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Abstract  

Soil temperature (Ts) is critical in regulating agricultural production, ecosystem 

functions, hydrological cycling and climate dynamics. However, the inherent spatial 

and temporal heterogeneity of soil thermal regimes constitutes a persistent challenge in 

obtaining high-resolution, continuous gridded Ts datasets along vertical profiles. To 5 

address this issue, we propose a spatially adaptive layer-cascading Extreme Gradient 

Boosting (XGBoost) algorithm to generate daily multi-layer Ts data (0, 5, 10, 15, 20, 

and 40 cm) at a spatial resolution of 1 km in China from 2010 to 2020. The methodology 

dynamically partitions non-uniformly distributed measuring sites (2,093 sites across the 

country) to quadtrees and incorporates thermal coupling effects propagated between 10 

neighbor soil layers. Multi-source data, including satellite retrievals of land surface 

temperature and vegetation index, and ERA5 reanalysis climate variables were used as 

inputs. Validation using spatial block cross-validation and independent flux tower 

observations demonstrated the robustness and accuracy of the product. It is noted the 

model’s performance was lower in summers and winters than in springs and autumns. 15 

Compared to existing global or regional Ts products, the dataset developed here is 

characterized by its fine spatio-temporal patterns and high reliability, enabling it to 

provide supports for precision agriculture, ecosystem modeling and understanding 

climate-land feedback. Free access to the dataset can be found at 

https://doi.org/10.11888/Terre.tpdc.302333 (Wang et al., 2025b). 20 
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1. Introduction 30 

Soil temperature (Ts) is a critical driver of ecosystem dynamics, influencing nearly 

all physical, chemical, and biological processes (Bayatvarkeshi et al., 2021; Xu et al., 

2023; Liu et al., 2025). Ts plays a pivotal role in land-atmosphere exchanges. By 

controlling the partitioning of net radiation into sensible and latent heat fluxes, Ts 

directly shapes atmospheric boundary layer circulation, with cascading effects on 35 

regional climate patterns (Mahanama et al., 2008; Chen et al., 2021a). Ts also drives 

soil freeze-thaw cycles, which are critical for hydrological processes in cold regions. 

Permafrost thaw alters subsurface water storage, runoff dynamics and groundwater 

recharge, with implications for both local and basin-scale hydrology (Zhang et al., 2005; 

Shati et al., 2018). In addition, it governs the rates of soil microbial activities, nutrient 40 

cycling, and organic matter decomposition, with direct implications for carbon 

dynamics. For instance, Ts modulates microbial respiration, thereby regulating the 

release of organic carbon into the atmosphere as CO2 that is central to global carbon 

cycling (Yang et al., 2011). Given its multifaceted influences on carbon cycling, climate 

feedbacks and hydrological systems, accurate Ts estimation is indispensable for 45 

advancing ecosystem monitoring, refining climate models, and developing effective 

strategies to mitigate and adapt to climate change. 

Ts exhibits high heterogeneity at large spatial scales due to varying driving factors. 

Solar radiation changes its radiation intensity by adjusting the incident angle and 

sunshine duration, thus affecting the heating effects on surface soils (Wang and 50 

Dickinson, 2013). Additionally, diurnal variations of air temperature cause periodic 

changes in surface temperature, while the amplitude is often closely related to the local 

climate and topography. Furthermore, surface covers (e.g., vegetation and snow) 

significantly impact Ts (Xu et al., 2020; Mortier et al., 2024). Vegetation canopies 

effectively intercept and scatter solar radiation, while root systems modulate soil 55 

moisture distribution, thereby stabilizing deeper soil temperatures (Li et al., 2024). 

Snow cover, characterized by high albedo, reflects substantial solar radiation and acts 

as an effective insulator, mitigating cold air penetration and maintaining warmer soil 
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temperatures during winter months (Myers-Smith et al., 2015). Moreover, thermal 

conductivity and heat capacity are critical parameters controlling vertical heat transfer 60 

in soils. Sandy soils have higher porosity and lower water retention, resulting in lower 

heat capacity and higher thermal conductivity, thus responding rapidly to temperature 

changes. In contrast, clay soils have lower porosity and stronger water retention, leading 

to higher heat capacity and significant thermal stability, characterized by delayed 

responses to temperature variations (Ochsner et al., 2001; Zhao et al., 2022). 65 

Understanding these mechanisms is essential for developing refined vertical Ts 

distribution models and improving the accuracy of Ts estimation.  

Given these complex processes, accurately estimating Ts across different depths is 

challenging. Quite a few models have been proposed for Ts estimation. These models 

can be generally classified into physical, statistical or empirical, and machine learning 70 

(ML) types (Li et al., 2024; Farhangmehr et al., 2025). Physical models, derived from 

fundamental heat conduction laws and energy balance equations, provide explicit 

mechanistic interpretations but suffer from computational complexity and heavy 

reliance on multi-domain input parameters, which range from soil properties to climatic 

variables (Gao et al., 2008; Hu et al., 2016; Badache et al., 2016). Statistical or empirical 75 

models, such as autoregressive integrated moving average and regression methods 

(Xing et al., 2018), are usually limited to localized, small-sample applications. Data-

driven ML techniques demonstrate a superior ability to capture nonlinear relationships 

and thus usually can obtain high prediction accuracy. For instance, at site scale, Feng et 

al. (2019) estimated multi-layer Ts at half-hourly resolutions using Extreme Learning 80 

Machine, with a RMSE ranging from 2.26~2.95 K. Li et al., (2022) implemented an 

attention-aware long short-term memory (LSTM) model for predicting next-day Ts and 

the model obtained a RMSE of 0.74~2.53 K. At the regional scale, Xu et al. (2023) 

integrated satellite remote sensing with a deep belief network model to reconstruct 

continuous Ts profiles (at depths of 5–40 cm) across the Qinghai-Tibetan Plateau (QTP), 85 

obtaining R² > 0.836 and MAE < 2.152 °C. Similarly, Farhangmehr et al. (2025) 

developed a hybrid convolutional neural network-LSTM (CNN-LSTM) architecture for 
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predicting Ts across North American climatic zones at 0–7 cm depths, with R² ranging 

from 0.93 to 0.99.  

