
A DETAILED LIST OF THE RESPONSES 
TO REVIEWER #2 

 
Anonymous Reviewer #2 comments 
General comments: 
 
The study presents a novel and interesting approach to developing high-resolution gridded 
precipitation data (CHM_PRE v2.0) by integrating station data, multiple covariate factors, and 
machine learning techniques. Given the significant spatial and temporal variability of 
precipitation, the development of reliable and credible gridded precipitation datasets is crucial 
for hydroclimatological research. The authors have clearly put considerable effort into this work, 
particularly by incorporating covariate factors beyond traditional spatial interpolation methods. 
This dataset is likely to have broad applicability in the field. However, several issues need to 
be addressed to improve the clarity, rigor, and impact of the manuscript. 
Response: We greatly appreciate your careful reading of the manuscript, insightful comments, 
and valuable suggestions. Your thoughtful review has enhanced our paper considerably. The 
manuscript has been revised thoroughly according to your comments, with our point-by-point 
responses detailed below. 
 
Specific comments:  
 
1. The introduction mentions that the authors previously developed CHM_PRE v1.0. It is 
unclear how much innovation or improvement has been achieved in v2.0 compared to v1.0. The 
authors should provide a detailed explanation of the differences between the two versions and 
justify why a new release (v2.0) is necessary instead of simply updating v1.0. This is critical 
for readers to understand the added value of this new version. 
Response: Thank you for the valuable comment. We have revised the introduction to better 
highlight the differences between CHM_PRE V2 and V1, as well as the significance of 
CHM_PRE V2. The corresponding revisions are as follows: 
 
“Our previous study developed a gridded precipitation dataset for the Chinese mainland (a 
member of the China Hydro-Meteorology datasets, hereinafter called CHM_PRE V1) based on 
inverse-distance weighting interpolation method and parameter-elevation regression on 
independent slopes model (PRISM) (Daly et al., 1994, 2002), using data from 2,839 gauges. 
The CHM_PRE V1 demonstrates overall high accuracy across the Chinese mainland (Han et 
al., 2023), and has received widespread attention and extensive use, benefiting a large number 
of hydro-meteorological related studies (Hu et al., 2024; Wan and Zhou, 2024; Yin et al., 2025). 
However, interpolation-based precipitation datasets rely heavily on ground meteorological 
gauges, performing poorly in areas with sparse station distribution or missing data. 
In summary, a key limitation of existing datasets is that they tend to focus on either spatial 
autocorrelation or a limited set of precipitation-related covariates, but rarely incorporate 
multiple types of information simultaneously. However, precipitation is influenced not only by 
spatial autocorrelation—that is, the dependence of precipitation at a given location on 
surrounding areas (Chen et al., 2010, 2016; Fan et al., 2021; Huff and Shipp, 1969; Tang et al., 



2020)—but also by a wide array of covariates, such as elevation, land surface conditions, 
atmospheric parameters, and recent precipitation events (Adler et al., 2008; Ham et al., 2023; 
Ravuri et al., 2021; Trucco et al., 2023). This lack of comprehensive consideration for multiple 
covariates constrains the accuracy of these datasets, particularly in regions with sparse 
meteorological stations, such as western China (Jiang et al., 2023). Moreover, existing methods 
tend to generate excessive minor precipitation, leading to an overestimation of precipitation 
events, which will have considerable impacts on hydrologic modelling (Dong et al., 2020; Kang 
et al., 2024; Wei et al., 2022). 
To address the aforementioned issues, this study introduces a new high-precision, long-term 
daily gridded precipitation dataset for the Chinese mainland (a member of the China Hydro-
Meteorology datasets, hereinafter called CHM_PRE V2). Building on CHM_PRE V1, 
CHM_PRE V2 integrates precipitation gauges, remote sensing observations, reanalysis data, 
and various precipitation-related factors. Through the use of advanced spatial interpolation and 
machine learning algorithms, our method captures spatial autocorrelation while jointly 
modelling multiple covariates to enhance precipitation accuracy.” (Lines 50–72) 
 
2. The authors fused data from 2,816 stations to produce 0.1-degree gridded precipitation data. 
However, the rationale for choosing 0.1-degree resolution over finer resolutions (e.g., 0.05-
degree or 1 km) is not explained. Given the availability of high-resolution precipitation datasets 
in China, including sub-daily data, the authors should discuss why 0.1-degree resolution was 
selected and whether finer resolutions were considered. 
Response: Thank you for pointing out the issue regarding the choice of resolution. Spatial 
resolution is a very important attribute for gridded datasets, and in this study, consistency with 
our previous datasets was the primary factor in selecting the spatial resolution. Our previous 
datasets, CHM_Drought (Zhang et al., 2025) and CHM_PRE V1 (Han et al., 2023), both have 
a spatial resolution of 0.1°. Therefore, CHM_PRE V2 was also set at this resolution to ensure 
compatibility with other datasets in the CHM family. In addition, we believe that a 0.1° 
resolution provides a good balance between accuracy and computational efficiency at large 
scales. We have added some explanations in the introduction to better clarify this point: 
 
“The spatial resolution of the dataset is set to 0.1° to maintain consistency with our previous 
dataset (Han et al., 2023; Zhang et al., 2025).” (Lines 73–74) 
 
3. The terms "Spatiotemporal correlated data" and "Physically correlated data" are introduced 
but not clearly defined. A more detailed explanation of these terms is necessary to ensure 
readers fully understand the methodology and its theoretical basis. 
Response: We sincerely appreciate your insightful comments. As you pointed out, the 
explanation of “spatiotemporal and physical correlations” in the previous manuscript was 
unclear. Upon careful consideration, we concluded that introducing these definitions is not 
necessary. Therefore, in the latest manuscript, we have updated “spatial correlation” to “spatial 
autocorrelation” to more precisely express the dependence of precipitation at a location on 
surrounding areas (Chen et al., 2010, 2016; Fan et al., 2021; Huff and Shipp, 1969). Meanwhile, 
“temporal and physical correlations” have been revised to “precipitation-related covariates.” 



