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Abstract. Precipitation is a critical driver of the water cycle, profoundly influencing water resources, agricultural 

productivity, and natural disasters. However, existing gridded precipitation datasets exhibit markable deficiencies in 

capturing the spatiotemporal and physical correlations of precipitation, which limits their accuracy, particularly in regions 15 

with sparse meteorological stations. Therefore, this study proposes a completely new gridded precipitation generation 

scheme to address these issues. The long-term daily observation from 3,476 gauges and incorporated 11 related precipitation 

variables were utilized to characterize the correlations of precipitation. By employing an improved inverse distance 

weighting method combined with the machine learning-based light gradient boosting machine (LGBM) algorithm, a new 

high-precision, long-term, daily gridded precipitation dataset for mainland China (CHM_PRE V2) was developed, which 20 

aims to improve upon and surpass the CHM_PRE V1 dataset, developed in our previous work. Validation against 63,397 

high-density gauges demonstrated that CHM_PRE V2 significantly outperforms existing datasets, achieving a mean absolute 

error of 1.48 mm/day and a Kling-Gupta efficiency of 0.88, representing improvements of 12.84% and 12.86%, respectively, 

compared to the previously optimal dataset. Regarding precipitation event detection, CHM_PRE V2 achieved a Heidke skill 

score of 0.68 and a false alarm ratio of 0.24, surpassing other datasets by 17.24% and 29.17%, respectively. Feature 25 

importance analysis revealed that spatiotemporal and physical correlations contributed 37.10%, 34.11%, and 28.78% to 

precipitation retrieval, underscoring the necessity of incorporating temporal and physical correlations. CHM_PRE V2 

markedly enhances precipitation measurement accuracy, reduces overestimation of precipitation events, and provides a 

reliable foundation for hydrological modelling and climate assessments. This dataset features a resolution of 0.1°, spans from 

1960 to 2023, and will be updated annually. Free access to the dataset can be found at 30 

https://doi.org/10.5281/zenodo.14632157 (Hu and Miao, 2025). 
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1 Introduction 

Precipitation serves as the pivotal factor driving the water cycle, directly influencing the distribution and variability of water 

resources, agricultural productivity, ecosystem health, and the occurrence and progression of natural disasters (Ham et al., 

2023; Sun et al., 2018; Zhang et al., 2017). At regional and global scales, gridded precipitation datasets provide detailed 35 

spatial resolution and temporal continuity, making them fundamental in hydrological and climate sciences and disaster 

forecasting (Qiu et al., 2024; Sun et al., 2021; Xiong et al., 2024). However, due to the high spatiotemporal variability of 

precipitation and the complexity of observation conditions, generating high-precision gridded precipitation data remains a 

formidable challenge (Jiang et al., 2023). 

In China, various types of precipitation datasets have been extensively utilized in research, encompassing products derived 40 

from data assimilation techniques, remote sensing techniques, and gauge-based interpolation techniques. Precipitation data 

derived from data assimilation (Gelaro et al., 2017; Hersbach et al., 2020; Rodell et al., 2004) integrate meteorological 

models with observational data to provide highly consistent datasets. However, their accuracy is often constrained by the 

physical parameterization schemes of the models. Remote sensing-based precipitation datasets (Ashouri et al., 2015; 

Huffman et al., 2007, 2015; Kubota et al., 2020) offer global or regional precipitation distributions via satellite observations, 45 

ensuring extensive spatial coverage. Nonetheless, their precision is limited by data resolution and satellite orbital constraints, 

particularly in regions with complex terrain and high latitudes. Precipitation gauges, as the most direct and accurate tools for 

measuring precipitation, allow for gridded precipitation datasets generated through interpolation, effectively capturing the 

localized characteristics of precipitation with high accuracy (Harris et al., 2020; He et al., 2020; Qin et al., 2022; Shen et al., 

2010; Wu and Gao, 2013; Xie et al., 2007). Our previous study also developed a gridded precipitation dataset for mainland 50 

China (a member of the China Hydro-Meteorology datasets, hereinafter called CHM_PRE V1) based on interpolation 

method, using data from 2,839 gauges. The CHM_PRE V1 demonstrates overall high accuracy across mainland China (Han 

et al., 2023), and has received widespread attention and extensive use, benefiting a large number of hydro meteorological 

related studies. However, interpolation-based precipitation datasets rely heavily on ground meteorological gauges, 

performing poorly in areas with sparse station distribution or missing data. 55 

In summary, while existing precipitation datasets partially fulfil the requirements of various applications, they exhibit 

significant limitations. Precipitation exhibits spatiotemporal autocorrelation and physical correlation. The spatial correlation 

of precipitation indicates a strong interdependence between the precipitation of a given area and its surrounding regions 

(Chen et al., 2010, 2016; Fan et al., 2021; Huff and Shipp, 1969), forming the foundation of gauge-based precipitation 

interpolation. Moreover, current precipitation are also correlated with historical precipitation data and other relevant physical 60 

variables, such as elevation, cloud cover, and soil moisture, that is, the temporal and physical correlations of precipitation 

(Adler et al., 2008; Ham et al., 2023; Ravuri et al., 2021; Trucco et al., 2023). However, current precipitation datasets often 

account for either spatial correlations (especially those based on interpolation) or physical correlations (notably remote 

sensing and data assimilation datasets), but rarely both. This lack of comprehensive consideration for multiple correlations 
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constrains the accuracy of these datasets, particularly in regions with sparse meteorological stations, such as western China 65 

(Jiang et al., 2023). Moreover, existing methods tend to generate excessive minor precipitation, leading to an overestimation 

of precipitation events, which will have considerable impacts on hydrologic modelling (Dong et al., 2020; Kang et al., 2024; 

Wei et al., 2022). 

