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Abstract  

Soil temperature (Ts) is critical in regulating agricultural production, ecosystem 

functions, hydrological cycling and climate dynamics. However, the inherent spatial 

and temporal heterogeneity of soil thermal regimes constitutes a persistent challenge in 

obtaining high-resolution, continuous gridded Ts datasets along vertical profiles. To 5 

address this issue, we propose a spatially adaptive layer-cascading Extreme Gradient 

Boosting (XGBoost) algorithm to generate daily multi-layer Ts data (0, 5, 10, 15, 20, 

and 40 cm) at a spatial resolution of 1 km in China from 2010 to 2020. The methodology 

dynamically partitions non-uniformly distributed measuring sites (2,093 sites across the 

country) to quadtrees and incorporates thermal coupling effects propagated between 10 

neighbor soil layers. Multi-source data, including satellite retrievals of land surface 

temperature and vegetation index, and ERA5 reanalysis climate variables were used as 

inputs. Independent tests demonstrated high robustness and accuracy of our model, with 

depth-specific values of coefficients of determination (R²) being 0.94~0.98 and root 

mean square errors (RMSE) values ranging 1.75~2.21K. It is noted the model’s 15 

performance was lower in summers and winters than in springs and autumns. Compared 

to existing global or regional Ts products, the dataset developed here is characterized 

by its fine spatio-temporal patterns and high reliability, enabling it to provide supports 

for precision agriculture, ecosystem modeling and understanding climate-land feedback. 

Free access to the dataset can be found at https://doi.org/10.11888/Terre.tpdc.302333 20 

(Wang et al., 2025). 
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1. Introduction 30 

Soil temperature (Ts) is a critical driver of ecosystem dynamics, influencing nearly 

all physical, chemical, and biological processes (Bayatvarkeshi et al., 2021; Xu et al., 

2023; Liu et al., 2025). Ts plays a pivotal role in land-atmosphere exchanges. By 

controlling the partitioning of net radiation into sensible and latent heat fluxes, Ts 

directly shapes atmospheric boundary layer circulation, with cascading effects on 35 

regional climate patterns (Mahanama et al., 2008; L. Chen et al., 2021). Ts also drives 

soil freeze-thaw cycles, which are critical for hydrological processes in cold regions. 

Permafrost thaw alters subsurface water storage, runoff dynamics and groundwater 

recharge, with implications for both local and basin-scale hydrology (Zhang et al., 2005; 

Shati et al., 2018). In addition, it governs the rates of soil microbial activities, nutrient 40 

cycling, and organic matter decomposition, with direct implications for carbon 

dynamics. For instance, Ts modulates microbial respiration, thereby regulating the 

release of organic carbon into the atmosphere as CO2 that is central to global carbon 

cycling (Yang et al., 2011). Given its multifaceted influences on carbon cycling, climate 

feedbacks and hydrological systems, accurate Ts estimation is indispensable for 45 

advancing ecosystem monitoring, refining climate models, and developing effective 

strategies to mitigate and adapt to climate change. 

Ts exhibits high heterogeneity at large spatial scales due to varying driving factors. 

Solar radiation changes its radiation intensity by adjusting the incident angle and 

sunshine duration, thus affecting the heating effects on surface soils (Wang and 50 

Dickinson, 2013). Additionally, diurnal variations of air temperature cause periodic 

changes in surface temperature, while the amplitude is often closely related to the local 

climate and topography. Furthermore, surface covers (e.g., vegetation and snow) 

significantly impact Ts (Xu et al., 2020; Mortier et al., 2024). Vegetation canopies 

effectively intercept and scatter solar radiation, while root systems modulate soil 55 

moisture distribution, thereby stabilizing deeper soil temperatures (Li et al., 2024). 

Snow cover, characterized by high albedo, reflects substantial solar radiation and acts 

as an effective insulator, mitigating cold air penetration and maintaining warmer soil 
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temperatures during winter months (Myers-Smith et al., 2015). Moreover, thermal 

conductivity and heat capacity are critical parameters controlling vertical heat transfer 60 

in soils. Sandy soils have higher porosity and lower water retention, resulting in lower 

heat capacity and higher thermal conductivity, thus responding rapidly to temperature 

changes. In contrast, clay soils have lower porosity and stronger water retention, leading 

to higher heat capacity and significant thermal stability, characterized by delayed 

responses to temperature variations (Ochsner et al., 2001; Zhao et al., 2022). 65 

Understanding these mechanisms is essential for developing refined vertical Ts 

distribution models and improving the accuracy of Ts estimation.  

Given these complex processes, accurately estimating Ts across different depths is 

challenging. Quite a few models have been proposed for Ts estimation. These models 

can be generally classified into physical, statistical or empirical, and machine learning 70 

(ML) types (Li et al., 2024; Farhangmehr et al., 2025). Physical models, derived from 

fundamental heat conduction laws and energy balance equations, provide explicit 

mechanistic interpretations but suffer from computational complexity and heavy 

reliance on multi-domain input parameters, which range from soil properties to climatic 

variables (Gao et al., 2008; Hu et al., 2016; Badache et al., 2016). Statistical or empirical 75 

models, such as autoregressive integrated moving average and regression methods 

(Xing et al., 2018), are usually limited to localized, small-sample applications. Data-

driven machine learning techniques demonstrate a superior ability to capture nonlinear 

relationships and thus usually can obtain high prediction accuracy. For instance, at site 

scale, Feng et al. (2019) estimated multi-layer Ts at half-hourly resolutions using 80 

Extreme Learning Machine, with a RMSE ranging from 2.26~2.95 K. Li et al., (2022) 

implemented an attention-aware long short-term memory (LSTM) model for predicting 

next-day Ts and the model obtained a RMSE of 0.74~2.53 K. At the regional scale, Xu 

et al. (2023) integrated satellite remote sensing with a deep belief network model to 

reconstruct continuous Ts profiles (at depths of 5–40 cm) across the Qinghai-Tibetan 85 

Plateau (QTP), obtaining R² > 0.836 and MAE < 2.152 °C. Similarly, Farhangmehr et 

al. (2025) developed a hybrid convolutional neural network-LSTM (CNN-LSTM) 
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architecture for predicting Ts across North American climatic zones at 0-7 cm depths, 

with R² ranging from 0.93 to 0.99.  

