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Anonymous Reviewer #3 comments 
General comments: 
 
This study developed a daily precipitation dataset (CHM_PRE_V2) for China spanning 1960–
2023, demonstrating significantly improved accuracy compared to previous version. This 
dataset holds substantial importance for advancing hydrological and climatic research in China, 
particularly in regions with sparse ground observations. The authors have invested considerable 
effort, and the work is suitable for publication in ESSD. Below are the review comments to 
further enhance the manuscript. 
Response: We greatly appreciate your careful reading of the manuscript, positive comments, 
and valuable suggestions. Your thoughtful review has enhanced our paper considerably. The 
manuscript has been revised thoroughly according to your comments, with our point-by-point 
responses detailed below. 
 
Specific comments:  
 
1. Caution in using the term “spatiotemporal and physical correlations.” Physical correlations 
typically encompass: (1) Static factors (e.g., latitude, longitude, elevation, slope, vegetation); 
(2) Meteorological dynamic factors (e.g., humidity, wind speed, available precipitation amount); 
(3) Land-atmosphere interactions (e.g., soil moisture, vegetation indices, sea surface 
temperature anomalies); (4) Cloud and precipitation microphysics (e.g., cloud-top temperature, 
precipitation particle scattering).  
As shown in Figure 5c （Figure 1） , two-thirds of the selected “physical factors” are 
precipitation-related variables from different temporal scales or data sources, which conflicts 
with conventional understanding. The authors should either revise these selections or provide 
explicit justification.  
Additionally, the contributions of factors listed in Figure 5c—whether they correspond to 
monthly or daily precipitation—require clarification. The relationships between physical 
factors and precipitation are strongly time-scale-dependent, especially for discontinuous daily 
precipitation. The authors should consider tailoring factor selection to specific temporal scales 
(e.g., climatological vs. daily precipitation) and regional variations. 
Response: We sincerely appreciate your insightful comments. As you pointed out, the 
explanation of “spatiotemporal and physical correlations” in the previous manuscript was 
unclear. Upon careful consideration, we concluded that introducing these definitions is not 
necessary. Therefore, in the latest manuscript, we have updated “spatial correlation” to “spatial 
autocorrelation” to more precisely express the dependence of precipitation at a location on 
surrounding areas (Chen et al., 2010, 2016; Fan et al., 2021; Huff and Shipp, 1969). Meanwhile, 
“temporal and physical correlations” have been revised to “precipitation-related covariates.” 
We have made corresponding revisions throughout the manuscript wherever correlations were 
mentioned to ensure the rigor of the manuscript. The major revisions are summarized as follows: 
 



“An upgraded high-precision gridded precipitation dataset for the Chinese mainland 
considering spatial autocorrelation and covariates” (Title) 
 
“Precipitation is a critical driver of the water cycle, profoundly influencing water resources, 
agricultural productivity, and natural disasters. However, existing gridded precipitation 
datasets exhibit markable deficiencies in capturing the spatial autocorrelation and associated 
environmental and climatic influences—here referred to collectively as precipitation-related 
covariates—which limits their accuracy, particularly in regions with sparse meteorological 
stations. To address these challenges, this study proposes a completely new gridded 
precipitation generation scheme that integrates long-term daily observations from 3,746 
gauges with 11 key precipitation-related covariates.” (Lines 12–17) 
 
“In summary, a key limitation of existing datasets is that they tend to focus on either spatial 
autocorrelation or a limited set of precipitation-related covariates, but rarely incorporate 
multiple types of information simultaneously. However, precipitation is influenced not only 
by spatial autocorrelation—that is, the dependence of precipitation at a given location on 
surrounding areas (Chen et al., 2010, 2016; Fan et al., 2021; Huff and Shipp, 1969; Tang et 
al., 2020)—but also by a wide array of covariates, such as elevation, land surface conditions, 
atmospheric parameters, and recent precipitation events (Adler et al., 2008; Ham et al., 2023; 
Ravuri et al., 2021; Trucco et al., 2023). This lack of comprehensive consideration for 
multiple covariates constrains the accuracy of these datasets, particularly in regions with 
sparse meteorological stations, such as western China (Jiang et al., 2023). Moreover, existing 
methods tend to generate excessive minor precipitation, leading to an overestimation of 
precipitation events, which will have considerable impacts on hydrologic modelling (Dong et 
al., 2020; Kang et al., 2024; Wei et al., 2022). 
To address the aforementioned issues, this study introduces a new high-precision, long-term 
daily gridded precipitation dataset for the Chinese mainland (a member of the China Hydro-
Meteorology datasets, hereinafter called CHM_PRE V2). Building on CHM_PRE V1, 
CHM_PRE V2 integrates precipitation gauges, remote sensing observations, reanalysis data, 
and various precipitation-related factors. Through the use of advanced spatial interpolation 
and machine learning algorithms, our method captures spatial autocorrelation while jointly 
modelling multiple covariates to enhance precipitation accuracy.” (Lines 58–73) 
 
