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Abstract. In mature karst aquifers, networks of interconnected conduits focus and control water flow and solute transport. In

order to improve the knowledge of the multi-scale geometry of typical conduits, we acquired a data set of point clouds and

triangulated surface models of over 20 different underground caves: KarstConduitCatalogue (Racine et al., 2025a, available at

https://doi.org/10.60544/sbjr-z851). We employed terrestrial and mobile laser scanning workflows as fast and reliable methods

for acquiring a dense point cloud of wall surfaces in enclosed spaces. These collected data can be used for many different5

purposes: evaluation of geometrical descriptors, direct numerical simulations of flow and transport, geomorphological mapping,

structure and fracture mapping etc. In this paper, we present the various assets derived from the acquisition. The conduits

presented herein span a variety of karst massifs of Western and Central Europe, from low-elevation karst plateaus to higher-

elevation Alpine aquifers.

1 Introduction10

Obtaining fast, accurate, and high resolution geometric information about real world objects is a prerequisite to answer many

open scientific questions. Using an active sensing method like laser scanning, surveyors are able to characterise the geometry of

objects by evaluating the position of many discrete sample points from the real surface. Using this set of points, the underlying

surface may be reconstructed and its geometric properties quantitatively analysed. For instance LiDAR- (Light Detection

And Ranging) derived data products may be used to build high-resolution digital elevation models (DEM), allowing detailed15

topographic analyses to be carried out. Repeated LiDAR acquisitions over several epochs allow for change detection and

quantification, shedding insight into riverine erosional processes (Lague et al., 2013), mountain glacier accumulation or ablation

dynamics (Réveillet et al., 2021), and sediment transport (Feagin et al., 2014). As a result, the use of laser scanners to map

specific landforms at a range of scales and monitor their change over time, has become ubiquitous in geosciences.

Spurred with the advent of increasingly powerful processors and the miniaturisation of the sensors, the use of laser scanners20

to measure high resolution 3D geometries of cave passages or chambers has accelerated in the last two decades (Idrees and

Pradhan, 2016). The underground environment presents however an inherent challenge in the form of limited line of sight in

cave or mine passages. General cave passage tortuosity, dissolution morphologies and secondary mineral deposits all result

in numerous and complex occlusions or gaps in the acquired point cloud (Figure 3). The workflow for cartography using

1



terrestrial laser scanner devices, which operate on fixed stations and acquire cave geometry data by a full rotation of the sensor,25

relies on the operator’s choice of fixed stations to guaranteeing enough overlap between each scan to allow for accurate co-

registration, as well as enough coverage of complex shapes (Gallay et al., 2016). Mobile mapping using handheld devices with

live user feedback largely overcomes these challenges by allowing the scanning operator to multiply the viewpoints of the active

sensor (Bosse et al., 2012). Finally, the problem of segmenting and classifying the datasets have been solved by calibrating the

scanner return intensity to classify contrasting lithologies (Nováková et al., 2022). The collection, manipulation, visualisation,30

and interpretation of dense 3D point clouds is now possible on even moderately powerful desktop computers. This has opened

the doors to an increasing number of investigations dealing with surface reconstruction of artefacts or speleogenetic features

in caves, as well as more detailed queries on the spatial distribution and relative chronology of sedimentary deposits and the

orientation of structural features.

At its core, LiDAR-based telemetry is suited to the dark underground environment affords faster acquisition and post-35

processing times than visual methods like Structure-from-Motion, while the latter provides a strong alternative in terms of

accuracy, feasibility and cost-effectiveness (Giordan et al., 2021). Since despite its cost however, LiDAR telemetry overcomes

many challenges inherent to light-based techniques, the use of terrestrial laser scanners (TSL) in low-light underground en-

vironments has become a standard for detailed geometric reconstructions (Idrees and Pradhan, 2016), with mobile mapping

solutions also being increasingly explored (Dewez et al., 2016a, e.g.,). Lidar scans are digital twins of cave site, in the form40

of high resolution point clouds or meshes. They have been leveraged by a wide range of studies bearing on documentation

of archeological heritage sites (Grussenmeyer et al., 2012), speleogenetic interpretations (Gallay et al., 2016; Fabbri et al.,

2017; Konsolaki et al., 2020), structural analyses and stability assessments (Idrees and Pradhan, 2018; Kazmierczak et al.,

2020), improving show-cave management (Milius and Petters, 2012; Pfeiffer et al., 2023), or detailed and accurate cartography

(Šupinskỳ et al., 2022). Long term campaigns to document complex cave systems developed over more than 10 km are well45

underway all over the world (Kaňuk et al., 2024).

Lasergrammetric surveys have been leveraged underground to support structural and speleogenetic interpretations in varied

contexts. Hajri et al. (2009) used a TLS derived point cloud to reconstruct a dense mesh and, through automated classifica-

tion, investigated the relation between geometric parameters of a stalagmite forest and their proximity to an underlying karst

conduit undermining their structural integrity. De Waele et al. (2018) reconstructed the spatial and relative temporal relation-50

ships between ceiling dissolution morphologies using a combination of TLS and photogrammetric approaches. Elsewhere in a

Pyrenean cave, under favourable geological settings offering strong lithological contrasts, Nováková et al. (2022) developed a

complex workflow leveraging a LiDAR point cloud’s intensity and colour attributes to classify different bedrock types within

the underground environment. One of the more complete uses of a high resolution laser scan in an Italian cave by Fabbri

et al. (2017) showcases how cm to dm size morphologies can be observed and added to a geodatabase of speleogens, allowing55

the various phases of speleogenetic development to be distinguished both spatially, in a quantitative sense, and temporally, in

a relative sense. Finally, repeated high resolution acquisitions open the door for yet other applications dealing with change

detection. Sediment or ice mobility in the underground environment was evidenced through multi-temporal LiDAR and pho-

togrammetric projects tracking moving targets or differencing series of surfaces (Blatnik et al., 2023; Šupinskỳ et al., 2019;
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Securo et al., 2022). Therefore, survey approaches resulting in detailed and spatially accurate geo-databases of underground60

objects are extremely valuable for morphometric analyses, speleogenetic reconstruction and change detection. However, most

of these datasets are not widely available to the scientific community

There is a need for new high-resolution geometric information on karst conduits to better inform the statistical metrics of

cave networks because models for flow and transport rely on passage size distributions, and network topology. Existing studies

on large cave datasets, e.g., (Collon et al., 2017; Jouves et al., 2017) rely on traditional speleological data, containing relatively65

sparse information of passage size at each measured station. Here we demonstrate that the speleological measurements can be

supplemented by the detailed point cloud data. We propose a workflow for extracting a curve skeleton (Cao et al., 2010) or

3D-centreline from the point cloud, and investigating the geometric properties of the karst conduit along this 3D curvilinear

object.