To address the aforementioned issues, based on the CHM_PRE V1 proposed by our previous work (Han et al., 2023), this 

study introduces a new high-precision, long-term daily gridded precipitation dataset for mainland China (a member of the 70 

China Hydro-Meteorology datasets, hereinafter called CHM_PRE V2). By integrating precipitation gauges, remote sensing 

observations, land surface assimilation outputs, and various precipitation-related factors, we employ advanced spatial 

interpolation and machine learning algorithms to model the spatiotemporal and physical correlations of precipitation data. As 

a result, we obtain a high-accuracy gridded dataset that covers the entire mainland China (18°N–54°N, 72°E–136°E) with a 

resolution of 0.1°. The dataset spans the period from 1960 to 2023 and will be updated annually. CHM_PRE V2 not only 75 

enhances the accuracy of precipitation measurements but also significantly reduces overestimations of precipitation events, 

The high-precision gridded precipitation dataset can reduce the uncertainty in hydrological modelling and analysis, 

providing a more reliable foundation for hydrologic and climatological studies. 

2 Data 

The CHM_PRE V2 dataset was constructed based on extensive precipitation observations and incorporates a wealth of 80 

additional related data to characterize the spatiotemporal and physical correlations of precipitation. This approach aims to 

maximize the accuracy of precipitation data, particularly in regions with sparse observational coverage. Figure 1 illustrates 

details of the various datasets employed in precipitation retrieval, including the names of the datasets, their original spatial 

and temporal resolutions, and the time spans covered. A total of 16 datasets across 11 categories were utilized, all of these 

datasets can be categorized into three groups: spatially correlated datasets (encompassing four datasets), physically 85 

correlated datasets (encompassing nine datasets), and temporally correlated datasets (encompassing three datasets). In 

addition, the CHM_PRE V2 dataset is designed to represent precipitation characteristics across mainland China, excluding 

Taiwan, Hong Kong, Macau, and other Chinese islands. Next, we will provide a detailed introduction to the data used for 

retrieval. 

https://doi.org/10.5194/essd-2025-20
Preprint. Discussion started: 12 February 2025
c© Author(s) 2025. CC BY 4.0 License.



4 
 

  90 

Figure 1. The data used for precipitation retrieval. 

2.1 Spatiotemporal correlated data 

The spatial correlation of precipitation was characterized using location information (latitude and longitude) along with 

precipitation gauge data. The daily precipitation gauge data sourced from China Meteorological Administration (CMA, 

http://data.cma.cn) spans the entirety of mainland China, encompassing records from 2,816 stations between 1960 and 2023. 95 

Daily precipitation is defined as the cumulative precipitation recorded between 20:00 on one day and 20:00 on the following 

day (local time in Beijing), with all data subjected to rigorous quality control (Zhang et al., 2020). To mitigate the limit of 
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boundary effects (Ahrens, 2006), the Global Historical Climatology Network-Daily Version 3 (GHCND) dataset was 

employed to obtain precipitation gauges near mainland China. The GHCND is a reliable and globally comprehensive climate 

dataset, and maintained by the National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric 100 

Administration (NOAA) (Durre et al., 2008, 2010; Menne et al., 2012). The dataset was sourced from NOAA 

(https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily) on September 11, 2024. 

To ensure data quality, only stations with more than 70% effective days (over 255 days) in a year were included in the 

retrieval. Figure 2(a) illustrates the locations of observation stations, and Figure 2(b) shows the annual availability of CMA 

and GHCND stations. It is evident that the number of available CMA stations increased from 1,992 in 1960 to 2,767 in 2023. 105 

In contrast, the number of accessible GHCND stations in the region declined from 674 in 1960 to 264 in 2023. 

Regarding the temporal correlation of precipitation, we analysed from two perspectives: overall characteristics and short-

term precipitation characteristics. The total precipitation of the current month and year were used to represent the overall 

precipitation characteristics. The daily precipitation values from the past five days were considered as the short-term 

precipitation characteristics, with each day’s precipitation from the past first to the past fifth day serving as five distinct 110 

variables. For example, the variable named “1st-day prior Prec.” means the precipitation of the from the 1st day ago 

compared to the current date, and “5th-day prior Prec.” means the precipitation of the 5th day ago. 