Although significant advances have been made in estimating Ts, large-scale Ts 90 

prediction continues to confront critical challenges, sourcing from environmental 

complexity and methodological limitations. First, Ts exhibits considerable spatial 

heterogeneity driven by regional disparities in topography, soil composition, vegetation 

density, and microclimate (Bayatvarkeshi et al., 2021). These factors create 

nonstationary relationships between Ts and explanatory variables (e.g., air temperature, 95 

soil moisture), necessitating regionally tailored modeling approaches. Second, data 

scarcity and uneven spatial distribution of site measurements introduce further 

complexity. Aggregating sparse, unevenly distributed measurements into a single model 

often leads to overfitting: high accuracy on training data but poor generalization to 

underrepresented regions or previously unseen data (Li et al., 2024). Ultimately, 100 

developing models that reconcile scalability (for large spatial scales) with localized 

precision (to capture site-specific interactions) remains an unresolved priority, 

underscoring the persistent challenge of balancing universal applicability with spatially 

adaptive fidelity in Ts prediction methodology. 

In this study, we propose a spatial scale-adaptive methodology based on quadtrees 105 

for multi-layer Ts estimation. The objectives are to: (1) develop a novel modeling 

framework by integrating multi-source data, including in-situ observations, remote 

sensing products, meteorological variables, and auxiliary environmental data; (2) 

generate a multi-layer Ts dataset at a daily time-step and one kilometer resolution in 

China from 2010-2020; and (3) assess the accuracy of the dataset through independent 110 

validation and benchmarking against widely used Ts products. The proposed 

methodology could explicitly address the scaling challenges induced by spatial 

heterogeneity and uneven data distribution. The generated products would provide a 

robust foundation for high-resolution environmental modeling, precision agriculture 

and climate impact assessments. 115 
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2. Materials and methods 

2.1 In-situ Ts observations 

In this study, in-situ Ts observations were sourced from the China Meteorological 

Administration, encompassing daily mean Ts data collected from 2,093 stations across 120 

the period 2010–2020. These stations recorded Ts at six standard soil depths: 0, 5, 10, 

15, 20, and 40 cm. The observation network spans a wide range of climatic zones—

from cold and temperate to subtropical and tropical, and includes diverse land-use and 

ecosystem types, such as forests, grasslands, croplands, and barren lands. However, the 

spatial distribution of stations is notably uneven. High station density is observed in 125 

northeastern China, the central and eastern plains, and the southern hilly regions, 

whereas station coverage is sparse in the arid and semi-arid regions of northwestern 

China and on the QTP. Figure.1 illustrates the spatial configuration of the dataset: gray 

dots represent samples used for model training, while red dots denote those reserved 

for model testing. Details regarding the dataset partitioning strategy are provided in 130 

Section 2.3.3. 

 

Figure 1. Spatial distribution of in-situ Ts sites at different depths across China and 

the corresponding environmental variables. This figure presents the spatial 

distribution of 2,093 in-situ Ts sites across China, with samples divided into the 135 

training set (gray) and the test set (red). The environmental variables corresponding to 

these sites include (a) land cover types (forests, barren land, grasslands, croplands, 

water bodies, and urban areas), (b) elevation (ranging from -156 m to 8424 m), (c) 

mean annual temperature (MAT, ranging from -18°C to 26°C), and (d) mean annual 

precipitation (MAP, ranging from 11 mm to 10,800 mm). 140 
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2.2 Predictor variables 

To construct a robust multi-layer Ts estimation model, we selected a 

comprehensive suite of predictor variables, integrating remote sensing products, 

meteorological factors, and auxiliary environmental data. Meteorological variables, 145 

especially air temperature and precipitation, have been consistently recognized in 

previous studies as primary determinants of Ts variability (Bond-Lamberty et al., 2005; 

Nahvi et al., 2016). Among these, air temperature has been widely regarded as the most 

influential variable due to its strong linear relationship with Ts (Khosravi et al., 2023). 

In addition, solar radiation was included, given its significant role in regulating the 150 

surface energy balance through its influence on net radiation, latent heat flux, and 

ground heat flux, all of which directly affect Ts dynamics. 

Thermal infrared remote sensing data also exhibit a high correlation with near-

surface Ts. Integrating thermal remote sensing products and energy balance-based 

models offers an effective means of estimating Ts with high spatial and temporal 155 

continuity. This strategy has been validated by numerous studies (Huang et al., 2020; 

Xu et al., 2023). Surface land cover further modulates Ts by altering surface albedo, 

regulating evapotranspiration (ET), and influencing energy partitioning processes. 

