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Abstract  

Soil temperature (Ts) is critical in regulating agricultural production, ecosystem 

functions, hydrological cycling and climate dynamics. However, the inherent spatial 

and temporal heterogeneity of soil thermal regimes constitutes a persistent challenge in 

obtaining high-resolution, continuous gridded Ts datasets along vertical profiles. To 5 

address this issue, we propose a spatially adaptive layer-cascading Extreme Gradient 

Boosting (XGBoost) algorithm to generate daily multi-layer Ts data (0, 5, 10, 15, 20, 

and 40 cm) at a spatial resolution of 1 km in China from 2010 to 2020. The methodology 

dynamically partitions non-uniformly distributed measuring sites (2,093 sites across the 

country) to quadtrees and incorporates thermal coupling effects propagated between 10 

neighbor soil layers. Multi-source data, including satellite retrievals of land surface 

temperature and vegetation index, and ERA5 reanalysis climate variables were used as 

inputs. Validation using both spatially independent test sets and flux-tower observations 

demonstrated the robustness and accuracy of the product. It is noted the model’s 

performance was lower in summers and winters than in springs and autumns. Compared 15 

to existing global or regional Ts products, the dataset developed here is characterized 

by its fine spatio-temporal patterns and high reliability, enabling it to provide supports 

for precision agriculture, ecosystem modeling and understanding climate-land feedback. 

Free access to the dataset can be found at https://doi.org/10.11888/Terre.tpdc.302333 

(Wang et al., 2025b). 20 

 

Key words: Soil temperature, spatially adaptive, machine learning, multi-source data 

 

 

 25 

 

 

 

 

https://doi.org/10.11888/Terre.tpdc.302333


3 

 

1. Introduction 30 

Soil temperature (Ts) is a critical driver of ecosystem dynamics, influencing nearly 

all physical, chemical, and biological processes (Bayatvarkeshi et al., 2021; Xu et al., 

2023; Liu et al., 2025). Ts plays a pivotal role in land-atmosphere exchanges. By 

controlling the partitioning of net radiation into sensible and latent heat fluxes, Ts 

directly shapes atmospheric boundary layer circulation, with cascading effects on 35 

regional climate patterns (Mahanama et al., 2008; Chen et al., 2021a). Ts also drives 

soil freeze-thaw cycles, which are critical for hydrological processes in cold regions. 

Permafrost thaw alters subsurface water storage, runoff dynamics and groundwater 

recharge, with implications for both local and basin-scale hydrology (Zhang et al., 2005; 

Shati et al., 2018). In addition, it governs the rates of soil microbial activities, nutrient 40 

cycling, and organic matter decomposition, with direct implications for carbon 

dynamics. For instance, Ts modulates microbial respiration, thereby regulating the 

release of organic carbon into the atmosphere as CO2 that is central to global carbon 

cycling (Yang et al., 2011). Given its multifaceted influences on carbon cycling, climate 

feedbacks and hydrological systems, accurate Ts estimation is indispensable for 45 

advancing ecosystem monitoring, refining climate models, and developing effective 

strategies to mitigate and adapt to climate change. 

Ts exhibits high heterogeneity at large spatial scales due to varying driving factors. 

Solar radiation changes its radiation intensity by adjusting the incident angle and 

sunshine duration, thus affecting the heating effects on surface soils (Wang and 50 

Dickinson, 2013). Additionally, diurnal variations of air temperature cause periodic 

changes in surface temperature, while the amplitude is often closely related to the local 

climate and topography. Furthermore, surface covers (e.g., vegetation and snow) 

significantly impact Ts (Xu et al., 2020; Mortier et al., 2024). Vegetation canopies 

effectively intercept and scatter solar radiation, while root systems modulate soil 55 

moisture distribution, thereby stabilizing deeper soil temperatures (Li et al., 2024). 

Snow cover, characterized by high albedo, reflects substantial solar radiation and acts 

as an effective insulator, mitigating cold air penetration and maintaining warmer soil 
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temperatures during winter months (Myers-Smith et al., 2015). Moreover, thermal 

conductivity and heat capacity are critical parameters controlling vertical heat transfer 60 

in soils. Sandy soils have higher porosity and lower water retention, resulting in lower 

heat capacity and higher thermal conductivity, thus responding rapidly to temperature 

changes. In contrast, clay soils have lower porosity and stronger water retention, leading 

to higher heat capacity and significant thermal stability, characterized by delayed 

responses to temperature variations (Ochsner et al., 2001; Zhao et al., 2022). 65 

Understanding these mechanisms is essential for developing refined vertical Ts 

distribution models and improving the accuracy of Ts estimation.  

