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Abstract

Soil temperature (7s) is critical in regulating agricultural production, ecosystem
functions, hydrological cycling and climate dynamics. However, the inherent spatial
and temporal heterogeneity of soil thermal regimes constitutes a persistent challenge in
obtaining high-resolution, continuous gridded 7 datasets along vertical profiles. To
address this issue, we propose a spatially adaptive layer-cascading Extreme Gradient
Boosting (XGBoost) algorithm to generate daily multi-layer 75 data (0, 5, 10, 15, 20,
and 40 cm) at a spatial resolution of 1 km in China from 2010 to 2020. The methodology
dynamically partitions non-uniformly distributed measuring sites (2,093 sites across the
country) to quadtrees and incorporates thermal coupling effects propagated between
neighbor soil layers. Multi-source data, including satellite retrievals of land surface
temperature and vegetation index, and ERAS reanalysis climate variables were used as
inputs. Validation using both spatially independent test sets and flux-tower observations
demonstrated the robustness and accuracy of the product. It is noted the model’s
performance was lower in summers and winters than in springs and autumns. Compared
to existing global or regional 75 products, the dataset developed here is characterized
by its fine spatio-temporal patterns and high reliability, enabling it to provide supports
for precision agriculture, ecosystem modeling and understanding climate-land feedback.

Free access to the dataset can be found at https://doi.org/10.11888/Terre.tpdc.302333

(Wang et al., 2025b).
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1. Introduction

Soil temperature (75) is a critical driver of ecosystem dynamics, influencing nearly
all physical, chemical, and biological processes (Bayatvarkeshi et al., 2021; Xu et al.,
2023; Liu et al., 2025). T plays a pivotal role in land-atmosphere exchanges. By
controlling the partitioning of net radiation into sensible and latent heat fluxes, T
directly shapes atmospheric boundary layer circulation, with cascading effects on
regional climate patterns (Mahanama et al., 2008; Chen et al., 2021a). 75 also drives
soil freeze-thaw cycles, which are critical for hydrological processes in cold regions.
Permafrost thaw alters subsurface water storage, runoff dynamics and groundwater
recharge, with implications for both local and basin-scale hydrology (Zhang et al., 2005;
Shati et al., 2018). In addition, it governs the rates of soil microbial activities, nutrient
cycling, and organic matter decomposition, with direct implications for carbon
dynamics. For instance, 7s modulates microbial respiration, thereby regulating the
release of organic carbon into the atmosphere as CO» that is central to global carbon
cycling (Yang et al., 2011). Given its multifaceted influences on carbon cycling, climate
feedbacks and hydrological systems, accurate 75 estimation is indispensable for
advancing ecosystem monitoring, refining climate models, and developing effective
strategies to mitigate and adapt to climate change.

T; exhibits high heterogeneity at large spatial scales due to varying driving factors.
Solar radiation changes its radiation intensity by adjusting the incident angle and
sunshine duration, thus affecting the heating effects on surface soils (Wang and
Dickinson, 2013). Additionally, diurnal variations of air temperature cause periodic
changes in surface temperature, while the amplitude is often closely related to the local
climate and topography. Furthermore, surface covers (e.g., vegetation and snow)
significantly impact 75 (Xu et al., 2020; Mortier et al., 2024). Vegetation canopies
effectively intercept and scatter solar radiation, while root systems modulate soil
moisture distribution, thereby stabilizing deeper soil temperatures (Li et al., 2024).
Snow cover, characterized by high albedo, reflects substantial solar radiation and acts

as an effective insulator, mitigating cold air penetration and maintaining warmer soil
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temperatures during winter months (Myers-Smith et al., 2015). Moreover, thermal
conductivity and heat capacity are critical parameters controlling vertical heat transfer
in soils. Sandy soils have higher porosity and lower water retention, resulting in lower
heat capacity and higher thermal conductivity, thus responding rapidly to temperature
changes. In contrast, clay soils have lower porosity and stronger water retention, leading
to higher heat capacity and significant thermal stability, characterized by delayed
responses to temperature variations (Ochsner et al., 2001; Zhao et al., 2022).
Understanding these mechanisms is essential for developing refined vertical T
distribution models and improving the accuracy of 75 estimation.

Given these complex processes, accurately estimating 7 across different depths is
challenging. Quite a few models have been proposed for 75 estimation. These models
can be generally classified into physical, statistical or empirical, and machine learning
(ML) types (Li et al., 2024; Farhangmehr et al., 2025). Physical models, derived from
fundamental heat conduction laws and energy balance equations, provide explicit
mechanistic interpretations but suffer from computational complexity and heavy
reliance on multi-domain input parameters, which range from soil properties to climatic
variables (Gao et al., 2008; Hu et al., 2016; Badache et al., 2016). Statistical or empirical
models, such as autoregressive integrated moving average and regression methods
(Xing et al., 2018), are usually limited to localized, small-sample applications. Data-
driven ML techniques demonstrate a superior ability to capture nonlinear relationships
and thus usually can obtain high prediction accuracy. For instance, at site scale, Feng et
al. (2019) estimated multi-layer 75 at half-hourly resolutions using Extreme Learning
Machine, with a RMSE ranging from 2.26~2.95 K. Li et al., (2022) implemented an
attention-aware long short-term memory (LSTM) model for predicting next-day 75 and
the model obtained a RMSE of 0.74~2.53 K. At the regional scale, Xu et al. (2023)
integrated satellite remote sensing with a deep belief network model to reconstruct
continuous 7T profiles (at depths of 5—40 cm) across the Qinghai-Tibetan Plateau (QTP),
obtaining R? > 0.836 and MAE < 2.152 °C. Similarly, Farhangmehr et al. (2025)
developed a hybrid convolutional neural network-LSTM (CNN-LSTM) architecture for
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predicting 75 across North American climatic zones at 0~7 cm depths, with R? ranging
from 0.93 to 0.99.