2.2 Physically correlated data 

The Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) dataset was utilized to characterize the 

influence of elevation on precipitation and to generate slope data. In this study, we used the SRTM DEM V4 acquired from 115 

Consortium for Spatial Information, Consultative Group for International Agricultural Research (CGIAR-CSI, 

https://srtm.csi.cgiar.org/) on August 8, 2024 with a spatial resolution of 3 arc-seconds (approximately 90 meters near the 

equator). The SRTM DEM V4 generated based on National Aeronautics and Space Administration (NASA) SRTM DEM 

V1, and has undergone post-processing of the NASA data to “fill in” the no data voids, such as water bodies (lakes and 

rivers), areas with snow cover and in mountainous regions (e.g., the Himalayas), resulting in seamless elevation for the globe. 120 

The Global Satellite Mapping of Precipitation (GSMaP) V8 (Kubota et al., 2020) and the Precipitation Estimation from 

Remotely Sensed Information using Artificial Neural Networks (PERSIANN-CDR) (Ashouri et al., 2015) datasets were used 

as the remote sensing-based precipitation data. GSMaP data spans from 1998 to the present, featuring a spatial resolution of 

0.1° and a temporal resolution of one hour. We acquired the GSMaP data from Japan Aerospace Exploration Agency (JAXA, 

https://sharaku.eorc.jaxa.jp) on September 9, 2024, and used the data from 1998 to 2023. PERSIANN-CDR data spans from 125 

1983 to the present, and the data from 1983 to 1997 was used for the retrieval. 

The precipitation and soil moisture from Global Land Data Assimilation System Noah Land Surface Model (GLDAS NOAH) 

(Rodell et al., 2004) were also used for the retrieval. The data spans from 1960 to 1999 and the data spans from 2000 to 2023 

were acquired from the GLDAS Noah L4 V2.0 and GLDAS Noah L4 V2.1 datasets. The NOAA Climate Data Record (CDR) 
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of AVHRR Normalized Difference Vegetation Index (NDVI) (Vermote and NOAA CDR Program, 2019) was utilized to 130 

depict the vegetation characteristics, and the data from 1981 to 2023 was used. 

2.3 Other datasets 

To verify the reliability of the proposed CHM_PRE V2, we compared it with five existing gridded precipitation datasets. 

These datasets include GSMaP, PERSIANN-CDR, and GLDAS precipitation datasets, as mentioned above. Additionally, 

CHM_PRE V1 (Han et al., 2023), previously developed by our team, and the Integrated Multi-satellitE Retrievals for GPM 135 

(IMERG) Final L3 V7 precipitation dataset (Huffman et al., 2023) were also included in the comparison. Details of the 

original spatiotemporal resolution and accessible time span of these datasets are provided in Table S1 in the supplementary 

materials. All datasets were resampled to daily values at a resolution of 0.1°. To ensure a fair comparison, the analysis 

focused on the period from 2001 to 2022, during which all datasets were available. 

To further validate the reliability of precipitation data, we obtained daily precipitation observations from 72,901 high-density 140 

automatic rain gauge stations across mainland China (hereafter we refer to it as CMD-HD), provided by the National 

Meteorological Information Center of CMA (Li et al., 2018). The data spans the period from 2013 to 2019, and we got 

63,397 available stations after quality control and annual integrity control. Figure 2(c) illustrates the number of CHM-HD 

stations within each 0.1° grid cell. The dataset demonstrates high station density throughout the eastern region, while 

maintaining basic coverage in the northwest and Tibetan Plateau areas. This extensive distribution ensures the validation 145 

results based on this dataset are highly reliable. Additionally, to examine the dataset’s performance across various regions, 

we adopted the climatic regionalization scheme proposed by Ren et al.(1985), dividing China into seven distinct regions 

shown in Figure 2(d): North East China (NEC), North China (NC), South and Central China (SCC), Inner Mongolia (IM), 

North West China (NWC), South West China (SWC) and Qinghai-Tibet Plateau (QT). 

 150 
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Figure 2. (a) locations of CMA and GHCND stations used for precipitation retrieval; (b) the numbers of annual availability of 
precipitation stations; (c) locations of CMA-HD stations used for validation; (d) climatic regions. 

3 Methodology 

The generation of CHM_PRE V2 can be divided into three stages: data preprocessing, precipitation interpolation based on 155 

spatial correlations, and precipitation retrieval based on spatiotemporal and physical correlations. Figure 3 depicts the 

detailed steps involved in creating the dataset, which we will now introduce step by step. 
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Figure 3. The flowchart for dataset generation. 

3.1 Data Preprocessing 160 

Data preprocessing consists of two main components: gauge data preprocessing and gridded data preprocessing. Initially, we 

performed quality control on the CMA and GHCND gauge data and excluded stations outside the region of interest. The 

latitude and longitude range of primary interest to us in mainland China spans approximately 18°N to 54°N and 72°E to 

136°E. However, to mitigate boundary effects, we have extended the area of interest outward by roughly 3°, defining it as 

15°N to 57°N and 70°E to 140°E. The remaining stations were merged to serve as the gauge dataset for retrieval. Similarly, 165 
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for various gridded datasets, data outside the region of interest were removed, and all data were resampled to a spatial 

resolution of 0.1°. Finally, the gridded data were converted to a daily time scale, resulting in the final gridded covariate data 

for retrieval. 