“2 Data 
The CHM_PRE V2 dataset was developed using extensive precipitation gauge observations, 
supplemented with a diverse array of ancillary datasets that serve as precipitation covariates. 
These covariates include satellite-derived products, land surface model outputs, and various 
geophysical and meteorological variables, aiming to enhance the characterization of 
precipitation, particularly in regions with sparse observational coverage. This integration of 
multi-source information is designed to improve the spatial continuity and accuracy of the 
precipitation estimates across the Chinese mainland. Figure 1 illustrates details of the various 
datasets utilized in CHM_PRE V2 construction, including dataset names, original spatial and 
temporal resolutions, and coverage periods. In total, 16 datasets from 11 distinct categories 
were incorporated. These datasets collectively provide critical information on land surface 



properties, atmospheric conditions, and recent precipitation patterns that influence 
precipitation generation and distribution. In addition, the CHM_PRE V2 dataset is designed to 
represent precipitation characteristics across the Chinese mainland, excluding Taiwan, Hong 
Kong, Macau, and other Chinese islands. In the following sections, we will provide a detailed 
introduction to the data sources employed in the construction of the CHM_PRE V2 dataset. 
2.1 Spatial autocorrelation data 
CHM_PRE V2 incorporates comprehensive daily precipitation gauge data to support spatial 
autocorrelation modelling. The primary daily precipitation gauge data sourced from the China 
Meteorological Administration (CMA; http://data.cma.cn, last access: January 2024) spans 
the entire Chinese mainland, encompassing records from 2,816 stations between 1960 and 
2023. Daily precipitation is defined as the cumulative precipitation recorded between 20:00 
on one day and 20:00 on the following day (local time in Beijing), with all data subjected to 
rigorous quality control (Zhang et al., 2020). To mitigate the limit of boundary effects 
(Ahrens, 2006), additional precipitation gauges near the Chinese mainland were obtained 
from the Global Historical Climatology Network-Daily Version 3 (GHCND) dataset. The 
GHCND is a reliable and globally comprehensive climate dataset, and maintained by the 
National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric 
Administration (NOAA) (Durre et al., 2008, 2010; Menne et al., 2012). The GHCND dataset 
was sourced from NOAA (https://www.ncei.noaa.gov/products/land-based-station/global-
historical-climatology-network-daily) on September 11, 2024. 
To ensure data quality, only stations with more than 70% effective days (over 255 days) in a 
year were retained for dataset construction. Figure 2(a) illustrates the spatial distribution of 
both CMA and GHCND stations, while Figure 2(b) shows their annual availability. Over 
time, the number of available CMA stations increased from 1,992 in 1960 to 2,767 in 2023, 
improving spatial coverage considerably. In contrast, the number of accessible GHCND 
stations in the region declined from 674 in 1960 to 264 in 2023. 
2.2 Precipitation-related covariate data 
The Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) dataset was 
utilized to characterize the influence of elevation on precipitation and to generate slope data. 
In this study, we used the SRTM DEM V4 acquired from the Consortium for Spatial 
Information, Consultative Group for International Agricultural Research (CGIAR-CSI, 
https://srtm.csi.cgiar.org/) on August 8, 2024, with a spatial resolution of 3 arc-seconds 
(approximately 90 meters near the equator). The SRTM DEM V4 was generated based on 
National Aeronautics and Space Administration (NASA) SRTM DEM V1, and has undergone 
post-processing of the NASA data to “fill in” the no data voids, such as water bodies (lakes 
and rivers), areas with snow cover and in mountainous regions (e.g., the Himalayas), resulting 
in seamless elevation for the globe. 
To enhance the spatial and temporal detail of precipitation estimation, two satellite-based 
precipitation products—the Global Satellite Mapping of Precipitation (GSMaP) and the 
Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks 
(PERSIANN-CDR) dataset—were incorporated as covariates. GSMaP V8 data spans from 
1998 to the present with 0.1° spatial and 1-hour temporal resolution (Kubota et al., 2020). We 
acquired the GSMaP data from Japan Aerospace Exploration Agency (JAXA; 
https://sharaku.eorc.jaxa.jp) on September 9, 2024, and used the data from 1998 to 2023. 



