
1 

 

SDUST2024MSS_AO: a MSS model of the Arctic Ocean derived 

from CryoSat-2 SAR altimeter data 

Xin Liu1, Yang Yang1, Menghao Song1, Xiaofeng Dai1, Yurong Ding1, Gaoying Yin1, Jinyun Guo1 

1College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, 266590, China 

Correspondence to: Xin Liu(xinliu1969@126.com) 5 

Abstract. Due to the seasonal and perennial sea ice coverage in the Arctic Ocean, determining the sea surface height (SSH) 

is more difficult compared to mid- and low-latitude regions. This has resulted in a lack of high-precision, high-resolution 

mean sea surface (MSS) models for the Arctic Ocean. This paper focuses on the SSH in the ice-covered regions of the Arctic 

Ocean, using CryoSat-2 SAR mode altimeter data and MODIS images to develop a feature and threshold optimization 

method based on waveform characteristic method, combining mutual information and the F1 Score. This method detects 10 

lead observations in Baseline-E CryoSat-2 ice products with a precision of 90.79% and a recall of 85.25%. Using 

CryoSat-2 SAR mode altimeter data from July 2010 to December 2023, the lead observations are divided into 5-km 

grids for each month, and gross error observations in each grid are removed according to the two-sigma principle. The 

mean SSH for each month is calculated to establish a monthly mean SSH time series within each grid. Then, using 

least square estimation (LSE), a new MSS model with a grid size of 5 km is constructed, named SDUST 2024 MSS of 15 

Arctic Ocean (SDUST2024MSS_AO). The SDUST2024MSS_AO model is compared with four internationally renowned 

MSS models (CLS2022, DTU21, UCL13, and SDUST2020) and validated using ICESat-2 altimeter data, demonstrating the 

reliability of the SDUST2024MSS_AO model. The SDUST2024MSS_AO model data are available at 

https://doi.org/10.5281/zenodo.13624487 (Liu et al., 2024). 

1 Introduction 20 

In recent decades, satellite altimeter missions have provided high-precision, large-scale sea surface height (SSH) data. This 

data has offered valuable support for research on global SSH and its variations (Stanev and Peneva, 2001), marine gravity 

anomalies (Zhu et al., 2019), mean sea surface (Yuan et al., 2020), seafloor topography (Hwang and Chang, 2014), oceanic 

lithosphere (Gozzard et al., 2019), and ocean circulation (Guo et al., 2010). Despite the establishment of a series of high-

precision global mean sea surface (MSS) models (Andersen et al., 2023; Schaeffer et al., 2023; Yuan et al., 2023), MSS 25 

models for the Arctic Ocean in ice-covered regions have long lagged behind in both quantity and resolution (Ayre et al., 

2015; Laverick et al., 2023). The most recent Arctic MSS model is the SUST22 model developed by Chen et al. (2022), 

which covers up to 88°N with a resolution of 10 km × 10 km. 
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As a crucial component of the Earth's cryosphere, the Arctic Ocean SSH has always been a focal point in global climate 

change research (Dahe et al., 2014). However, sea ice hinders direct observation of SSH from space, leading to lower data 30 

quality in early MSS models for the Arctic Ocean (Prandi et al., 2012). Additionally, the spatial coverage of satellites is 

limited by their orbital inclination, resulting in only a few satellite altimeter missions being able to pass over the Arctic 

Ocean. For example, the latitude limit of the orbits of radar altimeter satellites like GFO, ERS-1/2, and Envisat is 81.5°N 

(Chen et al., 2022), leaving a large hole in the central Arctic Ocean. The SSH in the ice-covered regions of the Arctic Ocean 

can be determined using satellite altimeter observations over leads (Forsberg and Skourup, 2005; Laxon et al., 2003). 35 

CryoSat-2, operated by the European Space Agency (ESA) and specifically designed for polar research, has a latitude 

coverage range of up to 88°N, covering most of the Arctic Ocean (Guerreiro et al., 2017; Rose et al., 2019). Therefore, 

observations over leads in the ice-covered regions of the Arctic Ocean from the CryoSat-2 can be used to establish an Arctic 

Ocean MSS model. This requires accurately extracting lead observations from the CryoSat-2 altimeter data.  

