and the amplitude of the AGW is large enough,

cloud streets and clear skies are expected to appear over the crests and troughs of the AGW, respectively. The variations of

wind stress at the sea surface disturb the small surface roughness and result in dark and bright strips in SAR scenes, similar to365

OIW (Alpers and Huang, 2011).

Internal waves play a crucial role in energy transport within the ocean and atmosphere. The interactions of internal waves

with itself, topography and other ocean or atmosphere dynamics are highly complex and not yet fully understood. Through

the SAR images and the identification and clustering of possible OIW and AGW signatures by the algorithm, there is now a

high number of images available, providing a better spatial and temporal resolution of the internal wave field and allowing370

for a deeper understanding of these processes. However, it can be challenging to distinguish between OIWs and AGWs in

general and within the presented dataset. Nevertheless, the shape and structure of the wave patterns provide hints for their

differentiation (Alpers and Huang, 2011), as summarized in the following. In general, OIWs are observed in low-wind areas

since otherwise their SAR signatures are too weak to be detected, especially in conditions with wind speeds greater than
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10 m s−1; contrastingly, AGWs can be observed at all wind speeds. In addition, OIWs mostly appear near an upwelling area or375

at locations where rough topography, shallow underwater ridges, sea mounts, or steep shelves are present. On the other hand,

AGWs usually appear in areas where wind interacts with mountain ranges, different air masses collide, strong wind shear

occurs, or convective activities are associated with cold fronts (e.g., thunderstorms). In the following, an example of an OIW

and an AGW is presented, along with hints on how to best distinguish between them.

Figure 11 shows the SAR scenes taken at 15:41 on 28 March 2024 at the coast of Lebanon, plotted with the contour of380

bathymetry and terrain model obtained from GEBOC (2023). The bathymetry profile along the red line is shown in a separate

chart. According to the hourly sea surface wind velocity from scatterometer and model at 16:00 on 28 March 2024 obtained

from MDS (CMEMS, c), the wind speed in this area was around 0.14 m s−1 to 1.28 m s−1 with an average of 0.51 m s−1,

which is a possible condition for OIWs to generate patterns in SAR scenes. Additionally, the slope bathymetry between points

B and C in Figure 11 reveals the probable cause of the OIWs. Therefore, the dark and bright strips in Figure 11 are more likely385

due to OIWs than AGWs. Examples of SAR images containing OIWs with similar causes, propagating from the edge of the

continental shelf, can also be found for example in Liu et al. (1998).

Figure 12 shows the SAR scenes taken at 03:52 on 27 May 2023 and a separate profile of radar backscattering along the

red line. On top of the SAR scene, the hourly sea surface wind at 04:00 on 24 May 2023 obtained from the scatterometer and

model (CMEMS, c) is plotted; the wind speed in this area was around 7.13 m s−1 to 11.09 m s−1, and the average wind speed390

was 9.24 m s−1. The higher the wind speed, the less likely it is to be OIWs; therefore, the strip patterns are more likely to

come from AGWs. Based on the consecutive scenes taken before (i.e., northern to) the shown scene, the wave patterns cover

large ocean areas, which are commonly observed in SAR scenes with AGWs (Li, 2004). In addition, streaks from AGWs are

usually approximately perpendicular to the direction of the wind (Robinson, 2004; Li, 2004) and are expected to show up as

narrow dark bands followed by broad bright bands alternatively (Alpers and Huang, 2011).395

4.4 Areas of mixing and vertical advection in the ocean

In the ocean, there are a variety of processes that can lead to mixing or vertical advection, especially near shallow topography

or the coast. In the deeper layers of the ocean, more nutrients and colder water can be found compared to the upper layers.

This means that mixing or vertical advection typically results in a colder sea surface and a vertical nutrient flux, which in turn

promotes chlorophyll growth. Mixing can be caused, for example, by the mentioned OIWs, which, like surface waves, can400

break, leading to mixing. Vertical advection typically occurs due to strong, steady winds, which create a force on the surface

layer of the sea, causing it to move in the wind direction. The Coriolis force then deflects this motion to the right in the northern

hemisphere (left in the southern hemisphere), a process called Ekman transport. This results in a 90° shift in the surface layer’s

movement. This displacement brings cooler, nutrient-rich water from deeper layers to the surface, known as upwelling, often

seen along coastlines where winds blow parallel to the shore (Robinson, 2010; Knauss and Garfield, 2016).405

