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Abstract. In mature karst aquifers, networks of interconnected conduits focus and control water flow and solute transport. In or-

der to improve the knowledge of the multi-scale geometry of typical conduits, we acquired a data set of point clouds and triangu-

lated surface models of over 20 different underground caves: KarstConduitCatalogue (available at https://doi.org/10.60544/sbjr-

z851, (Racine et al., 2025)). We employed terrestrial and mobile laser scanning workflows as fast and reliable methods for ac-

quiring a dense point cloud of wall surfaces in enclosed spaces. These collected data can be used for many different purposes:5

evaluation of geometrical descriptors, direct numerical simulations of flow and transport, geomorphological mapping, struc-

ture and fracture mapping etc. In this paper, we present the various assets derived from the acquisition. The conduits presented

herein span a variety of karst massifs of Western and Central Europe, from low-elevation karst plateaus to higher-elevation

Alpine aquifers.

1 Introduction10

Obtaining fast, accurate, and high resolution geometric information about real world objects is a prerequisite to answer many

open scientific questions. Using an active sensing method like laser scanning, surveyors are able to characterise the geometry of

objects by evaluating the position of many discrete sample points from the real surface. Using this set of points, the underlying

surface may be reconstructed and its geometric properties quantitatively analysed. For instance LiDAR derived data products

may be used to build high-resolution digital elevation models (DEM), allowing detailed topographic analyses to be carried15

out. Repeated LiDAR acquisitions over several epochs allow for change detection and quantification, shedding insight into

riverine erosional processes (Lague et al., 2013), mountain glacier accumulation or ablation dynamics (Réveillet et al., 2021),

and sediment transport (Feagin et al., 2014). As a result, the use of laser scanners to map specific landforms at a range of scales

and monitor their change over time, has become ubiquitous in geosciences.

Spurred with the advent of increasingly powerful processors and the miniaturisation of the sensors, the use of laser scanners20

to measure high resolution 3D geometries of cave passages or chambers has accelerated in the last two decades (Idrees and

Pradhan, 2016). The underground environment presents however an inherent challenge in the form of limited line of sight in

cave or mine passages. General cave passage tortuosity, dissolution morphologies and secondary mineral deposits all result

in numerous and complex occlusions or gaps in the acquired point cloud (Figure 3). The workflow for cartography using
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terrestrial laser scanner devices, which operate on fixed stations and acquire cave geometry data by a full rotation of the sensor,25

relies on the operator’s choice of fixed stations to guaranteeing enough overlap between each scan to allow for accurate co-

registration, as well as enough coverage of complex shapes (Gallay et al., 2016). Mobile mapping using handheld devices with

live user feedback largely overcomes these challenges by allowing the scanning operator to multiply the viewpoints of the active

sensor (Bosse et al., 2012). Finally, the problem of segmenting and classifying the datasets have been solved by calibrating the

scanner return intensity to classify contrasting lithologies (Nováková et al., 2022). The collection, manipulation, visualisation,30

and interpretation of dense 3D point clouds is now possible on even moderately powerful desktop computers. This has opened

the doors to an increasing number of investigations dealing with surface reconstruction of artefacts or speleogenetic features

in caves, as well as more detailed queries on the spatial distribution and relative chronology of sedimentary deposits and the

orientation of structural features.

At its core, LiDAR- (Light Detection And Ranging) based telemetry is suited to the underground as it overcomes many35

challenges inherent to light-based techniques for the acquisition of three-dimensional point clouds (Giordan et al., 2021). As

a result, the use of terrestrial laser scanners (TSL) in low-light underground environments has become a standard for detailed

geometric reconstructions (Idrees and Pradhan, 2016), with mobile mapping solutions also being increasingly explored (Dewez

et al., 2016a, e.g.,). Lidar scans are digital twins of cave site, in the form of high resolution point clouds or meshes. They have

been leveraged by a wide range of studies bearing on documentation of archeological heritage sites (Grussenmeyer et al., 2012),40

speleogenetic interpretations (Gallay et al., 2016; Fabbri et al., 2017; Konsolaki et al., 2020), structural analyses and stability

assessments (Idrees and Pradhan, 2018; Kazmierczak et al., 2020), improving show-cave management (Milius and Petters,

2012; Pfeiffer et al., 2023), or detailed and accurate cartography (Šupinskỳ et al., 2022). Long term campaigns to document

complex cave systems developed over more than 10 km are well underway all over the world (Kaňuk et al., 2024). However,

most of these datasets are not widely available to the scientific community.45

The aim of the work presented in this paper was to acquire and share cave scans covering a broad range of hydrologically

active conduit morphologies ranging from phreatic to vadose (Lauritzen and Lundberg, 2000). The cave scans come from

various karst massifs of the Jura, the European Alps, the French central Massif, and the Classical Karst of Slovenia (Figure 1).

This allowed the conduits catalogued hereafter to span a range of hydro-geologic, lithological, and structural settings, with

varying degrees of sediment fill and secondary mineral deposition.50

The data set is available through the KarstConduitCatalogue repository (Racine et al., 2025). A brief overview of each

passage morphology is given in each cave’s metadata file. Hydrologists may find this dataset suited for the analysis of key geo-

metric characteristics shared by typical cave conduits, including downstream distribution of apertures and roughness elements.

Moreover, karst geomorphology studies benefit from high fidelity and high resolution geometric data for the georeferencing of

key erosional markers in caves. This dataset also has a didactic vocation as it presents geometries of an exemplary, character-55

istic nature. The spatial arrangement of various speleogenetic forms and secondary infills or deposits may be discussed as part

of teaching material.

In the following sections, we present the dataset acquisition and consolidation procedure, going from the raw field data to

the ready-to-use end products. For each cave passage, these products comprise 1) a georeferenced, classified point cloud, 2) a
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triangulated mesh surface, 3) a simplified centreline representation and 4) 2D raster images of both floor and ceiling cutouts. We60

detail the pre- and post-processing steps involved in the cleaning, classification and georeferencing of the dataset and describe

the various data records available. We finally showcase the end-products using a single karst conduit, Markov Spodmol cave

(Slovenia) as an example.