Although significant advances have been made in estimating 7s, large-scale Ts
prediction continues to confront critical challenges, sourcing from environmental
complexity and methodological limitations. First, 75 exhibits considerable spatial
heterogeneity driven by regional disparities in topography, soil composition, vegetation
density, and microclimate (Bayatvarkeshi et al., 2021). These factors create
nonstationary relationships between 7 and explanatory variables (e.g., air temperature,
soil moisture), necessitating regionally tailored modeling approaches. Second, data
scarcity and uneven spatial distribution of site measurements introduce further
complexity. Aggregating sparse, unevenly distributed measurements into a single model
often leads to overfitting: high accuracy on training data but poor generalization to
underrepresented regions or previously unseen data (Li et al., 2024). Ultimately,
developing models that reconcile scalability (for large spatial scales) with localized
precision (to capture site-specific interactions) remains an unresolved priority,
underscoring the persistent challenge of balancing universal applicability with spatially
adaptive fidelity in 7s prediction methodology.

Recent advances in spatially adaptive modeling have increasingly emphasized the
importance of addressing spatial heterogeneity and uneven sampling density in
environmental datasets. Classical quadtree structures and related hierarchical spatial
data models provide the theoretical foundation for constructing adaptive, variable-sized
spatial partitions, enabling efficient organization of multiscale spatial information
through recursive subdivision (Samet, 1984). Building on this foundation, Lagonigro et
al., (2020) developed the AQuadtree R package, which provides an adaptive spatial
partitioning framework capable of generating variable-sized grid cells according to the
spatial distribution of observations. This adaptive partitioning produces finer grids in
data-dense regions and coarser grids where observations are sparse, ensuring a spatial
structure that better reflects sampling heterogeneity and improves the model’s capacity

to capture localized spatial variability. Extending this idea, we develop a rotated-
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quadtree strategy that applies multiple orientation angles during the quadtree
subdivision process. This enhancement allows the model to capture spatial
heterogeneity from multiple directional perspectives, and averaging predictions across
rotation angles substantially reduces the boundary artifacts that may arise from single-
angle grid partitioning, ultimately improving the robustness of local modeling under
complex environmental gradients.

To address the irregular station distribution, and non-stationarity commonly
encountered in large-scale 75 estimation, we construct a spatially adaptive modeling
framework based on the rotated quadtree approach. Within each grid cell, multi-source
environmental predictors are integrated with in situ station records, and T5 is estimated
using XGBoost models. Based on this framework, the objectives of this study are to:
(1) construct a spatially adaptive modeling system; (2) generate a multi-layer 75 dataset
at a daily time-step and one kilometer resolution in China from 2010-2020; and (3)
evaluate the dataset through independent validation with flux tower observations and
benchmarking against widely used 75 products. The proposed methodology could
directly address the scaling challenges induced by spatial heterogeneity and uneven data
distribution. The generated products would provide a robust foundation for high-
resolution environmental modeling, precision agriculture and climate impact

assessments.

2. Materials and methods
2.1 In-situ 75 observations

In this study, in-situ 7s observations was measured at six depths: at the surface (0
m), and at subsurface levels of 0.05, 0.10, 0.15, 0.20, and 0.40 meters. Data were
collected through the national weather station network operated by the China
Meteorological Administration (CMA), in accordance with standardized measurement
protocols. At each site, 7s was recorded every 10 minutes and automatically uploaded
to a central server. Daily mean values at each depth were calculated from these high-

frequency records. We then assessed data completeness for the period 2010-2020 and
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excluded stations with more than 20% missing daily records at any depth. After quality
control, 2,093 stations were retained for model development.

The observation network spans a wide range of climatic zones—from cold and
temperate to subtropical and tropical, and includes diverse land-use and ecosystem
types, such as forests, grasslands, croplands, and barren lands. However, the spatial
distribution of stations is notably uneven. High station density is observed in
northeastern China, the central and eastern plains, and the southern hilly regions,
whereas station coverage is sparse in the arid and semi-arid regions of northwestern
China and on the QTP. The spatial distribution of in-situ observation sites is shown in

Figure 1, and details of the dataset partitioning strategy are provided in Section 2.3.3.
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Figure 1. Spatial distribution of in-situ 7 sites at different depths across China and
the corresponding environmental variables. This figure presents the spatial
distribution of 2,093 in-situ 75 sites across China. The environmental variables
corresponding to these sites include (a) land cover types (forests, barren land,
grasslands, croplands, water bodies, and urban areas), (b) elevation (ranging from -
156 m to 8424 m), (c) mean annual temperature (MAT, ranging from -18°C to 26°C),
and (d) mean annual precipitation (MAP, ranging from 11 mm to 10,800 mm).

2.2 Predictor variables

To construct a robust multi-layer 75 estimation model, we selected a
comprehensive suite of predictor variables, integrating remote sensing products,
meteorological factors, and auxiliary environmental data. Meteorological variables,
especially air temperature and precipitation, have been consistently recognized in

previous studies as primary determinants of 7 variability (Bond-Lamberty et al., 2005;

7
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Nahvi et al., 2016). Among these, air temperature has been widely regarded as the most
influential variable due to its strong linear relationship with 7 (Khosravi et al., 2023).

In addition, both net solar radiation and downward longwave radiation (LWD)
were considered. Net solar radiation directly represents the shortwave energy absorbed
by the land surface and serves as the primary driver of the daytime surface energy
budget, whereas LWD plays a particularly important role under nighttime and winter
conditions by regulating surface heat loss through the longwave radiation balance.
Together, they jointly control the surface energy balance and directly drive the
spatiotemporal dynamics of 75 (Peng et al., 2016).

Thermal infrared remote sensing data also exhibit a high correlation with near-
surface Ts. Integrating thermal remote sensing products and energy balance-based
models offers an effective means of estimating 75 with high spatial and temporal
continuity. This strategy has been validated by numerous studies (Huang et al., 2020;
Xu et al., 2023). Surface land cover further modulates 75 by altering surface albedo,
regulating evapotranspiration (ET), and influencing energy partitioning processes.
Accordingly, the enhanced vegetation index (EVI), derived from satellite observations,
was incorporated as a proxy for vegetation density and type (Bright et al., 2017; Li et
al., 2024b). To capture the influence of underlying surface characteristics on Ts,
topographic variables such as elevation and slope were included, along with soil texture
data across various depths. These features collectively reflect the heterogeneous
physical and thermal properties of the soil, contributing to spatial variations in heat
conduction and storage capacity. A full list of the predictor variables used in the model

is summarized in Table 1.
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Table 1. Details of the predictor variables for training the model.