Although significant advances have been made in estimating Ts, large-scale Ts 90 

prediction continues to confront critical challenges, sourcing from environmental 

complexity and methodological limitations. First, Ts exhibits considerable spatial 

heterogeneity driven by regional disparities in topography, soil composition, vegetation 

density, and microclimate (Bayatvarkeshi et al., 2021). These factors create 

nonstationary relationships between Ts and explanatory variables (e.g., air temperature, 95 

soil moisture), necessitating regionally tailored modeling approaches. Second, data 

scarcity and uneven spatial distribution of site measurements introduce further 

complexity. Aggregating sparse, unevenly distributed measurements into a single model 

often leads to overfitting: high accuracy on training data but poor generalization to 

underrepresented regions or previously unseen data (Li et al., 2024). Ultimately, 100 

developing models that reconcile scalability (for large spatial scales) with localized 

precision (to capture site-specific interactions) remains an unresolved priority, 

underscoring the persistent challenge of balancing universal applicability with spatially 

adaptive fidelity in Ts prediction methodology. 

To address the above challenges, this study proposes a spatially adaptive 105 

methodology based on quadtrees. This approach dynamically partitions the study area 

into grids of varying sizes, with smaller grids in densely observed regions and larger 

grids in sparsely sampled areas, thereby enabling localized modeling that better 

captures spatial heterogeneity across complex environmental gradients. In addition, 

multi-source environmental predictors are integrated, and XGBoost models are applied 110 

within each grid cell to capture the nonlinear relationships between Ts and its driving 

factors. Importantly, we employ a spatial block cross-validation strategy to evaluate the 

model’s generalization ability in unseen regions. Based on this framework, the 

objectives of this study are to: (1) construct a spatially adaptive modeling system; (2) 

generate a multi-layer Ts dataset at a daily time-step and one kilometer resolution in 115 

China from 2010-2020; and (3) evaluate the dataset through independent validation 
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with flux tower observations and benchmarking against widely used Ts products. The 

proposed methodology could directly address the scaling challenges induced by spatial 

heterogeneity and uneven data distribution. The generated products would provide a 

robust foundation for high-resolution environmental modeling, precision agriculture 120 

and climate impact assessments. 

 

2. Materials and methods 

2.1 In-situ Ts observations 

In this study, in-situ Ts observations was measured at six depths: at the surface (0 125 

m), and at subsurface levels of 0.05, 0.10, 0.15, 0.20, and 0.40 meters. Data were 

collected through the national weather station network operated by the China 

Meteorological Administration (CMA), in accordance with standardized measurement 

protocols. At each site, Ts was recorded every 10 minutes and automatically uploaded 

to a central server. Daily mean values at each depth were calculated from these high-130 

frequency records. We then assessed data completeness for the period 2010–2020 and 

excluded stations with more than 20% missing daily records at any depth. After quality 

control, 2,093 stations were retained for model development.  

The observation network spans a wide range of climatic zones—from cold and 

temperate to subtropical and tropical, and includes diverse land-use and ecosystem 135 

types, such as forests, grasslands, croplands, and barren lands. However, the spatial 

distribution of stations is notably uneven. High station density is observed in 

northeastern China, the central and eastern plains, and the southern hilly regions, 

whereas station coverage is sparse in the arid and semi-arid regions of northwestern 

China and on the QTP. The spatial distribution of in-situ observation sites is shown in 140 

Figure 1, and details of the dataset partitioning strategy are provided in Section 2.3.3.
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Figure 1. Spatial distribution of in-situ Ts sites at different depths across China and 

the corresponding environmental variables. This figure presents the spatial 

distribution of 2,093 in-situ Ts sites across China. The environmental variables 145 

corresponding to these sites include (a) land cover types (forests, barren land, 

grasslands, croplands, water bodies, and urban areas), (b) elevation (ranging from -

156 m to 8424 m), (c) mean annual temperature (MAT, ranging from -18°C to 26°C), 

and (d) mean annual precipitation (MAP, ranging from 11 mm to 10,800 mm). 

2.2 Predictor variables 150 

To construct a robust multi-layer Ts estimation model, we selected a 

comprehensive suite of predictor variables, integrating remote sensing products, 

meteorological factors, and auxiliary environmental data. Meteorological variables, 

especially air temperature and precipitation, have been consistently recognized in 

previous studies as primary determinants of Ts variability (Bond-Lamberty et al., 2005; 155 

Nahvi et al., 2016). Among these, air temperature has been widely regarded as the most 

influential variable due to its strong linear relationship with Ts (Khosravi et al., 2023). 

In addition, both net solar radiation and downward longwave radiation (LWD) 

were considered. Net solar radiation directly represents the shortwave energy absorbed 

by the land surface and serves as the primary driver of the daytime surface energy 160 

budget, whereas LWD plays a particularly important role under nighttime and winter 

conditions by regulating surface heat loss through the longwave radiation balance. 

Together, they jointly control the surface energy balance and directly drive the 

spatiotemporal dynamics of Ts (Peng et al., 2016). 

Thermal infrared remote sensing data also exhibit a high correlation with near-165 
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surface Ts. Integrating thermal remote sensing products and energy balance-based 

models offers an effective means of estimating Ts with high spatial and temporal 

continuity. This strategy has been validated by numerous studies (Huang et al., 2020; 

Xu et al., 2023). Surface land cover further modulates Ts by altering surface albedo, 

regulating evapotranspiration (ET), and influencing energy partitioning processes. 170 

Accordingly, the enhanced vegetation index (EVI), derived from satellite observations, 

was incorporated as a proxy for vegetation density and type (Bright et al., 2017; Li et 

al., 2024b). To capture the influence of underlying surface characteristics on Ts, 

topographic variables such as elevation and slope were included, along with soil texture 

data across various depths. These features collectively reflect the heterogeneous 175 

physical and thermal properties of the soil, contributing to spatial variations in heat 

conduction and storage capacity. A full list of the predictor variables used in the model 

is summarized in Table 1. 