The aim of the work presented in this paper was to acquire and share cave scans covering a broad range of hydrologically70

active conduit morphologies ranging from phreatic to vadose (Lauritzen and Lundberg, 2000). The aim of this dataset is not to

provide complete scans of existing cave systems but to sample a broad spectrum different conduits considered as hydrologically

consistent units. We chose the scan sites foremost due to their hydrological function: ranging from periodically flooded to

inactive / relict stream passages. We also gave consideration to the ease of access and scanning by mobile mapping, rejecting

too-narrow or too-vertical cave sections which were impractical to scan. We then explored as many lithology and structural75

setting types as possible within the project time-frame and the broader alpine geographic area. The cave scans come from

various karst massifs of the Jura, the European Alps, the French central Massif, and the Classical Karst of Slovenia (Figure 1).

This allowed the conduits catalogued hereafter to span a range of hydro-geologic, lithological, and structural settings, with

varying degrees of sediment fill and secondary mineral deposition.

The data set is available through the KarstConduitCatalogue repository (Racine et al., 2025a). A brief overview of each80

passage morphology is given in each cave’s metadata file. Hydrologists may find this dataset suited for the analysis of key geo-

metric characteristics shared by typical cave conduits, including downstream distribution of apertures and roughness elements.

Moreover, karst geomorphology studies benefit from high fidelity and high resolution geometric data for the georeferencing of

key erosional markers in caves. This dataset also has a didactic vocation as it presents geometries of an exemplary, character-

istic nature. The spatial arrangement of various speleogenetic forms and secondary infill or deposits may be discussed as part85

of teaching material. The dataset can be readily viewed at lower resolution on the web-based application Potree, through the

KarstConduitCatalogue-Potree repository (Racine et al., 2025b).

In the following sections, we present the dataset acquisition and consolidation procedure, going from the raw field data to

the ready-to-use end products. For each cave passage, these products comprise 1) a georeferenced, classified point cloud, 2) a

triangulated mesh surface, 3) a simplified centreline representation and 4) 2D raster images of both floor and ceiling cutouts. We90

detail the pre- and post-processing steps involved in the cleaning, classification and georeferencing of the dataset and describe

the various data records available. We finally showcase the end-products using a single karst conduit, Markov Spodmol cave

(Slovenia) as an example.
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Figure 1. Situation map of the selected cave sites centred over the European Alps and the respective karst massifs in which the conduit scans

were collected. Maps data: Google, Landsat / Copernicus, Data SIO, NOAA, U.S. Navy, NGA, GEBCOGeoBasis-DE/BKG (© 2009), Inst.

Geogr. Nacional

2 Methods

The cave conduits were scanned with two different instruments: we used the Leica BLK2GO for the majority conduits we95

scanned ourselves, while at two locations, we scanned the conduits using the FARO Focus 3D instrument. We performed most

of the visualisation and processing of point cloud and mesh elements using the open source and free software CloudCompare

(Girardeau-Montaut et al., 2016), as well as a wrapper written in Python language (CloudCompare, 2024) to automate some of

the processing routines.

Here we describe the properties for those two instruments that were used in this study, as well as the methods we used for100

scanning the cave and post-processing the point cloud dataset (Figure 2). We also briefly discuss the expected sampling density,

and resulting resolution of the cave features which could be obtained.

2.1 Laser scanning of caves

2.1.1 Terrestrial laser scanning

The cave passages in Rupt-du-Puits and Grotte de la Madeleine were scanned with the terrestrial laser scanner FARO focus105

3D. The sensor has a range from 0.6 m to over 100 m and a ranging error of 2 mm. The point positions are recorded in polar

coordinates during the distance measurement and are subsequently converted to a local cartesian system. Since the scanner

sensor revolves once around a vertical axis from a fixed position, the operator usually starts the scan remotely from a hidden

location and repeats the procedure to eliminate occlusions from the acquired scene.
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Figure 2. Summary of the point cloud processing workflow (grey) and delivered data records (light blue)
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2.1.2 Mobile mapping with Leica BLK2GO110

We acquired most of the cave conduit from the dataset with a light-weight mobile handheld laser scanning system (Leica

BLK2GO) capable of capturing detailed point sets within an underground cavity. With the aid of 830 nm wavelength laser

pulses, the scanner measures up to 420 000 pts · s−1 with a field of view (FOV) spanning 360 ◦ horizontally and 270 ◦ vertically.

The sensor range goes from about 0.5 m to 25 m. The device is also equipped with a 3-camera system, each with a 4.8 Mpx

sensor and 300 ◦ × 135 ◦ FOV. The range error reported by the manufacturer for indoors use is ±3 mm.115

At the core, mobile mapping devices consist of a LiDAR distance sensor, coupled with inertial sensors (Bosse et al., 2012;

Zlot and Bosse, 2014). Assuming that the scanner’s surroundings neither move nor deform, the Simultaneous Localisation and

Mapping (SLAM, Bailey and Durrant-Whyte, 2006) algorithm allows for the x, y and z coordinate tuples to be stored in a local

cartesian reference frame. To achieve this, the algorithm uses regular updates to the scanner position by 1) using the device’s

Internal Motion Unit (IMU) and 2) by triangulating between recognisable point features.120

Figure 3. (a) Typical scanning stance of a speleologist in a cave passage, with a laminated scan target in the background (photo: Tanguy

Racine) (b) Mobile cave scanning workflow and usual causes for masks, occlusions or missing data on bedrock cave walls (adapted from

Racine et al., in press).

2.1.3 In-cave scanning strategy

The in-cave scanning workflow begins with a reconnaissance of the conduit to be scanned, identifying the various obstacles

to progression. These obstacles include: passage intersections, large changes in average section dimensions, floor-steps, pits,

narrow sections, waterways, etc. An overview of the acquisition progress in the form of a rough point cloud visualisation is

transmitted to the scan operator navigating the cave conduit or chamber in real time over a wireless connection, facilitating125

decision making for an optimal scan trajectory and cave features coverage. We split the conduit to be scanned in several

overlapping acquisitions (scenes) acquired separately. The decision to stop an ongoing acquisition was almost always chosen

with respect to 1) encounter with an obstacle or 2) scan duration exceeding a chosen threshold. The obstacle criterion is self

explanatory. The scan duration criterion was chosen with respect to the hardware specification of the phone on which the point
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cloud scanning progress was displayed to the scan operator. In practice, the monitor displaying the scan progress would become130

unresponsive after 5-7 min, so shorter scans were preferred to better monitor any obvious gaps in the acquisition process.

Using the terrestrial laser scanner, a scene corresponds to a single revolution of the scanner sensor around a vertical axis. The

scan times depend on the spatial sampling density selected by the operator. For the mobile mapper, a scene corresponds to a

several minutes long walk by the operator within the cave environment (Figure 3) with the scanner sensor revolving at constant

angular velocity around a mobile axis. Using the mobile mapper, we scanned the conduit sections with partial spatial overlaps135

for subsequent co-registration. We achieved this in the field by retracing our steps anywhere between 2-10 m to guarantee that

acquisitions intended to be co-registered would have enough common points.

A lighting system provided by Méandre Techologie comprising 5 LEDs with a flux of 2 250 to 15 000 lumen each, arranged

around the scanner, provides near-panoramic illumination allowing for visible light information to be encoded into the point

set data file as Red, Green and Blue channels. Outside the cave on a work station, we process the raw files corresponding140

to each acquisition scene with the proprietary software Cyclone Register 360. We carry out the co-registration of scenes in

two-steps: first by visual alignment, second by iterative closest point algorithm (Besl and McKay, 1992). Finally, we export a

raw, assembled point cloud to LAS format, the open and industry standard format for LiDAR data.