Figure 1. Situation map of the selected cave sites centred over the European Alps and the respective karst massifs in which the conduit scans

were collected. Maps data: Google, Landsat / Copernicus, Data SIO, NOAA, U.S. Navy, NGA, GEBCOGeoBasis-DE/BKG (© 2009), Inst.

Geogr. Nacional

2 Methods

The cave conduits were scanned with two different instruments: we used the Leica BLK2GO for the majority conduits we65

scanned ourselves, while at two locations, we scanned the conduits using the FARO Focus 3D instrument. We performed most

of the visualisation and processing of point cloud and mesh elements using the open source and free software CloudCompare

(Girardeau-Montaut et al., 2016), as well as a wrapper written in Python language (CloudCompare, 2024) to automate some of

the processing routines.

Here we describe the properties for those two instruments that were used in this study, as well as the methods we used for70

scanning the cave and processing and post-processing the point cloud dataset (Figure 2). We also briefly discuss the expected

sampling density, and resulting resolution of the cave features which could be obtained.
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Figure 2. Summary of the point cloud processing workflow (grey) and delivered data records (light blue)

2.1 Laser scanning of caves

2.1.1 Terrestrial laser scanning

The cave passages in Rupt-du-Puits and Grotte de la Madeleine were scanned with the terrestrial laser scanner FARO focus75

3D. The sensor has a range from 0.6 m to over 100 m and a ranging error of 2 mm. The point positions are recorded in polar

coordinates during the distance measurement and are subsequently converted to a local cartesian system. Since the scanner

sensor revolves once around a vertical axis from a fixed position, the operator usually starts the scan remotely from a hidden

location and repeats the procedure to eliminate occlusions from the acquired scene.

2.1.2 Mobile mapping with Leica BLK2GO80

We acquired most of the cave conduit from the dataset with a light-weight mobile handheld laser scanning system (Leica

BLK2GO) capable of capturing detailed point sets within an underground cavity. With the aid of 830 nm wavelength laser

pulses, the scanner measures up to 420 000 pts · s−1 with a field of view (FOV) spanning 360 ◦ horizontally and 270 ◦ vertically.

The sensor range goes from about 0.5 m to 25 m. The device is also equipped with a 3-camera system, each with a 4.8 Mpx

sensor and 300 ◦ × 135 ◦ FOV. The range error reported by the manufacturer for indoors use is ±3 mm.85

At the core, mobile mapping devices consist of a LiDAR distance sensor, coupled with inertial sensors (Bosse et al., 2012;

Zlot and Bosse, 2014). Assuming that the scanner’s surroundings neither move nor deform, the Simultaneous Localisation and

Mapping (SLAM, Bailey and Durrant-Whyte, 2006) algorithm allows for the x, y and z coordinate tuplets to be stored in a local

cartesian reference frame. To achieve this, the algorithm uses regular updates to the scanner position by 1) using the device’s

Internal Motion Unit (IMU) and 2) by triangulating between recognisable point features (Figure 3).90
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Figure 3. (a) Typical scanning stance of a speleologist in a cave passage, with a laminated scan target in the background (photo: Tanguy

Racine) (b) Mobile cave scanning workflow and usual causes for masks, occlusions or missing data on bedrock cave walls (adapted from

Racine et al., in press).

2.1.3 In-cave scanning strategy

The in-cave scanning workflow begins with a reconnaissance of the conduit to be scanned, identifying the various obstacles

to progression. These obstacles include: passage intersections, large changes in average section dimensions, floor-steps, pits,

narrow sections, waterways, etc. We split the conduit to be scanned in several overlapping acquisitions (scenes) acquired sepa-

rately. Using the terrestrial laser scanner, a scene corresponds to a single revolution of the scanner sensor around a vertical axis.95

The scan times depend on the spatial sampling density selected by the operator. For the mobile mapper, a scene corresponds to

a several minutes long walk by the operator within the cave environment with the scanner sensor revolving at constant angular

velocity around a mobile axis. Using the mobile mapper, we scanned the conduit sections with a 15 - 35 % overlap for subse-

quent co-registration. An overview of the acquisition progress in the form of a rough point cloud visualisation is transmitted

to the scan operator navigating the cave conduit or chamber in real time over a wireless connection, thus facilitating decision100

making for an optimal scan trajectory and cave features coverage. A lighting system provided by Méandre Techologie com-

prising 5 LEDs with a flux of 2 250 to 15 000 lumen each, arranged around the scanner, provides near-panoramic illumination

allowing for visible light information to be encoded into the point set data file as Red, Green and Blue channels. Outside the

cave on a work station, we process the raw files corresponding to each acquisition scene with the proprietary software Cyclone

Register 360. We carry out the co-registration of scenes in two-steps: first by visual alignment, second by iterative closest point105

algorithm (Besl and McKay, 1992). Finally, we export a raw, assembled point cloud to LAS format, the open and industry

standard format for LiDAR data.

2.1.4 Point cloud density

The scanner’s constant movement results in some cave walls being more densely sampled than others, and thus requires point

density resampling. It is impossible to anticipate precisely the density of the final assembled point cloud. Wherever separate110
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acquisitions are overlapping, meaning they have been visited at least twice, the point cloud has a high sampling density. For

other regions, especially high in ceiling pockets or fractures, the walls are seen by the scanner only briefly, yielding a low spatial

sampling density. To harmonise the density of point coverage, we sub-sampled each point cloud using the CloudCompare

spatial sampling algorithm. We set a threshold value of d = 2 mm and d = 5 cm. The minimum distance between a point and

its nearest neighbour in the resulting downsampled set is equal to d for high and low resolution point clouds, respectively.115

2.2 Georeferencing

Raw point clouds are collected in local coordinate systems. For a levelled terrestrial laser scanner, or the mobile mapper,

the distance between points and position relative to the vertical are tracked by the scanner. This means that while the scale

of the point cloud model is known, its overall position, and orientation relative cardinal directions need to be calculated with

independently surveyed control points. To determine the necessary rigid (rotation and translation) transformation, we measured120

the geographic coordinates of a series of reference points by placing a series of targets along the cave. We measured the position

of those targets with a calibrated laser-distance meter called the disto X2 and widely used in cave surveying (Heeb, 2016).