Currently, three common methods are utilized for lead detection: the minimum point method (Skourup, 2010; Spreen, 2008), 40 

empirical relationship method (Markus et al., 2011; Kwok et al., 2007), and waveform characteristics method (Kwok et al., 

2004; Wang et al., 2012). The waveform characterization method has been widely employed for lead detection in CryoSat-2 

altimeter data (Rose, 2013; Ricker et al., 2014; Passaro et al., 2018). For example, Pulse Peakiness (PP), Stack Standard 

Deviation (SSD), Stack Skewness (Sk), The Left Pulse Peakiness (PPL), The Right Pulse Peakiness (PPR), Leading Edge 

Width (LEW), Trailing Edge Width (TEW), and Maximum Power (MP) (Wernecke and Kaleschke, 2015) were used to 45 

explore the effectiveness of lead detection in the Arctic Ocean under different feature parameter combinations and evaluate 

the detection results using MODIS images. SSD, Sk, Stack Kurtosis (Kt), PP, and the radar backscatter sigma-0 (Sigma-0) 

(Lee et al., 2016) were combined with machine learning methods to study lead detection in the Arctic Ocean, achieving a 

detection accuracy exceeding 90%. However, the lead observations detected using these methods are mostly used for 

calculating sea ice thickness and freeboard, with few studies employing lead data to establish Arctic Ocean MSS models. 50 

In current methods, different researchers have used different baseline versions of CryoSat-2 data at various times and 

employed different feature combinations to detect lead observations in the altimeter data. Among the numerous features, 

most researchers have not explored which ones are more suitable for lead detection. Additionally, these methods mainly 

focus on precision, paying little attention to recall, because achieving higher precision often involves using stricter thresholds, 

which can lower recall and reduce the number of correctly detected leads (Zhou, 2016). Since the number of leads used to 55 

establish the Arctic Ocean MSS model is already limited, a low recall rate would decrease the accuracy of the model. 

This paper utilizes Baseline-E CryoSat-2 ice products, employing waveform feature analysis to detect lead observations in 

the ice-covered regions of the Arctic Ocean, thereby establishing a new Arctic Ocean MSS model with a 5 km grid size. The 

paper is organized as follows: Section 2 describes the datasets used in this study, Section 3 introduces the method for lead 

detection in CryoSat-2, Section 4 constructs and validates a new Arctic Ocean MSS model, and Section 5 summarizes the 60 

main conclusions. 
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2 Data 

2.1 CryoSat-2 data 

CryoSat-2, launched by ESA in April 2010, began data collection in July 2010 with the task of monitoring changes in polar 

sea ice and continental ice sheet thickness(Schwatke et al., 2024; Wang et al., 2019). The satellite is equipped with a novel 65 

Synthetic Aperture Interferometric Radar Altimeter (SIRAL)，with a latitudinal coverage of 88°S-88°N. CryoSat-2 operates 

in three different modes to accommodate various Earth surfaces: Low Rate Mode (LRM), Synthetic Aperture Radar (SAR), 

and SAR Interferometry (SARIn).CryoSat-2 automatically switches between its three measurement modes according to a 

geographic mode mask. The distribution of the Geographical Mode Mask for the Arctic region in January and July is shown 

in Figure 1.The data resolution varies across different modes, as detailed in the article by Jain et al. (2015). In the ice-70 

covered Arctic Ocean, it primarily operates in SAR mode. This paper utilizes two types of SAR mode data products: level-

1B (L1B) products for lead detection and level-2 (L2) products for obtaining SSH. Both products can be downloaded from 

ESA's ftp service at ftp://science-pds.cryosat.esa.int/. This paper used Baseline-E CryoSat-2 ice products, spanning from July 

2010 to December 2023, covering a total of 162 months.  

 75 

Figure 1: Operational Geographical Mode Mask (version 3.7, published in December 2015, from: 

https://earth.esa.int/eogateway/instruments/siral/geographical-mode-mask) for the Arctic region, illustrating the mode distribution 

in: (a) January and (b) July. 

2.2 MSS models 

This paper evaluates the accuracy and reliability of our model using four widely used global MSS models in the Arctic 80 

Ocean: CLS2022, DTU21, UCL13, and SDUST2020. 

CLS2022, released by the French National Space Research Center (Centre National d′Études Spatiales, CNES) (Schaeffer et 

al., 2023) and available for download at https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/mss.html, covers 
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latitudes from 80°S to 88°N with a grid size of 1′×1′. The reference period spans from 1993 to 2021, incorporating ten 

altimeter data including T/P, ERS-2, GFO, Jason-1, Jason-2, Jason-3, Envisat, Saral/Altika, CryoSat-2, and Sentinel-3A, 85 

utilizing a local least squares configuration. 

DTU21, released by the Technical University of Denmark (Andersen et al., 2023) and available for download at 

https://doi.org/10.11583/DTU.19383221.v1, covers the latitudinal range from 90°S to 90°N with a grid size of 1′×1′.The 

reference period covers 1993 to 2020, integrating altimeter data including T/P, Jason-1, Jason-2, ERS-1, ERS-2, ENVISAT, 

ICESat, Geosat, GFO, CryoSat-2, and Sentinel-3A. 90 

UCL2013, developed by University College London (UCL), covers latitudes up to 88°N with a grid size of 3.75′×3.75′ and a 

reference period from 2010 to 2012. Data north of 60°N in this model come from two complete CryoSat-2 cycles (Skourup 

et al., 2017) and can be extracted from CryoSat-2 L2 products. 