PERSIANN-CDR data spans from 1983 to the present (Ashouri et al., 2015), and the data 
from 1983 to 1997 was used for the retrieval. 
The precipitation and soil moisture from the Global Land Data Assimilation System Noah 
Land Surface Model (GLDAS NOAH) (Rodell et al., 2004) were also used for the retrieval. 
The data spans from 1960 to 1999 and the data spans from 2000 to 2023 were acquired from 
the GLDAS Noah L4 V2.0 and GLDAS Noah L4 V2.1 datasets. The NOAA Climate Data 
Record (CDR) of AVHRR Normalized Difference Vegetation Index (NDVI) (Vermote and 
NOAA CDR Program, 2019) was utilized to depict the vegetation characteristics, and the data 
from 1981 to 2023 was used. 
In addition to spatial and environmental variables, precipitation temporal features were also 
introduced as covariates. Two types of temporal indicators were constructed: (1) the 
cumulative precipitation of the current month and year, representing broader-scale 
precipitation conditions; and (2) daily lagged precipitation values from the previous five days, 
capturing short-term fluctuations. Each of these five recent days was treated as a separate 
variable. For example, the variable named “1st-day prior Prec.” refers to precipitation one day 
before the current date, while “5th-day prior Prec.” corresponds to five days prior.” (Lines 
79–135) 

 



 
Figure 1. The data used for precipitation retrieval. 
 
Thank you again for your thoughtful comments and support, which have helped us 
significantly improve the rigor of our manuscript. 
 
2. Clarify the data sources for GLDAS 2.0 and 2.1 precipitation. The authors should specify 
whether GLDAS 2.0 and 2.1 precipitation are reanalysis, remote sensing, or fused products. 
The term “Data Assimilation precipitation” is imprecise and should be revised in the text. 
Response: Thank you for pointing out this issue. In the revised manuscript, we have explicitly 
clarified that GLDSA precipitation refers to reanalysis precipitation, in order to better address 
this issue. The corresponding revisions have been made to Figure 1 and the relevant text, as 
follows: 
 
“Precipitation datasets derived from gauge-based interpolation (CHM_PRE V1 and CHM_PRE 
V2) demonstrate significantly higher accuracy compared to those based on remote sensing 
(GSMaP, IMERG, and PERSIANN-CDR) and reanalysis (GLDAS), as evidenced by lower 
absolute error, higher KGE) and RSD (Figure 6(a-c)).” (Lines 325–328) 



 

 
Figure 1. The data used for precipitation retrieval. 
 
3. Highlight key improvements of updated data. A table or summary explicitly comparing 
critical differences between CHM_PRE_V2 and its predecessor (e.g., input data, methodology, 
validation metrics) is strongly recommended. This will underscore the dataset’s advancements 
and novelty. 
Response: We fully agree with your suggestion to further highlight the comparison between 
CHM_PRE V2 and V1. In the revised manuscript, we have added Section 4.4 titled 
“Improvements compared to the previous CHM_PRE V1 dataset” to emphasize the 
advancements and novelty of CHM_PRE V2. Similarly, we have also strengthened the 
comparison with CHM_PRE V1 in the Abstract, Introduction, and other relevant sections. The 
corresponding revisions are as follows: 
 
“Building upon the improved inverse distance weighting interpolation method used in our 
previous dataset CHM_PRE V1, we integrated a machine learning algorithm—light gradient 



boosting machine (LGBM)—to incorporate precipitation-related covariates in a data-driven 
manner.” (Lines 17–20) 
 
“Our previous study developed a gridded precipitation dataset for the Chinese mainland (a 
member of the China Hydro-Meteorology datasets, hereinafter called CHM_PRE V1) based on 
inverse-distance weighting interpolation method and parameter-elevation regression on 
independent slopes model (PRISM) (Daly et al., 1994, 2002), using data from 2,839 gauges. 
The CHM_PRE V1 demonstrates overall high accuracy across the Chinese mainland (Han et 
al., 2023), and has received widespread attention and extensive use, benefiting a large number 
of hydro-meteorological related studies (Hu et al., 2024; Wan and Zhou, 2024; Yin et al., 2025). 
However, interpolation-based precipitation datasets rely heavily on ground meteorological 
gauges, performing poorly in areas with sparse station distribution or missing data.” (Lines 50–
56) 
 