Given these complex processes, accurately estimating Ts across different depths is 

challenging. Quite a few models have been proposed for Ts estimation. These models 

can be generally classified into physical, statistical or empirical, and machine learning 70 

(ML) types (Li et al., 2024; Farhangmehr et al., 2025). Physical models, derived from 

fundamental heat conduction laws and energy balance equations, provide explicit 

mechanistic interpretations but suffer from computational complexity and heavy 

reliance on multi-domain input parameters, which range from soil properties to climatic 

variables (Gao et al., 2008; Hu et al., 2016; Badache et al., 2016). Statistical or empirical 75 

models, such as autoregressive integrated moving average and regression methods 

(Xing et al., 2018), are usually limited to localized, small-sample applications. Data-

driven ML techniques demonstrate a superior ability to capture nonlinear relationships 

and thus usually can obtain high prediction accuracy. For instance, at site scale, Feng et 

al. (2019) estimated multi-layer Ts at half-hourly resolutions using Extreme Learning 80 

Machine, with a RMSE ranging from 2.26~2.95 K. Li et al., (2022) implemented an 

attention-aware long short-term memory (LSTM) model for predicting next-day Ts and 

the model obtained a RMSE of 0.74~2.53 K. At the regional scale, Xu et al. (2023) 

integrated satellite remote sensing with a deep belief network model to reconstruct 

continuous Ts profiles (at depths of 5–40 cm) across the Qinghai-Tibetan Plateau (QTP), 85 

obtaining R² > 0.836 and MAE < 2.152 °C. Similarly, Farhangmehr et al. (2025) 

developed a hybrid convolutional neural network-LSTM (CNN-LSTM) architecture for 
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predicting Ts across North American climatic zones at 0–7 cm depths, with R² ranging 

from 0.93 to 0.99.  

Although significant advances have been made in estimating Ts, large-scale Ts 90 

prediction continues to confront critical challenges, sourcing from environmental 

complexity and methodological limitations. First, Ts exhibits considerable spatial 

heterogeneity driven by regional disparities in topography, soil composition, vegetation 

density, and microclimate (Bayatvarkeshi et al., 2021). These factors create 

nonstationary relationships between Ts and explanatory variables (e.g., air temperature, 95 

soil moisture), necessitating regionally tailored modeling approaches. Second, data 

scarcity and uneven spatial distribution of site measurements introduce further 

complexity. Aggregating sparse, unevenly distributed measurements into a single model 

often leads to overfitting: high accuracy on training data but poor generalization to 

underrepresented regions or previously unseen data (Li et al., 2024). Ultimately, 100 

developing models that reconcile scalability (for large spatial scales) with localized 

precision (to capture site-specific interactions) remains an unresolved priority, 

underscoring the persistent challenge of balancing universal applicability with spatially 

adaptive fidelity in Ts prediction methodology. 

Recent advances in spatially adaptive modeling have increasingly emphasized the 105 

importance of addressing spatial heterogeneity and uneven sampling density in 

environmental datasets. Classical quadtree structures and related hierarchical spatial 

data models provide the theoretical foundation for constructing adaptive, variable-sized 

spatial partitions, enabling efficient organization of multiscale spatial information 

through recursive subdivision (Samet, 1984). Building on this foundation, Lagonigro et 110 

al., (2020) developed the AQuadtree R package, which provides an adaptive spatial 

partitioning framework capable of generating variable-sized grid cells according to the 

spatial distribution of observations. This adaptive partitioning produces finer grids in 

data-dense regions and coarser grids where observations are sparse, ensuring a spatial 

structure that better reflects sampling heterogeneity and improves the model’s capacity 115 

to capture localized spatial variability. Extending this idea, we develop a rotated-
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quadtree strategy that applies multiple orientation angles during the quadtree 

subdivision process. This enhancement allows the model to capture spatial 

heterogeneity from multiple directional perspectives, and averaging predictions across 

rotation angles substantially reduces the boundary artifacts that may arise from single-120 

angle grid partitioning, ultimately improving the robustness of local modeling under 

complex environmental gradients. 

To address the irregular station distribution, and non-stationarity commonly 

encountered in large-scale Ts estimation, we construct a spatially adaptive modeling 

framework based on the rotated quadtree approach. Within each grid cell, multi-source 125 

environmental predictors are integrated with in situ station records, and Ts is estimated 

using XGBoost models. Based on this framework, the objectives of this study are to: 

(1) construct a spatially adaptive modeling system; (2) generate a multi-layer Ts dataset 

at a daily time-step and one kilometer resolution in China from 2010-2020; and (3) 

evaluate the dataset through independent validation with flux tower observations and 130 

benchmarking against widely used Ts products. The proposed methodology could 

directly address the scaling challenges induced by spatial heterogeneity and uneven data 

distribution. The generated products would provide a robust foundation for high-

resolution environmental modeling, precision agriculture and climate impact 

assessments. 135 

 

2. Materials and methods 

2.1 In-situ Ts observations 

In this study, in-situ Ts observations was measured at six depths: at the surface (0 

m), and at subsurface levels of 0.05, 0.10, 0.15, 0.20, and 0.40 meters. Data were 140 

collected through the national weather station network operated by the China 

Meteorological Administration (CMA), in accordance with standardized measurement 

protocols. At each site, Ts was recorded every 10 minutes and automatically uploaded 

to a central server. Daily mean values at each depth were calculated from these high-

frequency records. We then assessed data completeness for the period 2010–2020 and 145 
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excluded stations with more than 20% missing daily records at any depth. After quality 

control, 2,093 stations were retained for model development.  