Table 1. Details of the predictor variables for training the model. 

Type Data Variable 
Spatial 

resolution 

Temporal 

resolution 
Reference 

Remotely sensed 

product 

MOD09GA EVI 500 m×500 m Daily 
Huete et al., 

2002 

MOD11A1 LST_ Day 1 km×1 km Daily  

MOD11A1 LST_ Night 1 km×1 km Daily  

Climate data ERA5-Land 

Temperature_2m 

surface_net_solar_r

adiation_sum 

surface_thermal_ra

diation_downwards

_sum 

Precipitation 

9 km×9 km Daily 

Muñoz-

Sabater et al., 

2021 

Supplementary 

data 

USGS_STRM 
Elevation 30 m   

Slope 30 m   

Soil Texture 

Sand, Silt, Clay 

Depth: 

0-5, 5-15, 15-30, 

30-60cm 

250 m×250 m  Liu et al., 2022 

 
In-situ 

measurements 

Soil temperature 

at 0, 5, 10, 15, 20, 

and 40 cm 

- Daily  
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2.2.1 Remote sensing data 180 

The MOD11A1 LST product, at a daily time-step and a spatial resolution of 1 km, 

was utilized. It includes both daytime (LSTday) and nighttime (LSTnight) temperatures at 

10:30 AM and 10:30 PM, respectively, along with quality assessment information (Wan 

and Dozier, 1996). To enhance the estimation of daily mean Ts, the average of LSTday 

and LSTnight values was calculated and used in the analysis. 185 

EVI from 2010 to 2020 were selected as predictor of Ts. The MODIS Surface 

Reflectance Product (MOD09GA), derived from MODIS Level-1B data, provides daily 

surface reflectance of seven bands at 500 m × 500 m resolution. The EVI is defined by 

Huete et al., (2002), and the retrieval equation is as follows: 

 
( )

( )
_ 1 2

1

_

_ 1 _ _22 3

SR b SR b

SR b SR b SR b

EVI G
C C L

 

  

−
= 

+    −   +
 (1) 190 

where G = 2.5, C1 = 6, C2 = 7.5, L = 1. The remote sensing reflectance variables 

SR_b1(620-670nm), SR_b2 (841-876nm) and SR_b3 (459–479 nm) of MOD09GA data 

represents red, near-infrared and blue bands. The coefficients 2.5 and 1 represent the 

gain and canopy background, respectively (Huete et al., 2002). The atmospheric 

influence on the red band is corrected using the blue band and the coefficients 6 and 195 

7.5, respectively. 

Subsequently, cloud contamination caused partial spatial absences in the daily LST 

and EVI. To address this issue, we applied a temporal and spatial linear interpolation 

algorithm, which utilizes time-series data from adjacent days and spatial information 

from neighboring pixels to fill the current missing values, thereby generating a time-200 

continuous and spatially complete image series. This approach follows the methods 

described in Chen et al., (2017) and Cao et al., (2018), with modifications to better suit 

our dataset. Then, the Savitzky-Golay (S-G) filter was used to smooth the interpolated 

data, resulting in continuous surface temperature and vegetation index data with high 

temporal and spatial resolution (Kong et al., 2019; Chen et al., 2021b). All data 205 

preprocessing, including image filtering and interpolation, was conducted within the 

Google Earth Engine (GEE) platform. 
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2.2.2 Climate data 

The ERA5-Land is the fifth-generation reanalysis dataset produced by the 

European Centre for Medium-Range Weather Forecasts (ECMWF). It assimilates 210 

multi-source data, including weather station measurements, numerical weather 

predictions, and satellite observations, into dynamic models to generate reanalysis data 

(Muñoz-Sabater et al., 2021). It provides high-quality environmental variables related 

to water and energy fluxes between the land surface and atmosphere, with continuous 

coverage from 1981 to the present. ERA5-Land offers a spatial resolution of 0.1° (~9 215 

km at the equator) and an hourly temporal resolution, making it well-suited for 

modeling near-surface processes. In this study, we extracted daily mean values of key 

climate variables, including 2-meter air temperature (Temperature_2m), surface solar 

radiation and total precipitation from the ERA5-Land Daily dataset. All variables were 

accessed and processed using the GEE platform. 220 

2.2.3 Auxiliary data 

Topographic and soil-related variables were incorporated as auxiliary predictors to 

improve the accuracy of Ts estimation. Elevation and slope were derived from the 

Shuttle Radar Topography Mission (SRTM) digital elevation model (Farr et al., 2007), 

specifically using the Version 3 (SRTM Plus) product with a spatial resolution of 1 arc 225 

second (~30 m). Soil texture plays a critical role in determining Ts through its influence 

on thermal conductivity, which is affected by physical properties such as particle size 

distribution, porosity, bulk density, and moisture retention capacity. In this study, we 

represented soil texture using the relative proportions of clay (fine), silt (medium), and 

sand (coarse) particles. To capture vertical variability in soil properties, we employed 230 

the China Soil Information Grid dataset developed by Liu et al. (2022), which provides 

gridded estimates of soil composition at four depth intervals: 0–5 cm, 5–15 cm, 15–30 

cm, and 30–60 cm. The dataset offers a spatial resolution of 1 km and is suitable for 

high-resolution, profile-based soil modeling. 

2.3 Methods 235 

The spatial adaptive modeling framework consists of three modules as shown in 
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Fig. 3. Module Ⅰ is for data collection and preprocessing, which mainly involves in-situ 

observations, remote sensing, meteorological and supplementary data. Module Ⅱ is 

spatial adaptive modeling, which mainly includes the construction of rotated quadtrees 

and local modeling based on XGBoost. Finally, module Ⅲ is the layer-to-layer 240 

reconstruction of daily 1km resolution multi-layer (0, 5, 10, 15, 20, and 40 cm) Ts 

datasets in China from 2010 to 2020. 