“4.4 Improvements compared to the previous CHM_PRE V1 dataset 
CHM_PRE V2 is a continuation and improvement of our previously published CHM_PRE V1. 
Therefore, we further summarize the differences between CHM_PRE V2 and CHM_PRE V1 
in Table 1, and highlight the improvements of CHM_PRE V2 over the previous version by 
using bold font. It can be observed that CHM_PRE V2 shares the same spatiotemporal 
resolution and coverage with V1 (except for the extended time range up to 2023), mainly to 
maintain consistency with other datasets in the CHM family (Zhang et al., 2025). The spatial 
interpolation method used in CHM_PRE V2 is largely consistent with that in V1, but it 
incorporates precipitation-related covariates in a data-driven manner by integrating the LGBM 
method. Eleven precipitation-related variables were considered, including topographic features 
(elevation and slope), satellite-derived precipitation estimates, reanalysis-based precipitation 
products, soil moisture, NDVI, recent daily precipitation records, and aggregate precipitation 
metrics. The inclusion of these covariates allows for a better representation of the 
spatiotemporal variability of precipitation (Gu et al., 2023; Ma et al., 2025), resulting in 
improved precipitation accuracy (with MAE and KGE reaching 1.48 mm/day and 0.79, 
representing improvements of approximately 12.84% and 12.86% compared to CHM_PRE V1, 
respectively). In addition, the capability of detecting precipitation events is a critical indicator 
of the accuracy of precipitation datasets (Dong et al., 2020; Kang et al., 2024). CHM_PRE V2 
applies a two-stage modelling approach to distinguish and correct precipitation events, which 
reduces overestimation of such precipitation events and improves event detection accuracy 
(with FAR and HSS reaching 0.24 and 0.68, respectively, reflecting improvements of 
approximately 54.17% and 17.24% over CHM_PRE V1). Overall, CHM_PRE V2 
demonstrates obvious improvements over CHM_PRE V1 and serves as a high-accuracy daily 
gridded precipitation dataset for the Chinese mainland. 
 

Table 1. Comparison between CHM_PRE V2 and CHM_PRE V1. 
Category Item CHM_PRE V1 CHM_PRE V2 

Metadata 
Spatial resolution 0.1° 0.1° 

Temporal resolution Daily Daily 



Spatial coverage 18°N–54°N, 72°E–136°E 18°N–54°N, 72°E–136°E 
Time Span 1961–2022 1960–2023 

Method 

Spatial 
autocorrelation 

considered 
✓ ✓ 

Interpolation method Improved IDW method Improved IDW method 
Precipitation-related 

covariates Only PRISM climatology data 11 precipitation 
covariates 

Covariate modelling 
approach ✗ LGBM 

Precipitation event 
considered ✗ ✓ 

Accuracy of 
precipitation 

value  

MAE (mm/day) 1.67 1.48 
KGE 0.70 0.79 
RSD 0.78 0.88 

Accuracy of 
precipitation 

event 

HSS 0.58 0.68 
Accuracy score 0.79 0.85 

FAR 0.37 0.24 
” (Lines 389–409) 
 
Once again, we sincerely thank you for your valuable comments, which helped us better 
highlight the novelty and significance of this study. 
 
4. Clarify model configurations in Section 3.3. The manuscript states that two models were 
developed for “precipitation event retrieval” and “precipitation value retrieval.” Please clarify 
whether these models share identical predictors and weighting schemes. Detailed descriptions 
of input variables, parameters, and training protocols for each model are essential. 
Response: Thanks for your constructive suggestion, which has helped us improve the clarity of 
our methodology. Following your suggestion, we have thoroughly rewritten Sections 2.2 and 
3.3 to better describe our modeling approach. In addition, we have added Table S3 in the 
supplementary materials to more clearly present the variables used for precipitation retrieval. 
The corresponding revisions are as follows: 
 
“In addition to spatial and environmental variables, precipitation temporal features were also 
introduced as covariates. Two types of temporal indicators were constructed: (1) the cumulative 
precipitation of the current month and year, representing broader-scale precipitation conditions; 
and (2) daily lagged precipitation values from the previous five days, capturing short-term 
fluctuations. Each of these five recent days was treated as a separate variable. For example, the 
variable named “1st-day prior Prec.” refers to precipitation one day before the current date, 
while “5th-day prior Prec.” corresponds to five days prior.” (Lines 131–135) 
 