The observation network spans a wide range of climatic zones—from cold and 

temperate to subtropical and tropical, and includes diverse land-use and ecosystem 

types, such as forests, grasslands, croplands, and barren lands. However, the spatial 150 

distribution of stations is notably uneven. High station density is observed in 

northeastern China, the central and eastern plains, and the southern hilly regions, 

whereas station coverage is sparse in the arid and semi-arid regions of northwestern 

China and on the QTP. The spatial distribution of in-situ observation sites is shown in 

Figure 1, and details of the dataset partitioning strategy are provided in Section 2.3.3.155 

 

Figure 1. Spatial distribution of in-situ Ts sites at different depths across China and 

the corresponding environmental variables. This figure presents the spatial 

distribution of 2,093 in-situ Ts sites across China. The environmental variables 

corresponding to these sites include (a) land cover types (forests, barren land, 160 

grasslands, croplands, water bodies, and urban areas), (b) elevation (ranging from -

156 m to 8424 m), (c) mean annual temperature (MAT, ranging from -18°C to 26°C), 

and (d) mean annual precipitation (MAP, ranging from 11 mm to 10,800 mm). 

2.2 Predictor variables 

To construct a robust multi-layer Ts estimation model, we selected a 165 

comprehensive suite of predictor variables, integrating remote sensing products, 

meteorological factors, and auxiliary environmental data. Meteorological variables, 

especially air temperature and precipitation, have been consistently recognized in 

previous studies as primary determinants of Ts variability (Bond-Lamberty et al., 2005; 
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Nahvi et al., 2016). Among these, air temperature has been widely regarded as the most 170 

influential variable due to its strong linear relationship with Ts (Khosravi et al., 2023). 

In addition, both net solar radiation and downward longwave radiation (LWD) 

were considered. Net solar radiation directly represents the shortwave energy absorbed 

by the land surface and serves as the primary driver of the daytime surface energy 

budget, whereas LWD plays a particularly important role under nighttime and winter 175 

conditions by regulating surface heat loss through the longwave radiation balance. 

Together, they jointly control the surface energy balance and directly drive the 

spatiotemporal dynamics of Ts (Peng et al., 2016). 

Thermal infrared remote sensing data also exhibit a high correlation with near-

surface Ts. Integrating thermal remote sensing products and energy balance-based 180 

models offers an effective means of estimating Ts with high spatial and temporal 

continuity. This strategy has been validated by numerous studies (Huang et al., 2020; 

Xu et al., 2023). Surface land cover further modulates Ts by altering surface albedo, 

regulating evapotranspiration (ET), and influencing energy partitioning processes. 

Accordingly, the enhanced vegetation index (EVI), derived from satellite observations, 185 

was incorporated as a proxy for vegetation density and type (Bright et al., 2017; Li et 

al., 2024b). To capture the influence of underlying surface characteristics on Ts, 

topographic variables such as elevation and slope were included, along with soil texture 

data across various depths. These features collectively reflect the heterogeneous 

physical and thermal properties of the soil, contributing to spatial variations in heat 190 

conduction and storage capacity. A full list of the predictor variables used in the model 

is summarized in Table 1. 

 

 

 195 
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Table 1. Details of the predictor variables for training the model. 

Type Data Variable 
Spatial 

resolution 

Temporal 

resolution 
Reference 

Remotely sensed 

product 

MOD09GA EVI 500 m×500 m Daily 
Huete et al., 

2002 

MOD11A1 LST_ Day 1 km×1 km Daily  

MOD11A1 LST_ Night 1 km×1 km Daily  

Climate data ERA5-Land 

Temperature_2m 

surface_net_solar_r

adiation_sum 

surface_thermal_ra

diation_downwards

_sum 

Precipitation 

9 km×9 km Daily 

Muñoz-

Sabater et al., 

2021 

Supplementary 

data 

USGS_STRM 
Elevation 30 m   

Slope 30 m   

Soil Texture 

Sand, Silt, Clay 

Depth: 

0-5, 5-15, 15-30, 

30-60cm 

250 m×250 m  Liu et al., 2022 

 
In-situ 

measurements 

Soil temperature 

at 0, 5, 10, 15, 20, 

and 40 cm 

- Daily  

2.2.1 Remote sensing data 200 

The MOD11A1 LST product, at a daily time-step and a spatial resolution of 1 km, 

was utilized. It includes both daytime (LSTday) and nighttime (LSTnight) temperatures at 

10:30 AM and 10:30 PM, respectively, along with quality assessment information (Wan 

and Dozier, 1996). To enhance the estimation of daily mean Ts, the average of LSTday 

and LSTnight values was calculated and used in the analysis. 205 

EVI from 2010 to 2020 were selected as predictor of Ts. The MODIS Surface 

Reflectance Product (MOD09GA), derived from MODIS Level-1B data, provides daily 

surface reflectance of seven bands at 500 m × 500 m resolution. The EVI is defined by 

Huete et al., (2002), and the retrieval equation is as follows: 

 
( )

( )
_ 1 2

1

_

_ 1 _ _22 3

SR b SR b

SR b SR b SR b

EVI G
C C L

 

  

−
= 

+    −   +
 (1) 210 

where G = 2.5, C1 = 6, C2 = 7.5, L = 1. The remote sensing reflectance variables 
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SR_b1(620-670nm), SR_b2 (841-876nm) and SR_b3 (459–479 nm) of MOD09GA data 

represents red, near-infrared and blue bands. The coefficients 2.5 and 1 represent the 

gain and canopy background, respectively (Huete et al., 2002). The atmospheric 

influence on the red band is corrected using the blue band and the coefficients 6 and 215 

7.5, respectively. 