Previous studies have shown areas of enhanced mixing and/or vertical advection in SAR imagery with various causes, such as

coastal parallel winds or mixing within cyclonic eddies (Clemente-Colon and Yan, 1999; Alpers and Zeng, 2021). In upwelling

regions, low backscatter in SAR imagery can be observed due to increased stability of the ABL (due to reduced wind stress
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Figure 11. An example of OIWs in the SAR scene taken at 15:40 on 28 March 2024 near Lebanon, plotted with the contour of bathymetry

obtain from GEBOC (2023). A separate chart illustrates the bathymetry profile along points A and C, sampled every 50 m.

from the lower SST), increased surface water viscosity (which enhances the dampening effect), and the presence of biogenic

surface films (see Subsect.4.6) (Clemente-Colon and Yan, 1999). In addition to these mechanisms, the surface divergence and410

convergence may also play a role (Liu et al., 2016). Previous studies provided a comprehensive explanation of the areas of

enhanced mixing or vertical advection in the Mediterranean Sea, for example Bakun and Agostini (2001). In the region of our
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Figure 12. An example of AGWs in the SAR scene taken at 03:51 on 27 May 2023 near Egypt, plotted with the sea surface wind velocity

obtain from MDS (CMEMS, c). A separate chart shows the profile of radar backscatter along the red line, sampled every 250 m.

dataset, the following areas (mostly wind-induced upwelling zones), can be found near the coast: The coastal divergent zone

on the south side of Cyprus tends to induce upwelling, especially in summer. On the other hand, the north side of Egypt is

dominated by coastal convergence with downwelling, where surface water is brought downward with the flow throughout the415

year but is most intense in winter. Along the eastern boundary of the Mediterranean Sea, the coasts of Syria, Lebanon, and

Israel, the wind generally blows eastward toward the coast. However, the slight right turnings of the wind induce some areas

of upwelling.
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Figure 13. An example of an upwelling area observed by (a) SAR at 03:51 on 19 July 2022 and the supporting materials, (b) SST and (c)

chl-a, simulated at 00:00 on 19 July 2022 (CMEMS, a; CMEMS, b).
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Figure 13 (a) shows SAR scenes covering Cyprus at 03:51 on 19 July 2022 and illustrates a possible coastal upwelling

area above the red dashed line. As suggested in Alpers and Zeng (2021), SST and chl-a data can be used to help indicate420

upwelling areas; Figures 13 (b) and 13 (c) present the corresponding data at 00:00 on 19 July 2022 obtained from the SST MDS

(CMEMS, a; Buongiorno Nardelli et al., 2013) and chl-a MDS (CMEMS, b; Berthon and Zibordi, 2004; Volpe et al., 2019).

The lower SST and higher chl-a concentration indicate the possible upwelling area, which aligns well with the dark formation

shown in the SAR scene.

4.5 Meso- and Submesoscale Eddies425

Mesoscale eddies (the prefix “meso” means “intermediate”) describe features with radii of about 10 to 200 km and a lifetime

of a few days to one year or even longer (Chelton et al., 2007). Submesoscale is defined as slightly smaller than the mesoscale,

with horizontal scales of 100 m to 10 km (or less than the first baroclinic mode Rossby radius of deformation (Rd)), vertical

scales smaller than the depth of the main pycnocline and a life- time of one day (McWilliams and Molemaker, 2011; Lévy

et al., 2012).430

Despite a long history in studies of eddy activity, various aspects regarding processes and impacts of meso- and submesoscale

eddies still remain unclear. One difficulty in the past and still today is the acquisition of a sufficient database to study these

short-lived and small-scale phenomena, especially in in the submesoscale regime. Satellite radar altimeter observes sea surface

height (SSH); the difference between SSH and mean sea surface is known as sea surface height anomaly (SSHA), indicating the

small displacement of sea surface elevation due to mesoscale eddies. For example, in anticyclonic eddies, the core is less dense435

(warm core) and has a high SSHA. On the contrary, in cyclonic eddies, the SSHA is lower and the density in the core is higher

than in the surrounding area. Chlorophyll, suspended particulates, or other optically reflective materials in the water can reveal

the motion in the visible channels (Robinson, 2010). In practice, an altimeter is commonly used for monitoring mesoscale

eddies (Alpers et al., 2013), whereas submesoscale eddies are observed with infrared and optical sensors or SAR (Alpers et al.,

2014). As the sea surface roughness could be modulated by eddies, SAR can also manifest signatures of eddies on an even440

smaller scale. Eddies can result in areas of surface convergence and divergence, which under moderate wind conditions appear

as bright and dark lines in SAR images (Robinson, 2010). In addition, surface films tend to accumulate along the current shear

in eddies. These films can dampen capillary waves and, in this way, enhance SAR signatures of the spiraling shear lines. They

are sometimes regarded as “black” eddies in literature; on the other hand, “white” eddies refer to bright curved lines from

eddies interacting with waves and current along the shear line at high wind speeds ranged between 7 and 12 m s−1 (Karimova445

and Gade, 2013).