2.1.4 Point cloud density

Because of the controlled sensor rotation, TLS-derived raw clouds exhibit clear patterns of concentric rings on surfaces which145

were sampled only once (Figure 4a). For the mobile scanner, the instrument’s constant movement results in some cave walls

being more densely sampled than others (Figure 4b), and thus requires point density resampling. It is impossible to anticipate

precisely the density of the final assembled point cloud. Wherever separate acquisitions are overlapping, meaning they have

been visited at least twice, the point cloud has a high sampling density. For other regions, especially high in ceiling pockets or

fractures, the walls are seen by the scanner only briefly, yielding a low spatial sampling density.150

To harmonise the density of point coverage, we sub-sampled each point cloud using the CloudCompare spatial sampling

algorithm. We set a threshold value of d= 2 mm and d= 5 cm (d being the minimum distance between a point and its nearest

neighbour), for high and low resolution point clouds, respectively.

2.2 Georeferencing

Raw point clouds are collected in local coordinate systems. For a levelled terrestrial laser scanner, or the mobile mapper,155

the distance between points and position relative to the vertical are tracked by the scanner. This means that while the scale

of the point cloud model is known, its overall position, and orientation relative cardinal directions need to be calculated with

independently surveyed control points. To determine the necessary rigid (rotation and translation) transformation, we measured

the geographic coordinates of a series of reference points by placing a series of targets along the cave: these are laminated sheets

containing a visual aid to determine their centre. The position of these targets in local scan coordinates was determined by using160

the closest point to the centre recorded on the scan, using intensities of return and RGB information as visual aids. The targets

were always placed in an easily accessible location, so that the scanner itself could be brought to bear on the target within a 1
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Figure 4. Detailed views of the scanning and meshing results using TLS (left) and SLAM (right) technologies. (a) close-up view of the raw

Rupt du Puits point cloud with concentric circular data distribution pattern of the TLS (blue) and one of the spheres placed in the scene to

help with scene co-registration (red) (b) close-up of the raw Grotte de la Sourde data, with overlapping, criss-crossing poin trails acquired

by the BLK2GO scanner; (c) point cloud of the Rupt du Puits, downsampled to 2 mm and (e) the reconstructed mesh at 5 cm resolution; (d)

point cloud of Grotte de la Sourde and (f) its reconstructed mesh.

m radius. This ensured an adequate point sampling density around the target in order to locate the target centre within less than

1 cm. We measured the position of those targets with a calibrated laser-distance meter called the disto X2 and widely used in

cave surveying (Heeb, 2016). With the disto X2, we recorded the three following quantities for each shot linking two survey165

stations: distance, bearing and inclination. In order to control operator errors, we triplicated each shot front and back, and

averaged them for each station to station shot. From these data records, we extracted the triplet of geographic coordinates for

every known point in a cartesian reference frame. We compiled the resulting survey data using the public cave survey software

Therion (Mudrák and Budaj, 2025), which uses the Survex (Betts, 2024) program for loop closure error calculations and shot

data averaging, as well as a model to correct for magnetic declination at a given place and time on the Earth’s surface.170

We georeference the point clouds by calculating a rotation and translation matrix using the pairwise registration algorithm

(Arun et al., 1987) between the targets’ local coordinates and their geographic counterparts. This was implemented in Python
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and applied to the point clouds. The new coordinates of the point clouds are calculated by matrix multiplication, applying a

rigid transformation so that the Euclidean distance between pairs of points is preserved. This also serves to 1) check the validity

of loop-closure whilst the SLAM algorithm is running, avoiding potential drift, and 2) to detect user blunders when assembling175

the scanned scenes after their acquisition.

2.3 Point cloud segmentation and cleaning

Dataset noise for cave scans arises from two main sources.

The first are erroneous pulse returns due to excess moisture, water droplets or interference with airborne particles. This

usually results in sparse clusters of points being recorded within the cave passage itself. We use the CloudCompare algorithm180

to label connected components and thereby divide the point cloud in groups. With the relevant algorithm parameters we adjusted

the minimum size of cluster to be labelled as a group, and the smallest pairwise distance between any two points belonging to

different groups. This is an effective strategy for removing the floating clusters when choosing an appropriate minimum distance

between clusters with the octree subdivision level parameter, as well as a threshold number of points defining a cluster. We

were able to effectively remove noisy floating regions and solitary noise points by selecting only the clusters containing the185

largest number of points, which correspond to the conduit walls.

The second kind of noise in the dataset stems from occlusions or masks in the cave point cloud caused by the presence of

the scan operator and or assistants. The BLK2GO scanner automatically masks out points taken in a quadrant facing the scan

operator to prevent this type of self-scanning. Additionally, we minimised this type of noise with adequate scanning strategy.

However narrow twisting passages often require the operator to carry the scanner in a sub-optimal orientation, putting the scan190

operator or any helper in the way of the laser swath. Whenever this resulted in noisy data patches (Figure 5), we removed the

latter semi-automatically or manually from the cave point cloud. We adopted the multi-scale dimensionality criterion approach

using the CANUPO algorithm plugin for CloudCompare (Lague et al., 2013). At the Grotte de la Cascade, we implemented this

step in the workflow by labelling clusters of noisy data. In this case, the CANUPO algorithm was effective because of a critical

difference in multi-scale dimensionality of noise clusters. These noisy clusters exhibit a high linearity score from the cm to195

the m scale) while the cave walls score highly on planarity at those scales. By segmenting out the points thus labelled as noise

from the point cloud, a subsequent analysis of connected components was sufficient to remove the remaining floating clusters,

negating the necessity to manually clean the point cloud . Elsewhere,manual segmentation was made on CloudCompare by

iteratively selecting noisy regions and removing them from the dataset.

2.4 Determination of instrumental noise200

The point cloud generated by the BLK2GO device has a specific 3D structure made of criss-crossing point trails which origi-

nates from the scanner movement during a survey. Following Dewez et al. (2016b), we compute the roughness distribution on a

test surface (a 1.1 × 0.8 m whiteboard) to evaluate the performance of the scanner. First, for each point, the euclidean distance

to its nearest neighbour was computed. We find that for a test surface sampled at approximately 1-2 m, the mean distance to

the nearest neighbour is of 1.3 mm. We then fitted a plane to the point cloud acquired by sampling this artificial, smooth planar205
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Figure 5. Illustration of the cleaning process (a) before automatic removal and manual segmentation of noise points, (b) after cleaning. In

red: trails arising from the scan operator scanning themselves in the narrow passage. In blue: lone points corresponding to narrow fissures

incompletely scanned.

surface with the BLK2GO scanner and computed the distance to this plane at each point. We find that 95% of all points fall

within a distance of 0.016 m to the best-fit plane (Figure 6).