Spatial Temporal
Type Data Variable Reference
resolution resolution
Huete et al.,
MODO09GA EVI 500 mx500 m  Daily
Remotely sensed 2002
product MOD11A1 LST_Day 1 kmx1 km Daily
MODI11A1 LST_ Night 1 kmx1 km Daily
Temperature 2m
surface net solar r
adiation_sum Mufoz-
Climate data ERAS-Land surface_thermal ra 9 kmx9 km Daily Sabater et al.,
diation_downwards 2021
_sum
Precipitation
Elevation 30m
USGS_STRM
Slope 30 m
Supplementary Sand, Silt, Clay
data Depth:
Soil Texture 250 mx250 m Liuetal., 2022
0-5, 5-15, 15-30,
30-60cm
] Soil temperature
In-situ )
at 0, 5, 10, 15, 20, - Daily
measurements

and 40 cm

2.2.1 Remote sensing data

The MODI11A1 LST product, at a daily time-step and a spatial resolution of 1 km,
was utilized. It includes both daytime (LST4ay) and nighttime (LSThight) temperatures at
10:30 AM and 10:30 PM, respectively, along with quality assessment information (Wan
and Dozier, 1996). To enhance the estimation of daily mean T, the average of LSTgay
and LSThignt values was calculated and used in the analysis.

EVI from 2010 to 2020 were selected as predictor of 7s. The MODIS Surface
Reflectance Product (MODO09GA), derived from MODIS Level-1B data, provides daily
surface reflectance of seven bands at 500 m % 500 m resolution. The EVI is defined by
Huete et al., (2002), and the retrieval equation is as follows:

(pSR7b1 ~ Psr_b2 )

EVI =G x
(pSR7b1 + C, X Psr b2 -G, X Psr p3 T L)

(M

where G = 2.5, C1 =6, Co = 7.5, L = 1. The remote sensing reflectance variables
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SR _b1(620-670nm), SR_b2 (841-876nm) and SR b3 (459-479 nm) of MODO9GA data
represents red, near-infrared and blue bands. The coefficients 2.5 and 1 represent the
gain and canopy background, respectively (Huete et al., 2002). The atmospheric
influence on the red band is corrected using the blue band and the coefficients 6 and
7.5, respectively.

Subsequently, cloud contamination caused partial spatial absences in the daily LST
and EVI. To address this issue, we applied a temporal and spatial linear interpolation
algorithm, which utilizes time-series data from adjacent days and spatial information
from neighboring pixels to fill the current missing values, thereby generating a time-
continuous and spatially complete image series. This approach follows the methods
described in Chen et al., (2017) and Cao et al., (2018), with modifications to better suit
our dataset. Then, the Savitzky-Golay (S-G) filter was used to smooth the interpolated
data, resulting in continuous surface temperature and vegetation index data with high
temporal and spatial resolution (Kong et al., 2019; Chen et al., 2021b). All data
preprocessing, including image filtering and interpolation, was conducted within the
Google Earth Engine (GEE) platform.

2.2.2 Climate data

The ERAS5-Land is the fifth-generation reanalysis dataset produced by the
European Centre for Medium-Range Weather Forecasts (ECMWF). It assimilates
multi-source data, including weather station measurements, numerical weather
predictions, and satellite observations, into dynamic models to generate reanalysis data
(Muipz-Sabater et al., 2021). It provides high-quality environmental variables related
to water and energy fluxes between the land surface and atmosphere, with continuous
coverage from 1981 to the present. ERAS5-Land offers a spatial resolution of 0.1° (~9
km at the equator) and an hourly temporal resolution, making it well-suited for
modeling near-surface processes. In this study, we extracted daily mean values of key
climate variables, including 2-meter air temperature (Temperature 2m), surface solar
radiation and total precipitation from the ERAS5-Land Daily dataset. All variables were

accessed and processed using the GEE platform.

10
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2.2.3 Auxiliary data

Topographic and soil-related variables were incorporated as auxiliary predictors to
improve the accuracy of 75 estimation. Elevation and slope were derived from the
Shuttle Radar Topography Mission (SRTM) digital elevation model (Farr et al., 2007),
specifically using the Version 3 (SRTM Plus) product with a spatial resolution of 1 arc
second (~30 m). Soil texture plays a critical role in determining 7 through its influence
on thermal conductivity, which is affected by physical properties such as particle size
distribution, porosity, bulk density, and moisture retention capacity. In this study, we
represented soil texture using the relative proportions of clay (fine), silt (medium), and
sand (coarse) particles. To capture vertical variability in soil properties, we employed
the China Soil Information Grid dataset developed by Liu et al. (2022), which provides
gridded estimates of soil composition at four depth intervals: 0~5 cm, 5~15 cm, 15~30
cm, and 30~60 cm. The dataset offers a spatial resolution of 1 km and is suitable for
high-resolution, profile-based soil modeling.
2.3 Methods

The spatial adaptive modeling framework consists of three modules as shown in
Fig. 2. Module I is for data collection and preprocessing, which mainly involves in-situ
observations, remote sensing, meteorological and supplementary data. Module II is
spatial adaptive modeling, which mainly includes the construction of rotated quadtrees
and local modeling based on XGBoost. Finally, module IIl is the layer-to-layer
reconstruction of daily 1 km resolution multi-layer (0, 5, 10, 15, 20, and 40 cm) T

datasets in China from 2010 to 2020.

1
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Figure 2. Workflow of the proposed method to obtain multi-layer 75 over the China.

2.3.1. Feature selection

Multicollinearity among multiple source variables may affect the robustness of the
models. Therefore, we rigorously evaluated the multicollinearity among the
independent variables using the variance inflation factor (VIF) before modeling to
remove highly correlated variables. The VIF is a diagnostic statistic used to quantify
the degree of multicollinearity by measuring how much the variance of a regression
coefficient is inflated due to correlations with other predictors (Akinwande et al., 2015).