We have made corresponding revisions throughout the manuscript wherever correlations were 
mentioned to ensure the rigor of the manuscript. The major revisions are summarized as follows: 
 
“An upgraded high-precision gridded precipitation dataset for the Chinese mainland 
considering spatial autocorrelation and covariates” (Title) 
 
“Precipitation is a critical driver of the water cycle, profoundly influencing water resources, 
agricultural productivity, and natural disasters. However, existing gridded precipitation 
datasets exhibit markable deficiencies in capturing the spatial autocorrelation and associated 
environmental and climatic influences—here referred to collectively as precipitation-related 
covariates—which limits their accuracy, particularly in regions with sparse meteorological 
stations. To address these challenges, this study proposes a completely new gridded 
precipitation generation scheme that integrates long-term daily observations from 3,746 
gauges with 11 key precipitation-related covariates.” (Lines 12–17) 
 
“In summary, a key limitation of existing datasets is that they tend to focus on either spatial 
autocorrelation or a limited set of precipitation-related covariates, but rarely incorporate 
multiple types of information simultaneously. However, precipitation is influenced not only 
by spatial autocorrelation—that is, the dependence of precipitation at a given location on 
surrounding areas (Chen et al., 2010, 2016; Fan et al., 2021; Huff and Shipp, 1969; Tang et 
al., 2020)—but also by a wide array of covariates, such as elevation, land surface conditions, 
atmospheric parameters, and recent precipitation events (Adler et al., 2008; Ham et al., 2023; 
Ravuri et al., 2021; Trucco et al., 2023). This lack of comprehensive consideration for 
multiple covariates constrains the accuracy of these datasets, particularly in regions with 
sparse meteorological stations, such as western China (Jiang et al., 2023). Moreover, existing 
methods tend to generate excessive minor precipitation, leading to an overestimation of 
precipitation events, which will have considerable impacts on hydrologic modelling (Dong et 
al., 2020; Kang et al., 2024; Wei et al., 2022). 
To address the aforementioned issues, this study introduces a new high-precision, long-term 
daily gridded precipitation dataset for the Chinese mainland (a member of the China Hydro-
Meteorology datasets, hereinafter called CHM_PRE V2). Building on CHM_PRE V1, 
CHM_PRE V2 integrates precipitation gauges, remote sensing observations, reanalysis data, 
and various precipitation-related factors. Through the use of advanced spatial interpolation 
and machine learning algorithms, our method captures spatial autocorrelation while jointly 
modelling multiple covariates to enhance precipitation accuracy.” (Lines 58–73) 
 
“2 Data 
The CHM_PRE V2 dataset was developed using extensive precipitation gauge observations, 
supplemented with a diverse array of ancillary datasets that serve as precipitation covariates. 
These covariates include satellite-derived products, land surface model outputs, and various 
geophysical and meteorological variables, aiming to enhance the characterization of 
precipitation, particularly in regions with sparse observational coverage. This integration of 
multi-source information is designed to improve the spatial continuity and accuracy of the 
precipitation estimates across the Chinese mainland. Figure 1 illustrates details of the various 



datasets utilized in CHM_PRE V2 construction, including dataset names, original spatial and 
temporal resolutions, and coverage periods. In total, 16 datasets from 11 distinct categories 
were incorporated. These datasets collectively provide critical information on land surface 
properties, atmospheric conditions, and recent precipitation patterns that influence 
precipitation generation and distribution. In addition, the CHM_PRE V2 dataset is designed to 
represent precipitation characteristics across the Chinese mainland, excluding Taiwan, Hong 
Kong, Macau, and other Chinese islands. In the following sections, we will provide a detailed 
introduction to the data sources employed in the construction of the CHM_PRE V2 dataset. 
2.1 Spatial autocorrelation data 
CHM_PRE V2 incorporates comprehensive daily precipitation gauge data to support spatial 
autocorrelation modelling. The primary daily precipitation gauge data sourced from the China 
Meteorological Administration (CMA; http://data.cma.cn, last access: January 2024) spans 
the entire Chinese mainland, encompassing records from 2,816 stations between 1960 and 
2023. Daily precipitation is defined as the cumulative precipitation recorded between 20:00 
on one day and 20:00 on the following day (local time in Beijing), with all data subjected to 
rigorous quality control (Zhang et al., 2020). To mitigate the limit of boundary effects 
(Ahrens, 2006), additional precipitation gauges near the Chinese mainland were obtained 
from the Global Historical Climatology Network-Daily Version 3 (GHCND) dataset. The 
GHCND is a reliable and globally comprehensive climate dataset, and maintained by the 
National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric 
Administration (NOAA) (Durre et al., 2008, 2010; Menne et al., 2012). The GHCND dataset 
was sourced from NOAA (https://www.ncei.noaa.gov/products/land-based-station/global-
historical-climatology-network-daily) on September 11, 2024. 
To ensure data quality, only stations with more than 70% effective days (over 255 days) in a 
year were retained for dataset construction. Figure 2(a) illustrates the spatial distribution of 
both CMA and GHCND stations, while Figure 2(b) shows their annual availability. Over 
time, the number of available CMA stations increased from 1,992 in 1960 to 2,767 in 2023, 
improving spatial coverage considerably. In contrast, the number of accessible GHCND 
stations in the region declined from 674 in 1960 to 264 in 2023. 
2.2 Precipitation-related covariate data 
The Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) dataset was 
utilized to characterize the influence of elevation on precipitation and to generate slope data. 
In this study, we used the SRTM DEM V4 acquired from the Consortium for Spatial 
Information, Consultative Group for International Agricultural Research (CGIAR-CSI, 
https://srtm.csi.cgiar.org/) on August 8, 2024, with a spatial resolution of 3 arc-seconds 
(approximately 90 meters near the equator). The SRTM DEM V4 was generated based on 
National Aeronautics and Space Administration (NASA) SRTM DEM V1, and has undergone 
post-processing of the NASA data to “fill in” the no data voids, such as water bodies (lakes 
and rivers), areas with snow cover and in mountainous regions (e.g., the Himalayas), resulting 
in seamless elevation for the globe. 
To enhance the spatial and temporal detail of precipitation estimation, two satellite-based 
precipitation products—the Global Satellite Mapping of Precipitation (GSMaP) and the 
Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks 
(PERSIANN-CDR) dataset—were incorporated as covariates. GSMaP V8 data spans from 