A related way in which we can confront the precision limit quoted by the manufacturer is to compute the distribution of

point cloud roughness with variable neighbourhood radii, adopting the strategy of Dewez et al. (2016b). In CloudCompare, the

roughness value σ(r) can be computed at any point of a cloud and it represents the distance from a point to a plane fitted to its210

neighbours within a chosen search radius r (Girardeau-Montaut et al., 2016). We want to find out at which scale the calculation

of the implicit surface will be robust, specifically how small a neighbourhood radius one may choose to fit a surface model

before instrument noise makes the reconstruction unreliable. For a simple planar surface with normally distributed noise in the

normal vector direction, roughness distributions change with the search radius in a predictable way: above a given r, determined

by instrument noise, the shape of roughness distribution should stabilise, and its parameters, like the 68th percentile, should215

remain constant with increasing r. For the BLK2GO, we find that for r > 0.08 m, the 68th percentile of roughness stabilises at

a value of 0.01 m. This is very close to the value for 68th percentile of unsigned distances over the entire dataset. According to

this result, we adopt this value of 0.08 m as the smallest possible resolution for robust normal computation and meshing steps

described below (Figure 6).

2.5 Normals calculation and meshing220

Point cloud normals are spatial vectors calculated at each point. The plane uniquely defined by the point and its normal vector

is a local linear approximation of implicit surface to be reconstructed (Hoppe et al., 1992). We ran the calculation of point

normals on CloudCompare by least-squares fitting of a plane surface model using the neighbourhood of each point. Here the
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Figure 6. (a) distribution of unsigned distances to a best-fit plane adjusted to the test surface. The 68th percentile of this distribution (n=

4.84× 104 points) is taken as the position uncertainty associated with the mobile laser scanner (on the order of 0.01 m) (b) Point-cloud

roughness computed with CloudCompare as a function of the search radius: the greater the search radius, the greater the number of points

used for plane fitting

neighbourhood of a point denotes the subset of points from the cloud within a specified euclidean distance, the search radius,

of that point. Following the notation of Hoppe et al. (1992), the tangent plane at the ith point is determined by its centre oi (the225

centroid of the point neighbourhood) and a normal vector n̂i. In CloudCompare, the solution normal vectors were reoriented

by way of a minimum spanning tree of the k-nearest neighbours at each point; a complete description of the algorithm used to

reorient the solution vectors is outside the scope of this paper but details may be found in Hoppe et al. (1992). In this graph

optimisation problem, the weight of an edge between points i and j is taken as the scalar product between neighbouring solution

vectors, reflecting the intuition that the tangent plane at nearby points should be sub-parallel for sufficiently smooth surfaces.230

We started the algorithm with 6 k-neighbours and increased the number of nearest neighbours k considered in the calculation

of the spanning tree if at first the normals were not consistently re-oriented (Table 2). In our datasets, a neighbourhood with

a search radius of 0.08 m was found to give reliable results for finding consistently oriented normals, corresponding to the

threshold at which the cave wall roughness signal drowns roughness due to instrumental limits (see Figure 6). Choosing a

smaller search radius would yield vector normal orientations affected by instrument noise. The reorientation of normals can235

fail at sharp boundaries of the 3D surface sampled, and it is sometimes necessary to manually segment the cloud at those

edges. This is to prevent the reorientation algorithm from finding and using nearby points belonging to a different surface in

the nearest neighbour search. We computed a triangulated mesh in CloudCompare, using its mesh construction routine based

on point cloud normals, using a radius of 5 cm. This routine is a wrapper for the screened Poisson Reconstruction algorithm

(Kazhdan et al., 2006). Meshes were subsequently segmented and cleaned using the CloudCompare and Blender segmentation240
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tools to remove spuriously interpolated surfaces, for instance wherever open passage ends or areas of missing data were patched

up with the algorithm. The resulting meshes are therefore not closed surfaces (Figure 4e and f).

2.6 Floor and ceiling raster extraction

We provide a georeferenced DEM of the cave passage floor and ceiling by classifying the cave floor and cave ceiling by

using the Cloth Simulation Filter algorithm (Zhang et al., 2016, CSF). This segmentation step is essential in most airborne245

LiDAR mapping campaigns, as it effectively separates ground points from non-ground points. Intuitively, a non-rigid cloth is

draped over the upturned point cloud, and points touching the cloth are labelled as ground category. On a cave point cloud, this

algorithm extracts ground points corresponding to the passage floor. The remaining points correspond to the cave ceiling. We

considered several cases where this algorithm could classify points incorrectly and manually attributed the correct classification

to the points. Wherever gaps in the point cloud are apparent due to the presence of a water body, then only one surface (the250

ceiling) will appear on the scan. Running the CSF algorithm would classify the ceiling as a floor. Wherever one passage

overlies another, then more than one surface should be classified as a floor. However, the lowest lying passage will hide all the

others, and floor points will be mis-labelled as ceiling points. In this case, we split the point cloud into disjunct sections and

subsequently ran the algorithm on each. Finally, complex floor geometries such as overhanging boulder sides will hide some

floor points from the CSF algorithm. For these cases, we manually attributed the floor attribute to the relevant points based on255

visual inspection.

Using the Relief Visualization toolbox (Kokalj et al., 2016), we also provide a combined image specifically designed to

highlight subtle topographic changes (Kokalj and Somrak, 2019). We find that projecting the resulting point cloud as a floor

or ceiling DEM and using a suitable relief visualisation techniques highlighted subtle topographic relief and can help emulate

traditional cave maps. We modified the presets for the steep Visual Archeology terrain blend, to account for the event steeper260

topographic features of cave floors and ceilings. The parameters used to generate the blended images (top to bottom) are given

in Table 3.

2.7 Centreline extraction

We refer to the cave’s centreline as an undirected metric graph which captures the cave conduit topology. It is based on

a subset of points belonging to the curve skeleton of the cave wall point cloud. There are many algorithms for extracting265

such a skeleton curve from a three-dimensional object (Tagliasacchi et al., 2016). To compute this object, we use the Python

implementation of (Cao et al., 2010) point cloud contraction algorithm based on local-Delaunay triangulation and topological

thinning. This technique is robust to noise and missing data, which is often present in in-cave surface acquisitions due to the

common occurrence of small and / or narrow inaccessible side-passages, and water surfaces (streams, dammed pools, etc.).

There are several key parameters for this algorithm including the initial balance between the contraction and attraction270

weights matrices, as well as the level of downsampling of the initial point cloud on which to perform the contraction. By

default, the initial contraction weights are set to 1 and the attraction weights are set to 0.5. For several cave point clouds we

tested varying starting ratios of these weights and noticed that a high ratio of contraction to attraction yields fewer, rectilinear

12



branches than a low one. We found that the algorithm terminated within 4-5 iterations using downsampling parameters. In the

end, we chose to use 0.5 for both initial contraction and attraction ratios (Table 2). The end position of the nodes describing275

the centreline generated by contraction follows the ratio of contraction and attraction weights defined by the user. Indeed, low

attraction to contraction ratios yielded topologically simpler (fewer branches) and geometrically smoother curve skeletons,

with clear differences even after the first contraction iteration (Figure C1). When using the strongest initial contraction to

attraction weights ratio (Figure C1a), one can observe a strong collapse and smoothing of the point cloud geometry towards

the objects skeleton. The reverse is true for the smaller initial contraction to attraction weights ratio (Figure C1d). With strong280

contraction, we observe that centreline nodes could even fall outside the walls of the original point cloud due to the Laplacian

smoothing of the walls if the conduit bent sharply without bifurcations (see for example Figure C2).