3.2 Precipitation interpolation based on spatial correlation 

Spatial correlation is the most significant characteristic of precipitation data, and the most common approach to constructing 170 

gridded precipitation datasets involves interpolation based on gauge data (Harris et al., 2020; He et al., 2020). Consequently, 

in this section, we also utilize gauge-based interpolation to characterize the spatial correlation of precipitation. The inverse 

distance weighting (IDW) method is widely used for interpolation due to its simplicity and computational efficiency. As a 

global interpolation method, IDW considers only the distance factor, applying inverse distance weighting to all stations for 

interpolation. However, the spatial correlation of many geographical features is often non-uniform. For example, many 175 

features may exhibit strong spatial correlation within a specific distance range, which rapidly diminishes beyond that range. 

To address this, Shepard (1968) introduced the concept of correlation decay distance (CDD) into interpolation and proposed 

the adaptive distance weighting (ADW) method. CDD measures how the spatial correlation between stations decreases with 

increasing distance and ensures that the search radius is set to an appropriate value, rather than using a fixed value for all 

situations (Dunn et al., 2020). Numerous datasets employ this method to interpolate gauge data to grids (Caesar et al., 2006; 180 

Dunn et al., 2020; Harris et al., 2020; Zhang et al., 2024a). Based on this, Han et al. (2023) incorporated CDD into the IDW 

method, and calculated the CDD values suitable for interpolating precipitation over mainland China. Given a target grid cell 

G surrounded by n known stations P {P1, P2, …, Pn}, where the precipitation value at station Pi is zi, the precipitation value 

at grid cell G is calculated as: 

𝑧𝑧(𝐺𝐺) =
∑ 𝑑𝑑(𝐺𝐺,𝑃𝑃𝑖𝑖)−𝑝𝑝𝑧𝑧𝑖𝑖𝑛𝑛
𝑖𝑖=1  
∑ 𝑑𝑑(𝐺𝐺,𝑃𝑃𝑖𝑖)−𝑝𝑝𝑛𝑛
𝑖𝑖=1

 (1) 185 

where d(G, Pi) represents the distance between grid cell G and gauge station Pi, and p is the distance weighting exponent. In 

this study, p is set to 2, representing the Euclidean distance. 

The selection of the station set P for interpolation markedly impacts the interpolated results. In this study, we adopt the 

improved IDW method and use the CDD values calculated by Han et al. (2023) for interpolating precipitation over mainland 

China (CDD1=244.7 km, CDD2=1336 km). When more than three stations are available within the CDD1range, CDD1 is 190 

used as the interpolation CDD; otherwise, CDD2 is applied. Meanwhile, if more than ten stations are available within the 

interpolation CDD range, only the ten closest stations to the grid cell are used, to mitigate overestimation of precipitation 

events in the densely populated station areas of eastern China. 

Furthermore, previous research has demonstrated that interpolated precipitation anomalies (Harris et al., 2020; He et al., 

2020) generally yield higher accuracy compared to direct precipitation interpolation. Thus, we adopt the interpolation 195 

scheme based on climatology anomaly rather than interpolating the raw precipitation values. To achieve this, daily and 

monthly precipitation climatology data were first generated. First, we calculated the average daily precipitation for 1971–
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2000 to derive preliminary station-level daily climatology data by using the daily precipitation gauges from the previous step. 

The daily climatology series at each station was then processed by the Fourier truncation, retaining only the first six 

harmonic components to suppress high-frequency noise (Xie et al., 2007). Subsequently, the station-level daily climatology 200 

data were interpolated using the improved IDW, producing preliminary gridded daily climatology data. To enhance the 

reliability of the daily climatology data, we followed the same procedure to generate gridded monthly precipitation 

climatology data. These monthly data were used to correct the gridded daily climatology, yielding the adjusted gridded daily 

climatology data (Han et al., 2023). The precipitation anomalies were defined as the difference between the actual station 

precipitation and the adjusted gridded daily climatology data. Finally, the station-level daily precipitation anomalies were 205 

interpolated using the improved IDW method. The gridded daily precipitation data based on interpolation were final 

obtained by summing the interpolated anomalies with the adjusted gridded daily climatology data. 