SDUST2020, developed by Shandong University of Science and Technology (SDUST) (Yuan et al., 2023) , is available for 

download at https://zenodo.org/record/6555990. It spans latitudes from 80°S to 84°N with a grid size of 1′×1′. Covering the 95 

reference period from 1993 to 2019, it incorporates altimeter data—T/P, Jason-1, Jason-2, Jason-3, ERS-1, ERS-2, GFO, 

Envisat, SARAL, HY-2A, Sentinel-3A, and CryoSat-2—for model construction. 

2.3 Lead samples 

To study waveform features, a substantial number of real lead and sea ice observations are needed for feature optimization 

and classification result verification. Eight geometrically corrected MODIS images (MODIS L1B products, with a spatial 100 

resolution of 250m, available at: https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MOD02QKM--61) were used in this 

study. These images were overlaid with CryoSat-2 tracks to ensure spatial alignment. For each MODIS image, the time 

difference between the image and the corresponding CryoSat-2 track did not exceed 60 minutes. The average time difference 

between each MODIS image and its corresponding CryoSat-2 track was approximately 21 minutes. Reliable CryoSat-2 lead 

observations were manually identified from the images (Lee et al., 2018), resulting in 712 lead observation samples and 105 

1008 sea ice observation samples. A random selection of 500 lead samples and 500 sea ice samples from all samples was 

used as the sample set for calculating mutual information. All 712 lead samples and 712 randomly selected sea ice samples 

from all sea ice samples were used as the sample set for calculating precision, recall, and F1 score. 

 

2.4 ICESat-2 data 110 

This paper further confirms our model's accuracy using elevation data from the ICESat-2 ATL07 product, available at 

https://search.earthdata.nasa.gov/search. Launched in September 2018, ICESat-2 is equipped with the Advanced 

Topographic Laser Altimeter System (ATLAS) and has a latitudinal coverage from 88°S to 88°N. To address potential 

biases due to seasonal variations in the Arctic Ocean, this paper utilizes 63 ICESat-2 orbits from different months (as shown 

in Figure 2), which include a total of 692,421 lead observations. 115 
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Figure 2: Distribution of ICESat-2 Data. 

3 Methods 

3.1 Waveform statistics 

The study utilized a total of 14 waveform features, specifically including Scaled Amplitude (SA), Pulse Peakiness (PP), 120 

Stack Standard Deviation (SSD), Stack Skewness (Sk), The Left Pulse Peakiness (PPL), The Right Pulse Peakiness (PPR), 

Late Tail to Peak Power ratio (LTPP), Early tail to peak power ratio (ETPP), Leading Edge Width (LEW), Trailing Edge 

Width (TEW), radar backscatter sigma-0 (sigma-0), Stack Peakiness (SP), Stack Kurtosis (Kt), and Maximum Power (MP). 

Among these, SA, SSD, SP, Kt, and sigma-0 can be derived from L1B and L2 products, while the remaining features can be 

calculated based on L1B waveform. The definitions and calculation formulas for these waveform features are referenced 125 

from the literature (Rinne and Similä, 2016; Rose et al., 2019; Ricker et al., 2014; Lee et al., 2016; Wernecke and 

Kaleschke, 2015). 

3.2 Feature optimization method 

There are numerous features in satellite altimeter data, and selecting the appropriate features and thresholds for lead 

detection is crucial. This paper employs a method that combines mutual information (Zhang et al., 2021) and F1 score to 130 

select the optimal features and determine the optimal thresholds. 

Mutual information identifies the relationship between each feature and the label. It calculates the mutual information 

between features and samples based on information entropy and selects features according to the amount of information. 
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Assume that the current sample set D contains y classes of samples. Let the proportion of the k-th class be 𝑝𝑘 (k=1，2，…，

𝑦). The information entropy of D (Zhou, 2016) is given by: 135 

𝐸𝑛𝑡(𝐷) = − ∑ (𝑝𝑘 log2 𝑝𝑘)
𝑦
𝑘=1  .          (1) 

A smaller value of 𝐸𝑛𝑡(𝐷) indicates the purity of D. 

Assume that feature a has 𝑉 possible values {𝑎1, 𝑎2, … , 𝑎𝑉}. Using a to partition the sample set D results in 𝑉 branch nodes. 