With the disto X2, we recorded the three following quantities for each shot linking two survey stations: distance, bearing and

inclination. In order to control operator errors, we triplicated each shot front and back, and averaged them for each station to

station shot. From these data records, we extracted the triplet of geographic coordinates for every known point in a cartesian125

reference frame. We compiled the resulting survey data using the public cave survey software Therion (Mudrák and Budaj,

2025), which uses the Survex (Betts, 2024) program for loop closure error calculations and shot data averaging, as well as a

model to correct for magnetic declination at a given place and time on the Earth’s surface.

We georeference the point clouds by calculating a rotation and translation matrix using the pairwise registration algorithm

(Arun et al., 1987) between the targets’ local coordinates and their geographic counterparts. This was implemented in Python130

and applied to the point clouds. The new coordinates of the point clouds are calculated by matrix multiplication, applying a

rigid transformation so that the Euclidean distance between pairs of points is preserved. This also serves to 1) check the validity

of loop-closure whilst the SLAM algorithm is running, avoiding potential drift, and 2) to detect user blunders when assembling

the scanned scenes after their acquisition.

2.3 Point cloud segmentation and cleaning135

Dataset noise for cave scans arises from two main sources.

The first are erroneous pulse returns due to excess moisture, water droplets or interference with airborne particles. This

usually results in sparse clusters of points being recorded within the cave passage itself. We use the CloudCompare algorithm

to label connected components and thereby divide the point cloud in groups. With the relevant algorithm parameters we adjusted

the minimum size of cluster to be labelled as a group, and the smallest pairwise distance between any two points belonging to140

different groups. This is an effective strategy for removing the floating clusters when choosing an appropriate minimum distance

between clusters with the octree subdivision level parameter, as well as a threshold number of points defining a cluster. We
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were able to effectively remove noisy floating regions and solitary noise points by selecting only the clusters containing the

largest number of points, which correspond to the conduit walls.

The second kind of noise in the dataset stems from occlusions or masks in the cave point cloud caused by the presence of145

the scan operator and or assistants. The BLK2GO scanner automatically masks out points taken in a quadrant facing the scan

operator to prevent this type of self-scanning. Additionally, we minimised this type of noise with adequate scanning strategy.

However narrow twisting passages often require the operator to carry the scanner in a sub-optimal orientation, putting the

scan operator or any helper in the way of the laser swath. Whenever this resulted in noisy data patches, we removed the latter

semi-automatically or manually from the cave point cloud. We adopted the multi-scale dimensionality criterion approach using150

the CANUPO algorithm plugin for CloudCompare (Lague et al., 2013). At the Grotte de la Cascade, we implemented this step

in the workflow by labelling clusters of noisy data. In this case, the CANUPO algorithm was effective because of a critical

difference in multi-scale dimensionality of noise clusters. These noisy clusters exhibit a high linearity score from the cm to

the m scale) while the cave walls score highly on planarity at those scales. By segmenting out the points thus labelled as noise

from the point cloud, a subsequent analysis of connected components was sufficient to remove the remaining floating clusters,155

negating the necessity to manually clean the point cloud. Elsewhere, manual segmentation was made on CloudCompare by

iteratively selecting noisy regions and removing them from the dataset.

2.4 Determination of instrumental noise

The point cloud generated by the BLK2GO device has a specific 3D structure made of criss-crossing point trails which origi-

nates from the scanner movement during a survey. Following Dewez et al. (2016b), we compute the roughness distribution on a160

test surface (a 1.1 × 0.8 m whiteboard) to evaluate the performance of the scanner. First, for each point, the euclidean distance

to its nearest neighbour was computed. We find that for a test surface sampled at approximately 1-2 m, the mean distance to

the nearest neighbour is of 1.3 mm. We then fitted a plane to the point cloud acquired by sampling this artificial, smooth planar

surface with the BLK2GO scanner and computed the distance to this plane at each point. We find that 95% of all points fall

within a distance of 0.016 m to the best-fit plane (Figure 4).165

A related way in which we can confront the precision limit quoted by the manufacturer is to compute the distribution of

point cloud roughness with variable neighbourhood radii, adopting the strategy of Dewez et al. (2016b). In CloudCompare, the

roughness value σ(r) can be computed at any point of a cloud and it represents the distance from a point to a plane fitted to its

neighbours within a chosen search radius r (Girardeau-Montaut et al., 2016). We want to find out at which scale the calculation

of the implicit surface will be robust, specifically how small a neighbourhood radius one may choose to fit a surface model170

before instrument noise makes the reconstruction unreliable. For a simple planar surface with normally distributed noise in the

normal vector direction, roughness distributions change with the search radius in a predictable way: above a given r, determined

by instrument noise, the shape of roughness distribution should stabilise, and its parameters, like the 68th percentile, should

remain constant with increasing r. For the BLK2GO, we find that for r > 0.08 m, the 68th percentile of roughness stabilises at

a value of 0.01 m. This is very close to the value for 68th percentile of unsigned distances over the entire dataset. According to175
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this result, we adopt this value of 0.08 m as the smallest possible resolution for robust normal computation and meshing steps

described below (Figure 4).
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Figure 4. (a) distribution of unsigned distances to a best-fit plane adjusted to the test surface. The 68th percentile of this distribution is

taken as the position uncertainty associated with the mobile laser scanner (on the order of 0.01 m) (b) Point-cloud roughness computed with