3.3 Precipitation retrieval based on spatiotemporal and physical correlations 

Except spatial correlation, precipitation also exhibits physical and temporal correlations, which are often overlooked. In this 

study, we utilized the gridded precipitation data derived from gauge-based interpolation in Section 3.2, along with location 210 

information (longitude and latitude), to characterize precipitation’s spatial correlations. Topographic data (elevation and 

slope), remote sensing-based precipitation data, data assimilation precipitation, soil moisture, and normalized difference 

vegetation index (NDVI) were employed to depict the precipitation’s physical correlations. Meanwhile, historical daily 

precipitation and overall precipitation characteristics were used to capture temporal correlations. The details of the retrieval 

data can be found in Figure 1. 215 

To obtain precipitation considered the three correlations comprehensively, we need to model the relationship between 

precipitation and these variables about the three correlations. This involves developing a response model with precipitation 

as the dependent variable and the relevant variables as independent variables. While linear regression models are the most 

commonly used response models, they are limited by their inability to capture nonlinear relationships and their relatively 

weak fitting capacity (Breiman, 2001; Chen and Guestrin, 2016; Yang et al., 2021). Machine learning-based models, in 220 

contrast, offer significant improvements in fitting performance and are more effective in representing nonlinear relationships 

(Guo et al., 2024; Hu et al., 2023). Among numerous machine learning-based models, Light gradient boosting machine 

(LGBM), developed by Microsoft (Ke et al., 2017), is renowned for its high precision and high generalizability. 

Consequently, we employed the LGBM method to integrate all these variables for precipitation retrieval, effectively 

accounting for the spatiotemporal and physical correlations of precipitation. Fundamentally, it employs a series of decision 225 

tree models for iterative training, progressively minimizing errors (or residuals) to ultimately generate predictions through a 

weighted summation. Unlike traditional gradient-boosted decision tree (GBDT) methods, LGBM utilizes a histogram-based 

technique for data binning, rather than processing each individual data record. This method iterates, calculates gains, and 

splits data accordingly (Zhang and Gong, 2020). Gradient-based one-side sampling (GOSS) is employed to sample the 

dataset, assigning greater weights to data points with larger gradients during gain computation. Under equivalent sampling 230 
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rates, this method often outperforms random sampling (Candido et al., 2021). Owing to these features, LGBM demonstrates 

exceptional accuracy and generalization, making it widely applicable to various tasks such as classification, regression, and 

ranking (Bian et al., 2023; Hu et al., 2023; Jiang et al., 2024; Zhang et al., 2024b). 

In the precipitation retrieval process, we employed a two-stage strategy: precipitation event retrieval and precipitation value 

retrieval. For the convenience of updating and maintaining data every year in the future, we constructed separate models for 235 

each year. Specifically, all variables required for retrieval in a given year were consolidated and split into training and 

validation sets in an 8:2 ratio. The training set was utilized to develop a precipitation event classification model based on 

LGBM method, while the validation set was used for hyperparameter optimization. Then, the established classification 

model was applied to all samples to determine whether each sample is a precipitation event. Samples identified as 

precipitation events were used for training the precipitation reversal model, while non-precipitation samples were excluded 240 

from the retrieval process. This approach effectively removed the majority of non-precipitation samples, simplifying the 

capture of precipitation characteristics and enhancing the accuracy of the reversal model. Additionally, this strategy notably 

improved the discrimination of precipitation events and mitigated the overestimation of precipitation events commonly 

associated with traditional interpolation-based methods. Upon completing the retrieval process, the trained models were used 

to generate final gridded daily precipitation for the entire mainland China from 1960 to 2023. 245 

3.4 Validation 

We compared the CHM_PRE V2 precipitation dataset with five existing gridded precipitation datasets to verify its high 

precision and reliability. To ensure comparability, the comparison focused on the period from 2001 to 2022 for which all 

data have time coverage. A total of 63,397 available CMA-HD station observations were utilized to validate the accuracy of 

precipitation data. To align with the 0.1° gridded precipitation data, station observations were mapped onto a 0.1° grid, and 250 

the average precipitation of all stations within each grid cell was regarded as the true precipitation value for that gird cell. 

Metrics such as absolute error (AE), Kling-Gupta efficiency (KGE, the values range is (-∞, 1], with 1 being the optimal), and 

relative standard deviation (RSD, the values range is (0, +∞), with 1 being the optimal) were employed to evaluate 

precipitation accuracy: 

𝐴𝐴𝐴𝐴 = 𝑎𝑎𝑎𝑎𝑎𝑎(𝑦𝑦 − 𝑦𝑦�) (2) 255 

𝐾𝐾𝐺𝐺𝐴𝐴 = 1 −�(𝑅𝑅(𝑦𝑦,𝑦𝑦�) − 1)2 + (𝑅𝑅𝑅𝑅𝑅𝑅(𝑦𝑦,𝑦𝑦�) − 1)2 + (𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎(𝑦𝑦,𝑦𝑦�) − 1)2 (3) 

𝑅𝑅𝑅𝑅𝑅𝑅 =
𝜎𝜎𝑦𝑦� 𝜇𝜇𝑦𝑦�⁄
𝜎𝜎𝑦𝑦 𝜇𝜇𝑦𝑦⁄

(4) 

where y and 𝑦𝑦� represent the observed precipitation values and the gridded precipitation values, respectively; 𝜇𝜇 denotes the 

mean value, 𝜎𝜎 signifies the standard deviation; R denotes the correlation coefficient, and Bias represents the variability ratio, 

each defined as follows: 260 
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𝑅𝑅(𝑦𝑦,𝑦𝑦�) =
1
𝑁𝑁∑ �𝑦𝑦𝑖𝑖 −  𝜇𝜇(𝑦𝑦)� ∗ �𝑦𝑦�𝑖𝑖 − 𝜇𝜇(𝑦𝑦�)�)𝑁𝑁