It is calculated as:

VIF =1 R? ()

where Ri2 is the coefficient of determination obtained by regressing the i-th predictor

against all other predictors. Variables with VIF exceeding 10 are generally considered

12
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severely multicollinear and should be removed.

Based on the VIF analysis, we applied the following adjustments to the predictor
set. Accordingly, some variables were excluded due to severe multicollinearity or
redundancy. Specifically, sand, silt, and clay are compositional variables whose
proportions sum to 100%, leading to perfect collinearity. To reduce redundancy, we
removed silt while retaining sand and clay. In addition, LWD was found to be highly
correlated with net solar radiation at the daily mean scale (Fig. S1) and was therefore
excluded from the final modeling.

Although the daily mean LST (LST mean) and air temperature exhibit high
collinearity (VIF > 10; Fig. S2), we chose to retain both variables because they represent
different thermal information. LST mean captures high-resolution surface radiative
temperature signals, whereas air temperature reflects broader-scale atmospheric
thermal conditions. In ecosystems with complex canopy structures, such as forests, the
canopy can alter radiative transfer processes and cause LST to deviate from the true
subsurface thermal environment(Liu et al., 2025). Therefore, the two variables provide
complementary thermal information that helps better characterize soil thermal
dynamics. In addition, we compared the model performance under different
combinations of predictor variables (Fig. S3 and Fig. S4). The results show that the
combination of air temperature + LST + other predictors achieved the best modeling
accuracy at the surface soil layers. Therefore, retaining both air temperature and LST

in the final model is reasonable and necessary.

2.3.2. Spatial adaptive partition of site measurements

We applied the Local Bivariate Moran’s I analysis to assess the local spatial
relationship between surface 75 (GST_Avg) and elevation as an illustrative example
(Fig. S5). The results reveal significant spatial variations in their local association (p <
0.05), indicating pronounced spatial non-stationarity in the 7Ts—elevation relationship.
These findings justify the need for a spatially adaptive modeling strategy capable of

capturing localized heterogeneity.

13
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A quadtree is a hierarchical spatial data structure that recursively subdivides a two-
dimensional space into four quadrants, enabling efficient spatial indexing and localized
data organization. In this study, we adopted a bottom-up, rotated quadtree-based spatial
partitioning strategy that adaptively generates finer grids in regions with dense samples
and coarser grids in sparse regions. Compared to global modeling or static grid
partitioning, this adaptive approach offers improved regional modeling fidelity while
significantly enhancing computational efficiency. The procedure consists of the
following steps:

(1) Initialization of Minimum Units

The entire spatial domain was first divided into uniform, minimum-sized units
(leaf nodes), each representing a fundamental spatial element. These units may contain
zero or more in-situ observations. This initial step provides the base resolution for
subsequent hierarchical construction. The structure and principle of quadtree spatial
indexing are illustrated in Fig. S6.

(2) Hierarchical Merging

Starting from the leaf nodes, groups of four adjacent quadrants were recursively
merged into parent nodes if each contained fewer than 30 observation sites (threshold
selection detailed in Fig. S7). The merging process continued upward until no further
groups met the threshold. This approach ensures that each node has sufficient sample
size while achieving spatially adaptive partitioning across the study area. Each
subregion is then assigned a localized 7 prediction model.

(3) Rotation at different angles

To reduce potential edge effects introduced by static grid boundaries, we
implemented a rotated quadtree partitioning strategy. The quadtree structure was rotated
at six angles (0°, 15°, 30°,45°, 60°, and 75°), producing distinct sets of spatial partitions
for each orientation (Fig. 3). Independent models were trained for each rotated
configuration, and the final 7 estimates were obtained by averaging the outputs from
all six models. This rotation-based ensemble method improves spatial smoothness and

minimizes discontinuities at partition boundaries.

14
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Figure 3. Multi-angle adaptive quadtree partitioning of site observations (0°, 15°, 30°,
45°, 60°, 75°)

2.3.3. Machine learning algorithm

We adopted the XGBoost (Extreme Gradient Boosting) algorithm as the core
regression model for 75 estimation due to its strong predictive performance,
computational efficiency, and scalability across large environmental datasets. XGBoost
constructs an ensemble of regression trees in a stage-wise boosting process, where each
successive tree is trained to minimize the residuals of the previous iteration, thereby
producing a robust and optimized model (Chen and Guestrin, 2016). One of the key
strengths of XGBoost is its ability to handle heterogeneous and high-dimensional
predictor sets, which are common in geoscience applications involving complex terrain,
land cover variability, and climatic gradients. Recent studies have demonstrated its
effectiveness in similar domains, including land surface temperature reconstruction (Li
et al., 2024), multi-layer soil moisture estimation (Karthikeyan and Mishra, 2021),
drought event attribution (Wang et al., 2025a), and crop yield prediction (Li et al.,
2023b). Given these proven strengths and the spatially nonstationary characteristics of
Ts in our study area, XGBoost was selected to train localized prediction models within
spatial subregions.

Significant spatial autocorrelation commonly exists among nearby 7s observation
sites. To prevent potential data leakage caused by randomly splitting the training and

testing subsets, we conducted the partitioning at the station level and constructed a

15
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buffer zone around the selected test station. All other stations located within this buffer
were removed, and only stations outside the buffer were retained as the training set.
This strategy effectively ensures that samples within the same sub-grid do not appear
simultaneously in both the training and testing subsets due to spatial autocorrelation,
thereby allowing a more robust and unbiased assessment of the model’s generalization
performance.

Specifically, considering the availability of sufficient training samples, one station
was randomly selected as the test sample within each sub-grid. A 500 km buffer was
subsequently created around the test station, with the radius determined based on the
effective distance for reducing spatial autocorrelation among stations as shown in
Appendix Figure S8. All stations within the buffer were excluded, and only those
outside the buffer were used for model training. Subsequently, five-fold cross-
validation was performed at the station level, and GridSearchCV was used to optimize
three key hyperparameters: the number of trees (n_estimators), maximum tree depth
(max_depth), and learning rate (learning_rate). The search ranges for these parameters
are provided in Appendix Table S1. The optimal hyperparameter combination was
identified by minimizing the mean validation error. Finally, the model was retrained on
the full training subset using the optimized parameters and evaluated on the spatially
independent test sample to rigorously assess its generalization capability.