The v-th branch node consists of all samples in D with the value 𝑎𝑣 on feature a, denoted as 𝐷𝑣 . The information entropy of 

𝐷𝑣  can be computed using equation (1). Since branch nodes contain varying numbers of samples, we assign weights 140 

|𝐷𝑣| |𝐷|⁄  to each branch node. Branch nodes with more samples having greater influence. Consequently, the information 

gain from using feature a to partition D is calculated as:  

𝐺𝑎𝑖𝑛(𝐷, 𝑎) = 𝐸𝑛𝑡(𝐷) − ∑ (
|𝐷𝑣|

|𝐷|
𝑉
𝑣=1 𝐸𝑛𝑡(𝐷𝑣)) .        (2) 

Mutual information is defined as: 

𝐺𝑎𝑖𝑛 𝑟𝑎𝑡𝑖𝑜(𝐷, 𝑎) =
𝐺𝑎𝑖𝑛(𝐷,𝑎)

𝐼𝑉(𝑎)
 .          (3) 145 

Here, 

𝐼𝑉(𝑎) = − ∑
|𝐷𝑣|

|𝐷|
𝑉
𝑣=1 log2

|𝐷𝑣|

|𝐷|
 ,          (4) 

which is called the "intrinsic value" of feature a. In this paper, the feature with the highest mutual information is chosen as 

the optimal feature. It is important to note that as the number of possible values for feature a (i.e., V) increases, the intrinsic 

value  𝐼𝑉(𝑎) also tends to increase. Consequently, the mutual information 𝐺𝑎𝑖𝑛 𝑟𝑎𝑡𝑖𝑜(𝐷, 𝑎) generally decreases for features 150 

with a larger V. 

The accuracy of lead detection results is evaluated using precision and recall. Precision refers to the proportion of correctly 

detected targets among all automatically detected targets, recall refers to the proportion of correctly identified targets relative 

to the total number of targets in the dataset (Peng and Sen, 2009). Precision and recall are conflicting metrics. This study 

uses the F1 score (Wang et al., 2015): 155 

𝐹1 =
(1+𝛽2)×𝑃×𝑅

(𝛽2×𝑃)+𝑅
 ,                         (5) 

as a performance metric that comprehensively considers precision and recall, where P represents precision and R represents 

recall, and β measures the relative importance of recall to precision. When β >1, it gives greater weight to recall; when β =1, 

it is the standard F1; and when 0< β <1, it gives greater weight to precision. The F1 score is defined as the harmonic mean of 

precision and recall. Compared to the arithmetic mean (
𝑃+𝑅

2
) and the geometric mean (√𝑃 × 𝑅), the harmonic mean assigns 160 

higher weight to lower values. Therefore, a high F1 score can only be achieved when both precision and recall are high. For 
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individual features, the optimal threshold is chosen as the one that yields the highest F1 score. The combination of features 

that achieves the highest F1 score is then selected as the optimal feature combination. 

3.3 MSS model building method 

This study uses a gridded approach to process lead data. Given the Arctic Ocean's high latitude location, where the spacing 165 

between meridians varies significantly with latitude, a latitude-longitude grid is unsuitable for gridding data in this region. 

Instead, a planar coordinate grid should be used. The Arctic Ocean is initially divided into 5 km × 5 km grids using the 

Arctic Polar Stereographic coordinate system (EPSG:3995). Within each grid cell, monthly lead SSH observations are 

collected and any gross error observations are removed based on the two-sigma principle. Subsequently, the monthly data for 

each grid are averaged to create a monthly mean SSH time series spanning from July 2010 to December 2023, totaling 162 170 

months. The length of the time series obtained in each 5 km × 5 km grid (i.e., the number of months with observation data) is 

depicted in Figure 3. 

 

Figure 3. Illustration of the length of the time series in each 5 km × 5 km grid (i.e., the number of months with observational data). 

The mean SSH represents the average of sea surface heights over a specific period. Since the start time, end time, and time 175 

span of the time series in each grid cell vary, directly averaging the time series within a grid cell may still result in temporal 

variations between different grid cells. Therefore, it is necessary to remove temporal variations in each grid's time series 

before averaging to achieve more consistent results. Let 𝐻 denote the monthly mean SSH time series within a grid cell, then 

the SSH for the 𝑖-th month can be represented as: 

https://doi.org/10.5194/essd-2025-2
Preprint. Discussion started: 28 January 2025
c© Author(s) 2025. CC BY 4.0 License.