Accordingly, the enhanced vegetation index (EVI), derived from satellite observations, 

was incorporated as a proxy for vegetation density and type (Bright et al., 2017; N. Li 160 

et al., 2024). To capture the influence of underlying surface characteristics on Ts, 

topographic variables such as elevation and slope were included, along with soil texture 

data across various depths. These features collectively reflect the heterogeneous 

physical and thermal properties of the soil, contributing to spatial variations in heat 

conduction and storage capacity. A full list of the predictor variables used in the model 165 

is summarized in Table 1. 

Table 1. Details of the predictor variables for training the model. 

Type Data Variable 
Spatial 

resolution 

Temporal 

resolution 
Reference 

Remotely sensed 

product 

MOD09GA EVI 500 m×500 m Daily 
Huete et al., 

2002 

MOD11A1 LST_ Day 1 km×1 km Daily  
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MOD11A1 LST_ Night 1 km×1 km Daily  

Climate data ERA5-Land 

Temperature_2m 

Solar_radiation 

Precipitation 

Wind_10m 

9 km×9 km Daily 

Muñoz-

Sabater et al., 

2021 

Supplementary 

data 

USGS_STRM 
Elevation 30 m   

Slope 30 m   

Soil Texture 

Sand, Silt, Clay 

Depth: 

0-5, 5-15, 15-30, 

30-60cm 

250 m×250 m  Liu et al., 2022 

 
In-situ 

measurements 

Soil temperature 

at 0, 5, 10, 15, 20, 

and 40 cm 

- Daily  

 

2.2.1 Remote sensing data 

The MOD11A1 LST product, at a daily time-step and a spatial resolution of 1 km, 170 

was utilized. It includes both daytime (LSTday) and nighttime (LSTnight) temperatures at 

10:30 AM and 10:30 PM, respectively, along with quality assessment information (Wan 

and Dozier, 1996). To enhance the estimation of daily mean Ts, the average of LSTday 

and LSTnight values was calculated and used in the analysis. 

EVI from 2010 to 2020 were selected as predictor of Ts. The MODIS Surface 175 

Reflectance Product (MOD09GA), derived from MODIS Level-1B data, provides daily 

surface reflectance of seven bands at 500 m × 500 m resolution. The EVI is defined by 

Huete et al., (2002), and the retrieval equation is as follows: 

 
( )

( )
_ 1 2

1

_

_ 1 _ _22 3

SR b SR b

SR b SR b SR b

EVI G
C C L

 

  

−
= 

+    −   +
 (1) 

where G = 2.5, C1 = 6, C2 = 7.5, L = 1. The remote sensing reflectance variables 180 

SR_b1(620-670nm), SR_b2 (841-876nm) and SR_b3 (459–479 nm) of MOD09GA data 

represents red, near-infrared and blue bands. The coefficients 2.5 and 1 represent the 

gain and canopy background, respectively (Huete et al., 2002). The atmospheric 

influence on the red band is corrected using the blue band and the coefficients 6 and 

7.5, respectively. 185 

Subsequently, cloud contamination caused partial spatial absences in the daily LST 
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and EVI. To address this issue, we applied a temporal and spatial linear interpolation 

algorithm, which utilizes time-series data from adjacent days and spatial information 

from neighboring pixels to fill the current missing values, thereby generating a time-

continuous and spatially complete image series. This approach follows the methods 190 

described in Chen et al., (2017) and Cao et al., (2018), with modifications to better suit 

our dataset. Then, the Savitzky-Golay (S-G) filter was used to smooth the interpolated 

data, resulting in continuous surface temperature and vegetation index data with high 

temporal and spatial resolution (Kong et al., 2019; Y. Chen et al., 2021). All data 

preprocessing, including image filtering and interpolation, was conducted within the 195 

Google Earth Engine (GEE) platform. 

 

2.2.2 Climate data 

The ERA5-Land is the fifth-generation reanalysis dataset produced by the 

European Centre for Medium-Range Weather Forecasts (ECMWF). It assimilates 200 

multi-source data, including weather station measurements, numerical weather 

predictions, and satellite observations, into dynamic models to generate reanalysis data 

(Muñoz-Sabater et al., 2021). It provides high-quality environmental variables related 

to water and energy fluxes between the land surface and atmosphere, with continuous 

coverage from 1981 to the present. ERA5-Land offers a spatial resolution of 0.1° (~9 205 

km at the equator) and an hourly temporal resolution, making it well-suited for 

modeling near-surface processes. In this study, we extracted daily mean values of key 

climate variables, including 2-meter air temperature (Temperature_2m), surface solar 

radiation, total precipitation, and 10-meter wind speed (wind_speed_10m), from the 

ERA5-Land Daily dataset. All variables were accessed and processed using the GEE 210 

platform. 

 

2.2.3 Auxiliary data 

Topographic and soil-related variables were incorporated as auxiliary predictors to 

improve the accuracy of Ts estimation. Elevation and slope were derived from the 215 
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Shuttle Radar Topography Mission (SRTM) digital elevation model (Farr et al., 2007), 

specifically using the Version 3 (SRTM Plus) product with a spatial resolution of 1 arc 

second (~30 m). Soil texture plays a critical role in determining Ts through its influence 

on thermal conductivity, which is affected by physical properties such as particle size 

distribution, porosity, bulk density, and moisture retention capacity. In this study, we 220 

represented soil texture using the relative proportions of clay (fine), silt (medium), and 

sand (coarse) particles. To capture vertical variability in soil properties, we employed 

the China Soil Information Grid dataset developed by Liu et al. (2022), which provides 

gridded estimates of soil composition at four depth intervals: 0–5 cm, 5–15 cm, 15–30 

cm, and 30–60 cm. The dataset offers a spatial resolution of 1 km and is suitable for 225 

high-resolution, profile-based soil modeling. 