Pegliasco et al. (2021) provided mesoscale eddy detection and tracking methods in the Mediterranean Sea based on products

from radar altimeter data from 2000 to 2015 and gave an overview of eddy occurrence in the Mediterranean Sea; the Levantine

basin is dominated by anticyclone eddies (warm core rings), which last longer than six months. In the southeastern Levantine

basin, SAR observations indicated that the recurrent Cyprus and Shikmona eddies, located south of Cyprus at around 34° N and450

west and east of 33.5° E, respectively, are dominant (Zodiatis et al., 2005; Gertman et al., 2007; Menna et al., 2012). However,

the area is quite complex with cyclonic and anticyclonic eddies interacting with the alongshore cyclonic current and with each
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Figure 14. An example of mesoscale eddies observed by SAR at 03:52 on 29 September 2022. The right figure shows the zoomed-in area

marked in blue in the left figure.

other (Gertman et al., 2007; Menna et al., 2012). Figure 14 illustrates such an example of mesoscale eddies forming spiral

lines; the SAR scene was taken at 03:52 on 29 September 2022.

4.6 Biogenic Surface Film455

There are two types of biogenic surface films that can reduce radar backscatter. Surface active organic molecules with hy-

drophobic and hydrophilic parts can form a molecular monolayer at the sea surface. The surface waves compress and dilate the

molecular monolayer, leading to surface tension and surface potential gradients and thus generating the longitudinal Marangoni

waves. The interaction of these waves and the transverse gravity capillary waves can result in Marangoni damping and reduce

the radar backscattering (Hühnerfuss, 2006; Alpers et al., 2017). These surfactants usually originate from the wastewater or460

remnants of organisms in the water. Another type of biofilm consists of a much thicker layer with a high concentration of

viscous floating materials such as phytoplankton, e.g., Sargassum and cyanobacteria (Qi et al., 2022). The accumulation of

these floating materials decreases the surface tension of the water and dampens the gravity and capillary waves; this effect is

similar to the effect of oil discussed in Subsect. 4.1.
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Marine phytoplankton are ubiquitous in the sunlit layer of the oceans as they obtain energy through photosynthesis. Satellite-465

based studies have shown that the Mediterranean Sea generally has low chl-a concentration (a useful proxy for phytoplankton

biomass), with concentrations often less than 0.2 mg m−3 with the exception of some blooming areas in the late winter and

early spring (Siokou-Frangou et al., 2010). The overall chl-a concentration from satellite and in situ data shows a decline in the

trends of west-to-east and north-to-south over the Mediterranean Sea (Siokou-Frangou et al., 2010). Even in blooming seasons,

the chl-a concentration was rarely greater than 0.5 mg m−3 in the Eastern Mediterranean Sea (Siokou-Frangou et al., 2010),470

and similar concentrations have been reported from time-series in the Northwestern Mediterranean sea (von Jackowski et al.,

2024).

Under a light wind condition, the convergent surface currents accumulate surface films (e.g. algae) along the current shear

in fronts and eddies (Gade et al., 2013); these films can dampen the short gravity capillary waves and reduce SAR backscatter.

On the other hand, the divergent surface currents make the films less concentrated and the dampening effect is less pro-475

nounced (Robinson, 2004). The chl-a concentration at the corresponding time and location of Figure 14 had a maximum of

0.059 mg m−3 and an average of 0.010 mg m−3 (CMEMS, b), which suggests that the spiral patterns of eddies in Figure 14

were not due to accumulations of surface films. It is possible that the patterns were enhanced by a molecular monolayer, but

this can not be confirmed without in situ water samples.