1998 to the present with 0.1° spatial and 1-hour temporal resolution (Kubota et al., 2020). We 
acquired the GSMaP data from Japan Aerospace Exploration Agency (JAXA; 
https://sharaku.eorc.jaxa.jp) on September 9, 2024, and used the data from 1998 to 2023. 
PERSIANN-CDR data spans from 1983 to the present (Ashouri et al., 2015), and the data 
from 1983 to 1997 was used for the retrieval. 
The precipitation and soil moisture from the Global Land Data Assimilation System Noah 
Land Surface Model (GLDAS NOAH) (Rodell et al., 2004) were also used for the retrieval. 
The data spans from 1960 to 1999 and the data spans from 2000 to 2023 were acquired from 
the GLDAS Noah L4 V2.0 and GLDAS Noah L4 V2.1 datasets. The NOAA Climate Data 
Record (CDR) of AVHRR Normalized Difference Vegetation Index (NDVI) (Vermote and 
NOAA CDR Program, 2019) was utilized to depict the vegetation characteristics, and the data 
from 1981 to 2023 was used. 
In addition to spatial and environmental variables, precipitation temporal features were also 
introduced as covariates. Two types of temporal indicators were constructed: (1) the 
cumulative precipitation of the current month and year, representing broader-scale 
precipitation conditions; and (2) daily lagged precipitation values from the previous five days, 
capturing short-term fluctuations. Each of these five recent days was treated as a separate 
variable. For example, the variable named “1st-day prior Prec.” refers to precipitation one day 
before the current date, while “5th-day prior Prec.” corresponds to five days prior.” (Lines 
79–135) 

 
Figure 1. The data used for precipitation retrieval. 
 



Thank you again for your thoughtful comments and support, which have helped us 
significantly improve the rigor of our manuscript. 
 
4. The manuscript contains numerous abbreviations, which hinder the readability and flow of 
the text. The authors should minimize the use of abbreviations or provide a glossary for 
reference. 
Response: Thank you for pointing out the issue regarding the abbreviations. Following your 
suggestion, we have summarized all abbreviations used in the manuscript and added them to 
the supplementary materials (Table S1). The corresponding revisions are as follows: 
 
“For clarity, a list of abbreviations used throughout this paper is presented in Table S1 in the 
supplementary materials.” (Lines 77–78) 
 
Table S1. List of abbreviations used throughout this paper. 

Abbreviation Full Term 
LGBM Light gradient boosting machine 
PRISM Parameter-elevation regression on independent slopes model 
IDW Inverse distance weighting 
CMA China Meteorological Administration 

GHCND Global Historical Climatology Network-Daily 
NCDC National Climatic Data Center 
NOAA National Oceanic and Atmospheric Administration 
SRTM Shuttle Radar Topography Mission 
DEM Digital Elevation Model 

CGIAR-CSI Consortium for Spatial Information, Consultative Group for 
International Agricultural Research 

NASA National Aeronautics and Space Administration 
GSMaP Global Satellite Mapping of Precipitation 

PERSIANN-
CDR 

Precipitation Estimation from Remotely Sensed Information using 
Artificial Neural Networks 

JAXA Japan Aerospace Exploration Agency 
GLDAS NOAH Global Land Data Assimilation System Noah Land Surface Model 

NDVI Normalized Difference Vegetation Index 
IMERG Integrated Multi-satellitE Retrievals for GPM 

CMA-HD High-density automatic rain gauge stations across Chinese mainland 
NEC North East China 
NC North China 
SCC South and Central China 
IM Inner Mongolia 

NWC North West China 
SWC South West China 
QT Qinghai-Tibet Plateau 

CDD Correlation decay distance 
ADW Adaptive distance weighting 



GBDT Gradient-boosted decision tree 
AE Absolute error 

KGE Kling-Gupta efficiency 
RSD Relative standard deviation 
HSS Heidke skill score 
FAR False alarm ratio 
POD Probability of detection 

 
Thank you again for highlighting this issue, which has helped us make the manuscript more 
readable. 
 
5. In CHM_PRE v1.0, the authors used ADW (Anisotropic Distance Weighting) interpolation, 
but in v2.0, they reverted to IDW (Inverse Distance Weighting). The rationale for this change 
is not explained. The authors should clarify why IDW was chosen for v2.0 and how it compares 
to ADW in terms of performance. 
Response: Thank you for your valuable comment. In fact, regarding the process of interpolating 
gauge observations to generate gridded precipitation, the core method used in both CHM_PRE 
V2 and V1 is the same — an inverse distance weighting (IDW) method with a correlation decay 
distance (CDD). Based on previous studies (Han et al., 2023; Shen et al., 2010; Xie et al., 2007) 
and our extensive testing, this method is capable of generating high-accuracy gridded 
precipitation datasets. In this study, there are three main differences in the interpolation of gauge 
precipitation compared with CHM_PRE V1: 
 
(1) CHM_PRE V2 restricts the interpolation to the nearest 10 stations when more than 10 
stations are available within CDD1, in order to reduce the overestimation of precipitation events 
in densely gauged areas in eastern China. 
 