 

2.3 Methods 

The spatial adaptive modeling framework consists of three modules as shown in 

Fig. 3. Module Ⅰ is for data collection and preprocessing, which mainly involves in-situ 230 

observations, remote sensing, meteorological and supplementary data. Module Ⅱ is 

spatial adaptive modeling, which mainly includes the construction of rotated quadtrees 

and local modeling based on XGBoost. Finally, module Ⅲ is the layer-to-layer 

reconstruction of daily 1km resolution multi-layer (0, 5, 10, 15, 20, and 40 cm) Ts 

datasets in China from 2010 to 2020. 235 

 

2.3.1. Feature selection 

To mitigate multicollinearity among predictor variables, we calculated the 

Variance Inflation Factor (VIF) for all candidate features (Akinwande et al., 2015). As 

shown in Fig. S1, both the daily mean LST (LST_mean) and air temperature exhibited 240 

high collinearity, with VIF values exceeding 10. Although LST_mean offers higher 

spatial resolution (1 km) compared to air temperature (9 km), it is crucial to recognize 

that these two variables are physically distinct. Their differences become particularly 

pronounced in complex ecosystems such as forests, where canopy structure and 
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biological processes significantly influence thermal dynamics (Liu et al., 2025). Given 245 

these considerations, both LST_mean and air temperature were retained for the 

estimation of Ts at the 0 cm depth, as they offer complementary information. Following 

feature selection, all retained variables were resampled to a common spatial resolution 

of 1 km using bilinear interpolation to ensure consistency in subsequent modeling steps. 

 250 

2.3.2. Spatial adaptive partition of site measurements 

A quadtree is a hierarchical spatial data structure that recursively subdivides a two-

dimensional space into four quadrants, enabling efficient spatial indexing and localized 

data organization. In this study, we adopted a rotated quadtree-based spatial partitioning 

strategy to facilitate region-specific Ts modeling. The procedure comprises the 255 

following steps: 

(1) Initialization of Minimum Units 

The entire spatial domain was first divided into uniform, minimum-sized units 

(leaf nodes), each representing a fundamental spatial element. These units may contain 

zero or more in-situ observations. This initial step provides the base resolution for 260 

subsequent hierarchical construction. The structure and principle of quadtree spatial 

indexing are illustrated in Fig. S2. 

(2) Hierarchical Merging 

Beginning with the leaf nodes, neighboring quadrants (i.e., groups of four adjacent 

nodes) were recursively merged into parent nodes if they satisfied a specified threshold: 265 

each sub-node contained fewer than 30 observational sites. This criterion ensures a 

balance between regional modeling precision and sample size sufficiency. The merging 

process continued upward through the hierarchy until no further aggregation met the 

threshold. The resulting partitions define spatially adaptive subregions, each of which 

is assigned a localized Ts prediction model. 270 

(3) Rotation at different angles 

To address potential edge effects introduced by static grid boundaries, we 

implemented a rotated quadtree partitioning strategy. The quadtree structure was rotated 
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at six angles (0°, 15°, 30°, 45°, 60°, and 75°), producing distinct sets of spatial partitions 

for each orientation (Fig. 2). Independent models were trained for each rotated 275 

configuration, and the final Ts estimates were obtained by averaging the outputs from 

all six models. This rotational ensemble approach enhances spatial continuity and 

reduces boundary artifacts in the final predictions. 

 

Figure 2. multi-angle adaptive quadtree partitioning of site observations (0°, 15°, 30°, 280 

45°, 60°, 75°) 

2.3.3. Machine learning algorithm 

We selected the XGBoost (Extreme Gradient Boosting) algorithm for Ts estimation 

due to its proven accuracy, computational efficiency, and scalability for large-scale 

regression tasks. Introduced by Chen and Guestrin, (2016), XGBoost constructs an 285 

ensemble of regression trees in a sequential manner, where each new tree is trained to 

correct the residuals of the preceding ones. This iterative boosting process continues 

until convergence criteria are met, and the final prediction is obtained by aggregating 

the outputs of all trees. Compared to other machine learning algorithms such as support 

vector machines, random forests, and neural networks, XGBoost offers optimized 290 

performance through parallel computing, efficient memory usage, and a second-order 

gradient descent optimization strategy that accelerates training. Its robustness and 

predictive power have been widely demonstrated in geoscience and remote sensing 

applications, including land surface temperature reconstruction (Li et al., 2024) and 

https://doi.org/10.5194/essd-2025-192
Preprint. Discussion started: 14 April 2025
c© Author(s) 2025. CC BY 4.0 License.



13 

 

multi-layer soil moisture estimation (Karthikeyan and Mishra, 2021). 295 

As shown in Fig. 3, the observational dataset was stratified into training (70%), 

validation (20%), and test (10%) subsets through random sampling. A separate 

XGBoost model was constructed for each spatial grid using the Python XGBoost 

package (Chen and Guestrin, 2016). To prevent overfitting, model hyperparameters 

were carefully tuned. Specifically, we optimized key parameters including the number 300 

of trees (n_estimators), maximum tree depth (max_depth), and learning rate (eta). 

GridSearchCV was applied to conduct an exhaustive search over the hyperparameter 

space defined in Table S1. Five-fold cross-validation was used to evaluate model 

generalizability and identify the optimal hyperparameter combinations for each local 

model. 305 

A layer-wise prediction strategy was adopted to estimate Ts along the soil profile. 

For the surface layer (0 cm), predictors included air temperature and daily mean LST. 