4.7 Rain cell480

The rain-induced SAR signatures are contributed by a combination of surface scattering, volume scattering and attenuation

of radar pulse. Modulations of the sea surface roughness can come from several causes related to the rainfall. The impinging

rain drops can either dampen or roughen the sea surface, leading to strong or weak backscattering. In addition, splash products

from rain drops can cause scattering. Rain cells usually produce downward airflows (i.e., downdraft), which roughen the

sea surface (Alpers et al., 2016). However, splash products from rain drops cause scattering and behind where the rain cell485

dropped on the sea surface in the direction of wind, the wave is damped (Atlas, 1994). Figure 15 shows such an example of

rain cell associated with downdraft, which roughened the sea surface and was shown as bright elliptical area. On top of that,

hydrometeors also play important roles in the SAR signatures as they can cause volume scattering and attenuation of the radar

pulse, which strengthen and weaken the radar backscattering, respectively. (Danklmayer et al., 2009; Alpers et al., 2016) At C-

band, radar signatures for rain are complicated as the decrease or increase of the radar backscatter relative to the background is490

related to rain rate, wind speed, incidence angle, and time evolution of the rain event (Alpers et al., 2016). For low to moderate

high rain rate (smaller than 50 mm hr−1), the attenuation is negligible; for heavier rain, the attenuation can be greater than

1 dB (Lin et al., 2001).

Figure 16 (a) shows a SAR scene covering the Israeli coast taken at 03:42 on 24 January 2018. The bright patches, located

5.5 km to 15 km away from the coast and quasi-parallel to it, indicate possible rain-induced signatures. To get an idea of the495

weather conditions in this region, daily and 10-minute rainfall measurements from the four coastal rain stations were obtained

from the Israel Meteorological Service (Ministry of Transport and Road Safety, Israel). The locations of these stations are

plotted in Figure 16 (a), and their daily rainfall measurements on 24 January (one day in Israel time, UTC+2) are written in
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Figure 15. An example of a rain cell with downdraft patterns observed by SAR at 03:43 on 18 October 2022.

brackets. Though the automated 10-minute rainfall data tend to underestimate the rainfall in major events, they provide an

overview of rainfall distribution for the day; Figure 16 (a) illustrates the 10-minute rainfall data from 00:00 to 07:00 on 24500

January (UTC). The Hadera Port, Tel Aviv coast, and Ashdod Port stations all reported some rainfall between 02:30 and 05:30.

As the rain stations are not directly at the location of rain cells observed from SAR, rainfall at the coasts could be delayed or

earlier than rainfall at the water.

4.8 Others

This section has explained oil slick and a variety of ocean and atmospheric phenomena as origins of SAR signatures. However,505

wakes and radio frequency interference (RFI), which are related to human activities, also cause remarkable SAR signatures.

The following illustrates examples of those signatures, and related literature is provided to help users better understand them.

Moving vessels left tracks in the water as wakes; their structures can be categorized as surface waves (narrow-V wakes

and Kelvin wake), turbulent wakes or vortices, and internal waves (Lyden et al., 1988). Although ships can be observed as

bright patches in SAR image, ship wake patterns can provide further information such as size, direction, and speed (Rey510

et al., 1990); therefore, several previous studies focused on detection of ship wakes in SAR images (Lyden et al., 1988; Rey

et al., 1990; Shemdin, 1990; Copeland et al., 1995; Graziano et al., 2017; Tings et al., 2023). Figure 17 shows a SAR scene

taken at 03:52 on 18 October 2023 near the Port Said off the Egyptian coast. The bright pixels aligned in the south and north

directions in the middle of the figure show vessels, along with dark linear features attached to them, which were likely due to

wakes. Previous studies also pointed out that wakes from offshore wind turbines could form similar dark formations in SAR515
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Figure 16. An example of rain cells observed by SAR at 03:42 on 24 January 2018, along with (a) daily and (b) 10-minute rainfall data

obtained from the Israel Meteorological Service (Ministry of Transport and Road Safety, Israel).

images (Christiansen and Hasager, 2005; Li and Lehner, 2013; Ahsbahs et al., 2020); however, they were not commonly seen

in this study area.
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Figure 17. An example of ship wakes observed in a SAR scene taken at 03:52 on 18 October 2023 near the Port Said.