CloudCompare as a function of the search radius: the greater the search radius, the greater the number of points used for plane fitting

2.5 Normals calculation and meshing

Point cloud normals are spatial vectors calculated at each point. The plane uniquely defined by the point and its normal vector

is a local linear approximation of implicit surface to be reconstructed (Hoppe et al., 1992). We ran the calculation of point180

normals on CloudCompare by least-squares fitting of a plane surface model using the neighbourhood of each point. Here the

neighbourhood of a point denotes the subset of points from the cloud within a specified euclidean distance, the search radius,

of that point. Following the notation of Hoppe et al. (1992), the tangent plane at the ith point is determined by its centre oi (the

centroid of the point neighbourhood) and a normal vector n̂i. In CloudCompare, the solution normal vectors were reoriented

by way of a minimum spanning tree of the k-nearest neighbours at each point; a complete description of the algorithm used to185

reorient the solution vectors is outside the scope of this paper but details may be found in Hoppe et al. (1992). In this graph

optimisation problem, the weight of an edge between points i and j is taken as the scalar product between neighbouring solution

vectors, reflecting the intuition that the tangent plane at nearby points should be sub-parallel for sufficiently smooth surfaces.

We started the algorithm with 6 k-neighbours and increased the number of nearest neighbours k considered in the calculation

of the spanning tree if at first the normals were not consistently re-oriented (Table 2). In our datasets, a neighbourhood with190

a search radius of 0.08 m was found to give reliable results for finding consistently oriented normals, corresponding to the

threshold at which the cave wall roughness signal drowns roughness due to instrumental limits (see Figure 4). Choosing a

smaller search radius would yield vector normal orientations affected by instrument noise. The reorientation of normals can

fail at sharp boundaries of the 3D surface sampled, and it is sometimes necessary to manually segment the cloud at those

edges. This is to prevent the reorientation algorithm from finding and using nearby points belonging to a different surface in195
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the nearest neighbour search. We computed a triangulated mesh in CloudCompare, using its mesh construction routine based

on point cloud normals, using a radius of 5 cm. This routine is a wrapper for the screened Poisson Reconstruction algorithm

(Kazhdan et al., 2006). Meshes were subsequently segmented and cleaned using the CloudCompare and Blender segmentation

tools to remove spuriously interpolated surfaces, for instance wherever open passage ends or areas of missing data were patched

up with the algorithm.200

2.6 Floor and ceiling raster extraction

We provide a georeferenced DEM of the cave passage floor and ceiling by classifying the cave floor and cave ceiling by

using the Cloth Simulation Filter algorithm (Zhang et al., 2016, CSF). This segmentation step is essential in most airborne

LiDAR mapping campaigns, as it effectively separates ground points from non-ground points. Intuitively, a non-rigid cloth is

draped over the upturned point cloud, and points touching the cloth are labelled as ground category. On a cave point cloud, this205

algorithm extracts ground points corresponding to the passage floor. The remaining points correspond to the cave ceiling.

Using the Relief Visualization toolbox (Kokalj et al., 2016), we also provide a combined image specifically designed to

highlight subtle topographic changes (Kokalj and Somrak, 2019). We find that projecting the resulting point cloud as a floor

or ceiling DEM and using a suitable relief visualisation techniques highlighted subtle topographic relief and can help emulate

traditional cave maps. We modified the presets for the steep Visual Archeology terrain blend, to account for the event steeper210

topographic features of cave floors and ceilings. The parameters used to generate the blended images (top to bottom) are given

in Table 3.

2.7 Centreline extraction

We refer to the cave’s centreline as an undirected metric graph which captures the cave conduit topology. It is based on

a subset of points belonging to the curve skeleton of the cave wall point cloud. There are many algorithms for extracting215

such a skeleton curve from a three-dimensional object (Tagliasacchi et al., 2016). To compute this object, we use the Python

implementation of (Cao et al., 2010) point cloud contraction algorithm based on local-Delaunay triangulation and topological

thinning. This technique is robust to noise and missing data, which is often present in in-cave surface acquisitions due to the

common occurrence of small and / or narrow inaccessible side-passages, and water surfaces (streams, dammed pools, etc.).

There are several key parameters for this algorithm including the initial balance between the contraction and attraction220

weights matrices, as well as the level of downsampling of the initial point cloud on which to perform the contraction. By

default, the initial contraction weights are set to 1 and the attraction weights are set to 0.5. For several cave point clouds we

tested varying starting ratios of these weights and noticed that a high ratio of contraction to attraction yields fewer, rectilinear

branches than a low one. We found that the algorithm terminated within 4-5 iterations using downsampling parameters. In the

end, we chose to use 0.5 for both initial contraction and attraction ratios (Table 2). The end position of the nodes describing225

the centreline generated by contraction follows the ratio of contraction and attraction weights defined by the user. Indeed, low

attraction to contraction ratios yielded topologically simpler (fewer branches) and geometrically smoother curve skeletons,

with clear differences even after the first contraction iteration (Figure C1). When using the strongest initial contraction to
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attraction weights ratio (Figure C1a), one can observe a strong collapse and smoothing of the point cloud geometry towards

the objects skeleton. The reverse is true for the smaller initial contraction to attraction weights ratio (Figure C1d). With strong230

contraction, we observe that centreline nodes could even fall outside the walls of the original point cloud due to the Laplacian

smoothing of the walls if the conduit bent sharply without bifurcations (see for example Figure C2).