𝑖𝑖=1

𝜎𝜎𝑦𝑦𝜎𝜎𝑦𝑦�
(5) 

𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎 =
𝜇𝜇𝑦𝑦�
𝜇𝜇𝑦𝑦

(6) 

Precipitation errors can be categorized into systematic errors, random errors, and precipitation event detection errors (Tian et 

al., 2009; Wei et al., 2022). Beyond precipitation amount (systematic errors and random errors), the occurrence of 

precipitation events also markedly impacts hydrological modelling (Dong et al., 2020). However, commonly used 265 

precipitation accuracy metrics such as KGE and RSD only account for systematic and random errors, neglecting the 

precipitation event detection errors. Thus, we adopted the Heidke skill score (HSS, the values range is (0, 1], with 1 being 

the optimal), false alarm ratio (FAR, the values range is [0, 1], with 0 being the optimal), and Accuracy score (the values 

range is (0, 1], with 1 being the optimal) to assess the accuracy of precipitation event detection (AghaKouchak and Mehran, 

2013; Dong et al., 2020): 270 

𝐻𝐻𝑅𝑅𝑅𝑅 =
2(𝑇𝑇𝑃𝑃 × 𝑇𝑇𝑁𝑁 − 𝐹𝐹𝑃𝑃 × 𝐹𝐹𝑁𝑁)

(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁)(𝐹𝐹𝑁𝑁 + 𝑇𝑇𝑁𝑁) + (𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃)(𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑁𝑁) (7) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐴𝐴𝑦𝑦 =
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑁𝑁

𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝑁𝑁
 (8) 

𝐹𝐹𝐴𝐴𝑅𝑅 =
𝐹𝐹𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 

where TP, FP, TN, and FN represent the precipitation events’ matching relationship between gauged precipitation and 

precipitation products, with their meanings outlined in Table S2 in the supplementary materials. The threshold for whether it 275 

is a precipitation event is more than 0.1mm of precipitation per day. Notably, to ensure the comparability of accuracy, 

instances where any precipitation products lack values were excluded during the accuracy calculations. 

We assess the contribution of each variable to precipitation retrieval by analysing feature importance during the LGBM 

modelling process. LGBM, a gradient-boosted decision tree method, employs a greedy algorithm to select the optimal 

features for splitting based on specific criteria such as information gain or mean squared error during the construction of 280 

each decision tree. Features that are used more frequently to split nodes in the decision tree have a greater impact on the 

model, signifying higher importance (Breiman, 2001; Ke et al., 2017). Thus, we determine a variable’s importance by the 

total number of times it is used for node splitting. To facilitate comparison among variables, we express feature importance 

as relative importance in percentage form. 

4 Results and discussion 285 

4.1 Precipitation amount and spatial patterns 

Figure 4 illustrates the spatial distribution patterns of the multi-year average annual total precipitation for these datasets. It 

can be seen that all datasets exhibit similar precipitation distribution patterns, with annual totals generally decreasing from 
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southeastern to northwestern China. Notably, CHM_PRE V2, CHM_PRE V1, GSMaP, and IMERG datasets effectively 

capture the high precipitation characteristics of the southern Tibetan Plateau, whereas PERSIANN-CDR and GLDAS 290 

datasets tend to underestimate precipitation in this region. Moreover, compared to satellite remote sensing-based datasets 

like GSMaP and IMERG, CHM_PRE V2 and CHM_PRE V1, which are based on extensive gauged observations, provide 

finer spatial pattern in precipitation distribution, particularly in regions with high variability, such as southeastern China. 

Figure 5(a-b) depicts the temporal characteristics of precipitation across mainland China. The various datasets show highly 

consistent patterns in monthly average precipitation (Figure 5(a)) and multi-year monthly average precipitation (Figure 5(b)) 295 

across all grid cells. Precipitation is higher in spring and summer (March to August), peaking in July, and lower in autumn 

and winter (September to February). 

To assess the contribution of different factors to precipitation retrieval we applied the established precipitation retrieval 

model to derive the feature importance of various variables. Based on this, we calculated the relative contribution of each 

variable (Figure 5(c)). Overall, spatial correlation contributed the most to precipitation retrieval (37.10%), followed by 300 

temporal correlation (34.11%) and physical correlation (28.78%). Specifically, interpolated precipitation is the most 

significant contributor, accounting for 24.44%—over three times the contribution of the second most important variable. 