For subsurface layers, these two variables were replaced by the Ts estimate from the 

immediately preceding layer, allowing the model to account for vertical temperature 

conduction processes and improving the continuity of layer-wise Ts estimation. 310 
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Figure 3. Workflow of the proposed method to obtain multi-layer Ts over the 

China. 

 

2.3.4. Model evaluation metrics 315 

The modeling performance and quality of the predicted Ts were evaluated in terms 

of RMSE, Mean Absolute Error (MAE), R², and Bias. RMSE and MAE were used to 

assess the ability to estimate volatility and fluctuation amplitude, respectively. R² 

represented the percentage of variance explained by the ML models. Bias was used to 

determine whether the estimations were overestimated or underestimated. These 320 

metrics were computed as follows:  
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where
iy and 

ix denoted the in-situ Ts and estimated Ts for all the stations and periods, 

respectively. Y and X represented the mean values of the in-situ Ts and estimated Ts, 330 

respectively. 

 

3. Results 

3.1 Model performance across sites 

Figure 4 illustrates the accuracy performance of all models constructed at various 335 

depths, utilizing different grid configurations and rotation angles, for both the training 

and validation sets. The grouped box plots demonstrate that the R² values for the 

training and validation sets at different depths range from 0.82 to 0.98, and the RMSE 

values vary from 0.6 to 2.8 K. Both the training and validation sets exhibit high 

accuracy with no evident signs of overfitting. A depth-wise comparison shows that 340 

model performance at 0 cm and 40 cm is marginally lower than at other depths. 

Additionally, we evaluated the model's performance at different depths using an 

independent dataset comprising 210 sampling sites. Final predictions at each site were 

obtained by averaging the outputs from six rotations. Figure 5 presents scatter density 

plots comparing the predicted results with in-situ observations. The results at all depths 345 

are close to the 1:1 reference line. The R² values for different depths range from 0.93 to 

0.97, and RMSE values between 1.74 and 2.25 K. Although the validation accuracy at 

depths of 0 cm and 40 cm is marginally lower than at 5, 10, 15, and 20 cm, the 

independent validation results across all depths demonstrate excellent overall 

performance. Overall, the accuracy validation results from the model's training set, 350 

validation set, and independent sample points indicate that the spatially adaptive model 

we developed has robust accuracy and strong generalization capability. 
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Figure 4. Accuracy performance of model (different rotations and depths) training 

and validation set 355 

 

 

Figure 5. Scatter density plot comparing the accuracy of different depths in the test 

set 

 360 

3.2 Model performance at individual sites 

To evaluate spatial prediction accuracy in the spatial-scale evaluation, R² and 

RMSE were calculated at each station. Model performance was assessed across all soil 
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depths at the station level. Spatial results show that station-level R² values range from 

0.70 to 1.00, and RMSE values range from 0 to 3 K, indicating acceptable prediction 365 

accuracy across all soil layers. As illustrated in Figures 6 and 7, most stations achieve 

R² values above 0.90. Regions with higher prediction accuracy are mainly located in 

the northwest, northeast, and central areas, whereas larger errors are concentrated in the 

Yunnan–Guizhou Plateau (YGP) and the sparsely monitored QTP. The histogram in Fig. 

7 further shows that RMSE values for most depths fall between 0.5 and 2.0 K, indicating 370 

generally good predictive performance. Notably, Prediction errors at the surface layer 

(0 cm) are notably higher than those at greater depths. In general, error decreases with 

increasing depth, although a slight increase is observed at 40 cm, where performance is 

slightly poorer than at 5-20 cm. 

 375 

Figure 6. Goodness of R² across China estimated during the model testing phase. 

Performance metrics are calculated between predicted_Ts and in-situ Ts data sets. 
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 380 

Figure 7. Goodness of RMSE across China estimated during the model testing phase. 

Performance metrics are calculated between predicted Ts and in-situ Ts data sets. 

 

3.3 Evaluation across land cover types and seasons 

Figure 8 shows grouped box plots illustrating the prediction performance of Ts 385 

across different land cover types (bare land, farmland, forest, grassland) at six depths 

(0 cm, 5 cm, 10 cm, 15 cm, 20 cm, 40 cm). The evaluation metrics include the R² and 

RMSE. Mean R² values across all depths and land cover types range from 0.82 to 0.98, 

indicating overall high prediction accuracy. Notably, the mean R² values consistently 

exceed 0.96 (indicated by the red dashed line). Among the land cover categories, bare 390 

land exhibits the highest R² values, followed by farmland, whereas forest and grassland 

exhibit slightly lower performance. RMSE values vary depending on both soil depth 

and land cover type, generally ranging from 0.6 to 2.8 K. Bare land displays higher 

RMSE values, likely due to larger diurnal temperature variations and a relatively small 

sample size. In contrast, farmland, forest, and grassland show lower and more stable 395 

RMSE values. The highest RMSE is observed at the surface layer (0 cm), reflecting the 

strong sensitivity of shallow soil temperatures to external environmental conditions. 

RMSE tends to decrease with depth, although a slight increase is noted at 40 cm, where 

prediction errors are marginally higher than those at 5-20 cm. 