We spatially sub-sampled the contracted point cloud to yield a sparse cloud. This sparse cloud can be thought of as a discrete

sampling of the curve skeleton, i.e. the thinned 1D representation of the 3D cave wall model. We performed a final connected

component analysis to remove badly contracted points from this curve skeleton cloud, as these may be located far away from235

the original point cloud and selected its largest component. Finally, we reconstruct the skeleton topology by considering the

set of points as an undirected, complete graph, where each edge weight represents the euclidean distance between any pair of

nodes. We computed the minimum spanning tree on this graph. In this mathematical object a degree-1 node is called a leaf

and corresponds to a cave opening or a dead-end. Formally, the trajectory of a person or object travelling the inside of a cave

conduit while avoiding its walls can be described by a walk from a start to an end node along the centreline graph. This allows240

us to describe variations in cave geometric properties along a given walk which corresponds to the position of an observer

along the cave passage.

3 Data records

The general organisation of the datasets is as follows. Within the data repository, we provide one subfolder per cave, and within,

one folder per elementary cave passage, following the local toponymy. Each passage folder holds a set of point clouds, meshes,245

rasters and centrelines, as well as the metadata file in self-describing yaml format. The repository organisation for a single cave

is detailed in Figure 5. In a companion GitHub repository called pc-processing (https://github.com/ERC-Karst/pc-processing/

releases/tag/v1.0.0), we also provide a set of Python scripts which we ran to 1) extract centrelines, 2) extract rasters of the floor

and ceiling and 3) convert the centrelines to various formats.

3.1 Point clouds250

Each unified, cleaned and georeferenced point cloud is archived in LAS format, the industry standard, open, binary format

for interchanging point cloud data. We chose the LAS 1.4 with point format 7, which includes the RGB color channels by

default. For each cave and conduit therein, we provide a point cloud spatially sampled at 2 mm and 5 cm, corresponding to

high and low resolution respectively. We populate the LAS classification field with the intensity, a measure of the strength of

the returning laser pulse. The data is organised in a table with headers containing a set of spatial coordinates, and additional255

scalar fields such as: return intensity, a triplet for red (R), green (G) and blue (B) channels and normal unit vector coordinates

Nx, Ny and Nz, an integer classification flag (1: unclassified or ceiling, 2: ground), and a 64-bit float corresponding to the

illuminance value which is analogous to the sky view factor (Duguet and Girardeau-Montaut, 2004), see Table 1.
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root/
|--- Cave1/
| |--- Passage1/
| | |--- pointclouds/
| | | |--- Cave1_Passage1_sampled_2mm_PCV_normals_classified_georef.las
| | | |--- Cave1_Passage1_sampled_5cm_PCV_normals_classified_georef.las
| | |--- mesh/
| | | |--- Cave1_Passage1_mesh_5cm.ply
| | |--- raster/
| | | |--- Cave1_Passage1_floor_4cm.tif
| | | |--- Cave1_Passage1_floor_4cm_Cave_Terrain.tif
| | | |--- Cave1_Passage1_ceiling_4cm.tif
| | | |--- Cave1_Passage1_ceiling_4cm_Cave_Terrain.tif
| | |--- centreline/
| | | |--- Cave1_Passage1_nodes.txt
| | | |--- Cave1_Passage1_links.txt
| | | |--- Cave1_Passage1_branches.txt
| | | |--- Cave1_Passage1.dxf
| | | |--- Cave1_Passage1.geojsons
| | |--- scan.yaml
| |--- Passage2/
| | |...
| |--- cave.yaml
|--- Cave2/
| | ...

1
Figure 5. dataset repository structure

Table 1. Point cloud data file description

label description unit

Intensity relative strength of pulse return, 64-bit float

Classification point label, integer

X, Y, Z coordinate in cartesian geographic reference system, 64-bit float m

nX, nY, nZ unit normal coordinate, 64-bit float m

R, G, B red color channel intensity, 64-bit float

Illuminance (PCV) sky view factor sampled from a sphere, 64-bit float

3.2 Meshes

The provided meshes are the 3-dimensional representation of the cave walls. They are calculated using the Screened Poisson260

Surface Reconstruction algorithm (Kazhdan et al., 2006) using the parameters indicated in Table 2. The meshes are stored in

binary PLY format, whereby the surface is defined by 1) a list of vertex coordinates, normals and texture information and 2) a

list of faces.
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Figure 6. (a) plan view and projected profile of altitude coloured point cloud and (b) illuminance (PCV) coloured point cloud of Markov

Spodmol cave. Ntrue denotes the orientation of geographic north.

12

https://doi.org/10.5194/essd-2025-194
Preprint. Discussion started: 26 May 2025
c© Author(s) 2025. CC BY 4.0 License.



3.3 Cave centrelines

Cave centrelines, as realisations of discrete sampling of the curve skeletons, are given as undirected graphs. These objects are265

stored in three ASCII files which are essentially relational tables: the first file containing the X, Y, Z geographic coordinates

triplet of each point (vertex), one point per line, the line number being the unique identifier (ID) of the corresponding point.

The second file contains the links (edges) between the points: each line corresponds to link between the source and target node

IDs and the line number is the edge’s unique ID. The third file corresponds to the branch ID for each edge: this contains two

columns, first being the branch ID, the second, the edge ID. Thus one can for instance query the position of all nodes belonging270

to a branch by way of edge indices. All processing parameters are given in Table 2. To integrate the conduit centrelines with

the point clouds and meshes in a single visualisation, we also provide them in the interoperable Drawing Interchange Format

(DXF). Further, to integrate the visualisation of the centrelines with the raster files on any Geographic Information System

(GIS) software, we also provide the centrelines in the interoperable Geographic JSON (GeoJSON) format.

3.4 Floor and ceiling raster models275

DEMs of the cave floor and ceiling (described in Section 2.6 are provided as a raster file in GeoTIFF format. All cave floor

rasters are provided with square pixels of size 4 cm. We also include a blended image highlighting subtle topographic changes

and roughness elements of the cave floor and ceiling based on the Relief Visualization Toolbox (Kokalj et al., 2016), using the

presets detailed in Table 3.