This can be attributed to the strong alignment between interpolated precipitation, derived from gauged data, and actual 

precipitation. Latitude and longitude ranked third and fourth, with relative contributions of 6.61% and 6.06%, respectively, 

highlighting the pronounced regional differentiation in China’s precipitation, consistent with the southeast-to-northwest 305 

decreasing trend shown in Figure 4. Among temporal variables, monthly total precipitation, precipitation from the previous 

day, and annual total precipitation had relative contributions of 7.81%, 5.07%, and 4.83%, respectively. These findings align 

with the seasonal variability of precipitation driven by China’s monsoon climate, as evidenced in Figure 5(a-b). The 

importance of historical precipitation variables gradually diminished from one day to five days prior, reflecting the 

characteristic of precipitation time dependence gradually weakening over time. Within physical variables, remote sensing-310 

based precipitation (5.86%), GLDAS soil moisture (5.58%), and NDVI (4.69%) emerged as the most influential. This may 

be attributed to the supplementary information provided by remote sensing and data assimilation technologies in the areas of 

lack of observation, especially western China (Jiang et al., 2023; Lyu et al., 2021).  

In conclusion, the feature importance results demonstrate that the inclusion of temporal and physical correlations 

significantly enhances traditional gauge-based interpolated precipitation methods that consider only spatial correlations, 315 

thereby advancing the accuracy of precipitation retrieval. 
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Figure 4. Spatial distribution patterns of multi-year average annual total precipitation from 2001 to 2020. 
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Figure 5. (a) time series of monthly precipitation; (b) multi-year mean monthly precipitation from 2001 to 2020; (c) feature 320 
importance of precipitation retrieval. In the figure, precipitation is abbreviated as “Prec.,” interpolation-based precipitation is 
denoted as “Interp. Prec.,” while remote sensing and soil moisture are represented by “RS” and “SM,” respectively; “1st-day 
prior Prec.” to “5th-day prior Prec.” means the precipitation from the 1st day ago to 5th day ago. 

4.2 Accuracy validation of precipitation value 

Figure 6 illustrates the overall accuracy of these datasets based on CMA-HD. Precipitation datasets derived from gauge-325 

based interpolation (CHM_PRE V1 and CHM_PRE V2) demonstrates significantly higher accuracy compared to those based 

on remote sensing (GSMaP, IMERG, and PERSIANN-CDR) and data assimilation (GLDAS), as evidenced by lower 

absolute error, higher KGE) and RSD (Figure 6(a-c)). CHM_PRE V2 achieved an overall MAE, KGE, and RSD of 1.48 

mm/day, 0.79, and 0.88, respectively, outperforming other datasets by 12.84%, 12.86%, and 4.76% (Table S3 in the 

supplementary material). Furthermore, the accuracy of precipitation datasets was analysed across different climatic regions. 330 

Given the superior performance of CHM_PRE V2 and CHM_PRE V1, the comparison focused exclusively on these two 

datasets. Figure 6(d-e) presents their absolute error, KGE, and RSD across different climatic regions. The results reveal a 

marked improvement in CHM_PRE V2’s accuracy over CHM_PRE V1, with MAE increasing by 6.18% to 14.58% and 

KGE improving by 7.63% to 14.94% across various regions (Figure 6(d-e) and Table S4 in the supplementary material). 
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 335 

Figure 6. Accuracy of different precipitation datasets on the testing dataset CMA-HD. The green and yellow boxes in subfigures 
(d-f) represent CHM_PRE V2 and CHM_PRE V1, respectively. 

 

Further comparison at the grid scale of the three precipitation datasets with relatively highest accuracy (CHM_PRE V2, 

CHM_PRE V1, and GSMaP) was conducted. Figure 7 illustrates the spatial distribution of KGE and RSD for the three 340 

datasets. CHM_PRE V2 demonstrates a significant improvement in KGE compared to CHM_PRE V1 and GSMaP, with 

many grid cells in the NWC and IM regions showing an increase from below 0.2 to above 0.4, and numerous grid cells in the 

SCC and NC regions rising from the 0.6–0.8 range to above 0.8. The median KGE value of CHM_PRE V2 across all grid 

cells reaches 0.738, representing an approximate 13.87% improvement over CHM_PRE V1. Regarding RSD, GSMaP’s 

accuracy slightly outperforms CHM_PRE V1; however, CHM_PRE V2 exhibits a distinct advantage over the other datasets, 345 

with a median RSD value of 0.880, reflecting an 8.64% enhancement compared to the other datasets. 
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Figure 7. Accuracy of different precipitation datasets at each grid cell on the testing data CMA-HD. (a), (c) and (e) show the KGE 
of each grid for CHM_PRE V2, PRE V1, and GSMaP, respectively; (b), (d) and (f) show the RSD of each grid for CHM_PRE V2, 
PRE V1, and GSMaP, respectively. 350 
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4.3 Accuracy validation of precipitation event detection capability 

Figure 8(a-c) illustrate the HSS, Accuracy score, and FAR metrics, evaluated using CMA-HD across different datasets. 