“3.3 Precipitation retrieval based on covariates 
Except spatial autocorrelation, precipitation is influenced by a range of meteorological factors 
that vary over space and time.  However, most existing gridded precipitation datasets tend to 



model these aspects in isolation, often focusing solely on spatial autocorrelation or 
meteorological inputs, which may constrain the accuracy and generalizability of the datasets, 
especially in regions with sparse gauge coverage. To address this limitation, we propose a novel 
framework that integrates multiple precipitation covariates into a unified machine learning-
based retrieval system, thereby enhancing the fidelity of precipitation estimates. To model 
spatial autocorrelation, we employed gridded precipitation data derived from gauge-based 
interpolation in Section 3.2, along with geographic coordinates (longitude and latitude). 
Precipitation covariates were drawn from various sources, including topographic features 
(elevation and slope), satellite-derived precipitation estimates, reanalysis-based precipitation 
products, soil moisture, and the normalized difference vegetation index (NDVI). Recent daily 
precipitation records and aggregate precipitation metrics were also incorporated to capture the 
temporal variability and underlying climatological patterns. The details of the retrieval data can 
be found in Figure 1. 
To synthesize these spatial and covariate-based features, we employed a machine learning 
regression framework using the light gradient boosting machine (LGBM) algorithm. This 
model enables the flexible representation of complex nonlinear relationships between 
precipitation and its associated covariates, surpassing the limitations of conventional linear 
regression models. While linear regression models are the most commonly used response 
models, they are limited by their inability to capture nonlinear relationships and their relatively 
weak fitting capacity (Breiman, 2001; Chen and Guestrin, 2016; Yang et al., 2021). Machine 
learning-based models, in contrast, offer significant improvements in fitting performance and 
are more effective in representing nonlinear relationships (Guo et al., 2024; Hu et al., 2023). 
Among numerous machine learning-based models, LGBM, developed by Microsoft (Ke et al., 
2017), is renowned for its high precision and high generalizability. Fundamentally, it employs 
a series of decision tree models for iterative training, progressively minimizing errors (or 
residuals) to ultimately generate predictions through a weighted summation. Unlike traditional 
gradient-boosted decision tree (GBDT) methods, LGBM utilizes a histogram-based technique 
for data binning, rather than processing each individual data record. This method iterates, 
calculates gains, and splits data accordingly (Zhang and Gong, 2020). Gradient-based one-side 
sampling is employed to sample the dataset, assigning greater weights to data points with larger 
gradients during gain computation. Under equivalent sampling rates, this method often 
outperforms random sampling (Candido et al., 2021). Owing to these features, LGBM 
demonstrates exceptional accuracy and generalization, making it widely applicable to various 
tasks such as classification, regression, and ranking (Bian et al., 2023; Jiang et al., 2024; Zhang 
et al., 2024). Hu et al. (2023) applied LGBM to the retrieval of suspended sediment 
concentration in the lower Yellow River and found that LGBM outperformed methods such as 
partial least squares regression, support vector regression, and random forest in terms of 
retrieval accuracy. Consequently, we employed the LGBM method to integrate all these 
variables for precipitation retrieval, effectively accounting for the spatiotemporal and physical 
correlations of precipitation. 
In the precipitation retrieval process, we employed a two-stage strategy: precipitation event 
classification and precipitation value retrieval. Sixteen variables were used as independent 
variables in the retrieval process, and all of them are listed in Table S3 in the supplementary 
materials. For the precipitation event classification model, the variable indicating whether a 



precipitation event occurred was used as the dependent variable, while the precipitation value 
was used as the dependent variable in the precipitation value retrieval model. For the 
convenience of updating and maintaining data every year in the future, we constructed separate 
models for each year. That is, for each year, the same independent variables were used to 
develop two different models based on the LGBM method, with precipitation event and 
precipitation amount as the dependent variables, respectively. One model is used for 
precipitation event classification, and the other for precipitation value retrieval. From 1960 to 
2023, a total of 64 years, 128 different models were generated. Specifically, for a given year, 
all variables required for retrieval were consolidated and split into training and validation sets 
at a ratio of 8:2. The training set was utilized to develop a precipitation event classification 
model based on the LGBM method, while the validation set was used for hyperparameter 
optimization. Then, the established classification model was applied to all samples to determine 
whether each sample was a precipitation event. Samples identified as precipitation events were 
used to train a precipitation value reversal model based on the LGBM method, while non-
precipitation samples were excluded from the retrieval process. This approach effectively 
removed the majority of non-precipitation samples, simplifying the capture of precipitation 
characteristics and enhancing the accuracy of the reversal model. Additionally, this strategy 
notably improved the discrimination of precipitation events and mitigated the overestimation 
of precipitation events commonly associated with traditional interpolation-based methods. 
Upon completing the retrieval process, the trained precipitation value retrieval models were 
used to generate the final gridded daily precipitation for the entire Chinese mainland from 1960 
to 2023.” (Lines 213–263) 
 
Table S3. The variables used in the precipitation retrieval. 
Variable Type Variable Name Description 

Spatial 
autocorrelation 

variables 

Lat Latitude of the grid center 
Lon Longitude of the grid center 

Interp. Prec. Gridded precipitation based on gauge interpolation 

Precipitation-
related covariates 

DEM Average elevation of the grid 
Slope Average slope of the grid 

GLDAS Prec. Precipitation of the grid from GLDAS 
Prec. RS Satellite-derived precipitation of the grid 