Subsequently, cloud contamination caused partial spatial absences in the daily LST 

and EVI. To address this issue, we applied a temporal and spatial linear interpolation 

algorithm, which utilizes time-series data from adjacent days and spatial information 

from neighboring pixels to fill the current missing values, thereby generating a time-220 

continuous and spatially complete image series. This approach follows the methods 

described in Chen et al., (2017) and Cao et al., (2018), with modifications to better suit 

our dataset. Then, the Savitzky-Golay (S-G) filter was used to smooth the interpolated 

data, resulting in continuous surface temperature and vegetation index data with high 

temporal and spatial resolution (Kong et al., 2019; Chen et al., 2021b). All data 225 

preprocessing, including image filtering and interpolation, was conducted within the 

Google Earth Engine (GEE) platform. 

2.2.2 Climate data 

The ERA5-Land is the fifth-generation reanalysis dataset produced by the 

European Centre for Medium-Range Weather Forecasts (ECMWF). It assimilates 230 

multi-source data, including weather station measurements, numerical weather 

predictions, and satellite observations, into dynamic models to generate reanalysis data 

(Muñoz-Sabater et al., 2021). It provides high-quality environmental variables related 

to water and energy fluxes between the land surface and atmosphere, with continuous 

coverage from 1981 to the present. ERA5-Land offers a spatial resolution of 0.1° (~9 235 

km at the equator) and an hourly temporal resolution, making it well-suited for 

modeling near-surface processes. In this study, we extracted daily mean values of key 

climate variables, including 2-meter air temperature (Temperature_2m), surface solar 

radiation and total precipitation from the ERA5-Land Daily dataset. All variables were 

accessed and processed using the GEE platform. 240 
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2.2.3 Auxiliary data 

Topographic and soil-related variables were incorporated as auxiliary predictors to 

improve the accuracy of Ts estimation. Elevation and slope were derived from the 

Shuttle Radar Topography Mission (SRTM) digital elevation model (Farr et al., 2007), 

specifically using the Version 3 (SRTM Plus) product with a spatial resolution of 1 arc 245 

second (~30 m). Soil texture plays a critical role in determining Ts through its influence 

on thermal conductivity, which is affected by physical properties such as particle size 

distribution, porosity, bulk density, and moisture retention capacity. In this study, we 

represented soil texture using the relative proportions of clay (fine), silt (medium), and 

sand (coarse) particles. To capture vertical variability in soil properties, we employed 250 

the China Soil Information Grid dataset developed by Liu et al. (2022), which provides 

gridded estimates of soil composition at four depth intervals: 0–5 cm, 5–15 cm, 15–30 

cm, and 30–60 cm. The dataset offers a spatial resolution of 1 km and is suitable for 

high-resolution, profile-based soil modeling. 

2.3 Methods 255 

The spatial adaptive modeling framework consists of three modules as shown in 

Fig. 2. Module Ⅰ is for data collection and preprocessing, which mainly involves in-situ 

observations, remote sensing, meteorological and supplementary data. Module Ⅱ is 

spatial adaptive modeling, which mainly includes the construction of rotated quadtrees 

and local modeling based on XGBoost. Finally, module Ⅲ is the layer-to-layer 260 

reconstruction of daily 1km resolution multi-layer (0, 5, 10, 15, 20, and 40 cm) Ts 

datasets in China from 2010 to 2020. 
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Figure 2. Workflow of the proposed method to obtain multi-layer Ts over the China. 

 265 

2.3.1. Feature selection 

Multicollinearity among multiple source variables may affect the robustness of the 

models. Therefore, we rigorously evaluated the multicollinearity among the 

independent variables using the variance inflation factor (VIF) before modeling to 

remove highly correlated variables. The VIF is a diagnostic statistic used to quantify 270 

the degree of multicollinearity by measuring how much the variance of a regression 

coefficient is inflated due to correlations with other predictors (Akinwande et al., 2015). 

It is calculated as: 

 
2

1

1
i

i

VIF
R

=
−

  (2) 

where
2

iR is the coefficient of determination obtained by regressing the i -th predictor 275 
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against all other predictors. Variables with VIF exceeding 10 are generally considered 

severely multicollinear and should be removed. 

Based on the VIF analysis, we applied the following adjustments to the predictor 

set. Accordingly, some variables were excluded due to severe multicollinearity or 

redundancy. Specifically, sand, silt, and clay are compositional variables whose 280 

proportions sum to 100%, leading to perfect collinearity. To reduce redundancy, we 

removed silt while retaining sand and clay. In addition, LWD was found to be highly 

correlated with net solar radiation at the daily mean scale (Fig. S1) and was therefore 

excluded from the final modeling. 

Although the daily mean LST (LST_mean) and air temperature exhibit high 285 

collinearity (VIF > 10; Fig. S2), we chose to retain both variables because they represent 

different thermal information. LST_mean captures high-resolution surface radiative 

temperature signals, whereas air temperature reflects broader-scale atmospheric 

thermal conditions. In ecosystems with complex canopy structures, such as forests, the 

canopy can alter radiative transfer processes and cause LST to deviate from the true 290 

subsurface thermal environment(Liu et al., 2025). Therefore, the two variables provide 

complementary thermal information that helps better characterize soil thermal 

dynamics. In addition, we compared the model performance under different 

combinations of predictor variables (Fig. S3 and Fig. S4). The results show that the 

combination of air temperature + LST + other predictors achieved the best modeling 295 

accuracy at the surface soil layers. Therefore, retaining both air temperature and LST 

in the final model is reasonable and necessary. 