A layer-wise prediction strategy was adopted to estimate 75 along the soil profile.
For the surface layer (0 cm), predictors included air temperature and daily mean LST.
For subsurface layers, these two variables were replaced by the 75 estimate from the
immediately preceding layer, enabling the model to capture vertical heat conduction
processes and thereby improving the continuity and physical consistency of layer-wise

Ts estimation.

2.3.4. Model evaluation metrics
The modeling performance and quality of the predicted 7s were evaluated in terms

of RMSE, Mean Absolute Error (MAE), R?, and Bias. RMSE and MAE were used to

16
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assess the ability to estimate volatility and fluctuation amplitude, respectively. R?
represented the percentage of variance explained by the ML models. Bias was used to
determine whether the estimations were overestimated or underestimated. These

metrics were computed as follows:

MSE \/Zizl[(xi -X)-0,-V)]

N (3)
MAE 2% owl (4)
N
. 1 N
Blas:NZl“(xi -¥i) ()
R2 —1— Zi:l(yi _Xi)2 (6)

NY T (v -Y)

wherey.and x denoted the in-situ 75 and estimated T for all the stations and periods,

respectively. Y and X represented the mean values of the in-situ 7% and estimated T,

respectively.

3. Results
3.1 Model performance across sites

Figure 4 shows the accuracy of the models constructed at different depths using
various grid configurations and rotation angles for both the training and test sets. The
grouped box plots indicate that the median R? values range from 0.92 to 0.98 and the
median RMSE values range from 1.6 to 2.4 K across depths. Both training and test
results exhibit consistently high accuracy, with no clear indication of overfitting. A
vertical comparison shows that model performance at 0 cm and 40 cm is slightly weaker

than that at intermediate depths.
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Figure 4. Model performance for training and test sets across different depths.

To further enhance the independence of the evaluation, we validated the final
dataset using daily 7 observations from 18 flux tower sites in the ChinaFLUX network.
For consistency across depths, only measurements at 0, 5, 10, 15, 20, and 40 cm were
retained. Metadata for these sites is summarized in Table S2, and the corresponding
validation results are presented in Figure 5. The results show that the dataset maintains
high accuracy at independent sites (R* = 0.78~0.87; RMSE = 3.89~5.14 K), further
demonstrating the robustness of our approach. Overall, the combined evidence from the
test set and flux tower validation confirms that the proposed spatially adaptive model
exhibits strong predictive performance and spatial generalization capability. In Figure
S9, we further validated the spatial consistency between the flux tower sites and the
estimated annual mean 7 at different depths. Although the validation results
demonstrated high accuracy overall (R* = 0.7~0.82; RMSE = 2.93~3.58 K), a

systematic positive bias of approximately +2 to +3 K was observed across all depths.
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Figure 5. Density scatter plots comparing estimated daily 7 with flux tower
observations at different depths

We also calculated R? and RMSE values for all depths at each station to compare
the model performance. The results indicate that R? ranges from 0.70 to 1.00, suggesting
generally good performance at the station level. As shown in Figure 6, most stations
achieve R? values above 0.85. Regions with higher prediction accuracy are primarily
distributed across northwest, northeast, and central China, while larger errors are
concentrated in the Yunnan—Guizhou Plateau (YGP) and the sparsely monitored QTP.
The histogram in Figure S10 further shows that RMSE values for all depths fall between
0.5 and 3 K, indicating overall good predictive performance. Notably, prediction errors
are highest at 0 cm, decrease substantially at 5-20 cm, and increase slightly again at 40
cm. Figure S11 shows the comparison between the estimated and observed annual mean
T for the test dataset at six different depths (0~40 cm). The R? ranges from 0.94 to 0.97.
The RMSE values range from 0.74 to 1.4 K, and the bias is minimal. The results suggest
that the model is able to effectively capture the spatial patterns of 75 across different

depths and locations.
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Figure 6. Goodness of R* across China estimated during the model testing phase.
Performance metrics are calculated between predicted 7 and in-situ 7 data sets.

3.2 Evaluation across land cover types and seasons

Figure 7 shows grouped box plots of the prediction performance of 7s across
different land cover types (barren land, cropland, forest, and grassland) at six depths (0,
5, 10, 15, 20, and 40 cm). The evaluation metrics include R? and RMSE. The median
R? values across land cover types and depths range from 0.94 to 0.98, consistently
exceeding 0.94 (red dashed line), indicating overall high prediction accuracy. Among
land cover types, barren land exhibits the highest R? values, followed by cropland, while
forest and grassland show slightly lower performance. The median RMSE values
generally range from 1.1 to 1.8 K. Barren land shows higher RMSE compared with
other land cover types, whereas cropland, forest, and grassland maintain lower and
more stable RMSE. Across depths, RMSE is highest at the surface layer (0 cm),
decreases steadily with increasing depth, and shows a slight increase at 40 cm.

Furthermore, seasonal variations in prediction accuracy are shown in Fig. 8. The
median R? values across depths range from 0.48 to 0.98, with higher values in spring

(green) and autumn (pink) and lower values in summer (orange) and winter (blue),
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particularly at 20~40 cm depth. The median RMSE values range from approximately
1.3 to 2.2 K, being lower in spring and autumn and higher in summer and winter, with
the largest median error observed at 40 cm depth in winter. With increasing depth, the
median errors decrease from the surface (0 cm) to 5~10 cm, and then gradually

accumulate from 15 to 40 cm.

i T TR -
oA {-{--% THEH PN

7 Barren ' Cropland ' Forest Grassland
Lﬁ (n=34) (n=578) (n=42) (n=842)

Figure 7. Evaluation of predicted 75 at different depths (i.e., 0, 5, 10, 15, 20, 40cm)
across various land use types (i.e., Forest, Grassland, Cropland, Barren)
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Figure 8. Evaluation of the predicted 75 in different depth (ie.0,5,10,15,20,40 cm) at
sites with four seasons (i.e., spring, summer, autumn, winter). Winter is defined as
December, January, and February; spring as March, April, and May; summer as June,
July, and August; and autumn as September, October, and November.