GLDAS SM Soil moisture of the grid from GLDAS 
NDVI NDVI of the grid 

Annual Prec. Annual total precipitation of the grid 
Monthly Prec. Monthly total precipitation of the grid 

1st-day prior Prec. Daily precipitation one day before the current date 
2nd-day prior Prec. Daily precipitation two day before the current date 
3rd-day prior Prec. Daily precipitation three day before the current date 
4th-day prior Prec. Daily precipitation four day before the current date 
5th-day prior Prec. Daily precipitation five day before the current date 

 
Once again, we sincerely thank you for your insightful comments, which have greatly enhanced 
the quality of our manuscript. 



 
References: 
Adler, R. F., Gu, G., Wang, J.-J., Huffman, G. J., Curtis, S., and Bolvin, D.: Relationships 

between global precipitation and surface temperature on interannual and longer 
timescales (1979–2006), Journal of Geophysical Research: Atmospheres, 113, 
https://doi.org/10.1029/2008JD010536, 2008. 

Ahrens, B.: Distance in spatial interpolation of daily rain gauge data, Hydrology and Earth 
System Sciences, 10, 197–208, https://doi.org/10.5194/hess-10-197-2006, 2006. 

Ashouri, H., Hsu, K.-L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., 
Nelson, B. R., and Prat, O. P.: PERSIANN-CDR: Daily Precipitation Climate Data 
Record from Multisatellite Observations for Hydrological and Climate Studies, Bulletin 
of the American Meteorological Society, 96, 69–83, https://doi.org/10.1175/BAMS-D-
13-00068.1, 2015. 

Breiman, L.: Random Forests, Machine Learning, 45, 5–32, 
https://doi.org/10.1023/A:1010933404324, 2001. 

Candido, C., Blanco, A. C., Medina, J., Gubatanga, E., Santos, A., Ana, R. S., and Reyes, R. 
B.: Improving the consistency of multi-temporal land cover mapping of Laguna lake 
watershed using light gradient boosting machine (LightGBM) approach, change 
detection analysis, and Markov chain, Remote Sensing Applications: Society and 
Environment, 23, 100565, https://doi.org/10.1016/j.rsase.2021.100565, 2021. 

Chen, D., Ou, T., Gong, L., Xu, C.-Y., Li, W., Ho, C.-H., and Qian, W.: Spatial interpolation 
of daily precipitation in China: 1951–2005, Advances in Atmospheric Sciences, 27, 
1221–1232, https://doi.org/10.1007/s00376-010-9151-y, 2010. 

Chen, D., Tian, Y., Yao, T., and Ou, T.: Satellite measurements reveal strong anisotropy in 
spatial coherence of climate variations over the Tibet Plateau, Scientific Reports, 6, 
30304, https://doi.org/10.1038/srep30304, 2016. 

Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, in: Kdd’16: 
Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery 
and Data Mining, New York, 785–794, https://doi.org/10.1145/2939672.2939785, 2016. 

Daly, C., Neilson, R. P., and Phillips, D. L.: A Statistical-Topographic Model for Mapping 
Climatological Precipitation over Mountainous Terrain, Journal of Applied Meteorology 
and Climatology, 33, 140–158, https://doi.org/10.1175/1520-
0450(1994)033<0140:ASTMFM>2.0.CO;2, 1994. 

Daly, C., Gibson, W. P., Taylor, G. H., Johnson, G. L., and Pasteris, P.: A knowledge-based 
approach to the statistical mapping of climate, Climate research, 22, 99–113, 
https://doi.org/10.3354/cr022099, 2002. 

Dong, J., Crow, W. T., and Reichle, R.: Improving Rain/No-Rain Detection Skill by Merging 
Precipitation Estimates from Different Sources, Journal of Hydrometeorology, 21, 2419–
2429, https://doi.org/10.1175/JHM-D-20-0097.1, 2020. 

Durre, I., Menne, M. J., and Vose, R. S.: Strategies for Evaluating Quality Assurance 
Procedures, Journal of Applied Meteorology and Climatology, 47, 1785–1791, 
https://doi.org/10.1175/2007JAMC1706.1, 2008. 

Durre, I., Menne, M. J., Gleason, B. E., Houston, T. G., and Vose, R. S.: Comprehensive 
Automated Quality Assurance of Daily Surface Observations, Journal of Applied 



Meteorology and Climatology, 49, 1615–1633, 
https://doi.org/10.1175/2010JAMC2375.1, 2010. 