2.3.1. Feature selection 

Multicollinearity among multiple source variables may affect the robustness of the 

models. Therefore, we rigorously evaluated the multicollinearity among the 245 

independent variables using the variance inflation factor (VIF) before modeling to 

remove highly correlated variables. The VIF is a diagnostic statistic used to quantify 

the degree of multicollinearity by measuring how much the variance of a regression 

coefficient is inflated due to correlations with other predictors (Akinwande et al., 2015). 

It is calculated as: 250 

 
2

1

1
i

i

VIF
R

=
−

  (2) 

where
2

iR is the coefficient of determination obtained by regressing the i -th predictor 

against all other predictors. Variables with VIF exceeding 10 are generally considered 

severely multicollinear and should be removed. 

Based on the VIF analysis, we applied the following adjustments to the predictor 255 

set. Accordingly, some variables were excluded due to severe multicollinearity or 

redundancy. Specifically, sand, silt, and clay are compositional variables whose 

proportions sum to 100%, leading to perfect collinearity. To reduce redundancy, we 

removed silt while retaining sand and clay. In addition, LWD was found to be highly 

correlated with net solar radiation at the daily mean scale (Fig. S1) and was therefore 260 

excluded from the final modeling. 

In contrast, although the daily mean LST (LST_mean) and air temperature also 

exhibited strong collinearity, with VIF values exceeding 10 (Fig. S2), we decided to 

retain both. This decision reflects their physical distinctness and complementary 
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information: LST_mean provides higher spatial resolution (1 km), whereas air 265 

temperature offers broader meteorological consistency (9 km). Such differences are 

particularly important in complex ecosystems such as forests, where canopy structure 

and biological processes substantially influence thermal dynamics (Liu et al., 2025). 

2.3.2. Spatial adaptive partition of site measurements 

A quadtree is a hierarchical spatial data structure that recursively subdivides a two-270 

dimensional space into four quadrants, enabling efficient spatial indexing and localized 

data organization. In this study, we adopted a bottom-up, rotated quadtree-based spatial 

partitioning strategy that adaptively generates finer grids in regions with dense samples 

and coarser grids in sparse regions. Compared to global modeling or static grid 

partitioning, this adaptive approach offers improved regional modeling fidelity while 275 

significantly enhancing computational efficiency. The procedure consists of the 

following steps: 

(1) Initialization of Minimum Units 

The entire spatial domain was first divided into uniform, minimum-sized units 

(leaf nodes), each representing a fundamental spatial element. These units may contain 280 

zero or more in-situ observations. This initial step provides the base resolution for 

subsequent hierarchical construction. The structure and principle of quadtree spatial 

indexing are illustrated in Fig. S3. 

(2) Hierarchical Merging 

Starting from the leaf nodes, groups of four adjacent quadrants were recursively 285 

merged into parent nodes if each contained fewer than 30 observation sites (threshold 

selection detailed in Fig. S4). The merging process continued upward until no further 

groups met the threshold. This approach ensures that each node has sufficient sample 

size while achieving spatially adaptive partitioning across the study area. Each 

subregion is then assigned a localized Ts prediction model. 290 

(3) Rotation at different angles 

To reduce potential edge effects introduced by static grid boundaries, we 

implemented a rotated quadtree partitioning strategy. The quadtree structure was rotated 
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at six angles (0°, 15°, 30°, 45°, 60°, and 75°), producing distinct sets of spatial partitions 

for each orientation (Fig. 2). Independent models were trained for each rotated 295 

configuration, and the final Ts estimates were obtained by averaging the outputs from 

all six models. This rotation-based ensemble method improves spatial smoothness and 

minimizes discontinuities at partition boundaries. 

 

Figure 2. multi-angle adaptive quadtree partitioning of site observations (0°, 15°, 30°, 300 

45°, 60°, 75°) 

2.3.3. Machine learning algorithm 

We adopted the XGBoost (Extreme Gradient Boosting) algorithm as the core 

regression model for Ts estimation due to its strong predictive performance, 

computational efficiency, and scalability across large environmental datasets. XGBoost 305 

constructs an ensemble of regression trees in a stage-wise boosting process, where each 

successive tree is trained to minimize the residuals of the previous iteration, thereby 

producing a robust and optimized model (Chen and Guestrin, 2016). One of the key 

strengths of XGBoost is its ability to handle heterogeneous and high-dimensional 

predictor sets, which are common in geoscience applications involving complex terrain, 310 

land cover variability, and climatic gradients. Recent studies have demonstrated its 

effectiveness in similar domains, including land surface temperature reconstruction (Li 

et al., 2024), multi-layer soil moisture estimation (Karthikeyan and Mishra, 2021), 

drought event attribution (Wang et al., 2025a), and crop yield prediction (Li et al., 
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2023b). Given these proven strengths and the spatially nonstationary characteristics of 315 

Ts in our study area, XGBoost was selected to train localized prediction models within 

spatial subregions. 

To rigorously account for the strong spatial autocorrelation of Ts and avoid 

potential data leakage between training and testing subsets, we employed a spatial block 

cross-validation scheme rather than random splitting. Specifically, within each rotated 320 

quadtree grid, observation sites were grouped into spatial blocks based on their 

geographic coordinates: station latitude and longitude were each divided by 1° and 

floored to integer values, and stations sharing the same index were assigned to the same 

block. This ensured that samples within the same spatial block were not simultaneously 

assigned to both the training and testing subsets, thereby avoiding data leakage due to 325 

spatial autocorrelation and enabling a more reliable evaluation of the model’s 

generalization capability. 

Within each spatial grid, the data were partitioned into training (90%) and testing 

(10%) subsets at the block level. The training subset was further subjected to 10-fold 

spatial block cross-validation using GridSearchCV to optimize three key 330 

hyperparameters: the number of trees (n_estimators), maximum tree depth (max_depth), 

and learning rate (learning_rate). Detailed parameter settings are provided in Appendix 

Table S1. The hyperparameter set that yielded the lowest average validation error across 

the ten folds was selected as optimal. The final model was retrained on the full training 

set with the optimized parameters and evaluated on the held-out testing set to assess 335 

generalization. 