 

2.3.2. Spatial adaptive partition of site measurements 

We applied the Local Bivariate Moran’s I analysis to assess the local spatial 300 

relationship between surface Ts (GST_Avg) and elevation as an illustrative example 

(Fig. S5). The results reveal significant spatial variations in their local association (p < 

0.05), indicating pronounced spatial non-stationarity in the Ts–elevation relationship. 

These findings justify the need for a spatially adaptive modeling strategy capable of 
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capturing localized heterogeneity. 305 

A quadtree is a hierarchical spatial data structure that recursively subdivides a two-

dimensional space into four quadrants, enabling efficient spatial indexing and localized 

data organization. In this study, we adopted a bottom-up, rotated quadtree-based spatial 

partitioning strategy that adaptively generates finer grids in regions with dense samples 

and coarser grids in sparse regions. Compared to global modeling or static grid 310 

partitioning, this adaptive approach offers improved regional modeling fidelity while 

significantly enhancing computational efficiency. The procedure consists of the 

following steps: 

(1) Initialization of Minimum Units 

The entire spatial domain was first divided into uniform, minimum-sized units 315 

(leaf nodes), each representing a fundamental spatial element. These units may contain 

zero or more in-situ observations. This initial step provides the base resolution for 

subsequent hierarchical construction. The structure and principle of quadtree spatial 

indexing are illustrated in Fig. S6. 

(2) Hierarchical Merging 320 

Starting from the leaf nodes, groups of four adjacent quadrants were recursively 

merged into parent nodes if each contained fewer than 30 observation sites (threshold 

selection detailed in Fig. S7). The merging process continued upward until no further 

groups met the threshold. This approach ensures that each node has sufficient sample 

size while achieving spatially adaptive partitioning across the study area. Each 325 

subregion is then assigned a localized Ts prediction model. 

(3) Rotation at different angles 

To reduce potential edge effects introduced by static grid boundaries, we 

implemented a rotated quadtree partitioning strategy. The quadtree structure was rotated 

at six angles (0°, 15°, 30°, 45°, 60°, and 75°), producing distinct sets of spatial partitions 330 

for each orientation (Fig. 3). Independent models were trained for each rotated 

configuration, and the final Ts estimates were obtained by averaging the outputs from 

all six models. This rotation-based ensemble method improves spatial smoothness and 
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minimizes discontinuities at partition boundaries. 

 335 
Figure 3. Multi-angle adaptive quadtree partitioning of site observations (0°, 15°, 30°, 

45°, 60°, 75°) 

2.3.3. Machine learning algorithm 

We adopted the XGBoost (Extreme Gradient Boosting) algorithm as the core 

regression model for Ts estimation due to its strong predictive performance, 340 

computational efficiency, and scalability across large environmental datasets. XGBoost 

constructs an ensemble of regression trees in a stage-wise boosting process, where each 

successive tree is trained to minimize the residuals of the previous iteration, thereby 

producing a robust and optimized model (Chen and Guestrin, 2016). One of the key 

strengths of XGBoost is its ability to handle heterogeneous and high-dimensional 345 

predictor sets, which are common in geoscience applications involving complex terrain, 

land cover variability, and climatic gradients. Recent studies have demonstrated its 

effectiveness in similar domains, including land surface temperature reconstruction (Li 

et al., 2024), multi-layer soil moisture estimation (Karthikeyan and Mishra, 2021), 

drought event attribution (Wang et al., 2025a), and crop yield prediction (Li et al., 350 

2023b). Given these proven strengths and the spatially nonstationary characteristics of 

Ts in our study area, XGBoost was selected to train localized prediction models within 

spatial subregions. 

Significant spatial autocorrelation commonly exists among nearby soil 

temperature observation sites. To prevent potential data leakage caused by randomly 355 
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splitting the training and testing subsets, we conducted the partitioning at the station 

level and constructed a buffer zone around the selected test station. All other stations 

located within this buffer were removed, and only stations outside the buffer were 

retained as the training set. This strategy effectively ensures that samples within the 

same sub-grid do not appear simultaneously in both the training and testing subsets due 360 

to spatial autocorrelation, thereby allowing a more robust and unbiased assessment of 

the model’s generalization performance. 

Specifically, considering the availability of sufficient training samples, one station 

was randomly selected as the test sample within each sub-grid. A 500 km buffer was 

subsequently created around the test station, with the radius determined based on the 365 

effective distance for reducing spatial autocorrelation among stations as shown in 

Appendix Figure S8. All stations within the buffer were excluded, and only those 

outside the buffer were used for model training. Subsequently, five-fold cross-

validation was performed at the station level, and GridSearchCV was used to optimize 

three key hyperparameters: the number of trees (n_estimators), maximum tree depth 370 

(max_depth), and learning rate (learning_rate). The search ranges for these parameters 

are provided in Appendix Table S1. The optimal hyperparameter combination was 

identified by minimizing the mean validation error. Finally, the model was retrained on 

the full training subset using the optimized parameters and evaluated on the spatially 

independent test sample to rigorously assess its generalization capability. 375 

A layer-wise prediction strategy was adopted to estimate Ts along the soil profile. 