8 

 

𝐻(𝑡𝑖) = 𝐻(𝑡0) +
𝑑𝐻

𝑑𝑡
⋅ (𝑡𝑖 − 𝑡0) + 𝑠1 ⋅ sin(2𝜋𝑡𝑖) + 𝑠2 ⋅ cos(2𝜋𝑡𝑖) .      (6) 180 

Where 𝑡𝑖 represents the 𝑖-th month in the time series, 𝑡0 represents the reference time, 
𝑑𝐻

𝑑𝑡
 represents the linear trend of SSH 

variation, 𝑠1 and 𝑠2 are coefficients for seasonal variations in SSH (Chen et al., 2022). Since a linear long-term trend fitting 

is adopted, if the initial time is chosen as the middle time in the time series, 𝐻(𝑡0) can be regarded as the mean SSH over 

that period of time. The mean SSH can be estimated using least squares estimation (LSE) with equation (6) when the time 

series includes data for at least five months. 185 

This paper selects 2016.25 (UTC) as the reference time, marking the midpoint of the period from July 2010 to December 

2023. To ensure accurate data calculations, each grid's time series for calculating the mean SSH must start before 2016.25 

and end after 2016.25, with a minimum duration of 36 months. The black areas in Figure 3 indicate grid cells with fewer 

than 10 months of observational data, likely preventing a reliable calculation of mean SSH using equation (6) within these 

grid cells. However, the majority of areas in the Figure 3 contain observational data for more than 10 months, suggesting that 190 

the calculation of the mean SSH within these grid cells can be performed with relative accuracy. This demonstrates the 

appropriateness of the 5 km grid division used in this paper. 

4 Results and discussion 

4.1 Optimal feature combination and threshold 

First, features are extracted from the waveform data, and the mutual information values relating the features to the samples 195 

are shown in Table 1. According to the principle of filtering out features with mutual information values less than the 

average of all features, after two rounds of filtering, the remaining features are Sigma_0, MP, LTPP, SA, and PP. 

Table 1. Mutual information values of the 14 waveform features. 

Features mutual information 

Sigma_0 0.477 

MP 0.472 

LTPP 0.466 

SA 0.457 

PP 0.439 

SSD 0.409 

Sk 0.399 

TEW 0.394 

Kt 0.385 
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ETPP 0.366 

PPR 0.327 

LEW 0.256 

SP 0.248 

PPL 0.236 

 

The F1 scores for different thresholds of Sigma_0, MP, LTPP, SA, and PP are calculated and are shown in Figure 4. The 200 

waveform feature value corresponding to the maximum F1 score is the threshold for waveform features and are shown in 

Table 2. 

 

Figure 4. F1 Scores of features at different values: (a) Sigma_0, (b) SA, (c) PP, (d) MP, and (e) LTPP. 
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 205 

Table 2. F1 scores and thresholds of SA, LTPP, PP, Sigma_0, and MP. 

Feature maximum F1 score value 

SA 0.8754 -131.9 

LTPP 0.8743 0.018 

PP 0.8572 40.5 

Sigma_0 0.8693 15.2 

MP 0.8755 2.1 × 10−13 

By combining Sigma_0, MP, LTPP, SA, and PP, we can obtain 31 feature combinations. The precision, recall, and F1 scores 

for these 31 combinations are calculated and are shown in Table 3. 

 

Table 3. Precision, recall, and F1 scores of the 31 feature combinations. 210 

Index Feature combination precision recall F1 score 

1 SA 88.27% 86.66% 0.8754 

2 LTPP 87.38% 87.50% 0.8743 

3 PP 90.78% 80.20% 0.8572 

4 Sigma0 90.12% 83.29% 0.8693 

5 MP 88.16% 86.80% 0.8755 

6 SA+LTPP 89.97% 84.41% 0.8739 

7 SA+PP 91.41% 79.21% 0.8552 

8 SA+Sigma0 90.59% 82.44% 0.8675 

9 SA+ MP 90.79% 85.25% 0.8822 

10 LTPP+PP 91.17% 79.78% 0.8569 

11 LTPP+Sigma0 91.31% 81.18% 0.8648 

12 LTPP+ MP 90.44% 83.71% 0.8730 

13 PP+Sigma0 92.03% 76.26% 0.8424 

14 PP+ MP 91.89% 77.95% 0.8508 

15 Sigma0+ MP 90.23% 83.01% 0.8685 

16 PP+Sigma0+ MP 92.01% 75.98% 0.8407 

17 LTPP+Sigma0+ MP 91.43% 80.90% 0.8640 
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18 LTPP+PP+ MP 92.15% 77.53% 0.8498 