We spatially sub-sampled the contracted point cloud to yield a sparse cloud. This sparse cloud can be thought of as a discrete

sampling of the curve skeleton, i.e. the thinned 1D representation of the 3D cave wall model. We performed a final connected

component analysis to remove badly contracted points from this curve skeleton cloud, as these may be located far away from285

the original point cloud and selected its largest component. Finally, we reconstruct the skeleton topology by considering the

set of points as an undirected, complete graph, where each edge weight represents the euclidean distance between any pair of

nodes. We computed the minimum spanning tree on this graph. In this mathematical object a degree-1 node is called a leaf

and corresponds to a cave opening or a dead-end. Formally, the trajectory of a person or object travelling the inside of a cave

conduit while avoiding its walls can be described by a walk from a start to an end node along the centreline graph. This allows290

us to describe variations in cave geometric properties along a given walk which corresponds to the position of an observer

along the cave passage.

3 Data records

The general organisation of the datasets is as follows. Within the data repository, we provide one subfolder per cave, and within,

one folder per elementary cave passage, following the local toponymy. Each passage folder holds a set of point clouds, meshes,295

rasters and centrelines, as well as the metadata file in self-describing yaml format. The repository organisation for a single cave

is detailed in Figure 7. In a companion GitHub repository called pc-processing (https://github.com/ERC-Karst/pc-processing/

releases/tag/v1.0.0), we also provide a set of Python scripts which we ran to 1) extract centrelines, 2) extract rasters of the floor

and ceiling and 3) convert the centrelines to various formats.

3.1 Point clouds300

Each unified, cleaned and georeferenced point cloud is archived in LAS format, the industry standard, open, binary format

for interchanging point cloud data. We chose the LAS 1.4 with point format 7, which includes the RGB color channels by

default. For each cave and conduit therein, we provide a point cloud spatially sampled at 2 mm and 5 cm, corresponding to

high and low resolution respectively. Some datasets are georeferenced, and the point coordinates are given in their country’s

official coordinate reference systems. Since some of the coordinates may be very large, LAS usually provides the data using305
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root/
|--- Cave1/
| |--- Passage1/
| | |--- pointclouds/
| | | |--- Cave1_Passage1_sampled_2mm_PCV_normals_classified_georef.las
| | | |--- Cave1_Passage1_sampled_5cm_PCV_normals_classified_georef.las
| | |--- mesh/
| | | |--- Cave1_Passage1_mesh_5cm.ply
| | |--- raster/
| | | |--- Cave1_Passage1_floor_4cm.tif
| | | |--- Cave1_Passage1_floor_4cm_Cave_Terrain.tif
| | | |--- Cave1_Passage1_ceiling_4cm.tif
| | | |--- Cave1_Passage1_ceiling_4cm_Cave_Terrain.tif
| | |--- centreline/
| | | |--- Cave1_Passage1_nodes.txt
| | | |--- Cave1_Passage1_links.txt
| | | |--- Cave1_Passage1_branches.txt
| | | |--- Cave1_Passage1.dxf
| | | |--- Cave1_Passage1.geojsons
| | |--- scan.yaml
| |--- Passage2/
| | |...
| |--- cave.yaml
|--- Cave2/
| | ...

1
Figure 7. dataset repository structure

a Global Shift information which is stored in the data header and can be read by OpenSource programs, e.g., CloudCompare.

We populate the LAS classification field with the intensity, a measure of the strength of the returning laser pulse. The data is

organised in a table with headers containing a set of spatial coordinates, and additional scalar fields such as: return intensity, a

triplet for red (R), green (G) and blue (B) channels and normal unit vector coordinates Nx, Ny and Nz, an integer classification

flag (1: unclassified or ceiling, 2: ground), and a 64-bit float corresponding to the illuminance value which is analogous to the310

sky view factor (Duguet and Girardeau-Montaut, 2004), see Table 1.

Table 1. Point cloud data file description

label description unit

Intensity relative strength of pulse return, 64-bit float

Classification point label, integer

X, Y, Z coordinate in cartesian geographic reference system, 64-bit float m

nX, nY, nZ unit normal coordinate, 64-bit float m

R, G, B red color channel intensity, 64-bit float

Illuminance (PCV) sky view factor sampled from a sphere, 64-bit float

14



Figure 8. (a) plan view and projected profile of altitude coloured point cloud and (b) illuminance (PCV) coloured point cloud of Markov

Spodmol cave. Ntrue denotes the orientation of geographic north.

3.2 Meshes

The provided meshes are the 3-dimensional representation of the cave walls. They are calculated using the Screened Poisson

Surface Reconstruction algorithm (Kazhdan et al., 2006) using the parameters indicated in Table 2. The meshes are stored in

binary PLY format, whereby the surface is defined by 1) a list of vertex coordinates, normals and texture information and 2) a315

list of faces.

3.3 Cave centrelines

Cave centrelines, as realisations of discrete sampling of the curve skeletons, are given as undirected graphs. These objects are

stored in three ASCII files which are essentially relational tables: the first file containing the X, Y, Z geographic coordinates

triplet of each point (vertex), one point per line, the line number being the unique identifier (ID) of the corresponding point.320

The second file contains the links (edges) between the points: each line corresponds to link between the source and target node

IDs and the line number is the edge’s unique ID. The third file corresponds to the branch ID for each edge: this contains two

columns, first being the branch ID, the second, the edge ID. Thus one can for instance query the position of all nodes belonging

to a branch by way of edge indices. All processing parameters are given in Table 2. To integrate the conduit centrelines with
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the point clouds and meshes in a single visualisation, we also provide them in the interoperable Drawing Interchange Format325

(DXF). Further, to integrate the visualisation of the centrelines with the raster files on any Geographic Information System

(GIS) software, we also provide the centrelines in the interoperable Geographic JSON (GeoJSON) format. For any given

conduit, the sum of every centreline segment is given in table A1 as the surveyed length of each scan.