For the surface layer (0 cm), predictors included air temperature and daily mean LST. 

For subsurface layers, these two variables were replaced by the Ts estimate from the 

immediately preceding layer, enabling the model to capture vertical heat conduction 

processes and thereby improving the continuity and physical consistency of layer-wise 380 

Ts estimation. 

 

2.3.4. Model evaluation metrics 

The modeling performance and quality of the predicted Ts were evaluated in terms 
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of RMSE, Mean Absolute Error (MAE), R², and Bias. RMSE and MAE were used to 385 

assess the ability to estimate volatility and fluctuation amplitude, respectively. R² 

represented the percentage of variance explained by the ML models. Bias was used to 

determine whether the estimations were overestimated or underestimated. These 

metrics were computed as follows:  

 390 
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where
iy and 

ix denoted the in-situ Ts and estimated Ts for all the stations and periods, 

respectively. Y and X represented the mean values of the in-situ Ts and estimated Ts, 

respectively. 

 400 

3. Results 

3.1 Model performance across sites 

Figure 4 shows the accuracy of the models constructed at different depths using 

various grid configurations and rotation angles for both the training and test sets. The 

grouped box plots indicate that the median R² values range from 0.92 to 0.98 and the 405 

median RMSE values range from 1.6 to 2.4 K across depths. Both training and test 

results exhibit consistently high accuracy, with no clear indication of overfitting. A 

vertical comparison shows that model performance at 0 cm and 40 cm is slightly weaker 

than that at intermediate depths. 
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 410 
Figure 4. Model performance for training and test sets across different depths. 

To further enhance the independence of the evaluation, we validated the final 

dataset using daily Ts observations from 18 flux tower sites in the ChinaFLUX network. 

For consistency across depths, only measurements at 0, 5, 10, 15, 20, and 40 cm were 

retained. Metadata for these sites is summarized in Table S2, and the corresponding 415 

validation results are presented in Figure 5. The results show that the dataset maintains 

high accuracy at independent sites (R² = 0.85~0.90; RMSE = 3.3~4.2 K), further 

demonstrating the robustness of our approach. Overall, the combined evidence from the 

test set and flux tower validation confirms that the proposed spatially adaptive model 

exhibits strong predictive performance and spatial generalization capability. 420 
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Figure 5. Density scatter plots comparing estimated daily Ts with flux tower 

observations at different depths 425 

We also calculated R² and RMSE values for all depths at each station to compare 

the model performance. The results indicate that R² ranges from 0.70 to 1.00, suggesting 

generally good performance at the station level. As shown in Figure 6, most stations 

achieve R² values above 0.85. Regions with higher prediction accuracy are primarily 

distributed across northwest, northeast, and central China, while larger errors are 430 

concentrated in the Yunnan–Guizhou Plateau (YGP) and the sparsely monitored QTP. 

The histogram in Figure S9 further shows that RMSE values for all depths fall between 

0.5 and 3 K, indicating overall good predictive performance. Notably, prediction errors 

are highest at 0 cm, decrease substantially at 5–20 cm, and increase slightly again at 40 

cm. 435 
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Figure 6. Goodness of R² across China estimated during the model testing phase. 

Performance metrics are calculated between predicted_Ts and in-situ Ts data sets. 

 

3.2 Evaluation across land cover types and seasons 440 

Figure 7 shows grouped box plots of the prediction performance of Ts across 

different land cover types (barren land, cropland, forest, and grassland) at six depths (0, 

5, 10, 15, 20, and 40 cm). The evaluation metrics include R² and RMSE. The median 

R² values across land cover types and depths range from 0.94 to 0.98, consistently 

exceeding 0.94 (red dashed line), indicating overall high prediction accuracy. Among 445 

land cover types, barren land exhibits the highest R² values, followed by cropland, while 

forest and grassland show slightly lower performance. The median RMSE values 

generally range from 1.1 to 1.8 K. Barren land shows higher RMSE compared with 

other land cover types, whereas cropland, forest, and grassland maintain lower and 

more stable RMSE. Across depths, RMSE is highest at the surface layer (0 cm), 450 

decreases steadily with increasing depth, and shows a slight increase at 40 cm. 

Furthermore, seasonal variations in prediction accuracy are shown in Fig. 8. The 

median R² values across depths range from 0.48 to 0.98, with higher values in spring 
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(green) and autumn (pink) and lower values in summer (orange) and winter (blue), 

particularly at 20~40 cm depth. The median RMSE values range from approximately 455 

1.3 to 2.2 K, being lower in spring and autumn and higher in summer and winter, with 

the largest median error observed at 40 cm depth in winter. With increasing depth, the 

median errors decrease from the surface (0 cm) to 5~10 cm, and then gradually 

accumulate from 15 to 40 cm. 