3.5 Metadata and description280

For each scan, we also provide a set of descriptive metadata files: cave.yaml and scan.yaml. The specific details are

highlighted in relevant template files (sections B1 and B2). At the cave level, they include wherever applicable, cave entrance

location and passage toponymy in relation to published maps, as well as an overview of the local geological, hydrological and

speleogenetic context. For each individual scan we also give basic information about the acquisition strategy, the extent of the

scanned passages with regards to the cave, and details on the instruments used and scan operators present.285

4 Data examples

4.1 Site description

We use the example of Markov Spodmol (cadastral number 878), a temporary stream cave located in the classical Karst region

of Slovenia to showcase the data products presented herein. The cave, with a recorded length and depth of 868 m and 61 m

respectively, opens at the end of a closed valley west of Strmec mountain, at an elevation 556 m asl. The intermittent stream at290

the cave entrance traverses the karst massif with dye tracing connections to the Reka river.
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Table 2. Point cloud processing parameters

item software parameter value

spatial resampling CloudCompare minimum distance 0.002 m & 0.05 m

connected components CloudCompare octree level 10

min. points per component 10

manual segmentation CloudCompare — —

ambient occlusion calculation PCV plugin samples rays on a sphere True

Count 256

Render context resolution 1024

normals calculation CloudCompare radius 0.08 m

model planar

normals reorientation CloudCompare method Minimum Spanning Tree

k nearest neighbours at minimum 6

Screened Poisson reconstruction plugin Screened Poisson plugin boundary condition Neumann

spatial reconstruction 0.05

floor extraction Cloth Simulation Filter plugin cloth size 0.05 m

terrain type steep

threshold 0.5

skeleton curve extraction pc-skeletor Python library initial attraction weights 0.5

initial contraction weights 0.5

point cloud down sampling distance 0.4 m

skeleton point cloud downsampling minimum distance 0.4 m

skeleton point cloud connected components minimum component size 5

octree level 8

skeleton topological reconstruction number of k-nearest neighbours 12

Rasterise floor point cloud CloudCompare pixel size 0.04 m

pixel size 0.04 m

4.2 Scanning procedure

The scan was carried out in May 2024, in 24 different acquisitions assembled together, totalling approximately 400 linear

metres of passage, from the entrance inwards, and stopping at a 10 m pit. In parallel, a traditional speleologist’s centreline was

measured in order to record the geographic coordinates of 13 tie-points (Section 2.2). The entrance coordinates were derived295

from the Slovenian online cave cadaster.
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Layer (blending mode) parameter value / range

sky-view factor (multiply)

number of directions 32

noise removal 0 (none)

maximum radius (pixels) 10

linear normalisation 0.55 – 1

opacity (%) 25

positive openness (overlay)

number of directions 32

noise removal 3 (high)

maximum radius (pixels) 10

linear normalisation 55◦ – 95◦

opacity (%) 50

slope gradient (luminosity)

linear normalisation 0◦ – 60◦

opacity (%) 50

hillshade (normal)

sun elevation 55

sun azimuth 315

linear normalisation 0 – 1

opacity (%) 100

Table 3. Visual Archeology Terrain blend parameters for the cave terrain shading

4.3 Results

4.3.1 Point cloud

At Markov Spodmol, we compared two sets of point clouds collected independently: 1) a traditional set of passage dimensions

from marked stations using a laser distance-metre, numbering 375 points, and 2) a dense point cloud using the mobile BLK2GO300

scanner totalling a little more than 109 points (Figure 6).

In essence, the splay shots collected during the traditional speleological survey represent a much sparser sampling of wall

surface, compared to LiDAR acquisitions. The splay shots provide an independent way to check that no drift or distortion has

occurred during the point cloud assembly. After georeferencing the cave point cloud using the pair-wise registration method of

Arun et al. (1987) on specific targets, we used CloudCompare to compute the unsigned cloud-2-cloud (C2C) distance between305
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Figure 7. (a) Comparison of the traditional survey splay shots (coloured points) with the mobile laserscan (grey points) (b) Histogram of the

Cloud-2-Cloud (C2C) distances calculated from splay shots to laser scan point cloud. Coordinate reference system: EPSG:3912

the traditional, sparse point cloud made of splay shots and the dense, laser-scan (Figure 7). 95% of the splay shots are at a

distance of 31 cm or less, while the mean C2C distance between the two survey techniques is 12 cm. We could not observe any

obvious spatial trend in the distribution of C2C distances on Figure 7 which would otherwise highlight first order discrepancies

or major blunders between the traditional survey and the point cloud scene assembly. The agreement between the scan and the

passage dimension measurements collected using traditional speleological mapping techniques is therefore within the same310

error range as the registration residuals. We conclude that for the example Markov Spodmol, both survey techniques yield

consistent results with respect to cave geometry at the decimetre to metre scale.

4.3.2 Mesh

The screened Poisson reconstruction yields a watertight surface by closing off holes in the point cloud. This results in the

erroneous reconstruction of large areas of the model using few or no data points as constraints. In addition to the cave opening,315

there are several large lakes in Markov Spodmol cave where no geometry data was acquired during laser scanning. We later

refined the reconstructed mesh of Markov Spodmol using the mesh sculpting tool Blender to remove high uncertainty zones

caused by large areas of standing water. The resulting mesh has an area of 1.5851× 104 m2 for 1.848× 107 triangles, and

the average triangle area of the reconstructed mesh is 8.6 cm2. Since the meshing procedure reconstructs the implicit surface

without honouring the data points, we calculated the cloud-to-mesh (C2M) distance using the relevant CloudCompare algo-320

rithm to detect locations where the reconstructed surface might be far from the underlying point cloud data. We find that 95%

of points in the original dataset lie within 4.9 cm of the reconstructed mesh, which is in agreement with the parameter used for

the reconstruction scale in the screened Poisson Reconstruction (Table 2).
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Figure 8. Detailed point cloud contraction and skeleton extraction workflow for the example of Markov Spodmol cave. (a-c) point cloud

at different iterations of Laplacian-based contraction using the algorithm of Tagliasacchi et al. (2016). (d) spatially downsampled skeleton

point cloud. (e) reconstructed Minimum Spanning Tree (MST), (f) example of a walk along the MST graph from a source to a target node.