As SAR is active radar, other radio services (such as communication systems, television networks, surveillance radars for

air traffic control, military facilities, meteorological radars, and other spaceborne SAR sensors) with their transmitters on the

same or adjacent frequency band to SAR could result in RFI, which usually appear as bright linear signatures in SAR (see520

Figure 18). Several previous studies discussed the influence of those RFI on different frequency bands and proposed removal

methods (Miller et al., 1997; Rosen et al., 2008; Meyer et al., 2013; Natsuaki et al., 2017; Monti-Guarnieri et al., 2017;

Franceschi et al., 2021). Thanks to researchers working on the detecting and identifying RFI in Sentinel-1 data, the operational

RFI detection and mitigation was activated in the SAR processor on 23 March 2022 (Franceschi et al., 2022; Hajduch et al.,

2022). In other words, since then, Sentinel-1 Level-1 data has been produced under consideration of RFI mitigation. However,525

readers should keep the effect of RFI in mind as they might still find some data with certain RFI not being mitigated; such

examples are shown in Figure 19.
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Figure 18. An example of RFI observed in a SAR scene taken at 03:43 on 21 October 2018, along with some rain cell signatures.
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Figure 19. An example of RFI observed in a SAR scene taken at 03:52 on 24 September 2023; the RFI was not detected and mitigated by

the SAR processor.
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Table 3. List of Sentinel-1 scenes used as examples provided in Sect. 4, along with their corresponding supplementary data.

Fig. Signature
Start Date & Time

(YYYY-MM-DD hh:mm:ss)

Abs.

orbit

Mission

ID

Product

ID
Supplementary Data

7 (a) Oil slick 2022-11-03 15:49:28 045732 057835 D069

7 (b) Oil slick 2022-11-04 03:52:42 045739 057870 6C96

8 Wind 2023-08-02 03:44:34

03:44:59

049691 05F9AE 7321

D5EB

• Sea surface wind velocity (CMEMS, c)

9 (a) Wind 2022-09-24 03:43:41

03:44:06

045141 056512 74D8

F1AB

•

•

Sea surface wind velocity (CMEMS, c)

Bathymetry and terrain chart (GEBCO, 2023)

10 Wind 2023-01-27 03:52:39 046964 05A1FB 3A5D • Sea surface wind velocity (CMEMS, c)

11 OIW 2024-03-28 15:41:26

15:41:51

053184 0671A3 05B8

B6E5

•

•

Bathymetry and terrain chart (GEBCO, 2023)

Sea surface wind velocity (CMEMS, c)

12 AGW 2023-05-27 03:52:16

03:52:41

048714 05D8D7 EF08

2FEB

• Sea surface wind velocity (CMEMS, c)

13 Upwelling 2022-07-19 03:51:49

03:52:14

044164 054582 CAE1

A085

•

•

SST (CMEMS, a)

chl-a concentration (CMEMS, b)

14 Eddies 2022-09-29 03:52:17

03:52:42

045214 056776 5889

04BC

15 Rain cell 2022-10-18 03:43:42

03:44:07

045491 057070 3FB9

DC74

16 Rain cell 2018-01-24 03:43:41

03:44:06

020291 022A5B C066

A779

• Rainfall observation

(Ministry of Transport and Road Safety, Israel)

17 Wakes 2023-10-18 03:52:47 050814 061FD2 6D11

18 RFI 2018-10-21 03:43:02 013245 0187C4 ABBF

19 RFI 2023-09-24 03:52:47 050464 0613CC CF0D

4.9 Example List

This subsection lists all Sentinel-1 SAR scenes used in the examples provided in this section. Some of the signatures covered

a larger area than how they are shown in the paper; however, if readers wish to see the original SAR scenes, the information530

provided in Table 3 should be enough for obtaining them from the Copernicus Data Space Ecosystem. In addition, the corre-

sponding supplementary materials used in the explanations are also listed; however, users should not limit themselves to the

selection of supplementary data.
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5 Usage Notes

5.1 Performance Evaluation535

To make it possible for users who wish to compare their model performance with other studies, the performance of a custom-

trained object detector from a previous study (Yang et al., 2024) was evaluated and is shown in this subsection. The performance

on image patches with and without oil objects (i.e. oil set and no-oil set) are evaluated separately. In the following, the annota-

tions from this published dataset are regarded as ground truth and abbreviated to gt. However, it shall be noted that even though

the authors who prepared the dataset tried to avoid human errors, these annotations might still include false annotations. Note540

that this data descriptor is not intended to have a comprehensive discussion on the performance; therefore, this subsection only

shows the measures, but readers can refer to Yang et al. (2024) for interpretation of the results.