(2) In CHM_PRE V1, interpolation was performed by interpolating the ratio of a station’s daily 
precipitation to its daily climatology and then multiplying by the daily climatology. However, 
for some stations with very low precipitation, this approach could produce extremely large 
ratios, resulting in unrealistic high precipitation in arid regions. CHM_PRE V2 interpolates the 
anomalies relative to the climatology instead (He et al., 2020; Zhang et al., 2025) to address 
this issue. 
 
(3) CHM_PRE V1 used the parameter-elevation regression on independent slopes model 
(PRISM) climatology data (Daly et al., 1994; Daly et al., 2002) to account for local topographic 
effects. In contrast, CHM_PRE V2 incorporates local topographic influences such as elevation 
and slope through a data-driven modeling approach (Section 3.3). Therefore, daily and monthly 
gridded climatologies were directly calculated and interpolated from gauge observations. 
 
We hope to introduce the production process of the CHM_PRE V2 dataset to its users in a 
concise manner. After careful consideration, we have rewritten parts of the introduction to 
better highlight the necessity and significance of upgrading CHM_PRE V1 to V2. However, in 
the interpolation section based on gauge observations (Section 3.2), we have maintained the 



original structure without adding detailed comparisons with CHM_PRE V1, in order to avoid 
overburdening the readers. The revisions made to the introduction are as follows: 
 
“Our previous study developed a gridded precipitation dataset for the Chinese mainland (a 
member of the China Hydro-Meteorology datasets, hereinafter called CHM_PRE V1) based on 
inverse-distance weighting interpolation method and parameter-elevation regression on 
independent slopes model (PRISM) (Daly et al., 1994, 2002), using data from 2,839 gauges. 
The CHM_PRE V1 demonstrates overall high accuracy across the Chinese mainland (Han et 
al., 2023), and has received widespread attention and extensive use, benefiting a large number 
of hydro-meteorological related studies (Hu et al., 2024; Wan and Zhou, 2024; Yin et al., 2025). 
However, interpolation-based precipitation datasets rely heavily on ground meteorological 
gauges, performing poorly in areas with sparse station distribution or missing data. 
In summary, a key limitation of existing datasets is that they tend to focus on either spatial 
autocorrelation or a limited set of precipitation-related covariates, but rarely incorporate 
multiple types of information simultaneously. However, precipitation is influenced not only by 
spatial autocorrelation—that is, the dependence of precipitation at a given location on 
surrounding areas (Chen et al., 2010, 2016; Fan et al., 2021; Huff and Shipp, 1969; Tang et al., 
2020)—but also by a wide array of covariates, such as elevation, land surface conditions, 
atmospheric parameters, and recent precipitation events (Adler et al., 2008; Ham et al., 2023; 
Ravuri et al., 2021; Trucco et al., 2023). This lack of comprehensive consideration for multiple 
covariates constrains the accuracy of these datasets, particularly in regions with sparse 
meteorological stations, such as western China (Jiang et al., 2023). Moreover, existing methods 
tend to generate excessive minor precipitation, leading to an overestimation of precipitation 
events, which will have considerable impacts on hydrologic modelling (Dong et al., 2020; Kang 
et al., 2024; Wei et al., 2022). 
To address the aforementioned issues, this study introduces a new high-precision, long-term 
daily gridded precipitation dataset for the Chinese mainland (a member of the China Hydro-
Meteorology datasets, hereinafter called CHM_PRE V2). Building on CHM_PRE V1, 
CHM_PRE V2 integrates precipitation gauges, remote sensing observations, reanalysis data, 
and various precipitation-related factors. Through the use of advanced spatial interpolation and 
machine learning algorithms, our method captures spatial autocorrelation while jointly 
modelling multiple covariates to enhance precipitation accuracy.” (Lines 50–72) 
 
6. The term "CMA-HD" is used but not defined. The authors should provide a clear explanation 
of what this term refers to. 
Response: We apologize for this issue. We have added the full form of the abbreviation in the 
revised manuscript. Additionally, a list of abbreviations has been included in the supplementary 
materials (Table S1) to improve the readability of the manuscript. The corresponding revisions 
are as follows: 
 
“To further validate the reliability of precipitation data, we obtained daily precipitation 
observations from 72,901 high-density automatic rain gauge stations across the Chinese 
mainland (hereafter we refer to it as CMA-HD), provided by the National Meteorological 
Information Center of CMA (Li et al., 2018).” (Lines 144–146) 



 
Table S1. List of abbreviations used throughout this paper. 

Abbreviation Full Term 
LGBM Light gradient boosting machine 
PRISM Parameter-elevation regression on independent slopes model 
IDW Inverse distance weighting 
CMA China Meteorological Administration 

GHCND Global Historical Climatology Network-Daily 
NCDC National Climatic Data Center 
NOAA National Oceanic and Atmospheric Administration 
SRTM Shuttle Radar Topography Mission 
DEM Digital Elevation Model 

CGIAR-CSI Consortium for Spatial Information, Consultative Group for 
International Agricultural Research 

NASA National Aeronautics and Space Administration 
GSMaP Global Satellite Mapping of Precipitation 

PERSIANN-
CDR 

Precipitation Estimation from Remotely Sensed Information using 
Artificial Neural Networks 

JAXA Japan Aerospace Exploration Agency 
GLDAS NOAH Global Land Data Assimilation System Noah Land Surface Model 

NDVI Normalized Difference Vegetation Index 
IMERG Integrated Multi-satellitE Retrievals for GPM 

CMA-HD High-density automatic rain gauge stations across Chinese mainland 
NEC North East China 
NC North China 
SCC South and Central China 
IM Inner Mongolia 

NWC North West China 
SWC South West China 
QT Qinghai-Tibet Plateau 

CDD Correlation decay distance 
ADW Adaptive distance weighting 
GBDT Gradient-boosted decision tree 

AE Absolute error 
KGE Kling-Gupta efficiency 
RSD Relative standard deviation 
HSS Heidke skill score 
FAR False alarm ratio 
POD Probability of detection 

 
7. The authors evaluated the dataset using 63,397 station data points. However, instead of 
interpolating these station data to 0.1-degree grids using IDW or ADW, they averaged the 
station values within each 0.1-degree grid for accuracy assessment. The rationale for this 
approach should be explained, as interpolation might provide a more consistent comparison. 