A layer-wise prediction strategy was adopted to estimate Ts along the soil profile. 

For the surface layer (0 cm), predictors included air temperature and daily mean LST. 

For subsurface layers, these two variables were replaced by the Ts estimate from the 

immediately preceding layer, enabling the model to capture vertical heat conduction 340 

processes and thereby improving the continuity and physical consistency of layer-wise 

Ts estimation. 
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Figure 3. Workflow of the proposed method to obtain multi-layer Ts over the China. 

2.3.4. Model evaluation metrics 345 

The modeling performance and quality of the predicted Ts were evaluated in terms 

of RMSE, Mean Absolute Error (MAE), R², and Bias. RMSE and MAE were used to 

assess the ability to estimate volatility and fluctuation amplitude, respectively. R² 

represented the percentage of variance explained by the ML models. Bias was used to 

determine whether the estimations were overestimated or underestimated. These 350 

metrics were computed as follows:  
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where
iy and 

ix denoted the in-situ Ts and estimated Ts for all the stations and periods, 

respectively. Y and X represented the mean values of the in-situ Ts and estimated Ts, 360 

respectively. 

 

3. Results 

3.1 Model performance across sites 

Figure 4 illustrates the accuracy performance of all models constructed at various 365 

depths, utilizing different grid configurations and rotation angles, for both the training 

and test sets. The grouped box plots demonstrate that the R² values for the training and 

test sets at different depths range from 0.82 to 0.98, and the RMSE values vary from 

0.6 to 2.8 K. Both the training and test sets exhibit high accuracy with no evident signs 

of overfitting. A depth-wise comparison shows that model performance at 0 cm and 40 370 

cm is marginally lower than at other depths. 

Furthermore, to enhance the independence of the evaluation, we validated the final 

dataset against daily Ts observations from 18 flux tower sites of the ChinaFLUX 

network. For consistency, we retained measurements only at depths of 0, 5, 10, 15, 20, 

and 40 cm. Metadata for these sites is provided in Table S2, and the corresponding 375 

validation results are presented in Figure 5. The evaluation shows that our dataset 

achieves high accuracy at these independent sites (R² = 0.85–0.90; RMSE = 3.3–4.2 K), 

further demonstrating the robustness of our approach. Taken together, the validation 

results from both spatial block cross-validation and flux tower observations confirm 

that the spatially adaptive model we developed exhibits reliable accuracy and strong 380 

spatial generalization capability. 
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Figure 4. Model performance for training and test sets across different depths. 

 

 385 

Figure 5. Density scatter plots comparing estimated daily Ts with flux tower 

observations at different depths 

3.2 Model performance at individual sites 

To evaluate spatial prediction accuracy in the spatial-scale evaluation, R² and 

RMSE were calculated at each station. Model performance was assessed across all soil 390 

depths at the station level. Spatial results show that station-level R² values range from 

0.70 to 1.00, and RMSE values range from 0 to 3 K, indicating acceptable prediction 
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accuracy across all soil layers. As illustrated in Figures 6 and 7, most stations achieve 

R² values above 0.90. Regions with higher prediction accuracy are mainly located in 

the northwest, northeast, and central areas, whereas larger errors are concentrated in the 395 

Yunnan–Guizhou Plateau (YGP) and the sparsely monitored QTP. The histogram in Fig. 

7 further shows that RMSE values for most depths fall between 0.5 and 2.0 K, indicating 

generally good predictive performance. Notably, prediction errors were highest at the 

surface layer (0 cm), decreased with depth, but slightly increased again at 40 cm, where 

performance was weaker than at 5–20 cm. 400 

 

Figure 6. Goodness of R² across China estimated during the model testing phase. 

Performance metrics are calculated between predicted_Ts and in-situ Ts data sets. 

 

 405 
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Figure 7. Goodness of RMSE across China estimated during the model testing phase. 

Performance metrics are calculated between predicted Ts and in-situ Ts data sets. 

3.3 Evaluation across land cover types and seasons 

Figure 8 shows grouped box plots of the prediction performance of Ts across 410 

different land cover types (barren land, cropland, forest, and grassland) at six depths (0, 

5, 10, 15, 20, and 40 cm). The evaluation metrics include R² and RMSE. The median 

R² values across land cover types and depths range from 0.96 to 0.98, consistently 

exceeding 0.96 (red dashed line), indicating overall high prediction accuracy. Among 

land cover types, barren land exhibits the highest R² values, followed by cropland, while 415 

forest and grassland show slightly lower performance. The median RMSE values 

generally range from 1.1 to 1.8 K. Barren land shows higher RMSE compared with 

other land cover types, whereas cropland, forest, and grassland maintain lower and 

more stable RMSE. Across depths, RMSE is highest at the surface layer (0 cm), 

decreases steadily with increasing depth, and shows a slight increase at 40 cm. 420 

Furthermore, seasonal variations in prediction accuracy are shown in Fig. 9. The 

median R² values across depths range from 0.6 to 0.98, with higher values in spring 

(green) and autumn (pink) and lower values in summer (orange) and winter (blue), 
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particularly at 20–40 cm depth. The median RMSE values range from approximately 

1.0 to 2.0 K, being lower in spring and autumn and higher in summer and winter, with 425 

the largest median error observed at 40 cm depth in winter. With increasing soil depth, 

the median errors decrease from the surface (0 cm) to 5–10 cm, and then gradually 

accumulate from 15 to 40 cm. 

 
Figure 8. Evaluation of predicted Ts at different depths (i.e., 0, 5, 10, 15, 20, 40cm) 430 

across various land use types (i.e., Forest, Grassland, Cropland, Barren) 
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Figure 9. Evaluation of the predicted_Ts in different depth (ie.0,5,10,15,20,40 cm) at 

sites with four seasons (i.e., spring, summer, autumn, winter). Winter is defined as 435 

December, January, and February; spring as March, April, and May; summer as June, 

July, and August; and autumn as September, October, and November. 