Table 2. Point cloud processing parameters

item software parameter value

spatial resampling CloudCompare minimum distance 0.002 m & 0.05 m

connected components CloudCompare octree level 10

min. points per component 10

manual segmentation CloudCompare — —

ambient occlusion calculation PCV plugin samples rays on a sphere True

Count 256

Render context resolution 1024

normals calculation CloudCompare radius 0.08 m

model planar

normals reorientation CloudCompare method Minimum Spanning Tree

k nearest neighbours at minimum 6

Screened Poisson reconstruction plugin Screened Poisson plugin boundary condition Neumann

spatial reconstruction 0.05

floor extraction Cloth Simulation Filter plugin cloth size 0.05 m

terrain type steep

threshold 0.5

skeleton curve extraction pc-skeletor Python library initial attraction weights 0.5

initial contraction weights 0.5

point cloud down sampling distance 0.4 m

skeleton point cloud downsampling minimum distance 0.4 m

skeleton point cloud connected components minimum component size 5

octree level 8

skeleton topological reconstruction number of k-nearest neighbours 12

Rasterise floor point cloud CloudCompare pixel size 0.04 m

pixel size 0.04 m
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Layer (blending mode) parameter value / range

sky-view factor (multiply)

number of directions 32

noise removal 0 (none)

maximum radius (pixels) 10

linear normalisation 0.55 – 1

opacity (%) 25

positive openness (overlay)

number of directions 32

noise removal 3 (high)

maximum radius (pixels) 10

linear normalisation 55◦ – 95◦

opacity (%) 50

slope gradient (luminosity)

linear normalisation 0◦ – 60◦

opacity (%) 50

hillshade (normal)

sun elevation 55

sun azimuth 315

linear normalisation 0 – 1

opacity (%) 100

Table 3. Visual Archeology Terrain blend parameters for the cave terrain shading (Kokalj et al., 2016)

3.4 Floor and ceiling raster models

DEMs of the cave floor and ceiling (described in Section 2.6) are provided as a raster file in GeoTIFF format. All cave floor330

rasters are provided with square pixels of size 4 cm. We also include a blended image highlighting subtle topographic changes

and roughness elements of the cave floor and ceiling based on the Relief Visualization Toolbox (Kokalj et al., 2016), using the

presets detailed in Table 3.

3.5 Metadata and description

To complement the overview of notable features given below in Table 4, we also provide a set of descriptive metadata files:335

cave.yaml and scan.yaml. The specific details are highlighted in relevant template files (sections B1 and B2). At the
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cave level, they include wherever applicable, cave entrance location and passage toponymy in relation to published maps, as

well as an overview of the local geological, hydrological and speleogenetic context. For each individual scan we also give

basic information about the acquisition strategy, the extent of the scanned passages with regards to the cave, and details on the

instruments used and scan operators present.340
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Table 4. List of cave conduits included in the KarstConduitCatalogue

cave location hydrology bedrock lithology, epoch structural setting notable features

Archamps Salève small episodic stream oolitic and/or bioclastic lime-

stone, Lower Cretaceous

in overturned limb

near hinge of Salève

anticline, fracture con-

trolled

paragenetic ceiling channels,

solution pockets, vadose en-

trenchment

Baume de

Longeaigue

Swiss Jura epi-phreatic conduit,

water exiting in

springs along Le

Buttes river

oolitic and pelloidal lime-

stone, Upper Jurassic

in steeply dipping

southern limb of Buttes

anticline, bedding and

fracture controlled

vertical shaft, solution pock-

ets, floor entrenchment, small

potholes

Grotte de la Cas-

cade (Môtiers)

Swiss Jura epiphreatic conduits,

water flowing to

Sourde spring

micritic limestone, limestone

breccia and dolomite, Upper

Jurassic

within folded beds of

the Cote de Riau NW

vergent anticline. Beds

are vertical near the en-

trance and dip strongly

to the SE at the up-

stream sump

solution pockets, ceiling

channels, potholes, silt and

clay deposits, eroded rim-

stones, collapse chambers

Cocalière /

Cotepatière

Cévennes mostly inactive

epiphreatic gallery,

water flows to

Moulin de Pichegru

bioclastic and biomicritic

massive white limestone,

Upper Jurassic

within nearly flat lying

beds at hinge of St An-

dré de Cruzières syn-

cline

impacted flowstones and rim-

stones, potholes, cobble and

gravel deposits including al-

lochtonous elements, ceiling

channel, solution pockets

Gouffre des En-

canaux

French mar-

itime Alps

epiphreatic gallery,

linked to the En-

canaux spring

biomicrite and dolomitic

limestone, Upper Jurassic

at core of SW plunging

anticline of St Baume

massif, SE dipping beds

visible in the cave itself

potholes, cobble and gravel

deposits, ceiling channel, so-

lution pockets

Event de Peyrejal Cévennes mostly inactive

epiphreatic gallery,

water flows to

Moulin de Pichegru

bioclastic and biomicritic

massive white limestone,

Upper Jurassic

within nearly flat lying

beds at hinge of St An-

dré de Cruzières syn-

cline

impacted flowstones and rim-

stones, potholes, cobble and

gravel deposits including al-

lochtonous elements, ceiling

channel, solution pockets

Grotte des Faux

Monnayeurs

French tab-

ular Jura

epiphreatic con-

duit,overflow to

Pontet source

mixed bioclastic and micritic

limestone, Upper Jurassic

along strike of steeply

dipping beds, deformed

by the proximity to Sali-

nois overthrust

potholes, sparse cobble and

gravel deposits, solution

pockets, scallops, collapse

chambers along vertical beds

Grotte de la

Madeleine

Ardèche inactive bioclastic / reef limestone,

Urgonian facies, Lower Cre-

taceous

horizontal, to gently

SE dipping beds, unde-

formed

paragenetic pendants, ceiling

channels, cupolas, solution

pockets
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cave location hydrology bedrock lithology, epoch structural setting notable features

Grotte de la

Sourde

Swiss Jura epiphreatic conduit micritic limestone, limestone

breccia and dolomite, Upper

Jurassic

within folded beds of

the Cote de Riau NW

vergent anticline. Beds

are vertical to over-

turned

solution pockets, potholes,

siphon

Hölloch Swiss Alps epiphreatic conduits massive bioclastic limestone,

Lower Cretaceous

NW gently dipping

strata within thrust

duplex of the Axen

nappe

potholes, karren, solution

pockets, gravel banks, ero-

sion flutes, solution scallops

Lauiloch Swiss Alps epiphreatic conduit massive bioclastic limestone,

Lower Cretaceous

SE gently dipping strata

within the Drusberg

nappe

potholes, solution pockets,

gravel banks, erosion flutes,

solution scallops

Les Cavottes French tab-

ular Jura

inactive oolithic and bioclastic lime-

stone, Middle Jurassic

flat lying beds of the Or-

nans plateau

alteration corridors, parage-

netic ceiling channels, pen-

dants, collapse rooms

Markov Spodmol Slovenian

Classical

Karst

stream sink biomicrite with coal mea-

sures, Upper Cretaceous, Pa-

leocene

gently NE dipping beds,

NE limb of Učjenik an-

tiform structure

solution scallops, erosion

flutes and potholes, seepage

karren, gravel bars, lakes

Rupt du Puits Barrois active river passage,

traced to River Saulx

oolitic limestone, Upper

Jurassic

eastern margin of Paris

basin, gently SW dip-

ping beds

lateral notches, potholes, wa-

terfalls, solution pockets

Grotte de Val-

lorbe

Swiss Jura epiphreatic gallery

connected to the

Orbe spring

bioclastic and micritic lime-

stones, marls, Upper Jurassic

NW dipping beds,

southern limb of a

syncline, associated

with NW vergent "Crêt-

des-Alouettes" thrust

solution pockets and chim-

neys, silts to cobble bars, va-

dose entrenchment

Vers Chez Le

Brandt

Swiss Jura mostly dry small

stream, dye traced to

Areuse Spring

marly limestone, oolithic and

oncolith well bedded lime-

stone, Upper Jurassic

gently SE dipping beds

on southern limb of Le

Grand Bois anticline,

NNW-SSE main frac-

ture orientation

speleothems, collapse cham-

bers
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4 Data examples

4.1 Site description

We use the example of Markov Spodmol (cadastral number 878), a temporary stream cave located in the classical Karst region

of Slovenia to showcase the data products presented herein. The cave, with a recorded length and depth of 868 m and 61 m345

respectively, opens at the end of a closed valley west of Strmec mountain, at an elevation 556 m asl. The intermittent stream at

the cave entrance traverses the karst massif with dye tracing connections to the Reka river.