Response: Thank you for your comment regarding the accuracy evaluation. We fully agree that 
interpolating the validation stations can generate gridded data with spatial relationships more 
consistent with CHM_PRE V2. At the same time, directly comparing station observations with 
the corresponding grid values introduces the issue of missing accuracy assessments for grid 
cells without validation stations. However, considering the inevitable uncertainties introduced 
by interpolation—particularly in regions with sparse station coverage such as western China—
we believe that comparing raw station observations with their corresponding grid values yields 
more reliable accuracy assessments. 
 
Thank you again for your valuable comment. To better clarify this issue, we have added the 
following explanation to Section 3.4: 
 

“There are two approaches to using station observations to validate the accuracy of gridded 
precipitation data. The first approach involves interpolating the station data—using methods 
such as IDW—to generate gridded data at the same spatial resolution as the dataset being 
validated. This method can produce spatially consistent results with the target gridded dataset. 
However, as previously mentioned, interpolation methods have some limitations and inevitably 
introduce interpolation-related uncertainties (McMillan et al., 2018; Wagner et al., 2012). 
Moreover, the uneven spatial distribution of stations makes the validation results in sparsely 
monitored areas less reliable. The second approach is to directly compare the station 
observations with the corresponding grid cell values in the dataset being validated. Although 
this method only provides validation results for grid cells that contain observation stations, it 
avoids the uncertainties introduced by interpolation and ensures the reliability of the accuracy 
assessment. In this study, we adopted the second approach for the validation. To align with the 
0.1° gridded precipitation data, station observations were mapped onto a 0.1° grid, and the 
average precipitation of all stations within each grid cell was regarded as the true precipitation 
value for that grid cell.” (Lines 268–278) 
 
8. The units of variables in Equations 1-8 are not provided. The authors should include the units 
to ensure clarity and reproducibility. 
Response: Thank you for bringing this issue to our attention. We have added units for all 
variables in the revised manuscript. The relevant sentences are as follows:  
 
“where d(G, Pi) represents the distance (km) between grid cell G and gauge station Pi, and p is 
the distance weighting exponent.” (Lines 191–192) 
 
“where y and 𝑦𝑦�  represent the observed precipitation values and the gridded precipitation 
values (mm/day), respectively; 𝜇𝜇 denotes the mean value, 𝜎𝜎 signifies the standard deviation” 
(Lines 285–286) 
 
9. The relative importance plot in Figure 5 is not well explained. Specifically, it is unclear how 
the relative importance values were calculated and what "2nd-day prior Prec." and "5th-day 
prior Prec." represent. Are these cumulative values? A more detailed explanation is needed. 



Response: Thank you for your valuable comment. The previous analysis of relative importance 
was based on feature importance derived from the LGBM method by the node splitting, as 
described at the end of Section 3.4 in the previous manuscript. In this revision, we have re-
evaluated the use of feature importance and concluded that it may not be sufficiently reliable 
for explaining the contributions of different variables to precipitation retrieval. Therefore, we 
have removed the related content on relative importance (Figure 5(c)) in the latest manuscript 
to ensure the manuscript’s rigor. The updated Figure 5 is as follows: 
 

 
Figure 5. (a) time series of monthly precipitation; (b) multi-year mean monthly precipitation 
from 2001 to 2020. 
 
We also sincerely apologize for not providing a sufficiently clear explanation of the modeling 
variables. The variable “2nd-day prior Prec.” refers to the daily precipitation two days before 
the current day—it represents only the value of that specific day, not an accumulated amount 
over multiple days. In the revised manuscript, we have clarified the meaning of the time-related 
covariates used in the modeling in Section 3.2. We have also added a comprehensive list of 
variables used in precipitation retrieval (Table S3 in the supplementary materials) to better 
illustrate the modeling details. The corresponding revisions are as follows: 
 
“In addition to spatial and environmental variables, precipitation temporal features were also 
introduced as covariates. Two types of temporal indicators were constructed: (1) the cumulative 
precipitation of the current month and year, representing broader-scale precipitation conditions; 
and (2) daily lagged precipitation values from the previous five days, capturing short-term 
fluctuations. Each of these five recent days was treated as a separate variable. For example, the 
variable named “1st-day prior Prec.” refers to precipitation one day before the current date, 
while “5th-day prior Prec.” corresponds to five days prior.” (Lines 131–135) 
 
Table S3. The variables used in the precipitation retrieval. 
Variable Type Variable Name Description 

Lat Latitude of the grid center 



Spatial 
autocorrelation 

variables 

Lon Longitude of the grid center 

Interp. Prec. Gridded precipitation based on gauge interpolation 

Precipitation-
related covariates 

DEM Average elevation of the grid 
Slope Average slope of the grid 

GLDAS Prec. Precipitation of the grid from GLDAS 
Prec. RS Satellite-derived precipitation of the grid 

GLDAS SM Soil moisture of the grid from GLDAS 
NDVI NDVI of the grid 

Annual Prec. Annual total precipitation of the grid 
Monthly Prec. Monthly total precipitation of the grid 

1st-day prior Prec. Daily precipitation one day before the current date 
2nd-day prior Prec. Daily precipitation two day before the current date 
3rd-day prior Prec. Daily precipitation three day before the current date 
4th-day prior Prec. Daily precipitation four day before the current date 
5th-day prior Prec. Daily precipitation five day before the current date 

 
10. Figure 6 shows notably high absolute errors in the NC and SCC regions. The authors should 
discuss the potential reasons for these high errors and whether they are related to regional 
characteristics or methodological limitations. 
Response: As you rightly pointed out, both CHM_PRE V2 and V1 exhibit larger absolute errors 
in regions such as NC, SCC, and QT compared to other regions. This is mainly attributed to the 
higher precipitation amounts in these regions, which naturally lead to greater absolute errors. 
To further analyze the error characteristics of CHM_PRE V2 across different regions, we 
calculated the relative error for each dataset (Figure R1(a)) as well as the relative error 
difference between CHM_PRE V2 and V1 in each region (Figure R1(b)). The relative error 
here is defined as the absolute error of each precipitation event divided by the true daily 
precipitation value, expressed as a percentage (%). 
 