Coordinate reference system: EPSG:3912

4.3.3 Centreline

Part of the reconstructed centreline of Markov Spodmol Cave is shown on Figure 8e-f. The centreline contains 978 points, 977325

edges. There are 43 nodes of degree 1 (leaves of the tree graph, also known as external vertices) and 39 nodes of degree 3

(branch vertices). The tortuosity of individual branches, defined as τbr = L/Le, with L being the branch’s curvilinear length

and Le the euclidean distance between its start and end nodes is generally low. The mean tortuosity (weighted by branch’s

curvilinear length) is τ̄br = 1.17. The arithmetic mean branch curvilinear length is L̄ = 9.7m. The downsampling of the skele-

ton point cloud with a spatial scale of 0.5 m, results in a mean edge length of 0.52 m for the centreline graph. The mode of330

edge length distributions is located at 0.5 m.
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4.3.4 Raster interpretations

The extracted floor raster and combined shading allows first hand the investigation of relationships between morphological

elements in the cave and an interpretation of the cave speleogenesis and sediment mobility. Figure 9 highlights the value in

culling away ceiling points to reveal the plan view morphologies of the cave passage. The floor of the entrance chamber is335

littered with metre scale boulders to the North, while to the South, a finer partly incised sediment bank can be seen to form a

topographic step to the Southwest. Downstream of target A, a 2 m wide and several metres deep stream channel ends abruptly

between targets A and B, corresponding to a temporary sink. Large wooden logs are entangled around this point. A smooth,

inclined bedding plane is then exposed up to target B, with a floor step corresponding to another stratum. Downstream of target

B, a karren morphology is developed for some 20 m, with two major preferential directions of development following the340

bedrock fractures. This gives way to a boulder-strewn passage around target C. Opposite target B, we observe a metre-high,

partly incised sediment bank, deposited by slacker waters in sudden passage enlargement.

5 Conclusions

This paper introduces a dataset of karstic conduit geometries acquired in various karst massifs around the European Alps and

beyond. They represent a spectrum of sizes, tortuosity and roughness characteristics arising from their differing host-bedrock345

and speleogenetic history. The data set includes products, derived from the acquired point sets, which represent different types

of generalisation of the cave conduit geometry. The triangulated meshes are reconstructions of the implicit surfaces underlying

the point clouds. Raster datasets of cave floors and ceilings can be seamlessly integrated in GIS projects or databases containing

other karst objects and analyse key processes controlling speleogenesis. The computed centrelines, approximations of the 3D

curve skeleton of each conduit, are objects to which local geometric properties of the conduit may be attached, for instance350

conduit diameter, aspect ratio, shape index, etc.

The workflows presented here are specifically tailored to the cleaning and reconstruction of cave-like, georeferenced 3D

objects. The point cloud cleaning to the floor / ceiling classification and rasterisation schemes depend on several parameter

choices, in particular those related to spatial resampling distances, which were guided by the scanner resolution limits and

the various requirements of karst geomorphology or hydraulic modelling applications. For instance, the resolution of the355

raster maps is in accord with the need to map decimetric objects or obstacles on the cave walls. We also demonstrate the

application of automated computation of cave centrelines based on trial-and-error testing of the Laplacian-based-contraction

hyper-parameters, in particular the ratio of initial contraction and attraction weights.

These numerical representations may be used to investigate a wide range of scientific questions. The raster DEM can be used

for example for understanding the self-organisation of corrosion features and/or sediment deposits. The 3D point cloud can help360

identifying and mapping fracture orientations (e.g., Cacciari and Futai, 2017) or quantifying the geometry or density of specific

geomorphological features. The unstructured point clouds acquired by laser-scanning in the underground environment usually

contain gaps as well as noise for various technical or geometric reasons; they therefore present a challenge at the surface

reconstruction stage. These datasets may also provide useful challenges with regards to developing semantic classification
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Figure 9. Plan view of the entrance of Markov Spodmol cave, at resolution of 4 cm per pixel, highlighting the traditional cave survey

centreline used to calculate target station positions and georeference the assembled scan. Inset: Footprint of the cave scan with the bed of the

intermittent sinking stream of Rakukic polje highlighted in blue. Coordinate reference system: EPSG:3912. Maps data: Geodetski Inštitut

Slovenije © 2014 www.gis.si

tools, as the latter could be used to segment and categorise parts of a cave point cloud as bedrock wall, secondary mineral365

deposit, artificial structures, etc. The surface mesh can be used for analysing, with computational fluid dynamics tools, the

physical laws of water flow and solute transport in these complex geometries. They can also be used to understand typical cave

geometries and relate these geometries with local geological and hydrological conditions. Finally, this work shows that the

ease of use of mobile scanners allows for fast acquisition of large datasets.

Code availability. Data processing steps were performed using CloudCompare software and its Python wrapper CloudComPy. Centrelines370

were computed using the Laplacian-based contraction algorithm of Tagliasacchi et al. (2016), implemented in Python. Example scripts for

the centreline extraction and rasterisation steps are given at https://github.com/ERC-Karst/pc-processing.git
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Data availability. Data described in this manuscript can be accessed at repository under data https://doi.org/10.60544/sbjr-z851 (Racine
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Kaňuk, J., Šupinskỳ, J., Meneely, J., Hochmuth, Z., Šašak, J., Gallay, M., and Callieri, M.: Laser Scanning of a Complex Cave System during

Multiple Campaigns: A Case Study of the Domica Cave, Slovakia, in: 3D Imaging of the Environment, pp. 56–81, CRC Press, 2024.