19 LTPP+PP+Sigma0 92.31% 75.84% 0.8413 

20 SA+Sigma0+ MP 90.70% 82.16% 0.8667 

21 SA+PP+ MP 91.89% 77.95% 0.8508 

22 SA+PP+Sigma0 92.03% 76.26% 0.8424 

23 SA+LTPP+ MP 90.78% 83.01% 0.8713 

24 SA+LTPP+Sigma0 91.27% 80.76% 0.8625 

25 SA+LTPP+PP 91.82% 78.79% 0.8549 

26 SA+LTPP+PP+Sigma0 92.31% 75.84% 0.8413 

27 SA+LTPP+PP+ MP 92.15% 77.53% 0.8498 

28 SA+LTPP+Sigma0+ MP 91.39% 80.48% 0.8616 

29 SA+PP+Sigma0+ MP 92.01% 75.89% 0.8407 

30 LTPP+PP+Sigma0+ MP 92.28% 75.56% 0.8397 

31 SA+LTPP+PP+Sigma0+ MP 92.28% 75.56% 0.8397 

(Note: '+' indicates 'and'.) 

From Table 3, it can be seen that the SA+ MP combination (index 9) has the highest F1 score. Therefore, this study selects 

the SA+ MP feature combination for lead detection. Using the optimal thresholds of SA ≥ -131.9 and MP ≥ 2.1 × 10−13, 

the detection results achieve a precision of 90.79% and a recall of 85.25%. 

 215 

Figure 5: Visual comparison of lead detection under specific thresholds: SA ≥ -131.9 and MP ≥ 𝟐. 𝟏 × 𝟏𝟎−𝟏𝟑. The corresponding 

MODIS dataset timestamps and CryoSat-2 orbit numbers are: (a) 2015-03-22, orbit 26250; (b) 2014-04-17, orbit 21335; and (c) 

2013-03-06, orbit 15427. 

In addition, summer melt ponds may potentially affect the accuracy of lead detection and sea surface height estimation. 

According to Chen et al. (2022), radar waveforms have difficulty distinguishing between melt ponds and leads, which could 220 
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result in an overestimation of sea surface height. However, the study also highlighted that the reduction in freeboard height 

caused by thinning sea ice during summer months can partially offset the influence of melt ponds, resulting in no significant 

impact on the results. 

4.2 Results and Validation 

The mean SSH for each grid over the entire time series can be estimated by LSE using equation (6), resulting in the final 225 

MSS model named SDUST2024MSS_AO, as shown in Figure 6. 

 

Figure 6. Illustration of the SDUST2024MSS_AO model. The height is with respect to WGS-84 ellipsoid, and the grid size is 5km × 

5km. 

In MSS research, comparing different models is commonly used to validate the accuracy of SSH measurements. In this 230 

study, four models—DTU21, UCL2013, CLS2022, and SDUST2020—were selected to compare with the 

SDUST2024MSS_AO developed in this research to analyze its accuracy and reliability. The differences between these four 

models and the SDUST2024MSS_AO were analyzed to evaluate the accuracy and reliability of SDUST2024MSS_AO. 

These four models were resampled to the same resolution as the SDUST2024MSS_AO using bilinear interpolation, with 

spatial coverage limited to north of 67°N. For ease of comparison between models, the T/P reference ellipsoid (CLS2022 and 235 

SDUST2020) was converted to the WGS-84 reference ellipsoid (SDUST2024MSS_AO, UCL2013, and DTU21) to ensure 

consistency among models. This conversion was achieved by adding a correction term, denoted as C, to the SSH 

measurements to transform the T/P reference ellipsoid to the WGS-84 reference ellipsoid: 
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𝑀𝑆𝑆𝑊𝐺𝑆−84 = 𝑀𝑆𝑆𝑇/𝑃 + 𝐶 ,          (7) 

where C = -0.714m, representing the difference between the two ellipsoids at the pole (Skourup et al., 2017). In reality, this c240 

orrection term varies with latitude, but the deviation of this correction term is less than 0.004m across the entire Arctic Ocea

n region and can be considered negligible. 

The distribution of differences among the five MSS models is shown in Figure 7, and detailed comparison data are listed in 

Table 4. 

 245 

 

 

Figure 7. Differences between SDUST2024MSS_AO and CLS2022 (a), DTU21(b), UCL2013(c), SDUST2020 (d), respectively. 
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Table 4. Statistical results of Arctic MSS model comparison.  250 

Differences Max(m) Min(m) Mean(m) SD(m) 

SDUST2024MSS_AO - CLS2022 8.129 -2.055 -0.085 0.090 

SDUST2024MSS_AO - DTU21 8.203 -2.012 -0.036 0.069 

SDUST2024MSS_AO - UCL2013 8.339 -2.347 -0.002 0.084 

SDUST2024MSS_AO - SDUST2020 8.095 -2.061 -0.073 0.098 

SDUST2024MSS_AO - CLS2022 
（above 81.5°N） 

0.468 -0.352 -0.117 0.028 

SDUST2024MSS_AO - DTU21 
（above 81.5°N） 

0.590 -0.697 -0.050 0.017 

SDUST2024MSS_AO - UCL2013 
（above 81.5°N） 

0.551 -0.291 -0.007 0.033 

SDUST2024MSS_AO - SDUST2020 
（below 82°N） 

8.095 -2.061 -0.071 0.098 

 