 460 
Figure 7. Evaluation of predicted Ts at different depths (i.e., 0, 5, 10, 15, 20, 40cm) 

across various land use types (i.e., Forest, Grassland, Cropland, Barren) 
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Figure 8. Evaluation of the predicted_Ts in different depth (ie.0,5,10,15,20,40 cm) at 465 

sites with four seasons (i.e., spring, summer, autumn, winter). Winter is defined as 

December, January, and February; spring as March, April, and May; summer as June, 

July, and August; and autumn as September, October, and November. 

3.3 Comparison with other products 

Figure 9 presents a comparison of the Ts products at the 0 cm depth with the ERA5-470 

Land and GLDAS 2.1 reanalysis datasets, including both national-scale patterns (Fig. 

9a–c) and zoomed-in regional details (Fig. 9d–f). Compared with the two reanalysis 

products, our generated Ts dataset exhibits substantially finer spatial resolution, 

enabling a clearer representation of localized spatial heterogeneity. As illustrated in the 

zoomed-in panels of Figure 9, our Ts product accurately captures terrain- and elevation-475 

driven temperature gradients in regions with strong topographic variability, such as the 

transition zone from the Sichuan Basin to the margins of the QTP. In contrast, the coarse 

spatial resolution of ERA5-Land and GLDAS 2.1 tends to smooth out these fine-scale 

topographic effects, resulting in a loss of spatial detail. 

The scatter density plots in Fig. S10 further demonstrate that the Ts estimates from 480 

our model achieve significantly higher site-level accuracy than ERA5-Land and 

GLDAS 2.1. Specifically, at depths of 0, 10, and 40 cm, the R² values for our dataset 

range from 0.94 to 0.97, whereas the corresponding values are 0.83~0.89 for ERA5-
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Land and 0.83~0.87 for GLDAS 2.1. These results indicate that our high-resolution Ts 

product not only captures localized heterogeneity but also faithfully represents terrain-485 

driven temperature gradients, which are often obscured in coarse-resolution reanalysis 

products. In summary, the proposed spatially adaptive modeling framework provides a 

more detailed and realistic representation of Ts spatial patterns, particularly in 

topographically complex regions, and significantly enhances the accuracy and 

applicability of regional-scale Ts modeling. 490 

 

Figure 9. Comparison of different Ts products (e.g., 0 cm) 

3.4 Spatial and temporal patterns of Ts at varied depths across China 

To examine seasonal and vertical variations in the spatial distribution of Ts, we 

selected two contrasting dates: January 1, 2020 (winter) and July 1, 2020 (summer). 495 

Figure 10 a–f illustrates the spatial distribution and corresponding histograms of Ts at 

different depths (0 cm, 5 cm, 10 cm, 15 cm, 20 cm, 40 cm) across China on January 1, 

2020. The results show that Ts in northern China (particularly in the northeast, northwest, 

and the QTP) is generally lower in January, exhibiting distinct cold zones. In contrast, 

southern areas exhibit higher Ts values, forming a gradual north-to-south temperature 500 

gradient. Moreover, deeper soil layers (e.g., 40 cm) exhibit higher temperatures than 

surface layers (0 cm), especially in northeastern China and the QTP, reflecting the 

insulating effect of deeper soils during winter. 

Figure 10a1–f1 illustrates the spatial distribution and histograms of Ts on July 1, 
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2020. Compared to January, a significant increase in Ts is observed across China in July, 505 

with widespread high-temperature zones in the eastern and southern regions. The 

increase is particularly pronounced in northern areas, while changes in the south are 

relatively moderate. In contrast to winter conditions, Ts decreases with increasing soil 

depth during summer, with surface temperatures (0 cm) exceeding those at 40 cm, 

indicating the downward heat conduction from the surface. Overall, Comparative 510 

analysis of Fig. 10a–f and Fig. 10a1–f1 elucidates both seasonal variation and vertical 

patterns of Ts: deeper layers (5~40 cm) are warmer than the surface (0 cm) during winter, 

whereas the surface is warmer in summer. The histogram further illustrates the variation 

in Ts distribution across different depths. The results indicate that temperature 

fluctuations in deeper layers are significantly smaller than those near the surface, 515 

reflecting greater thermal stability in the subsurface. These patterns reflect the 

combined influences of geographic location, topography, and climatic conditions on Ts 

spatial distribution and vertical dynamics, offering valuable insights into soil thermal 

behavior. 
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 520 

Figure 10. Spatial patterns and histograms of Estimated Ts at different depths (0, 5, 

10, 15, 20, and 40 cm) 

 

To further assess the temporal performance of Ts estimation, Fig. 11 presents the 

time series of estimated Ts alongside in-situ measurements at four randomly selected 525 

stations (e.g., Station 56748, 99.18°E, 25.12°N) from January 2018 to January 2020. 

The figure displays Ts at two depths (0 cm and 40 cm), including estimated Ts 

(Estimated_0cm, Estimated_40cm), in-situ Ts (In-situ_0cm, In-situ_40cm), daily mean 

land surface temperature (Daily_mean_LST), and 2-meter air temperature 

(Temperature_2m). The air temperature shows distinct seasonal cycles, while Ts 530 

exhibits smoother temporal variations. In general, Ts reaches its peak during summer 

and its minimum in winter, though its temporal dynamics vary with soil depth. 