Kazhdan, M., Bolitho, M., and Hoppe, H.: Poisson surface reconstruction, in: Proceedings of the fourth Eurographics symposium on Geom-

etry processing, vol. 7, p. 0, 2006.435

Kazmierczak, E., Jaillet, S., Vandycke, S., and Verheyden, S.: Modélisation 3D par imagerie lidar et analyse structurale de la Salle du Dôme

des Grottes de Han-sur-Lesse (Belgique, Ardenne), Géomorphologie: relief, processus, environnement, 26, 231–240, 2020.

Kokalj, Ž. and Somrak, M.: Why not a single image? Combining visualizations to facilitate fieldwork and on-screen mapping, Remote

Sensing, 11, 747, 2019.
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Appendix A: Point sets470

In the following, we list the various point sets acquired in a spectrum of passages from European caves.

Table A1. List of point sets

cave passage spatial sampling point count file size

Archamps Post-crawl 2 mm 1.3605× 108 7.7 Go

5 cm 2.2× 105 12 Mo

Pre-crawl 2 mm 3.9897× 108 22 Go

5 cm 8.2× 105 46 Mo

Baume de Longeaigue Great Toboggan 2 mm 1.4074× 108 9.3 Go

5 cm 3.7× 105 25 Mo

Grotte de la Cascade (Môtiers) Main Gallery 2 mm 9.4565× 108 62 Go

5 cm 3.59× 106 240 Mo

Cocalière - Cotepatière Main Gallery 1 2 mm 2.8424× 108 16 Go

5 cm 1.79× 106 101 Mo

Main Gallery 2 2 mm 3.5975× 108 20 Go

5 cm 1.87× 106 105 Mo

Main Gallery 3 2 mm 4.9665× 108 28 Go

5 cm 2.92× 106 165 Mo

Event de Cotepatière 2 mm 5.0877× 108 29 Go

5 cm 3.44× 106 194 Mo

Gouffre des Encanaux Post-siphon 2 mm 4.2609× 108 24 Go

5 cm 1.79× 106 101 Mo

Pre-siphon 2 mm 8.6379× 108 49 Go

5 cm 2.40× 106 136 Mo

Event de Peyrejal Downstream Gallery 2 mm 5.9192× 108 34 Go

5 cm 2.13× 106 120 Mo

Grotte des Faux Monnayeurs Entrance Gallery 2 mm 6.6995× 108 37 Go

5 cm 2.95× 106 167 Mo

Grotte de la Madeleine Filleul passage 2 mm 1.591× 107 1.1 Go

5 cm 6.5× 105 39 Mo

Grotte de la Sourde EntranceGallery 2 mm 1.1982× 107 6.7 Go

5 cm 3.7× 105 25 Mo
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cave passage spatial sampling point count file size

Hölloch Keller-Aquarium 2 mm 2.2698× 108 13 Go

5 cm 8.5× 105 48 Mo

Riesengang 2 mm 9.5621× 108 54 Go

5 cm 3.93× 106 222 Mo

Seengang 2 mm 6.6146× 108 37 Go

5 cm 2.71× 106 154 Mo

Lauiloch Main Gallery 2 mm 5.8510× 108 38 Go

5 cm 1.23× 106 81 Mo

Les Cavottes North gallery 2 mm 6.0099× 108 38 Go

5 cm 3.95× 106 81 Mo

Markov Spodmol Main Gallery 2 mm 1.14253× 109 65 Go

5 cm 5.55× 106 314 Mo

Rupt du Puits Cascades 2 mm 1.305× 107 866 Mo

5 cm 3.8× 105 25 Mo

Grotte de Vallorbe semi-active Gallery 2 mm 4.4575× 108 25 Go

5 cm 1.93× 106 109 Mo

Vers Chez Le Brandt Main Gallery 2 mm 2.829× 108 19 Go

5 cm 2.54× 106 169 Mo
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Appendix B: Metadata file templates

B1 Cave description

---475
documentTitle : "Cave LiDAR Scan description"

documentAuthor: <TheDocumentAuthor>"

dateCreated: <YYY.MM.DD>

cave:480
caveName: "<TheCaveNameInCamelCase>"

fullCaveName: "<The full cave name>"

country: "<theCountry>"

region: "<theRegion>"

locality: "<theTownOrDistric>"485
entrance:

latitude:

value: <theLatitude>

format: "decimal degrees"

longitude:490
value: <theLongitude>

format: "decimal degrees"

elevation:

value: <theCaveEntranceElevation>

format: "metres"495
datum: "<theDatum>"

comment: "AnyDetailedSpecification"

geology:

lithology: "<theLithology>"

tectonics: "<theTectonicContext>"500
structural: "<anyStructuralMeasurementsOrInformation>"

hydrology: "<theCaveHydrology>"

speleogenesis: "<anyKnownSpeleogeneticinformation>"

B2 Scan description

---505
documentTitle : "Cave LiDAR Scan description"

documentAuthor: <TheDocumentAuthor>"

dateCreated: <YYY.MM.DD>

#... Scanning procedure510
scan:

scanName: <theScan>

scannerTypeAndMake: "<theScanner>"

processingSoftware: "<theSoftwareUsedForSceneCoRegistration>"

lighting: "<theLighting>"515
scanOperators: ["<Operator 1>", "<Operator 2>, ..."]

scanDate: <YYYY.MM.DD>

remarks: "<AnyFinalRemarks>"

links: "<AnyLinks>"

520
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Appendix C: Choice of initial parameters for the cloud contraction algorithm

Figure C1. Impact of ratio between contraction and attraction weights at first iteration of the Laplacian-based contraction. (a-d) the panels

display top-down projections of the original point clouds together with the contracted clouds.
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Figure C2. Impact of initial contraction weights and down sampling distance as parameter choices in the point cloud contraction algorithm.

Initial attraction weights are fixed at 0.5. The panels display top-down projections of the original point clouds together with the calculated

centreline.

28

https://doi.org/10.5194/essd-2025-194
Preprint. Discussion started: 26 May 2025
c© Author(s) 2025. CC BY 4.0 License.