From Figure 7(a) and Table 4, it is evident that the consistency between SDUST2024MSS_AO and the CLS2022 model is 

poor. The graph shows a discontinuity at the 81.5°N parallel, which is attributed to the use of CryoSat-2 data only in the 

region north of 81.5°N. Figure 7(b) reveals that the consistency between SDUST2024MSS_AO and the DTU21 model is 

very good, with differences within ±0.1 m in most marine areas. According to Table 4, the difference between them is -3.6 ± 255 

6.9 cm. This is significantly smaller than the differences between SDUST2024MSS_AO and the other three models, 

suggesting that these two models share similar SSH spatial distribution characteristics. Figure 7(c) shows that the average 

difference between SDUST2024MSS_AO and the UCL2013 model is only 0.2 cm because both models use CryoSat-2 as 

their data source. However, they exhibit a large standard deviation of 8.4 cm, suggesting that their spatial consistency is not 

as robust as that between SDUST2024MSS_AO and the DTU21 model. This discrepancy is attributed to UCL2013 utilizing 260 

data from only two CryoSat-2 cycles, resulting in a smaller dataset. Figure 7(d) reveals that the consistency between 

SDUST2024MSS_AO and the SDUST2020 model is poor, with a standard deviation of 9.8 cm, significantly larger than the 

other three pairs of results. Even when the comparison area is confined to the southern seas below 82°N, the results remain 

unsatisfactory. 

Since the SDUST2024MSS_AO, DTU21, and UCL2013 models all utilize CryoSat-2 as their sole data source in the region 265 

north of 81.5°N, this study compares the differences among them in this area to understand the influence of data sources on 

model discrepancies. As shown in Table 4, the difference between SDUST2024MSS_AO and the DTU21 model in the 

region north of 81.5°N is -5.0 ± 1.7 cm, with an average close to the result for the entire Arctic Ocean (-3.6 cm), but with a 

smaller standard deviation. This shows that the two models are more closely aligned north of 81.5°N. Both the 

SDUST2024MSS_AO and UCL2013 models use CryoSat-2 as the sole data source across the entire Arctic Ocean. When the 270 

comparison area is restricted to north of 81.5°N, the average difference changes slightly (0.2 cm and 0.7 cm), while the 

standard deviation changes significantly (8.4 cm and 3.3 cm). This suggests that the minor differences between the models 

are not due to variations in data sources, but more likely due to greater SSH variations near the Arctic Ocean coast (Figure 
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7(b)) and the presence of more outliers between the models. Compared to differences in data sources, differences in the time 

span of the data used for calculation are more likely to cause discrepancies in model results. For example, the UCL2013 275 

model only utilizes data from two cycles (approximately 2 years) of CryoSat-2, while SDUST2024MSS_AO utilizes nearly 

13 years of observational data. The difference between them (Figure 7(c)) clearly shows the errors caused by trajectory 

interpolation. However, the consistency among these three models, especially the small standard deviation between 

SDUST2024MSS_AO and DTU21, demonstrates the reliability of the SDUST2024MSS_AO model. 

The MSS model's accuracy and reliability can also be verified using other altimeter data. In this paper, ICESat-2 altimeter 280 

data were compared with our model and four other models to further validate the SDUST2024MSS_AO model. Table 5 

presents the average differences and standard deviations (SD) between 692,421 observation samples from 63 tracks and 

these five MSS models. As rigorous data corrections were not applied to the ICESat-2 altimeter data, systematic errors may 

be present. Additionally, we did not consider inter-mission biases between CryoSat-2 and ICESat-2. Therefore, the average 

differences in Table 5 have limited reference significance, while the SD better reflect the accuracy of the models. The 285 

histograms are shown in Figure 8. 

Table 5. Differences between MSS models and ICESat-2 samples.  