For performance evaluation of object detection algorithms, intersection over union (IoU) is commonly used to indicate how

accurate the detection (or prediction, which is a common term used in the object detection field) is compared to the ground

truth and is defined as (Everingham et al., 2010):545

IoU =
area(Bp ∩Bg)
area(Bp ∪Bg)

, (3)

where Bp ∩Bg and Bp ∪Bg refer to the intersection and union of the bounding boxes of the prediction (Bp) and the ground

truth (Bg), respectively.

Based on IoU, the detections can be categorized as true positives (TP) or false positives (FP). TP shows the detections

intersecting with the ground truth and with their IoU greater than a given threshold. On the other hand, FP shows the detections550

with no intersection with the ground truth, or their IoU values are smaller than the threshold. If we change the perspective

and focus on ground truths, TP and false negatives (FN) are used, showing the ground truths with and without corresponding

detections, respectively. The definition of one oil object might differ between ground truths and detections for some complicated

cases, resulting in more than one detection referring to one ground truth. Therefore, the numbers of TP for detections and

ground truths might differ; in the following, they are referred to as TP (detn) and TP (gt), respectively. To easily focus on the555

negative results of the models, the false discovery rate (FDR) and false negative rate (FNR) are provided, they are defined as

follows:

FDR =
FP

TP(detn) + FP
,

FNR =
FN

TP(gt) + FN
. (4)

Table 4 shows the performance of the two models applied to a near real-time automated oil spill detection and early warning

system that claimed to perform well in a previous study (Yang et al., 2024). Thresholds for filtering out the objects which have560

low confidence scores and IoU were applied. Note that due to different image patches used in the performance evaluation and

a slightly different way of calculation, these numbers differ from those shown in the paper.

Regarding the performance on the no-oil set, as there are no objects inside, the measures for object detection algorithms are

not appropriate. Here, image patches are simply marked as two categories, one with no detections inside and another with one
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Table 4. Performance evaluation of the models from a previous study (Yang et al., 2024) on the oil set.

Model Subset # img # gt # detn # TP # FP # FN FDR[%] FNR[%]

(gt) (detn)

YODA-enh (a) ow 990 2284 1029 1154 1023 6 1249 0.58 51.98

oc 392 941 344 353 296 48 623 13.95 63.83

(b) ow 990 2284 468 515 468 0 1782 0.00 77.58

oc 392 941 137 148 130 7 798 5.11 84.36

(c) ow 990 2284 468 426 425 43 1858 9.19 81.35

oc 392 941 137 125 125 12 816 8.76 86.72

YODA-enh-aug1 (a) ow 990 2284 787 1487 787 0 877 0.00 37.10

oc 392 941 147 296 146 1 655 0.68 68.87

(b) ow 990 2284 318 520 318 0 1765 0.00 77.24

oc 392 941 55 101 55 0 842 0.00 89.29

(c) ow 990 2284 318 42 42 276 2242 86.79 98.16

oc 392 941 55 18 18 37 923 67.27 98.09

(a) thresscore = 0.0, thresIoU = 0.0; (b) thresscore = 0.5, thresIoU = 0.0; (c) thresscore = 0.5, thresIoU = 0.5

or more detections inside. The former shows that the detector performs well and is not confused by the look-alikes. The latter565

indicates that the detector can be confused with specific signatures inside the image patches. Figure 20 shows the results of the

two models on the no-oil set with different confidence score thresholds.

5.2 Technical Notes

There are some additional technical notes for the users:

– The annotation of the objects follows the Pascal VOC XML format; users who have their labels in different annotation570

format, should carefully convert the labels into the format they used. A Python 3 function for converting from XML

format to YOLO format is provided as a reference in Appendix A.

– The published dataset has only one class (i.e. oil) objects; if users have different definitions of classes in their work, they

would have to make sure the performance evaluation is still valid.

– For studies focusing on different study areas, the sources of oil slicks and geographic settings might be different from575

the dataset and, therefore, result in poor performance. However, it could help understand how one local model performs

in a different area and lead to further discussion.

– Even though the authors aim to provide a published dataset as a test set for comparing models with different studies,

users can also use the dataset to (further) train their algorithms.
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Figure 20. Numbers of image patches in the no-oil set that the models return detections (in red) and without any detection (in blue).
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– Users are encouraged to check the dataset themselves and adjust the labels when they do not fit the “style” of annotations580

from the users. Python 3 functions for plotting image patches along with their annotations into JPG are provided as

references in Appendix A.