4.2 Scanning procedure

The scan was carried out in May 2024, in 24 different acquisitions assembled together, totalling approximately 500 linear

metres of passage, from the entrance inwards, and stopping (due to time constraints) at a 10 m pit. In parallel, a traditional350

speleologist’s centreline was measured in order to record the geographic coordinates of 13 tie-points (Section 2.2). The entrance

coordinates were derived from the Slovenian online cave cadastre.

Figure 9. (a) Scan targets registration residuals for Markov Spodmol (b) Comparison of the traditional survey splay shots (coloured points)

with the mobile laserscan (grey points) (c) Histogram of the Cloud-2-Cloud (C2C) distances calculated from splay shots to laser scan point

cloud. Coordinate reference system: EPSG:3912

4.3 Results

4.3.1 Point cloud

At Markov Spodmol, we compared two sets of point clouds collected independently: 1) a traditional set of passage dimensions355

from marked stations using a laser distance-metre, numbering 375 points, anchored on a centreline of 29 triplicated backwards

21



and forwards survey shots, and 2) a dense point cloud using the mobile BLK2GO scanner totalling a little more than 109 points

(Figure 8). With the mobile mapper, the effective scan time was 116 min, while the actual scan time was 240 min. As we

constituted the KarstConduitCatalogue, we experienced a four-fold variation in the acquisition speed using the mobile scanner,

which was highly dependent on the type of conduit. Highly convoluted passages demand that the user walk a complex trajectory360

in 3D to capture as many details which would otherwise be hidden, increasing the acquisition time. Nevertheless, lower and

upper bounds on typical effective scan times can be given here for two typical end-members. At Hölloch, in gently inclined,

tubular conduit called Riesengang whose dimensions exceed 2 m in diameter at the narrowest point, 570 m of passage were

scanned in 103 min of effective scan time and 19 scenes were required altogether. The actual acquisition time including the

downtime between scans, battery changes and obstacle crossing was 145 min, corresponding to a linear scanning speed of365

3.9 m.min−1. At the Baume de Longeaigue, a much more steeply inclined, convoluted cave passage with a constriction and

vertical shaft, 55 m were scanned in 44 min of effective scan time and 9 scenes were required altogether. The actual acquisition

time was 60 min, yielding an average scan progress speed of 0.9 m.min−1. Therefore, at the Main Gallery of Markov Spodmol,

a conduit which involved a mixture of large galleries and severe obstacles such lakes which had to be crossed by inflatable

dinghy, the scanning speed of 1.7 m.min−1 recorded falls consistently between the speeds expected for the two end-members370

above.

In essence, the splay shots collected during the traditional speleological survey represent a much sparser sampling of wall

surface, compared to LiDAR acquisitions. The splay shots, anchored on the distoX centreline provide an independent way to

check that no drift or distortion has occurred during the point cloud assembly. When measuring the centreline and repeating

station sightings, mismatches arise from uncertainties in the distoX measurement due to either 1) imprecise handling of the375

instrument by the user 2) quality of the compass and clinometer calibration. To minimise those, we carried out triplicate station-

to-station measurements, rotating the device along the sighting axis. We also measured backwards and forwards readings

between any two stations. After compiling the cave survey data using the Therion software, we report an average loop error of

0.72% on the forward and backward sightings.

We provide two metrics for the comparison of distoX based surveys and the point cloud generated by laserscanning. When380

georeferencing the cave point cloud using the pair-wise registration method of Arun et al. (1987) on specific targets, we

computed the root mean square of residuals (distances) between the two sets of points. This RMS between identified targets in

the distoX survey and the laser scan was 31 cm for Markov Spodmol. Over the whole CaveConduitCatalogue, we were able

to perform a similar check for drift or survey blunders on all cave datasets we intended to georeference, the RMS for target

identification is given wherever applicable in Table A1. We found that this RMS of 31 cm is at the upper limit of the residual385

offsets observed for joint distoX and laser scanning surveys.

After georeferencing, we used CloudCompare to compute the unsigned cloud-2-cloud (C2C) distance between the tradi-

tional, sparse point cloud made of splay shots and the dense, laser-scan (Figure 9). We find that 95% of the splay end points are

within a distance of 31 cm or less from the laserscan point cloud, while the mean C2C distance between the two survey tech-

niques is 12 cm. While some splay shots may inadvertently end up close to the wall, but far from the intended corresponding390

features, systematic offsets due to survey blunders on the one side, or scan drift and distortion on the other, would appear in
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Figure 9 as regions with either consistently high, non-random offset, or noticeable trends of increasing or decreasing offset. We

could not observe any obvious spatial trend in the distribution of C2C distances on Figure 9 which would otherwise highlight

first order discrepancies or major blunders between the traditional survey and the point cloud scene assembly. The agreement

between the scan and the passage dimension measurements collected using traditional speleological mapping techniques is395

therefore within the same error range as the registration residuals. We conclude that for the example Markov Spodmol, both

survey techniques yield consistent results with respect to cave geometry at the decimetre to metre scale.

4.3.2 Mesh

The screened Poisson reconstruction yields a watertight surface by closing off holes in the point cloud. This results in the

erroneous reconstruction of large areas of the model using few or no data points as constraints. In addition to the cave opening,400

there are several large lakes in Markov Spodmol cave where no geometry data was acquired during laser scanning. We later

refined the reconstructed mesh of Markov Spodmol using the mesh sculpting tool Blender to remove high uncertainty zones

caused by large areas of standing water. The resulting mesh has an area of 1.5851× 104 m2 for 1.848× 107 triangles, and

the average triangle area of the reconstructed mesh is 8.6 cm2. Since the meshing procedure reconstructs the implicit surface

without honouring the data points, we calculated the cloud-to-mesh (C2M) distance using the relevant CloudCompare algo-405

rithm to detect locations where the reconstructed surface might be far from the underlying point cloud data. We find that 95%

of points in the original dataset lie within 4.9 cm of the reconstructed mesh, which is in agreement with the parameter used for

the reconstruction scale in the screened Poisson Reconstruction (Table 2).

4.3.3 Centreline

Part of the reconstructed centreline of Markov Spodmol Cave is shown on Figure 10e-f. The centreline contains 978 points,410

977 edges. There are 43 nodes of degree 1 (leaves of the tree graph, also known as external vertices) and 39 nodes of degree

3 (branch vertices). The tortuosity of individual branches, defined as τbr = L/Le, with L being the branch’s curvilinear length

and Le the euclidean distance between its start and end nodes is generally low. The mean tortuosity (weighted by branch’s

curvilinear length) is τ̄br = 1.17. The arithmetic mean branch curvilinear length is L̄= 9.7m. The downsampling of the skele-

ton point cloud with a spatial scale of 0.5 m, results in a mean edge length of 0.52 m for the centreline graph. The mode of415

edge length distributions is located at 0.5 m.