MSS models Mean(m) SD(m) 

SDUST2024MSS_AO -0.220 0.204 

CLS2022 -0.138 0.203 

DTU21 -0.182 0.201 

UCL2013 -0.216 0.202 

SDUST2020 -0.077 0.252 

 

 

Figure 8. Histograms of the differences between ICESat-2 samples and SDUST2024MSS_AO (a), DUT21 (b), CLS2022 (c), 290 
UCL2013 (d), SDUST2020 (e), respectively.  
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Table 5 shows that SDUST2024MSS_AO and UCL2013 exhibit extremely similar performance, with nearly identical mean 

and SD values in their validation results. This similarity is because both models are based on CryoSat-2 as a single data 

source. The histograms shown in Figures 8(a)-(d) approximate a normal distribution, indicating minimal influence from 

gross error observations on the models (Chen et al., 2022), and their high similarity, combined with the nearly identical SD 295 

in Table 5, indicates high consistency among the SDUST2024MSS_AO, CLS2022, DTU21, and UCL2013 models. Figure 

8(e) combined with Table 5 reveals that the validation results of the SDUST2020 model using ICESat-2 samples in the area 

north of 67°N are relatively unsatisfactory, as indicated by its highest SD and the histogram in Figure 8(e) not conforming to 

a normal distribution. Since the validation results of the SDUST2024MSS_AO model using ICESat-2 samples exhibit very 

similar features to those of the CLS2022, DTU21, and UCL2013 models, it indicates the reliability of the 300 

SDUST2024MSS_AO model. 

5 Data availability 

 The SDUST2024MSS_AO model data are available at https://doi.org/10.5281/zenodo.13624487 (Liu et al., 2024). The 

dataset includes geospatial information and mean sea surface height. 

6 Conclusions 305 

This paper utilized CryoSat-2 SAR mode altimeter data to establish a new MSS model for the Arctic Ocean with a grid size 

of 5 km. Firstly, this paper utilizes a waveform characteristic method to develop an optimal feature and threshold selection 

method based on mutual information and F1 Score. Using this method, 14 features were optimized, and the optimal features 

and thresholds (SA≥-131.9、MP≥2.1 × 10−13) were selected for lead detection in the Baseline-E CryoSat-2 ice products, 

achieving a precision of 90.79% and a recall of 85.25%. Secondly, the construction process of the MSS model is discussed. 310 

The lead observations are divided into 5-km grids for each month, and gross error observations in each grid are removed 

according to the two-sigma principle. The monthly mean SSH for each grid is then calculated to establish a monthly mean 

SSH time series. Using LSE, a new MSS model with a grid size of 5 km is constructed, named SDUST2024MSS_AO. 

Compared to the SUST22 model (Chen et al., 2022), the resolution of the proposed model has been increased from 10 km to 

5 km. 315 

Through comparisons with four other MSS models—DTU21, CLS2022, UCL2013, and SDUST2020, the accuracy and 

reliability of the SDUST2024MSS_AO were evaluated, and validation was conducted using ICESat-2 altimeter samples. 

Among the five MSS models, SDUST2024MSS_AO, DTU21, and UCL2013 appear to be more reliable in the Arctic Ocean, 

as they exhibit good consistency with each other as well as the altimeter samples, while also offering good spatial coverage. 

Although there may be deviations in the SD between models due to different references, typically exceeding 5 cm (Jin et al., 320 
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2016), the difference of -3.6 ± 6.9 cm between SDUST2024MSS_AO and DTU21 suggests the reliability of the 

SDUST2024MSS_AO model. 

Although the lead detection method in this study has demonstrated high reliability, a potential limitation arises from the use 

of L1B data for lead detection and L2 data for SSH measurements, which may introduce biases due to inconsistencies in 

waveform retracking methods. Specifically, the CryoSat-2 official L2 product employs the Giles model, which is designed 325 

for specular lead waveforms, while applying threshold retracking to the first peak of smoothed waveforms for diffuse echoes 

from sea ice (CryoSat-2 Product Handbook, Baseline E 1.0 – Draft B). As a result, some waveforms identified as leads in 

this study might be classified as sea ice in the L2 data, potentially affecting the accuracy of SSH measurements. Addressing 

these discrepancies will be a critical step in improving the robustness of future analyses.   

In addition, further optimization is needed to address the potential impact of summer melt ponds on lead detection. Melt 330 

ponds, which can form on the surface of sea ice during warmer months, may introduce challenges by mimicking the 

waveform characteristics of leads, thereby influencing the accuracy of lead identification. Developing advanced detection 

algorithms or incorporating seasonal variability into the analysis could help mitigate these effects and improve the overall 

reliability of the approach.   

To further enhance the accuracy and applicability of MSS models, future research could explore the integration of additional 335 

remote sensing data, such as ICESat-2 and other altimetry missions, to provide complementary observations. Developing 

higher-resolution regional models could also help address localized sea surface variations, particularly in regions with 

complex ice coverage. Furthermore, the advancement of dynamic sea surface models that incorporate tidal and 

meteorological influences may offer significant improvements in capturing the temporal variability of the Arctic Ocean. 

These directions hold great potential for refining and expanding the scope of MSS models in the future. 340 
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