Furthermore, seasonal variations in prediction accuracy are further presented in 400 
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Fig. 9. The results demonstrate that the R² values in spring (green) and autumn (pink) 

are significantly higher than those in summer (orange) and winter (blue), particularly at 

shallow depths (0 cm and 5 cm). This suggests that the model captures Ts variability 

more effectively during spring and autumn. Seasonal RMSE values range 

approximately from 0.98 to 1.97 K, with the highest errors occurring at 0 cm depth 405 

during summer and winter. These elevated errors are likely attributed to increased 

surface temperature fluctuations driven by external environmental factors such as solar 

radiation, which add complexity to the prediction. Overall, RMSE decreases with 

increasing soil depth across all seasons, indicating improved thermal stability and 

enhanced prediction accuracy in deeper layers. 410 

 
Figure 8. Evaluation of predicted Ts at different depths (i.e., 0, 5, 10, 15, 20, 40cm) 

across various land use types (i.e., Forest, Grassland, Cropland, Barren) 
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 415 
Figure 9. Evaluation of the predicted_Ts in different depth (ie.0,5,10,15,20,40 cm) at 

sites with four seasons (i.e., spring, summer, autumn, winter). Winter is defined as 

December, January, and February; spring as March, April, and May; summer as June, 

July, and August; and autumn as September, October, and November. 

 420 

3.4 Comparison with other products 

Figure 10 presents a comparative analysis of different Ts products at the surface 

(0 cm depth), evaluating the spatial characteristics of the model-generated Ts against 

the ERA5-Land and GLDAS 2.1 products across both national-scale regions (Fig. 10a–

c) and zoomed-in local areas (Fig. 10d–f). Compared to the GLDAS 2.1 product (Fig. 425 

11c and 11f), the model generated Ts exhibits significantly finer spatial resolution and 

a superior ability to capture localized spatial heterogeneity. The GLDAS 2.1 product, 

characterized by a coarser resolution, inadequately represents local features and 

exhibits notable limitations, especially in specific regions (Fig. 10f). Conversely, the 

spatial distribution of our Ts data closely matches that of the ERA5-Land product (Fig. 430 

10b and 10e). Nevertheless, the ERA5-Land product may be constrained by its input 

resolution, whereas our adaptive modeling approach achieves greater precision in 

representing fine-scale spatial variability.  

Scatter density plots in Fig. S3 further indicate that our estimated Ts achieves 
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significantly higher site-level accuracy compared to ERA5-Land and GLDAS 2.1. 435 

Specifically, the R² values between in-situ observations and our estimations at depths 

of 0, 10, and 40 cm range from 0.94 to 0.97, compared to 0.83–0.89 for ERA5-Land 

and 0.83–0.87 for GLDAS 2.1. These results underscore the reliability and enhanced 

accuracy of our Ts estimation product at both spatial and site scales, effectively 

overcoming the limitations associated with GLDAS 2.1 and ERA5-Land products. 440 

These findings highlight the strong potential of the model to accurately capture the 

spatial distribution of Ts and enhance regional-scale Ts modeling. 

 

Figure 10. Comparison of different Ts products (e.g., 0 cm) 

 445 

3.5 Spatial and temporal patterns of Ts at varied soil depths across China 

To examine seasonal and vertical variations in the spatial distribution of Ts, we 

selected two contrasting dates: January 1, 2020 (winter) and July 1, 2020 (summer). 

Figure 11 a–f illustrates the spatial distribution and corresponding histograms of Ts at 

different depths (0 cm, 5 cm, 10 cm, 15 cm, 20 cm, 40 cm) across China on January 1, 450 

2020. The results show that Ts in northern China (particularly in the northeast, northwest, 

and the QTP) is generally lower in January, exhibiting distinct cold zones. In contrast, 

southern areas exhibit higher Ts values, forming a gradual north-to-south temperature 

gradient. Moreover, deeper soil layers (e.g., 40 cm) exhibit higher temperatures than 

surface layers (0 cm), especially in northeastern China and the QTP, reflecting the 455 
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insulating effect of deeper soils during winter. 

Figure 11a1–f1 illustrates the spatial distribution and histograms of Ts on July 1, 

2020. Compared to January, a significant increase in Ts is observed across China in July, 

with widespread high-temperature zones in the eastern and southern regions. The 

increase is particularly pronounced in northern areas, while changes in the south are 460 

relatively moderate. In contrast to winter conditions, Ts decreases with increasing soil 

depth during summer, with surface temperatures (0 cm) exceeding those at 40 cm, 

indicating the downward heat conduction from the surface. Overall, Comparative 

analysis of Fig. 11a–f and Fig. 11a1–f1 elucidates both seasonal variation and vertical 

patterns of Ts: deeper layers (5-40 cm) are warmer than the surface (0 cm) during winter, 465 

whereas the surface is warmer in summer. The histogram further illustrates the variation 

in soil temperature distribution across different depths. The results indicate that 

temperature fluctuations in deeper soil layers are significantly smaller than those near 

the surface, reflecting greater thermal stability in the subsurface. These patterns reflect 

the combined influences of geographic location, topography, and climatic conditions 470 

on Ts spatial distribution and vertical dynamics, offering valuable insights into soil 

thermal behavior. 
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Figure 11. Spatial patterns and histograms of Estimated Ts at different depths (0, 5, 

10, 15, 20, and 40 cm) 475 

 

To further assess the temporal performance of Ts estimation, Fig. 12 presents the 

time series of estimated Ts alongside in-situ measurements at four randomly selected 

stations (e.g., Station 56746, 99.53°E, 25.45°N) from January 2018 to January 2020. 