3.4 Comparison with other products 

Figure 10 presents a comparative analysis of different Ts products at the surface 

(0 cm depth), evaluating the spatial characteristics of the model-generated Ts against 440 

the ERA5-Land and GLDAS 2.1 products across both national-scale regions (Fig. 10a–

c) and zoomed-in local areas (Fig. 10d–f). Compared to the GLDAS 2.1 product (Fig. 

11c and 11f), the model generated Ts exhibits significantly finer spatial resolution and 

a superior ability to capture localized spatial heterogeneity. The GLDAS 2.1 product, 

characterized by a coarser resolution, inadequately represents local features and 445 

exhibits notable limitations, especially in specific regions (Fig. 10f). Conversely, the 

spatial distribution of our Ts data closely matches that of the ERA5-Land product (Fig. 

10b and 10e). Nevertheless, the ERA5-Land product may be constrained by its input 

resolution, whereas our adaptive modeling approach achieves greater precision in 

representing fine-scale spatial variability.  450 

Scatter density plots in Fig. S5 further indicate that our estimated Ts achieves 

significantly higher site-level accuracy compared to ERA5-Land and GLDAS 2.1. 
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Specifically, the R² values between in-situ observations and our estimations at depths 

of 0, 10, and 40 cm range from 0.94 to 0.97, compared to 0.83–0.89 for ERA5-Land 

and 0.83–0.87 for GLDAS 2.1. These results underscore the reliability and enhanced 455 

accuracy of our Ts estimation product at both spatial and site scales, effectively 

overcoming the limitations associated with GLDAS 2.1 and ERA5-Land products. 

These findings highlight the strong potential of the model to accurately capture the 

spatial distribution of Ts and enhance regional-scale Ts modeling. 

 460 

Figure 10. Comparison of different Ts products (e.g., 0 cm) 

3.5 Spatial and temporal patterns of Ts at varied depths across China 

To examine seasonal and vertical variations in the spatial distribution of Ts, we 

selected two contrasting dates: January 1, 2020 (winter) and July 1, 2020 (summer). 

Figure 11 a–f illustrates the spatial distribution and corresponding histograms of Ts at 465 

different depths (0 cm, 5 cm, 10 cm, 15 cm, 20 cm, 40 cm) across China on January 1, 

2020. The results show that Ts in northern China (particularly in the northeast, northwest, 

and the QTP) is generally lower in January, exhibiting distinct cold zones. In contrast, 

southern areas exhibit higher Ts values, forming a gradual north-to-south temperature 

gradient. Moreover, deeper soil layers (e.g., 40 cm) exhibit higher temperatures than 470 

surface layers (0 cm), especially in northeastern China and the QTP, reflecting the 

insulating effect of deeper soils during winter. 

Figure 11a1–f1 illustrates the spatial distribution and histograms of Ts on July 1, 
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2020. Compared to January, a significant increase in Ts is observed across China in July, 

with widespread high-temperature zones in the eastern and southern regions. The 475 

increase is particularly pronounced in northern areas, while changes in the south are 

relatively moderate. In contrast to winter conditions, Ts decreases with increasing soil 

depth during summer, with surface temperatures (0 cm) exceeding those at 40 cm, 

indicating the downward heat conduction from the surface. Overall, Comparative 

analysis of Fig. 11a–f and Fig. 11a1–f1 elucidates both seasonal variation and vertical 480 

patterns of Ts: deeper layers (5-40 cm) are warmer than the surface (0 cm) during winter, 

whereas the surface is warmer in summer. The histogram further illustrates the variation 

in Ts distribution across different depths. The results indicate that temperature 

fluctuations in deeper soil layers are significantly smaller than those near the surface, 

reflecting greater thermal stability in the subsurface. These patterns reflect the 485 

combined influences of geographic location, topography, and climatic conditions on Ts 

spatial distribution and vertical dynamics, offering valuable insights into soil thermal 

behavior. 
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Figure 11. Spatial patterns and histograms of Estimated Ts at different depths (0, 5, 490 

10, 15, 20, and 40 cm) 

 

To further assess the temporal performance of Ts estimation, Fig. 12 presents the 

time series of estimated Ts alongside in-situ measurements at four randomly selected 

stations (e.g., Station 56746, 99.53°E, 25.45°N) from January 2018 to January 2020. 495 

The figure displays Ts at two depths (0 cm and 40 cm), including estimated Ts 

(Estimated_0cm, Estimated_40cm), in-situ Ts (In-situ_0cm, In-situ_40cm), daily mean 

land surface temperature (Daily_mean_LST), and 2-meter air temperature 

(Temperature_2m). The air temperature shows distinct seasonal cycles, while Ts 

exhibits smoother temporal variations. In general, Ts reaches its peak during summer 500 

and its minimum in winter, though its temporal dynamics vary with soil depth. 

Specifically, Ts at 0 cm responds rapidly to air temperature changes and exhibits larger 

amplitude variations, while Ts at 40 cm shows slower responses and a noticeable lag, 
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reflecting the damping effect of vertical heat conduction. Site-level accuracy was 

evaluated using RMSE, which ranged from 0.84 K to 1.80 K across both depths, 505 

indicating strong agreement between predicted and observed values. Overall, the time 

series analysis confirms the robustness and reliability of the model in estimating Ts 

across varying depths, offering valuable insights into regional soil thermal dynamics. 

 
Figure 12. Time series of the Estimated_0cm, Estimated_40cm, Daily_mean_LST, 510 

and Temperature_2m at four sites from different regions between 2018-2019. 

 

 

4. Discussion 

4.1 The advantages of the spatially adaptive model 515 

Previous studies have explored various approaches for constructing Ts datasets. 