Figure R1(a) shows that CHM_PRE V2 has lower relative errors compared to other datasets. 
Figure R1(b) indicates that CHM_PRE V2 exhibits only minor differences in relative error 
across different regions and performs better than CHM_PRE V1. Therefore, we conclude that 
CHM_PRE V2 maintains generally stable error levels across regions. 
 



 
Figure R1. (a) relative error for different precipitation datasets on the testing dataset CMA-HD; 
(b) relative error difference between CHM_PRE V2 and V1 in each region. 
 
In contrast, accuracy metrics that are unaffected by the magnitude of the variable—such as the 
Kling-Gupta Efficiency (KGE; Figure 6(e)) and the Relative Standard Deviation (RSD; Figure 
6(f))—demonstrate better regional consistency. The variability of KGE and RSD is relatively 
higher in SWC and QT, which may be attributed to the sparse distribution of precipitation 
observation stations and the high spatiotemporal variability of precipitation in these areas (Li 
et al., 2015; Liu et al., 2019). We have added some discussion to Section 4.2, as follows: 
 
“Specifically, Figure 6(d) shows that both the CHM_PRE V2 and V1 datasets exhibit larger 
absolute errors in regions such as NC, SCC, and QT compared to other areas. This is mainly 
attributed to the higher precipitation amounts in these regions, which naturally lead to greater 
absolute errors. In contrast, accuracy metrics that are not affected by the magnitude of the 
variables, such as KGE (Figure 6(e)) and RSD (Figure 6(f)), demonstrate better stability across 
different regions. The KGE and RSD in SWC and QT exhibit relatively greater variability, 
which could possibly be explained by the sparse distribution of precipitation observation 
stations and the high spatiotemporal variability of precipitation in these regions (Li et al., 2015; 
Liu et al., 2019).” (Lines 335–341) 
 



 
Figure 6. Accuracy of different precipitation datasets on the testing dataset CMA-HD. The 
green and yellow boxes in subfigures (d-f) represent CHM_PRE V2 and CHM_PRE V1, 
respectively. The ideal values for absolute error, KGE, and RSD are 0 mm/day, 1.0, and 1.0, 
respectively. 
 
11. From the perspective of RSD (Relative Standard Deviation), it appears that GSMaP might 
have higher accuracy than CHM_PRE v1.0. The authors should address this observation and 
discuss how CHM_PRE v2.0 compares to GSMaP in terms of performance. 
Response: Thank you for pointing out this issue. We carefully examined the RSD values across 
different precipitation datasets and found that CHM_PRE V2 achieved the best performance 
among all datasets (RSD takes values in the range (0, +∞), and the optimal value is 1). As 
shown in Figure 6(c), CHM_PRE V2 demonstrates superior accuracy in terms of RSD, with 
the median RSD across stations being closer to 1.0 compared to other datasets. 
 
Also, we calculated the overall accuracy of precipitation values for each dataset (Table S5) and 
found that CHM_PRE V2 attained an overall RSD of 0.88, which is approximately 4.76% better 
than the second-best dataset, IMERG (RSD = 0.84). In fact, CHM_PRE V2 outperforms all 
other datasets in terms of overall MAE, KGE, and RSD. The only exception is the Bias metric, 
where CHM_PRE V2 (1.05) is slightly worse than GSMaP (1.04). 
 



Table S5. Precipitation accuracy of different datasets validated by high-density gauge data. The 
bolded numbers in the column represent the optimal accuracy values for that metric. 

Dataset Name MAE (mm/day) KGE Bias RSD 
CHM_PRE V2 1.48 0.79 1.05 0.88 
CHM_PRE V1 1.67 0.70 1.12 0.78 
GSMaP 2.94 0.48 1.04 0.80 
IMERG 3.27 0.44 1.12 0.84 
PERSIANN-CDR 3.70 0.29 1.12 0.70 
GLDAS 3.69 0.31 1.04 0.79 

 
To better clarify this point, we have added the following content to the revised manuscript: 
 
“CHM_PRE V2 achieved an overall MAE, KGE, and RSD of 1.48 mm/day, 0.79, and 0.88, 
respectively, outperforming other datasets by 12.84%, 12.86%, and 4.76% (Table S5 in the 
supplementary material).” (Lines 328–330) 
 

 
Figure 6. Accuracy of different precipitation datasets on the testing dataset CMA-HD. The 
green and yellow boxes in subfigures (d-f) represent CHM_PRE V2 and CHM_PRE V1, 
respectively. The ideal values for absolute error, KGE, and RSD are 0 mm/day, 1.0, and 1.0, 
respectively. 



 
We are sincerely grateful for your insightful comments, which have significantly enhanced the 
quality of our manuscript. 
 
 
References: 
Adler, R. F., Gu, G., Wang, J.-J., Huffman, G. J., Curtis, S., and Bolvin, D.: Relationships 

between global precipitation and surface temperature on interannual and longer 
timescales (1979–2006), Journal of Geophysical Research: Atmospheres, 113, 
https://doi.org/10.1029/2008JD010536, 2008. 