The figure displays Ts at two depths (0 cm and 40 cm), including estimated Ts 480 

(Estimated_0cm, Estimated_40cm), in-situ Ts (In-situ_0cm, In-situ_40cm), daily mean 

land surface temperature (Daily_mean_LST), and 2-meter air temperature 

(Temperature_2m). The air temperature shows distinct seasonal cycles, while Ts 
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exhibits smoother temporal variations. In general, Ts reaches its peak during summer 

and its minimum in winter, though its temporal dynamics vary with soil depth. 485 

Specifically, Ts at 0 cm responds rapidly to air temperature changes and exhibits larger 

amplitude variations, while Ts at 40 cm shows slower responses and a noticeable lag, 

reflecting the damping effect of vertical heat conduction. The RMSE was used to assess 

model accuracy, with RMSE values ranging from 1.72 K to 2.28 K for 0 cm and 40 cm 

depths, indicating high consistency between estimated and observed values. Notably, 490 

RMSE at the surface (0 cm) is slightly lower than at 40 cm, possibly due to stronger 

direct influences from surface cover and meteorological conditions. Overall, the time 

series analysis confirms the robustness and reliability of the model in estimating Ts 

across varying depths, offering valuable insights into regional soil thermal dynamics. 

 495 

Figure 12. Time series of the Estimated_0cm, Estimated_40cm, Daily_mean_LST, 
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and Temperature_2m at four sites from different regions between 2018-2019. 

 

4. Discussion 

4.1 The advantages of the spatially adaptive model 500 

Previous studies have explored various approaches for constructing Ts datasets. 

For example, Lembrechts et al., (2022) constructed the Global Soil Bioclimatic 

Variables dataset using Random Forest models, based on time series data from 8,519 

unique temperature sensors distributed across major terrestrial biomes worldwide. 

However, this dataset only provides long-term climatological averages. Subsequently, 505 

Wang et al., (2023) created a daily multi-layer Ts dataset for China (1980-2010) at 0.25° 

resolution, employing interpolation techniques including the thin-plain spline and the 

angular distance weight interpolation methods with over 2,000 in-situ observations. 

However, these methods do not capture the complex nonlinear relationships between Ts 

and factors such as meteorology, topography, and vegetation, and its coarse spatial 510 

resolution limits detailed modeling of Ts correlations. 

Reanalysis datasets, which synergize data assimilation systems with numerical 

weather prediction and land surface modeling frameworks, provide valuable 

representations of land-atmosphere interactions and subsurface heat transfer processes. 

These products are particularly advantageous for large-scale climate simulations and 515 

long-term environmental assessments. Yang and Zhang (2018) assessed the Ts accuracy 

of four reanalysis datasets (ERA-Interim/Land, MERRA-2, CFSR, and GLDAS-2.0) in 

China using in-situ monthly mean Ts observations. The results showed that all 

reanalysis datasets consistently underestimated Ts across the country. More recently, the 

ERA5-Land and GLDAS 2.1 Ts dataset offers high temporal resolution (hourly/3-hour), 520 

but it is limited by a spatial resolution of 0.1 or 0.25 degrees. The methodological 

advances presented in this study address these dual challenges of accuracy and 

resolution. As quantified in Fig. S3, our integrated approach achieves substantial 

improvements in Ts estimation. Furthermore, the enhanced spatial resolution enables 

explicit resolution of local-scale thermal patterns that critically influence vegetation 525 

dynamics and soil biogeochemical processes. 
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Spatially adaptive modeling demonstrates superior adaptability and flexibility 

compared to traditional interpolation techniques and globally trained ML models in 

estimating surface Ts. A key strength of spatially adaptive approaches lies in their 

capacity for localized modeling, which accounts for regional variability in terrain, soil 530 

texture, and climate conditions. As illustrated in Fig. S4, the rotated quadtree method 

partitions spatial grids at six different orientations, enabling it to effectively capture 

local spatial heterogeneity. By averaging model outputs across these rotated partitions, 

the approach mitigates edge effects commonly associated with static grid boundaries, 

resulting in smoother and more continuous spatial representations. Additionally, we 535 

examined the influence of incorporating satellite-derived LST on the model's spatial 

accuracy. Figure. S5 demonstrates that LST is more effective than air temperature in 

detecting spatial variations in surface Ts in sparsely vegetated areas, with particularly 

notable improvements observed in northwestern China. This underscores the value of 

integrating multi-source remote sensing data, which significantly enhances the 540 

performance of spatially adaptive models, especially in areas characterized by low 

vegetation cover. 

 

4.2 Potential applications of the Ts product 

The high-resolution, multi-layer Ts datasets generated using the spatially adaptive 545 

estimation method fill a significant data gap in China, where comprehensive Ts profile 

records are scarce. As a key biophysical variable, Ts provides crucial insights into soil–

atmosphere interactions that are not captured by air temperature alone. In agricultural 

systems, Ts governs fundamental processes throughout the crop life cycle—from 

sowing and germination to growth and yield formation (ur Rahman et al., 2019). Multi-550 

layer Ts data can optimize accumulated temperature models, enhancing the precision of 

sowing decisions and supporting sustainable field management. Additionally, Ts 

influences nutrient decomposition and water movement within soil profiles (Jebamalar 

et al., 2012), directly impacting soil fertility, moisture retention, and thus, the overall 

efficiency of agroecosystems. 555 
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Beyond agricultural applications, Ts is increasingly recognized as a critical 

variable for assessing ecosystem responses to climate extremes. For instance, Fan et al., 

(2024) proposed the Soil Composite Drought Heatwave (SCDHW) index to evaluate 

the severity of concurrent drought and heatwave events. However, their findings show 

that existing reanalysis datasets often underestimate these events compared to 560 

observational records, highlighting the need for more accurate, high-resolution Ts data. 