For instance, Wang et al., (2023) created a daily multi-layer Ts dataset for China (1980-
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2010) at 0.25° resolution, employing interpolation techniques including the thin-plain 

spline and the angular distance weight interpolation methods with over 2,000 in-situ 

observations. A persistent challenge in building national-scale Ts datasets, however, lies 520 

in the highly uneven spatial distribution of observation stations—densely clustered in 

eastern lowlands while remaining sparse in western and high-altitude regions. Global 

modeling approaches, which train a single unified function across the entire domain, 

are inherently limited in capturing the nonlinear and non-stationary relationships 

between Ts and its predictors in such heterogeneous landscapes. Specifically, in sparsely 525 

sampled regions, global models lack sufficient data to learn effectively, resulting in low 

prediction accuracy. In contrast, in densely sampled areas, the model tends to overfit, 

and the training process becomes disproportionately influenced by those regions. This 

imbalance introduces systematic biases and limits model generalizability.  

Reanalysis datasets, which synergize data assimilation systems with numerical 530 

weather prediction and land surface modeling frameworks, provide valuable 

representations of land-atmosphere interactions and subsurface heat transfer processes. 

These products are particularly advantageous for large-scale climate simulations and 

long-term environmental assessments. Yang and Zhang (2018) assessed the Ts accuracy 

of four reanalysis datasets (ERA-Interim/Land, MERRA-2, CFSR, and GLDAS-2.0) in 535 

China using in-situ monthly mean Ts observations. The results showed that all 

reanalysis datasets consistently underestimated Ts across the country. More recently, the 

ERA5-Land and GLDAS 2.1 Ts dataset offers high temporal resolution (hourly/3-hour), 

but it is limited by a spatial resolution of 0.1 or 0.25 degrees. Beyond reanalysis datasets, 

some efforts have focused on constructing empirical Ts products using ML approaches. 540 

For example, the Global Soil Bioclimatic Variables dataset (Lembrechts et al., 2022), 

derived from Random Forest modeling with 8,519 global sensors, provides only long-

term climatological means, rather than high-resolution daily estimates. 

In contrast, the methodological framework proposed in this study addresses both 

accuracy and resolution limitations. The spatially adaptive modeling strategy offers 545 

significant advantages over traditional interpolation and globally trained ML models. 
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Its core strength lies in localized modeling, which accounts for regional variability in 

topography, soil properties, and climate conditions. As shown in Fig. S6, the rotated 

quadtree strategy partitions space at six orientations (0°–75°), enabling a more nuanced 

representation of spatial heterogeneity. By averaging predictions across these rotated 550 

configurations, the method reduces boundary artifacts often associated with static grids, 

resulting in smoother and more continuous spatial outputs. Moreover, the fine spatial 

resolution (1 km) enables the model to resolve localized thermal patterns that are critical 

for understanding vegetation dynamics and soil biogeochemistry. We also assessed the 

contribution of satellite-derived LST to model performance. As shown in Figs. S7 and 555 

S8, incorporating LST as an input variable, relative to using only air temperature, 

significantly enhances overall modeling accuracy and improves performance across 

sites with different land cover types, with the most pronounced improvements observed 

in barren land areas. This highlights the importance of multi-source data fusion in 

boosting the performance of spatially adaptive models under data-scarce conditions. In 560 

summary, our spatially adaptive local modeling approach offers a more robust and 

scalable solution for large-scale Ts estimation under heterogeneous station distributions 

and complex environmental conditions. 

4.2 Potential applications of the Ts product 

The high-resolution, multi-layer Ts datasets generated using the spatially adaptive 565 

estimation method fill a significant data gap in China, where comprehensive Ts profile 

records are scarce. As a key biophysical variable, Ts provides crucial insights into soil–

atmosphere interactions that are not captured by air temperature alone. In agricultural 

systems, Ts governs fundamental processes throughout the crop life cycle—from 

sowing and germination to growth and yield formation (Rahman et al., 2019). Multi-570 

layer Ts data can optimize accumulated temperature models, enhancing the precision of 

sowing decisions and supporting sustainable field management. Additionally, Ts 

influences nutrient decomposition and water movement within soil profiles (Jebamalar 

et al., 2012), directly impacting soil fertility, moisture retention, and thus, the overall 

efficiency of agroecosystems. 575 
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Beyond agricultural applications, Ts is increasingly recognized as a critical 

variable for assessing ecosystem responses to climate extremes. For instance, Fan et al., 

(2024) proposed the Soil Composite Drought Heatwave index to evaluate the severity 

of concurrent drought and heatwave events. However, their findings show that existing 

reanalysis datasets often underestimate these events compared to observational records, 580 

highlighting the need for more accurate, high-resolution Ts data. In the context of 

intensifying global warming and extreme climate events, access to reliable Ts datasets 

is essential for improving the monitoring and prediction of environmental stressors. 

These advancements are not only vital for understanding terrestrial ecosystem 

dynamics but also for strengthening climate resilience at both regional and national 585 

scales. 

Moreover, Ts plays a pivotal role in ecological and hydrological modeling, offering 

a more direct representation of surface processes than air temperature. It serves as a 

sensitive indicator of biogeochemical cycles and phenological changes (Lembrechts et 

al., 2022). For example, Liu et al., (2024) demonstrated that Ts is a dominant driver of 590 

spring phenology in Chinese forests, making it a valuable input for climate–vegetation 

interaction models. In cold regions, Ts governs soil freeze–thaw cycles, which are 

critical for hydrological processes such as runoff generation, groundwater recharge, and 

permafrost monitoring (Smith et al., 2022; Xu et al., 2022). Furthermore, Ts is a key 

driver of soil respiration, influencing CO₂ fluxes and terrestrial carbon cycling (Lloyd 595 

and Taylor, 1994; Hursh et al., 2017). As such, the development of high-resolution Ts 

products enables more accurate simulation of ecosystem carbon dynamics and regional 

carbon budgeting, thereby advancing our understanding of climate feedback 

mechanisms. 