CHM_PRE V2 demonstrates a significantly superior ability to capture precipitation events across all three metrics compared 

to other precipitation datasets. Specifically, CHM_PRE V2 achieves an overall HSS of 0.68, an Accuracy score of 0.85, and 

a FAR of 0.24, surpassing other datasets by approximately 17.24%, 7.59%, and 29.17%, respectively (Table S5 in the 355 

supplementary materials). Notably, a lower FAR value indicates better performance, with 0 being optimal, which 

distinguishes it from the other two metrics. Similarly, we analysed the precision of CHM_PRE V2 and CHM_PRE V1 in 

capturing precipitation events across different climatic regions. Figure 8 (d-f) and Table S6 in the supplementary materials 

reveal that CHM_PRE V2 consistently outperforms CHM_PRE V1 across all regions. The overall HSS values for 

CHM_PRE V2 in different regions reach 0.52–0.68, representing an improvement of approximately 10.16% to 22.98% over 360 

CHM_PRE V1. Further analysis of the FAR and probability of detection (POD) metrics shows that CHM_PRE V2 achieves 

improvements in FAR by 15.73% to 70.79% compared to CHM_PRE V1 across different climatic regions. However, the 

POD values for CHM_PRE V2 decrease by approximately 6.79% to 11.25% compared to CHM_PRE V1. This indicates that 

the improved accuracy of CHM_PRE V2 in capturing precipitation events is primarily due to a reduction in overestimation, 

attributable to the two-stage retrieval approach described in Section 3.3. 365 
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Figure 8. Accuracy precipitation events for different precipitation datasets on the testing dataset CMA-HD. The green and yellow 
boxes in subfigures (d-f) represent CHM_PRE V2 and CHM_PRE V1, respectively. 

 
We further analyse the accuracy of precipitation events from the CHM_PRE V2, CHM_PRE V1, and GSMaP datasets 370 

across different grids. Figure 9 illustrates the spatial distribution of the HSS and Accuracy scores for the three datasets. The 

KGE for CHM_PRE V2 shows a significant improvement over both CHM_PRE V1 and GSMaP, with the HSS values for 

many grid cells rising from 0.2–0.6 to 0.6–0.8. The total HSS across all grid cells reaches 0.654, representing a 23.16% 

improvement compared to other datasets. Regarding the Accuracy score, it is evident that GSMaP outperforms CHM_PRE 

V1 in regions such as NWC, NEC, and IM, while CHM_PRE V1 surpasses GSMaP in regions like SCC and NC. In contrast, 375 

CHM_PRE V2, which combines the advantages of interpolation-based and remote sensing-based precipitation data, 

outperforms all other datasets across all regions. 
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Figure 9. Accuracy of precipitation events for different precipitation datasets at each grid cell on the testing data CMA-HD. (a), (c) 
and (e) show the HSS of each grid for CHM_PRE V2, PRE V1, and GSMaP, respectively; (b), (d) and (f) show the Accuracy score 380 
of each grid for CHM_PRE V2, PRE V1, and GSMaP, respectively. 

https://doi.org/10.5194/essd-2025-20
Preprint. Discussion started: 12 February 2025
c© Author(s) 2025. CC BY 4.0 License.



21 
 

5 Data availability 

The CHM_PRE V2 dataset provides daily precipitation data with a resolution of 0.1°, covering the entire mainland China 

(18°N–54°N, 72°E–136°E). This dataset covers the period of 1960–2023, and will be continuously updated annually. The 

daily precipitation data is provided in NetCDF format, and for the convenience of users, we also offer annual and monthly 385 

total precipitation data in both NetCDF and GeoTIFF formats. All of these data can be freely accessed at 

https://doi.org/10.5281/zenodo.14632157 (Hu and Miao, 2025). 

6 Conclusions 

This study utilizes precipitation data from long-term precipitation observations from a total of 3,746 stations and 11 related 

precipitation variables. By employing the improved inverse distance weighting method and the machine learning-based light 390 

gradient boosting machine (LGBM) algorithm, this study generated a new, high-precision daily gridded precipitation dataset 

for mainland China (CHM_PRE V2) from 1960 to 2023, with a spatial resolution of 0.1°, which accounts for both 

spatiotemporal and physical correlations. The CHM_PRE V2 was compared with five existing gridded precipitation datasets 

and validated for accuracy using precipitation data from over 63k automated rain gauge stations. The results demonstrate that 

CHM_PRE V2 aligns closely with the overall spatiotemporal distribution patterns of existing gridded precipitation datasets, 395 

but significantly outperforms them in terms of precipitation values and event accuracy. The overall mean absolute error and 

Kling-Gupta efficiency of CHM_PRE V2 reaches 1.48 mm/day and 0.88, respectively, surpassing other datasets by 12.84% 

and 12.86%. In terms of precipitation event capture, CHM_PRE V2 achieves an overall Heidke skill score, Accuracy Score, 

and false alarm ratio of 0.68, 0.85, and 0.24, respectively, outperforming other datasets by 17.24%, 7.59%, and 29.17%. 

Particularly in the precipitation-heavy regions of north China and central-south China, the false alarm ratio improvement 400 

reaches 53.33% and 68.42%, significantly reducing the overestimation of precipitation events. These findings prove that 

CHM_PRE V2 is a high-precision precipitation dataset, offering substantial support for various studies in hydrology, 

climatology, and climate change research. 
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