4.3.4 Raster interpretations

The extracted floor raster and combined shading allows first hand the investigation of relationships between morphological

elements in the cave and an interpretation of the cave speleogenesis and sediment mobility. Figure 11 highlights the value in

culling away ceiling points to reveal the plan view morphologies of the cave passage. The floor of the entrance chamber is420

littered with metre scale boulders to the North, while to the South, a finer partly incised sediment bank can be seen to form a

topographic step to the Southwest. Downstream of target A, a 2 m wide and several metres deep stream channel ends abruptly
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Figure 10. Detailed point cloud contraction and skeleton extraction workflow for the example of Markov Spodmol cave. (a-c) point cloud

at different iterations of Laplacian-based contraction using the algorithm of Tagliasacchi et al. (2016). (d) spatially downsampled skeleton

point cloud. (e) reconstructed Minimum Spanning Tree (MST), (f) example of a walk along the MST graph from a source to a target node.

Coordinate reference system: EPSG:3912
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between targets A and B, corresponding to a temporary sink. Large wooden logs are entangled around this point. A smooth,

inclined bedding plane is then exposed up to target B, with a floor step corresponding to another stratum. Downstream of target

B, a karren morphology is developed for some 20 m, with two major preferential directions of development following the425

bedrock fractures. This gives way to a boulder-strewn passage around target C. Opposite target B, we observe a metre-high,

partly incised sediment bank, deposited by slacker waters in sudden passage enlargement.

Figure 11. Plan view of the entrance of Markov Spodmol cave, at resolution of 4 cm per pixel, highlighting the traditional cave survey

centreline used to calculate target station positions and georeference the assembled scan. Inset: Footprint of the cave scan with the bed of the

intermittent sinking stream of Rakukic polje highlighted in blue. Coordinate reference system: EPSG:3912. Maps data: Geodetski Inštitut

Slovenije © 2014 www.gis.si

5 Conclusions

This paper introduces a dataset of karstic conduit geometries acquired in various karst massifs around the European Alps and

beyond. They represent a spectrum of sizes, tortuosity and roughness characteristics arising from their differing host-bedrock430
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and speleogenetic history. The data set includes products, derived from the acquired point sets, which represent different types

of generalisation of the cave conduit geometry. The triangulated meshes are reconstructions of the implicit surfaces underlying

the point clouds. Raster datasets of cave floors and ceilings can be seamlessly integrated in GIS projects or databases containing

other karst objects and analyse key processes controlling speleogenesis. The computed centrelines, approximations of the 3D

curve skeleton of each conduit, are objects to which local geometric properties of the conduit may be attached, for instance435

conduit diameter, aspect ratio, shape index, etc.

The workflows presented here are specifically tailored to the cleaning and reconstruction of cave-like, georeferenced 3D

objects. The point cloud cleaning to the floor / ceiling classification and rasterisation schemes depend on several parameter

choices, in particular those related to spatial resampling distances, which were guided by the scanner resolution limits and

the various requirements of karst geomorphology or hydraulic modelling applications. For instance, the resolution of the440

raster maps is in accord with the need to map decimetric objects or obstacles on the cave walls. We also demonstrate the

application of automated computation of cave centrelines based on trial-and-error testing of the Laplacian-based-contraction

hyper-parameters, in particular the ratio of initial contraction and attraction weights.

These numerical representations may be used to investigate a wide range of scientific questions. The raster DEM can be used

for example for understanding the self-organisation of corrosion features and/or sediment deposits. The 3D point cloud can help445

identifying and mapping fracture orientations (e.g., Cacciari and Futai, 2017) or quantifying the geometry or density of specific

geomorphological features. The unstructured point clouds acquired by laser-scanning in the underground environment usually

contain gaps as well as noise for various technical or geometric reasons; they therefore present a challenge at the surface

reconstruction stage. These datasets may also provide useful challenges with regards to developing semantic classification

tools, as the latter could be used to segment and categorise parts of a cave point cloud as bedrock wall, secondary mineral450

deposit, artificial structures, etc. The surface mesh can be used for analysing, with computational fluid dynamics tools, the

physical laws of water flow and solute transport in these complex geometries. They can also be used to understand typical cave

geometries and relate these geometries with local geological and hydrological conditions. Finally, this work shows that the

ease of use of mobile scanners allows for fast acquisition of large datasets.

Code availability. Data processing steps were performed using CloudCompare software and its Python wrapper CloudComPy. Centrelines455

were computed using the Laplacian-based contraction algorithm of Tagliasacchi et al. (2016), implemented in Python. Example scripts for

the centreline extraction and rasterisation steps are given at https://github.com/ERC-Karst/pc-processing.git

Data availability. Data described in this manuscript can be accessed at repository under data https://doi.org/10.60544/sbjr-z851 (Racine

et al., 2025a).
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Kaňuk, J., Šupinskỳ, J., Meneely, J., Hochmuth, Z., Šašak, J., Gallay, M., and Callieri, M.: Laser Scanning of a Complex Cave System during

Multiple Campaigns: A Case Study of the Domica Cave, Slovakia, in: 3D Imaging of the Environment, pp. 56–81, CRC Press, 2024.530

Kazhdan, M., Bolitho, M., and Hoppe, H.: Poisson surface reconstruction, in: Proceedings of the fourth Eurographics symposium on Geom-

etry processing, vol. 7, p. 0, 2006.

Kazmierczak, E., Jaillet, S., Vandycke, S., and Verheyden, S.: Modélisation 3D par imagerie lidar et analyse structurale de la Salle du Dôme

des Grottes de Han-sur-Lesse (Belgique, Ardenne), Géomorphologie: relief, processus, environnement, 26, 231–240, 2020.

Kokalj, Ž. and Somrak, M.: Why not a single image? Combining visualizations to facilitate fieldwork and on-screen mapping, Remote535

Sensing, 11, 747, 2019.
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Šupinskỳ, J., Kaňuk, J., Nováková, M., and Hochmuth, Z.: LiDAR point clouds processing for large-scale cave mapping: a case study of the570

Majko dome in the Domica cave, Journal of Maps, 18, 268–275, 2022.

Tagliasacchi, A., Delame, T., Spagnuolo, M., Amenta, N., and Telea, A.: 3d skeletons: A state-of-the-art report, in: Computer Graphics

Forum, vol. 35, pp. 573–597, Wiley Online Library, 2016.

Zhang, W., Qi, J., Wan, P., Wang, H., Xie, D., Wang, X., and Yan, G.: An easy-to-use airborne LiDAR data filtering method based on cloth

simulation, Remote sensing, 8, 501, 2016.575

Zlot, R. and Bosse, M.: Three-dimensional mapping of caves, Journal of Cave and Karst Studies, https://doi.org/10.4311/2012ex0287, 2014.

30

https://doi.org/https://doi.org/10.1016/j.rse.2022.113210
https://doi.org/10.60544/sbjr-z851
https://doi.org/10.5281/zenodo.16754405
https://doi.org/10.4311/2012ex0287