4.3 Limitations and future perspective 600 

Despite the strong performance of our spatially adaptive Ts estimation framework, 

several limitations warrant acknowledgment. As shown in Figures 6 and 7, model 

validation at station level reveals spatial heterogeneity in prediction accuracy, with 

relatively lower performance observed in the YGP and the QTP regions. On the one 
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hand, as evidenced by Figure 10, our multi-source modeling framework captures Ts 605 

variations across different elevations and geomorphic conditions more effectively than 

existing datasets. However, the QTP and YGP are characterized by complex terrain and 

high altitudes, coupled with rapidly changing climatic conditions, which significantly 

complicate Ts estimation. These findings align with previous studies showing that high 

elevations intensify the disconnect between air temperature and LST, thereby increasing 610 

the uncertainty in thermal modeling (Mo et al., 2025). 

MODIS LST serves as a critical input to our modeling framework. However, as an 

optical remote sensing product, it is highly susceptible to cloud contamination, often 

resulting in data gaps. Despite the use of spatiotemporal interpolation and SG filtering, 

residual uncertainties persist in the reconstructed LST data. Future improvements in Ts 615 

reconstruction can be pursued along two main directions. First, more physically 

grounded LST reconstruction methods can be adopted, such as incorporating surface 

energy balance models and diurnal temperature cycle models (Hong et al., 2022; 

Firozjaei et al., 2024; Wang et al., 2024). These methods apply energy conservation 

principles to estimate Ts during periods of missing or unreliable observations, thereby 620 

providing more realistic estimates of land surface thermal conditions during periods of 

cloud cover. Second, integrating higher temporal resolution remote sensing 

observations may help overcome the limitations of MODIS. For instance, passive 

microwave satellite data provide all-weather observations and are less sensitive to cloud 

interference (Duan et al., 2017; Wu et al., 2022). In addition, next-generation 625 

geostationary satellites such as Himawari-8 offer observations at 10-minute intervals, 

substantially enhancing the temporal continuity and quality of surface temperature 

estimates (Yamamoto et al., 2022; You et al., 2024). These enhancements are expected 

to significantly improve the accuracy and temporal continuity of soil temperature 

monitoring. 630 

Our results (Figures 8 and 9) show that model accuracy varies across different soil 

depths, with additional influences from season and land use. Accuracy is relatively 

lower at the surface (0 cm), improves at intermediate depths (5–10 cm), and then 
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declines again at greater depths (20–40 cm). This depth-dependent pattern can be 

explained by the physical characteristics of soil temperature. Surface soil temperature 635 

is highly sensitive to short-term meteorological fluctuations such as radiation, 

precipitation, and evapotranspiration, leading to greater spatiotemporal variability and 

larger prediction errors. In contrast, intermediate soil layers benefit from the buffering 

effects of thermal diffusion and soil heat capacity, which dampen high-frequency 

fluctuations and stabilize the relationship between predictors and Ts, thereby improving 640 

performance at these depths. At greater depths, however, surface-level errors propagate 

downward through the cascading framework, resulting in reduced accuracy —

particularly during summer and winter. 

Seasonal changes and variations in land cover further contribute to differences in 

estimation accuracy. As shown in Figures 8 and 9, the model exhibits higher accuracy 645 

in spring and autumn, whereas its performance tends to decline during summer and 

winter. During summer, dense vegetation growth and canopy closure reduce the 

influence of surface–atmosphere energy exchanges on Ts, weakening the correlation 

between canopy temperature and subsurface Ts (Kropp et al., 2020; Cui et al., 2022). In 

winter, snow cover introduces a suite of confounding effects: high surface albedo 650 

reduces net radiation (Loranty et al., 2014; Li et al., 2018), while snow acts as an 

insulator, limiting the soil's response to cold air incursions (Zhang, 2005; Myers-Smith 

et al., 2015). Additionally, low temperatures lead to soil water freezing, which alters the 

soil’s thermal conductivity and heat storage capacity. These factors, together with 

frequent freeze–thaw cycles, introduce complex nonlinear dynamics in Ts that increase 655 

modeling uncertainty (Li et al., 2023a; Imanian et al., 2024). While our multi-source 

adaptive modeling framework performs well across depths, it does not explicitly 

account for the physical mechanisms of vertical heat transfer. Future research could 

explore deep learning models that are capable of learning complex spatiotemporal 

features and improving the physical interpretability of Ts variations across time, space, 660 

and depth. 
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5. Conclusion 

This study addresses the lack of high spatiotemporal resolution multi-layer Ts data 

by proposing a spatially adaptive ML framework, successfully constructing a retrieval 665 

model for multi-layer Ts. By integrating in-situ observations, reanalysis data, satellite 

remote sensing data, as well as topographic and soil texture data, the model 

demonstrates high accuracy across different depths, seasons, and land use types. The 

results indicate relatively higher performance in spring and autumn than in summer and 

winter, and greater accuracy in bare land, cropland, and grassland compared with 670 

forested areas. In comparison with ERA5-Land and GLDAS 2.1 Ts products, the multi-

layer Ts data generated in this study exhibit significant improvements in both accuracy 

and spatial detail. Based on this framework, we have first developed the long-term 

(2010-2020) high spatiotemporal resolution (daily, 1 km resolution) multi-layer (0, 5, 

10, 15, 20, 40 cm) Ts dataset for China. Future research could further explore methods 675 

that simultaneously integrate temporal, spatial, and depth information, and utilize multi-

source sensor data to enhance the spatiotemporal monitoring capabilities of Ts at 

different depths. Overall, this study demonstrates the potential of multi-source data in 

Ts estimation and provides a reliable tool and data foundation for ecological modeling, 

agricultural production and related studies.  680 

 

6. Data availability 

The daily multi-layer Ts products (0, 5, 10, 15, 20, and 40 cm) at 1 km resolution 

from 2010 to 2020 are freely available in HDF5 format to the public at 

https://doi.org/10.11888/Terre.tpdc.302333 (Wang et al., 2025b). In addition, monthly 685 

multi-layer Ts data are also provided to meet the needs of various users. 
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