3.3 Comparison with other products

Figure 9 presents a comparison of the 75 products at the 0 cm depth with the ERAS-
Land and GLDAS 2.1 reanalysis datasets, including both national-scale patterns (Fig.
9a—c) and zoomed-in regional details (Fig. 9d—f). Compared with the two reanalysis
products, our generated 7s dataset exhibits substantially finer spatial resolution,
enabling a clearer representation of localized spatial heterogeneity. As illustrated in the
zoomed-in panels of Figure 9, our Ts product accurately captures terrain- and elevation-
driven temperature gradients in regions with strong topographic variability, such as the
transition zone from the Sichuan Basin to the margins of the QTP. In contrast, the coarse
spatial resolution of ERAS5-Land and GLDAS 2.1 tends to smooth out these fine-scale
topographic effects, resulting in a loss of spatial detail.

The scatter density plots in Fig. S12 further demonstrate that the 7 estimates from
our model achieve significantly higher site-level accuracy than ERAS5S-Land and
GLDAS 2.1. Specifically, at depths of 0, 10, and 40 cm, the R? values for our dataset

range from 0.94 to 0.97, whereas the corresponding values are 0.83~0.89 for ERAS-
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Land and 0.83~0.87 for GLDAS 2.1. These results indicate that our high-resolution 75
product not only captures localized heterogeneity but also faithfully represents terrain-
driven temperature gradients, which are often obscured in coarse-resolution reanalysis
products. In summary, the proposed spatially adaptive modeling framework provides a
more detailed and realistic representation of 75 spatial patterns, particularly in
topographically complex regions, and significantly enhances the accuracy and

applicability of regional-scale 75 modeling.
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Figure 9. Comparison of different 75 products (e.g., 0 cm)

3.4 Spatial and temporal patterns of 7 at varied depths across China

To examine seasonal and vertical variations in the spatial distribution of 7s, we
selected two contrasting dates: January 1, 2020 (winter) and July 1, 2020 (summer).
Figure 10 a—f illustrates the spatial distribution and corresponding histograms of 75 at
different depths (0 cm, 5 cm, 10 cm, 15 cm, 20 cm, 40 cm) across China on January 1,
2020. The results show that T in northern China (particularly in the northeast, northwest,
and the QTP) is generally lower in January, exhibiting distinct cold zones. In contrast,
southern areas exhibit higher 7s values, forming a gradual north-to-south temperature
gradient. Moreover, deeper soil layers (e.g., 40 cm) exhibit higher temperatures than
surface layers (0 cm), especially in northeastern China and the QTP, reflecting the
insulating effect of deeper soils during winter.

Figure 10al—f1 illustrates the spatial distribution and histograms of 75 on July 1,
23
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2020. Compared to January, a significant increase in 75 is observed across China in July,
with widespread high-temperature zones in the eastern and southern regions. The
increase is particularly pronounced in northern areas, while changes in the south are
relatively moderate. In contrast to winter conditions, 75 decreases with increasing soil
depth during summer, with surface temperatures (0 cm) exceeding those at 40 cm,
indicating the downward heat conduction from the surface. Overall, Comparative
analysis of Fig. 10a—f and Fig. 10al—f1 elucidates both seasonal variation and vertical
patterns of 7s: deeper layers (5~40 cm) are warmer than the surface (0 cm) during winter,
whereas the surface is warmer in summer. The histogram further illustrates the variation
in T, distribution across different depths. The results indicate that temperature
fluctuations in deeper layers are significantly smaller than those near the surface,
reflecting greater thermal stability in the subsurface. These patterns reflect the
combined influences of geographic location, topography, and climatic conditions on T
spatial distribution and vertical dynamics, offering valuable insights into soil thermal

behavior.
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Figure 10. Spatial patterns and histograms of Estimated 75 at different depths (0, 5,
10, 15, 20, and 40 cm)

To further assess the temporal performance of 75 estimation, Fig. 11 presents the
time series of estimated 7 alongside in-situ measurements at four randomly selected
stations (e.g., Station 56748, 99.18°E, 25.12°N) from January 2018 to January 2020.
The figure displays 7s at two depths (0 cm and 40 cm), including estimated T
(Estimated Ocm, Estimated 40cm), in-situ 75 (In-situ_Ocm, In-situ_40cm), daily mean
land surface temperature (Daily mean LST), and 2-meter air temperature
(Temperature 2m). The air temperature shows distinct seasonal cycles, while Ty
exhibits smoother temporal variations. In general, 75 reaches its peak during summer
and its minimum in winter, though its temporal dynamics vary with soil depth.
Specifically, 7s at 0 cm responds rapidly to air temperature changes and exhibits larger
amplitude variations, while 75 at 40 cm shows slower responses and a noticeable lag,

reflecting the damping effect of vertical heat conduction. Site-level accuracy was
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evaluated using RMSE, which ranged from 1.24 K to 2.05 K across both depths,
indicating strong agreement between predicted and observed values. Overall, the time
series analysis confirms the robustness and reliability of the model in estimating T

across varying depths, offering valuable insights into regional soil thermal dynamics.
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Figure 11. Time series of the Estimated_Ocm, Estimated 40cm, Daily mean_ LST,
and Temperature 2m at four sites from different regions between 2018-2019.

4. Discussion
4.1 The advantages of the spatially adaptive model

Previous studies have explored various approaches for constructing 75 datasets.
For instance, Wang et al., (2023) created a daily multi-layer 7 dataset for China (1980-
2010) at 0.25° resolution, employing interpolation techniques including the thin-plain
spline and the angular distance weight interpolation methods with over 2,000 in-situ
observations. A persistent challenge in building national-scale 7s datasets, however, lies
in the highly uneven spatial distribution of observation stations—densely clustered in
eastern lowlands while remaining sparse in western and high-altitude regions. Global
modeling approaches, which train a single unified function across the entire domain,

are inherently limited in capturing the nonlinear and non-stationary relationships
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between T and its predictors in such heterogeneous landscapes. Specifically, in sparsely
sampled regions, global models lack sufficient data to learn effectively, resulting in low
prediction accuracy. In contrast, in densely sampled areas, the model tends to overfit,
and the training process becomes disproportionately influenced by those regions. This
imbalance introduces systematic biases and limits model generalizability.