In the context of intensifying global warming and extreme climate events, access to 

reliable Ts datasets is essential for improving the monitoring and prediction of 

environmental stressors. These advancements are not only vital for understanding 

terrestrial ecosystem dynamics but also for strengthening climate resilience at both 565 

regional and national scales. 

Moreover, Ts plays a pivotal role in ecological and hydrological modeling, offering 

a more direct representation of surface processes than air temperature. It serves as a 

sensitive indicator of biogeochemical cycles and phenological changes (Lembrechts et 

al., 2022). For example, Liu et al., (2024) demonstrated that Ts is a dominant driver of 570 

spring phenology in Chinese forests, making it a valuable input for climate–vegetation 

interaction models. In cold regions, Ts governs soil freeze–thaw cycles, which are 

critical for hydrological processes such as runoff generation, groundwater recharge, and 

permafrost monitoring (Smith et al., 2022; Xu et al., 2022). Furthermore, Ts is a key 

driver of soil respiration, influencing CO₂ fluxes and terrestrial carbon cycling (Lloyd 575 

and Taylor, 1994; Hursh et al., 2017). As such, the development of high-resolution Ts 

products enables more accurate simulation of ecosystem carbon dynamics and regional 

carbon budgeting, thereby advancing our understanding of climate feedback 

mechanisms. 

 580 

4.3 Limitations and future perspective 

Despite the promising performance of our spatially adaptive Ts estimation 

framework, several limitations should be acknowledged. As illustrated in Fig. 7, 

stations with relatively low estimation accuracy are primarily located in southwestern 
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China. One key factor is the reliance on MODIS data from polar-orbiting satellites, 585 

which have low temporal resolution (1–16 days) and provide instantaneous snapshots 

rather than continuous observations. Although we employed a spatiotemporal linear 

interpolation method to reconstruct missing data caused by cloud contamination, 

residual uncertainties remain inevitable. In high-altitude regions such as the QTP and 

the YGP, complex topography and rapidly changing climatic conditions further 590 

exacerbate the difficulty of accurate Ts prediction, consistent with findings reported by 

Mo et al., (2025). 

Seasonal dynamics and land cover types also introduce considerable variability in 

estimation performance. The model generally performs better in spring and autumn, 

while summer and winter present greater challenges. During summer, dense vegetation 595 

growth and canopy closure reduce the influence of surface–atmosphere energy 

exchanges on Ts, weakening the correlation between canopy temperature and 

subsurface soil temperature (Kropp et al., 2020; Cui et al., 2022). In winter, snow cover 

introduces a suite of confounding effects: high surface albedo reduces net radiation 

(Loranty et al., 2014; Li et al., 2018), while snow acts as an insulator, limiting the soil's 600 

response to cold air incursions (Zhang, 2005; Myers-Smith et al., 2015). Additionally, 

low temperatures lead to soil water freezing, altering thermal conductivity and heat 

capacity. These changes, along with repeated freeze–thaw cycles, introduce significant 

nonlinearity and temporal variability in Ts, ultimately reducing model accuracy (Li et 

al., 2023; Imanian et al., 2024). 605 

Future studies could address these limitations by incorporating data from 

microwave satellite sensors, which offer all-weather imaging capabilities and can 

reduce information loss caused by cloud cover in optical sensors like MODIS (Prigent 

et al., 2016). Moreover, leveraging data from next-generation geostationary satellites 

(e.g., Himawari-8), which provide observations at 10-minute intervals, may 610 

significantly enhance temporal continuity and quality (Yamamoto et al., 2022; You et 

al., 2024). Combining high-frequency geostationary data with traditional optical 

sources holds great potential for advancing Ts monitoring. While our multi-source data-
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driven ML model has shown strong predictive capability across multiple depths, current 

variable importance analyses lack a mechanistic explanation for vertical heat 615 

conduction processes. Future research could explore deep learning models that are 

capable of learning complex spatiotemporal features and improving the physical 

interpretability of Ts variations across time, space, and depth. 

 

5. Conclusion 620 

This study addresses the lack of high spatiotemporal resolution multi-layer Ts data 

by proposing a spatially adaptive ML framework, successfully constructing a retrieval 

model for multi-layer Ts. By integrating in-situ observations, reanalysis data, satellite 

remote sensing data, as well as topographic and soil texture data, the model 

demonstrates high accuracy across different depths, seasons, and land use types. 625 

Independent validation results indicate that the model performs better in springs and 

autumns compared to summers and winters, and shows superior performance in bare 

land, cropland, and grassland compared to forest. Compared to ERA5_Land and 

GLDAS 2.1 Ts, the multi-layer Ts data generated in this study exhibits significant 

advantages in both accuracy and spatial detail. Based on this model, we have first 630 

developed the long-term (2010-2020) high spatiotemporal resolution (daily, 1 km 

resolution) multi-layer (0, 5, 10, 15, 20, 40 cm) Ts dataset for China. Future research 

could further explore methods that simultaneously integrate temporal, spatial, and depth 

information, and utilize multi-source sensor data to enhance the spatiotemporal 

monitoring capabilities of Ts at different depths. Overall, this study demonstrates the 635 

potential of multi-source data in Ts estimation and provides a reliable tool and data 

foundation for ecological modeling, agricultural production and related studies.  

 

6. Data availability 

The daily multi-layer Ts products (0, 5, 10, 15, 20, and 40 cm) at 1 km resolution 640 

from 2010 to 2020 are freely available in HDF5 format to the public at 

https://doi.org/10.11888/Terre.tpdc.302333 (Wang et al., 2025). In addition, monthly 
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multi-layer Ts data are also provided to meet the needs of various users. 
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