Ashouri, H., Hsu, K.-L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., 
Nelson, B. R., and Prat, O. P.: PERSIANN-CDR: Daily Precipitation Climate Data 
Record from Multisatellite Observations for Hydrological and Climate Studies, Bulletin 
of the American Meteorological Society, 96, 69–83, https://doi.org/10.1175/BAMS-D-
13-00068.1, 2015. 

Chen, D., Ou, T., Gong, L., Xu, C.-Y., Li, W., Ho, C.-H., and Qian, W.: Spatial interpolation 
of daily precipitation in China: 1951–2005, Advances in Atmospheric Sciences, 27, 
1221–1232, https://doi.org/10.1007/s00376-010-9151-y, 2010. 

Chen, D., Tian, Y., Yao, T., and Ou, T.: Satellite measurements reveal strong anisotropy in 
spatial coherence of climate variations over the Tibet Plateau, Scientific Reports, 6, 
30304, https://doi.org/10.1038/srep30304, 2016. 

Daly, C., Neilson, R. P., and Phillips, D. L.: A Statistical-Topographic Model for Mapping 
Climatological Precipitation over Mountainous Terrain, Journal of Applied Meteorology 
and Climatology, 33, 140–158, https://doi.org/10.1175/1520-
0450(1994)033<0140:ASTMFM>2.0.CO;2, 1994. 

Daly, C., Gibson, W. P., Taylor, G. H., Johnson, G. L., and Pasteris, P.: A knowledge-based 
approach to the statistical mapping of climate, Climate research, 22, 99–113, 
https://doi.org/10.3354/cr022099, 2002. 

Dong, J., Crow, W. T., and Reichle, R.: Improving Rain/No-Rain Detection Skill by Merging 
Precipitation Estimates from Different Sources, Journal of Hydrometeorology, 21, 2419–
2429, https://doi.org/10.1175/JHM-D-20-0097.1, 2020. 

Durre, I., Menne, M. J., and Vose, R. S.: Strategies for Evaluating Quality Assurance 
Procedures, Journal of Applied Meteorology and Climatology, 47, 1785–1791, 
https://doi.org/10.1175/2007JAMC1706.1, 2008. 

Durre, I., Menne, M. J., Gleason, B. E., Houston, T. G., and Vose, R. S.: Comprehensive 
Automated Quality Assurance of Daily Surface Observations, Journal of Applied 
Meteorology and Climatology, 49, 1615–1633, 
https://doi.org/10.1175/2010JAMC2375.1, 2010. 

Fan, C., Yin, S., and Chen, D.: Spatial correlations of daily precipitation over mainland 
China, International Journal of Climatology, 41, 6350–6365, 
https://doi.org/10.1002/joc.7199, 2021. 

Ham, Y.-G., Kim, J.-H., Min, S.-K., Kim, D., Li, T., Timmermann, A., and Stuecker, M. F.: 
Anthropogenic fingerprints in daily precipitation revealed by deep learning, Nature, 622, 
301–307, https://doi.org/10.1038/s41586-023-06474-x, 2023. 



Han, J., Miao, C., Gou, J., Zheng, H., Zhang, Q., and Guo, X.: A new daily gridded 
precipitation dataset for the Chinese mainland based on gauge observations, Earth 
System Science Data, 15, 3147–3161, https://doi.org/10.5194/essd-15-3147-2023, 2023. 

He, J., Yang, K., Tang, W., Lu, H., Qin, J., Chen, Y., and Li, X.: The first high-resolution 
meteorological forcing dataset for land process studies over China, Scientific Data, 7, 25, 
https://doi.org/10.1038/s41597-020-0369-y, 2020. 

Hu, Y., Wei, F., Fu, B., Wang, S., Xiao, X., Qin, Y., Yin, S., Wang, Z., and Wan, L.: 
Divergent patterns of rainfall regimes in dry and humid areas of China, Journal of 
Hydrology, 636, 131243, https://doi.org/10.1016/j.jhydrol.2024.131243, 2024. 

Huff, F. A. and Shipp, W. L.: Spatial Correlations of Storm, Monthly and Seasonal 
Precipitation, Journal of Applied Meteorology and Climatology, 8, 542–550, 1969. 

Jiang, Y., Yang, K., Qi, Y., Zhou, X., He, J., Lu, H., Li, X., Chen, Y., Li, X., Zhou, B., 
Mamtimin, A., Shao, C., Ma, X., Tian, J., and Zhou, J.: TPHiPr: a long-term (1979–
2020) high-accuracy precipitation dataset (1∕30°, daily) for the Third Pole region 
based on high-resolution atmospheric modeling and dense observations, Earth System 
Science Data, 15, 621–638, https://doi.org/10.5194/essd-15-621-2023, 2023. 

Kang, X., Dong, J., Crow, W. T., Wei, L., and Zhang, H.: The Conditional Bias of Extreme 
Precipitation in Multi-Source Merged Data Sets, Geophysical Research Letters, 51, 
e2024GL111378, https://doi.org/10.1029/2024GL111378, 2024. 

Kubota, T., Aonashi, K., Ushio, T., Shige, S., Takayabu, Y. N., Kachi, M., Arai, Y., Tashima, 
T., Masaki, T., Kawamoto, N., Mega, T., Yamamoto, M. K., Hamada, A., Yamaji, M., 
Liu, G., and Oki, R.: Global Satellite Mapping of Precipitation (GSMaP) Products in the 
GPM Era, in: Satellite Precipitation Measurement, vol. 67, edited by: Levizzani, V., 
Kidd, C., Kirschbaum, D. B., Kummerow, C. D., Nakamura, K., and Turk, F. J., 
Springer, Cham, 355–373, https://doi.org/10.1007/978-3-030-24568-9_20, 2020. 