6 Summary

This data descriptor presents a dataset containing oil slicks, look-alikes, and other notable ocean phenomena, collected for

the purpose of SAR image analysis. It provides explanations and examples of various ocean SAR signatures, supported by585

supplementary materials, to help users better understand the sources of these signatures.

The descriptor also includes a performance evaluation of a model from a previous study (Yang et al., 2024), which was

tested on this dataset. This allows users who have trained their own oil spill detectors to compare their model performance with

other studies. Additionally, the dataset is a valuable resource for newcomers to the oil slick detection community, providing a

ready-made dataset for starting their work.590

Recent research in SAR oil spill detection has increasingly focused on machine learning techniques. Given the diverse

backgrounds of researchers in this field—ranging from remote sensing and machine learning to oceanography—this data

descriptor aims to bridge the knowledge gap for those less familiar with oceanographic concepts. Readers are encouraged to

consult specialized textbooks on SAR signal processing (Woodhouse, 2006), physical oceanography (Knauss and Garfield,

2016), and SAR oceanography (Robinson, 1983, 2004, 2010) for more comprehensive explanations.595

7 Data availability

The dataset with oil slicks, look-alikes, and other remarkable phenomena covering the Eastern Mediterranean Sea in 2019 can

be accessed through PANGAEA via https://doi.pangaea.de/10.1594/PANGAEA.980773 (Yang and Singha, 2025). The image

patches are normalized to 0–255 and saved in an 8-bit JPG format. The oil annotations are in Pascal VOC XML format. A data

table recording the Sentinel-1 ID of all the image patches inside the dataset is also provided; therefore, the original Sentinel-1600

products can be downloaded via the Copernicus Data Space Ecosystem.

Appendix A: Python code

This appendix provides some Python 3 functions to help users quickly get along with the dataset. A function for converting

Pascal VOC XML format into YOLO format is provided as follows:
605

def xml2yolo(img_width, img_height, bbox):

xmin, xmax, ymin, ymax = bbox

dw = 1.0/img_width

dh = 1.0/img_height

x_center = ((xmin+xmax)/2.0)*dw610

y_center = ((ymin+ymax)/2.0)*dh
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w = (xmax-xmin)*dw

h = (ymax-ymin)*dh

return [x_center, y_center, w, h]615

Functions for plotting image patch along with its annotations into a JPG image:

import xml.etree.ElementTree as ET

from PIL import Image, ImageDraw

620

def load_xml(xml):

tree = ET.parse(xml)

root = tree.getroot()

# Save object positions625

list_bbox = []

for obj in root.findall("object"):

bbox = obj.find("bndbox")

list_bbox.append([

int(bbox.find("xmin").text),630

int(bbox.find("ymin").text),

int(bbox.find("xmax").text),

int(bbox.find("ymax").text)

])

return list_bbox635

def plot_patch_label(img_file, img_out, xml):

# Load annotations and image patch

list_bbox = load_xml(xml)

img = Image.open(img_file)640

# Plot annotations

img_ann = ImageDraw.Draw(img)

for bbox in list_bbox:

img_ann.rectangle(bbox,645

fill=None, outline=255,

width=2)

# Resize image

w, h = img.size650

if w > 640 or h > 640:

img = img.resize(

(640,640), Image.LANCZOS)

# Save image655

img.save(img_out)

36

https://doi.org/10.5194/essd-2025-208
Preprint. Discussion started: 16 April 2025
c© Author(s) 2025. CC BY 4.0 License.



Appendix B: Data Table

Subsect. 2.2 provides explanations on how the dataset is organized and how their information is stored in the data table. To ex-

plain better and provide information about the image patches shown in this article, the data information of those image patches660

is extracted and displayed in the following tables; the original data table can be found in the published dataset. Tables A1 and

A3 show the patch names, patch dimensions, and corner coordinates of the patches in the WGS84 geocentric coordinate sys-

tem. Tables A2 and A4 are continuous from Tables A1 and A3, respectively, showing the product start and stop date time and

the product ID. Table A5 contains the object information, including corner coordinates of the objects in the WGS84 geocentric

coordinate system, object positions referring to the corresponding image patches along the range and azimuth direction, and the665

bounding box size in pixels. Tables A1 and A3 record the information of image patches from no-oil set, which are mentioned

in Figures 2 and 6. On the other hand, Tables A3, A4, and A5 indicate the information of image patches from oil set, which are

mentioned in Figure 5.
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