Reanalysis datasets, which synergize data assimilation systems with numerical
weather prediction and land surface modeling frameworks, provide valuable
representations of land-atmosphere interactions and subsurface heat transfer processes.
These products are particularly advantageous for large-scale climate simulations and
long-term environmental assessments. Yang and Zhang (2018) assessed the 7 accuracy
of four reanalysis datasets (ERA-Interim/Land, MERRA-2, CFSR, and GLDAS-2.0) in
China using in-situ monthly mean 7 observations. The results showed that all
reanalysis datasets consistently underestimated 7 across the country. More recently, the
ERAS-Land and GLDAS 2.1 T dataset offers high temporal resolution (hourly/3-hour),
but it is limited by a spatial resolution of 0.1 or 0.25 degrees. Beyond reanalysis datasets,
some efforts have focused on constructing empirical 7s products using ML approaches.
For example, the Global Soil Bioclimatic Variables dataset (Lembrechts et al., 2022),
derived from Random Forest modeling with 8,519 global sensors, provides only long-
term climatological means, rather than high-resolution daily estimates.

In contrast, the methodological framework proposed in this study addresses both
accuracy and resolution limitations. The spatially adaptive modeling strategy offers
significant advantages over traditional interpolation and globally trained ML models.
Its core strength lies in localized modeling, which accounts for regional variability in
topography, soil properties, and climate conditions. As shown in Fig. S13, the rotated
quadtree strategy partitions space at six orientations (0°~75°), enabling a more nuanced
representation of spatial heterogeneity. By averaging predictions across these rotated
configurations, the method reduces boundary artifacts often associated with static grids,
resulting in smoother and more continuous spatial outputs. We also quantified the

variability of prediction results at the same site using grids generated from different
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rotation angles. The results in Fig. S14 show that the uncertainty at the 0 cm depth is
higher compared to other depths, with the highest uncertainty concentrated in certain
areas of the YGP and Sichuan Basin.

Moreover, the fine spatial resolution (1 km) enables the model to resolve localized
thermal patterns that are critical for understanding vegetation dynamics and soil
biogeochemistry. We also assessed the contribution of satellite-derived LST to model
performance. As shown in Figs. S3 and S4, incorporating LST as an input variable,
relative to using only air temperature, significantly enhances overall modeling accuracy
and improves performance across sites with different land cover types, with the most
pronounced improvements observed in barren land areas. This highlights the
importance of multi-source data fusion in boosting the performance of spatially
adaptive models under data-scarce conditions. In summary, our spatially adaptive local
modeling approach offers a more robust and scalable solution for large-scale T
estimation under heterogeneous station distributions and complex environmental
conditions.

4.2 Potential applications of the T product

The high-resolution, multi-layer 75 datasets generated using the spatially adaptive
estimation method fill a significant data gap in China, where comprehensive T profile
records are scarce. As a key biophysical variable, 75 provides crucial insights into soil—
atmosphere interactions that are not captured by air temperature alone. In agricultural
systems, 75 governs fundamental processes throughout the crop life cycle—from
sowing and germination to growth and yield formation (Rahman et al., 2019). Multi-
layer 7 data can optimize accumulated temperature models, enhancing the precision of
sowing decisions and supporting sustainable field management. Additionally, 75
influences nutrient decomposition and water movement within soil profiles (Jebamalar
et al., 2012), directly impacting soil fertility, moisture retention, and thus, the overall
efficiency of agroecosystems.

Beyond agricultural applications, 7s is increasingly recognized as a critical

variable for assessing ecosystem responses to climate extremes. For instance, Fan et al.,
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(2024) proposed the Soil Composite Drought Heatwave index to evaluate the severity
of concurrent drought and heatwave events. However, their findings show that existing
reanalysis datasets often underestimate these events compared to observational records,
highlighting the need for more accurate, high-resolution 75 data. In the context of
intensifying global warming and extreme climate events, access to reliable 7 datasets
is essential for improving the monitoring and prediction of environmental stressors.
These advancements are not only vital for understanding terrestrial ecosystem
dynamics but also for strengthening climate resilience at both regional and national
scales.

Moreover, Ts plays a pivotal role in ecological and hydrological modeling, offering
a more direct representation of surface processes than air temperature. It serves as a
sensitive indicator of biogeochemical cycles and phenological changes (Lembrechts et
al., 2022). For example, Liu et al., (2024) demonstrated that 7 is a dominant driver of
spring phenology in Chinese forests, making it a valuable input for climate—vegetation
interaction models. In cold regions, 75 governs soil freeze-thaw cycles, which are
critical for hydrological processes such as runoff generation, groundwater recharge, and
permafrost monitoring (Smith et al., 2022; Xu et al., 2022). Furthermore, 75 is a key
driver of soil respiration, influencing CO: fluxes and terrestrial carbon cycling (Lloyd
and Taylor, 1994; Hursh et al., 2017). As such, the development of high-resolution 7
products enables more accurate simulation of ecosystem carbon dynamics and regional
carbon budgeting, thereby advancing our understanding of climate feedback
mechanisms.
4.3 Limitations and future perspective

Despite the strong performance of our spatially adaptive 7s estimation framework,
several limitations warrant acknowledgment. As shown in Figure 6, model validation
at station level reveals spatial heterogeneity in prediction accuracy, with relatively
lower performance observed in the YGP and the QTP regions. On the one hand, as
evidenced by Figure 9, our multi-source modeling framework captures 75 variations

across different elevations and geomorphic conditions more effectively than existing
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datasets. However, the QTP and YGP are characterized by complex terrain and high
altitudes, coupled with rapidly changing climatic conditions, which significantly
complicate T estimation. These findings align with previous studies showing that high
elevations intensify the disconnect between air temperature and LST, thereby increasing
the uncertainty in thermal modeling (Mo et al., 2025).