Gu, J., Ye, Y., Jiang, Y., Dong, J., Cao, Y., Huang, J., and Guan, H.: A downscaling-
calibrating framework for generating gridded daily precipitation estimates with a high 
spatial resolution, Journal of Hydrology, 626, 130371, 
https://doi.org/10.1016/j.jhydrol.2023.130371, 2023. 

Guo, F., Ren, Y., Zhou, Y., Sun, S., Cui, M., and Khim, J.: Machine learning vs. statistical 
model for prediction modeling and experimental validation: Application in groundwater 
permeable reactive barrier width design, Journal of Hazardous Materials, 469, 133825, 
https://doi.org/10.1016/j.jhazmat.2024.133825, 2024. 

Ham, Y.-G., Kim, J.-H., Min, S.-K., Kim, D., Li, T., Timmermann, A., and Stuecker, M. F.: 
Anthropogenic fingerprints in daily precipitation revealed by deep learning, Nature, 622, 
301–307, https://doi.org/10.1038/s41586-023-06474-x, 2023. 

Han, J., Miao, C., Gou, J., Zheng, H., Zhang, Q., and Guo, X.: A new daily gridded 
precipitation dataset for the Chinese mainland based on gauge observations, Earth 
System Science Data, 15, 3147–3161, https://doi.org/10.5194/essd-15-3147-2023, 2023. 

Hu, J., Miao, C., Zhang, X., and Kong, D.: Retrieval of suspended sediment concentrations 
using remote sensing and machine learning methods: A case study of the lower Yellow 
River, Journal of Hydrology, 627, 130369, 
https://doi.org/10.1016/j.jhydrol.2023.130369, 2023. 

Hu, Y., Wei, F., Fu, B., Wang, S., Xiao, X., Qin, Y., Yin, S., Wang, Z., and Wan, L.: 
Divergent patterns of rainfall regimes in dry and humid areas of China, Journal of 
Hydrology, 636, 131243, https://doi.org/10.1016/j.jhydrol.2024.131243, 2024. 

Huff, F. A. and Shipp, W. L.: Spatial Correlations of Storm, Monthly and Seasonal 
Precipitation, Journal of Applied Meteorology and Climatology, 8, 542–550, 1969. 

Jiang, Y., Yang, K., Qi, Y., Zhou, X., He, J., Lu, H., Li, X., Chen, Y., Li, X., Zhou, B., 
Mamtimin, A., Shao, C., Ma, X., Tian, J., and Zhou, J.: TPHiPr: a long-term (1979–
2020) high-accuracy precipitation dataset (1∕30°, daily) for the Third Pole region 
based on high-resolution atmospheric modeling and dense observations, Earth System 
Science Data, 15, 621–638, https://doi.org/10.5194/essd-15-621-2023, 2023. 

Kang, X., Dong, J., Crow, W. T., Wei, L., and Zhang, H.: The Conditional Bias of Extreme 
Precipitation in Multi-Source Merged Data Sets, Geophysical Research Letters, 51, 
e2024GL111378, https://doi.org/10.1029/2024GL111378, 2024. 

Kubota, T., Aonashi, K., Ushio, T., Shige, S., Takayabu, Y. N., Kachi, M., Arai, Y., Tashima, 
T., Masaki, T., Kawamoto, N., Mega, T., Yamamoto, M. K., Hamada, A., Yamaji, M., 
Liu, G., and Oki, R.: Global Satellite Mapping of Precipitation (GSMaP) Products in the 
GPM Era, in: Satellite Precipitation Measurement, vol. 67, edited by: Levizzani, V., 
Kidd, C., Kirschbaum, D. B., Kummerow, C. D., Nakamura, K., and Turk, F. J., 
Springer, Cham, 355–373, https://doi.org/10.1007/978-3-030-24568-9_20, 2020. 

Ma, Z., Xu, J., Dong, B., Hu, X., Hu, H., Yan, S., Zhu, S., He, K., Shi, Z., Chen, Y., Fang, X., 
Zhang, Q., Gu, S., and Weng, F.: GMCP: A Fully Global Multisource Merging-and-
Calibration Precipitation Dataset (1-Hourly, 0.1°, Global, 2000–the Present), Bulletin of 
the American Meteorological Society, 106, E596–E624, https://doi.org/10.1175/BAMS-
D-24-0051.1, 2025. 



Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., and Houston, T. G.: An Overview of the 
Global Historical Climatology Network-Daily Database, Journal of Atmospheric and 
Oceanic Technology, 29, 897–910, https://doi.org/10.1175/JTECH-D-11-00103.1, 2012. 