Li, R., Wang, K., and Qi, D.: Validating the Integrated Multisatellite Retrievals for Global 
Precipitation Measurement in Terms of Diurnal Variability With Hourly Gauge 
Observations Collected at 50,000 Stations in China, Journal of Geophysical Research: 
Atmospheres, 123, 10423–10442, https://doi.org/10.1029/2018JD028991, 2018. 

Li, Y.-G., He, D., Hu, J.-M., and Cao, J.: Variability of extreme precipitation over Yunnan 
Province, China 1960–2012, International Journal of Climatology, 35, 245–258, 
https://doi.org/10.1002/joc.3977, 2015. 

Liu, J., Shangguan, D., Liu, S., Ding, Y., Wang, S., and Wang, X.: Evaluation and 
comparison of CHIRPS and MSWEP daily-precipitation products in the Qinghai-Tibet 
Plateau during the period of 1981–2015, Atmospheric Research, 230, 104634, 
https://doi.org/10.1016/j.atmosres.2019.104634, 2019. 

McMillan, H. K., Westerberg, I. K., and Krueger, T.: Hydrological data uncertainty and its 
implications, WIREs Water, 5, e1319, https://doi.org/10.1002/wat2.1319, 2018. 

Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., and Houston, T. G.: An Overview of the 
Global Historical Climatology Network-Daily Database, Journal of Atmospheric and 
Oceanic Technology, 29, 897–910, https://doi.org/10.1175/JTECH-D-11-00103.1, 2012. 

Ravuri, S., Lenc, K., Willson, M., Kangin, D., Lam, R., Mirowski, P., Fitzsimons, M., 
Athanassiadou, M., Kashem, S., Madge, S., Prudden, R., Mandhane, A., Clark, A., 
Brock, A., Simonyan, K., Hadsell, R., Robinson, N., Clancy, E., Arribas, A., and 



Mohamed, S.: Skilful precipitation nowcasting using deep generative models of radar, 
Nature, 597, 672–677, https://doi.org/10.1038/s41586-021-03854-z, 2021. 

Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, 
K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, 
D., and Toll, D.: The Global Land Data Assimilation System, Bulletin of the American 
Meteorological Society, 85, 381–394, https://doi.org/10.1175/BAMS-85-3-381, 2004. 

Shen, Y., Feng, M., Zhang, H., and Gao, F.: Interpolation Methods of China Daily 
Precipitation Data, Journal of Applied Meteorological Science (In Chinese), 21, 279–
286, 2010. 

Tang, G., Clark, M. P., Newman, A. J., Wood, A. W., Papalexiou, S. M., Vionnet, V., and 
Whitfield, P. H.: SCDNA: a serially complete precipitation and temperature dataset for 
North America from 1979 to 2018, Earth System Science Data, 12, 2381–2409, 
https://doi.org/10.5194/essd-12-2381-2020, 2020. 

Trucco, A., Barla, A., Bozzano, R., Pensieri, S., Verri, A., and Solarna, D.: Introducing 
Temporal Correlation in Rainfall and Wind Prediction From Underwater Noise, IEEE 
Journal of Oceanic Engineering, 48, 349–364, 
https://doi.org/10.1109/JOE.2022.3223406, 2023. 

Vermote, E. and NOAA CDR Program: NOAA Climate Data Record (CDR) of AVHRR 
Normalized Difference Vegetation Index (NDVI) (5), 
https://doi.org/10.7289/V5ZG6QH9, 2019. 

Wagner, P. D., Fiener, P., Wilken, F., Kumar, S., and Schneider, K.: Comparison and 
evaluation of spatial interpolation schemes for daily rainfall in data scarce regions, 
Journal of Hydrology, 464–465, 388–400, https://doi.org/10.1016/j.jhydrol.2012.07.026, 
2012. 

Wan, W. and Zhou, Y.: Spatiotemporal patterns in persistent precipitation extremes of the 
Chinese mainland (1961–2022) and association with the dynamic factors, Atmospheric 
Research, 310, 107600, https://doi.org/10.1016/j.atmosres.2024.107600, 2024. 

Wei, G., Lü, H., Crow, W. T., Zhu, Y., Su, J., and Ren, L.: Comprehensive Evaluation and 
Error-Component Analysis of Four Satellite-Based Precipitation Estimates against 
Gauged Rainfall over Mainland China, Advances in Meteorology, 2022, 9070970, 
https://doi.org/10.1155/2022/9070970, 2022. 

Xie, P., Chen, M., Yang, S., Yatagai, A., Hayasaka, T., Fukushima, Y., and Liu, C.: A Gauge-
Based Analysis of Daily Precipitation over East Asia, Journal of Hydrometeorology, 8, 
607–626, https://doi.org/10.1175/JHM583.1, 2007. 

Yin, C., Bai, C., Zhu, Y., Shao, M., Han, X., and Qiao, J.: Future Soil Erosion Risk in China: 
Differences in Erosion Driven by General and Extreme Precipitation Under Climate 
Change, Earth’s Future, 13, e2024EF005390, https://doi.org/10.1029/2024EF005390, 
2025. 

Zhang, Y., Ren, Y., Ren, G., and Wang, G.: Precipitation Trends Over Mainland China From 
1961–2016 After Removal of Measurement Biases, Journal of Geophysical Research: 
Atmospheres, 125, e2019JD031728, https://doi.org/10.1029/2019JD031728, 2020. 

Zheng, H., Miao, C., Huntingford, C., Tarolli, P., Li, D., Panagos, P., Yue, Y., Borrelli, P., 
and Van Oost, K.: The Impacts of Erosion on the Carbon Cycle, Reviews of Geophysics, 
63, e2023RG000829, https://doi.org/10.1029/2023RG000829, 2025. 
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In order to make the review of our revision more convenient, we have marked all changes 
using the “Track Changes” function in Microsoft Word, and have uploaded the “tracked 
changes” version as Supplementary Material. 
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