MODIS LST serves as a critical input to our modeling framework. However, as an
optical remote sensing product, it is highly susceptible to cloud contamination, often
resulting in data gaps. Despite the use of spatiotemporal interpolation and SG filtering,
residual uncertainties persist in the reconstructed LST data. Future improvements in T
reconstruction can be pursued along two main directions. First, more physically
grounded LST reconstruction methods can be adopted, such as incorporating surface
energy balance models and diurnal temperature cycle models (Hong et al., 2022;
Firozjaei et al., 2024; Wang et al., 2024). These methods apply energy conservation
principles to estimate 75 during periods of missing or unreliable observations, thereby
providing more realistic estimates of land surface thermal conditions during periods of
cloud cover. Second, integrating higher temporal resolution remote sensing
observations may help overcome the limitations of MODIS. For instance, passive
microwave satellite data provide all-weather observations and are less sensitive to cloud
interference (Duan et al., 2017; Wu et al., 2022). In addition, next-generation
geostationary satellites such as Himawari-8 offer observations at 10-minute intervals,
substantially enhancing the temporal continuity and quality of surface temperature
estimates (Yamamoto et al., 2022; You et al., 2024). These enhancements are expected
to significantly improve the accuracy and temporal continuity of 7s monitoring.

Our results (Figures 7 and 8) show that model accuracy varies across soil depths
and is further influenced by season and land-use conditions. Accuracy is relatively
lower at the surface (0 cm), improves at intermediate depths (5~10 cm), and declines
again at deeper layers (20~40 cm). This depth-dependent pattern can be explained by
the physical characteristics of the soil profile. Surface 75 responds strongly to short-

term meteorological fluctuations such as radiation, precipitation, and ET, resulting in
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greater spatiotemporal variability and consequently larger prediction errors. In contrast,
intermediate soil layers buffer high-frequency temperature fluctuations through thermal
diffusion and higher heat capacity. As a result, 75 becomes more stable with lower
natural variability at these depths, leading to lower RMSE and higher R? values.

At deeper layers, prediction accuracy decreases because surface-level errors
propagate downward through the hierarchical modeling framework, and uncertainties
in soil texture inputs gradually accumulate with depth; during periods such as summer
and winter, these combined uncertainties may be further amplified. Short-term changes
in soil moisture alter fundamental soil thermal properties, including heat capacity,
thermal conductivity, and thermal diffusivity, which in turn control heat transfer
processes and sub-daily 7s dynamics. (Abu-Hamdeh, 2003; Subin et al., 2013).
Consequently, the absence of soil moisture information may introduce additional
uncertainty when modeling daily and sub-daily 75 dynamics, especially at deeper layers.
Incorporating high-resolution soil moisture datasets in future work would improve the
representation of soil hydrothermal interactions and further enhance 75 estimation
accuracy.

Seasonal variations and differences in land cover also contribute to the
spatiotemporal differences in model performance. As shown in Figures 7 and 8, the
model performs better in spring and autumn, whereas its accuracy declines in summer
and winter. In summer, vigorous vegetation growth and canopy closure alter surface—
atmosphere energy exchange processes and weaken the relationship between canopy
temperature and subsurface T, thereby reducing the effectiveness of LST as a proxy for
near-surface T (Kropp et al., 2020; Cui et al., 2022). Moreover, because satellite sensors
measure radiometric temperature, LST in densely vegetated regions often represents
canopy-top temperature rather than the surface 75, introducing an additional source of
uncertainty. In winter, snow cover further increases complexity: the high albedo of
snow reduces net radiation (Loranty et al., 2014; Li et al., 2018), and its insulating effect
weakens the soil’s response to cold-air fluctuations (Zhang, 2005; Myers-Smith et al.,

2015). Meanwhile, Meanwhile, freezing of soil water alters soil thermal conductivity
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and heat capacity, and frequent freeze—thaw cycles introduce nonlinear dynamics into
Ts, increasing modeling uncertainty (Li et al., 2023a; Imanian et al., 2024). Although
our multi-source adaptive modeling framework demonstrates robust performance
across varying depths and environmental conditions, it does not explicitly represent the
physical mechanisms governing vertical heat transfer. Future research could
incorporate deep learning models capable of learning complex spatiotemporal
dependencies to enhance the physical interpretability of 75 variations across time, space,

and depth.

5. Conclusion

This study addresses the lack of high spatiotemporal resolution multi-layer 75 data
by proposing a spatially adaptive ML framework, successfully constructing a retrieval
model for multi-layer 7s. By integrating in-situ observations, reanalysis data, satellite
remote sensing data, as well as topographic and soil texture data, the model
demonstrates high accuracy across different depths, seasons, and land use types. The
results indicate relatively higher performance in spring and autumn than in summer and
winter, and greater accuracy in bare land, cropland, and grassland compared with
forested areas. In comparison with ERAS-Land and GLDAS 2.1 T products, the multi-
layer 75 data generated in this study exhibit significant improvements in both accuracy
and spatial detail. Based on this framework, we have first developed the long-term
(2010-2020) high spatiotemporal resolution (daily, 1 km resolution) multi-layer (0, 5,
10, 15, 20, 40 cm) T dataset for China. Future research could further explore methods
that simultaneously integrate temporal, spatial, and depth information, and utilize multi-
source sensor data to enhance the spatiotemporal monitoring capabilities of 75 at
different depths. Overall, this study demonstrates the potential of multi-source data in
T5 estimation and provides a reliable tool and data foundation for ecological modeling,

agricultural production and related studies.

6. Data availability
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The daily multi-layer 75 products (0, 5, 10, 15, 20, and 40 cm) at 1 km resolution
from 2010 to 2020 are freely available in HDF5 format to the public at
https://doi.org/10.11888/Terre.tpdc.302333 (Wang et al., 2025b). In addition, monthly

multi-layer 75 data are also provided to meet the needs of various users.

7. Code availability
The R scripts used to implement the rotated-quadtree spatial adaptive partitioning

are publicly available at: https://github.com/wangxt1314/Rotated-quadtree
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