Ravuri, S., Lenc, K., Willson, M., Kangin, D., Lam, R., Mirowski, P., Fitzsimons, M., 
Athanassiadou, M., Kashem, S., Madge, S., Prudden, R., Mandhane, A., Clark, A., 
Brock, A., Simonyan, K., Hadsell, R., Robinson, N., Clancy, E., Arribas, A., and 
Mohamed, S.: Skilful precipitation nowcasting using deep generative models of radar, 
Nature, 597, 672–677, https://doi.org/10.1038/s41586-021-03854-z, 2021. 

Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, 
K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, 
D., and Toll, D.: The Global Land Data Assimilation System, Bulletin of the American 
Meteorological Society, 85, 381–394, https://doi.org/10.1175/BAMS-85-3-381, 2004. 

Tang, G., Clark, M. P., Newman, A. J., Wood, A. W., Papalexiou, S. M., Vionnet, V., and 
Whitfield, P. H.: SCDNA: a serially complete precipitation and temperature dataset for 
North America from 1979 to 2018, Earth System Science Data, 12, 2381–2409, 
https://doi.org/10.5194/essd-12-2381-2020, 2020. 

Trucco, A., Barla, A., Bozzano, R., Pensieri, S., Verri, A., and Solarna, D.: Introducing 
Temporal Correlation in Rainfall and Wind Prediction From Underwater Noise, IEEE 
Journal of Oceanic Engineering, 48, 349–364, 
https://doi.org/10.1109/JOE.2022.3223406, 2023. 

Vermote, E. and NOAA CDR Program: NOAA Climate Data Record (CDR) of AVHRR 
Normalized Difference Vegetation Index (NDVI) (5), 
https://doi.org/10.7289/V5ZG6QH9, 2019. 

Wan, W. and Zhou, Y.: Spatiotemporal patterns in persistent precipitation extremes of the 
Chinese mainland (1961–2022) and association with the dynamic factors, Atmospheric 
Research, 310, 107600, https://doi.org/10.1016/j.atmosres.2024.107600, 2024. 

Wei, G., Lü, H., Crow, W. T., Zhu, Y., Su, J., and Ren, L.: Comprehensive Evaluation and 
Error-Component Analysis of Four Satellite-Based Precipitation Estimates against 
Gauged Rainfall over Mainland China, Advances in Meteorology, 2022, 9070970, 
https://doi.org/10.1155/2022/9070970, 2022. 

Yang, Y., Huang, T. T., Shi, Y. Z., Wendroth, O., and Liu, B. Y.: Comparing the Performance 
of an Autoregressive State-Space Approach to the Linear Regression and Artificial 
Neural Network for Streamflow Estimation, Journal of Environmental Informatics, 37, 
36–48, https://doi.org/10.3808/jei.202000440, 2021. 

Yin, C., Bai, C., Zhu, Y., Shao, M., Han, X., and Qiao, J.: Future Soil Erosion Risk in China: 
Differences in Erosion Driven by General and Extreme Precipitation Under Climate 
Change, Earth’s Future, 13, e2024EF005390, https://doi.org/10.1029/2024EF005390, 
2025. 

Zhang, D. and Gong, Y.: The comparison of LightGBM and XGBoost coupling factor 
analysis and prediagnosis of acute liver failure, IEEE Access, 8, 220990–221003, 
https://doi.org/10.1109/ACCESS.2020.3042848, 2020. 

Zhang, Y., Ren, Y., Ren, G., and Wang, G.: Precipitation Trends Over Mainland China From 
1961–2016 After Removal of Measurement Biases, Journal of Geophysical Research: 
Atmospheres, 125, e2019JD031728, https://doi.org/10.1029/2019JD031728, 2020. 



Zhang, Y., Feng, X., Zhou, C., Sun, C., Leng, X., and Fu, B.: Aridity threshold of ecological 
restoration mitigated atmospheric drought via land‒atmosphere coupling in drylands, 
Commun Earth Environ, 5, 1–11, https://doi.org/10.1038/s43247-024-01555-9, 2024. 

Zheng, H., Miao, C., Huntingford, C., Tarolli, P., Li, D., Panagos, P., Yue, Y., Borrelli, P., 
and Van Oost, K.: The Impacts of Erosion on the Carbon Cycle, Reviews of Geophysics, 
63, e2023RG000829, https://doi.org/10.1029/2023RG000829, 2025. 

 
---------------------------------------------- end line----------------------------------------------------- 

In order to make the review of our revision more convenient, we have marked all changes 
using the “Track Changes” function in Microsoft Word, and have uploaded the “tracked 
changes” version as Supplementary Material. 


	TO REVIEWER #3