Specifically, Ts at 0 cm responds rapidly to air temperature changes and exhibits larger 

amplitude variations, while Ts at 40 cm shows slower responses and a noticeable lag, 
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reflecting the damping effect of vertical heat conduction. Site-level accuracy was 535 

evaluated using RMSE, which ranged from 1.24 K to 2.05 K across both depths, 

indicating strong agreement between predicted and observed values. Overall, the time 

series analysis confirms the robustness and reliability of the model in estimating Ts 

across varying depths, offering valuable insights into regional soil thermal dynamics. 

 540 
Figure 11. Time series of the Estimated_0cm, Estimated_40cm, Daily_mean_LST, 

and Temperature_2m at four sites from different regions between 2018-2019. 

 

4. Discussion 

4.1 The advantages of the spatially adaptive model 545 

Previous studies have explored various approaches for constructing Ts datasets. 

For instance, Wang et al., (2023) created a daily multi-layer Ts dataset for China (1980-

2010) at 0.25° resolution, employing interpolation techniques including the thin-plain 

spline and the angular distance weight interpolation methods with over 2,000 in-situ 

observations. A persistent challenge in building national-scale Ts datasets, however, lies 550 

in the highly uneven spatial distribution of observation stations—densely clustered in 

eastern lowlands while remaining sparse in western and high-altitude regions. Global 

modeling approaches, which train a single unified function across the entire domain, 
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are inherently limited in capturing the nonlinear and non-stationary relationships 

between Ts and its predictors in such heterogeneous landscapes. Specifically, in sparsely 555 

sampled regions, global models lack sufficient data to learn effectively, resulting in low 

prediction accuracy. In contrast, in densely sampled areas, the model tends to overfit, 

and the training process becomes disproportionately influenced by those regions. This 

imbalance introduces systematic biases and limits model generalizability.  

Reanalysis datasets, which synergize data assimilation systems with numerical 560 

weather prediction and land surface modeling frameworks, provide valuable 

representations of land-atmosphere interactions and subsurface heat transfer processes. 

These products are particularly advantageous for large-scale climate simulations and 

long-term environmental assessments. Yang and Zhang (2018) assessed the Ts accuracy 

of four reanalysis datasets (ERA-Interim/Land, MERRA-2, CFSR, and GLDAS-2.0) in 565 

China using in-situ monthly mean Ts observations. The results showed that all 

reanalysis datasets consistently underestimated Ts across the country. More recently, the 

ERA5-Land and GLDAS 2.1 Ts dataset offers high temporal resolution (hourly/3-hour), 

but it is limited by a spatial resolution of 0.1 or 0.25 degrees. Beyond reanalysis datasets, 

some efforts have focused on constructing empirical Ts products using ML approaches. 570 

For example, the Global Soil Bioclimatic Variables dataset (Lembrechts et al., 2022), 

derived from Random Forest modeling with 8,519 global sensors, provides only long-

term climatological means, rather than high-resolution daily estimates. 

In contrast, the methodological framework proposed in this study addresses both 

accuracy and resolution limitations. The spatially adaptive modeling strategy offers 575 

significant advantages over traditional interpolation and globally trained ML models. 

Its core strength lies in localized modeling, which accounts for regional variability in 

topography, soil properties, and climate conditions. As shown in Fig. S11, the rotated 

quadtree strategy partitions space at six orientations (0°~75°), enabling a more nuanced 

representation of spatial heterogeneity. By averaging predictions across these rotated 580 

configurations, the method reduces boundary artifacts often associated with static grids, 

resulting in smoother and more continuous spatial outputs. Moreover, the fine spatial 
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resolution (1 km) enables the model to resolve localized thermal patterns that are critical 

for understanding vegetation dynamics and soil biogeochemistry. We also assessed the 

contribution of satellite-derived LST to model performance. As shown in Figs. S3 and 585 

S4, incorporating LST as an input variable, relative to using only air temperature, 

significantly enhances overall modeling accuracy and improves performance across 

sites with different land cover types, with the most pronounced improvements observed 

in barren land areas. This highlights the importance of multi-source data fusion in 

boosting the performance of spatially adaptive models under data-scarce conditions. In 590 

summary, our spatially adaptive local modeling approach offers a more robust and 

scalable solution for large-scale Ts estimation under heterogeneous station distributions 

and complex environmental conditions. 

4.2 Potential applications of the Ts product 

The high-resolution, multi-layer Ts datasets generated using the spatially adaptive 595 

estimation method fill a significant data gap in China, where comprehensive Ts profile 

records are scarce. As a key biophysical variable, Ts provides crucial insights into soil–

atmosphere interactions that are not captured by air temperature alone. In agricultural 

systems, Ts governs fundamental processes throughout the crop life cycle—from 

sowing and germination to growth and yield formation (Rahman et al., 2019). Multi-600 

layer Ts data can optimize accumulated temperature models, enhancing the precision of 

sowing decisions and supporting sustainable field management. Additionally, Ts 

influences nutrient decomposition and water movement within soil profiles (Jebamalar 

et al., 2012), directly impacting soil fertility, moisture retention, and thus, the overall 

efficiency of agroecosystems. 605 

Beyond agricultural applications, Ts is increasingly recognized as a critical 

variable for assessing ecosystem responses to climate extremes. For instance, Fan et al., 

(2024) proposed the Soil Composite Drought Heatwave index to evaluate the severity 

of concurrent drought and heatwave events. However, their findings show that existing 

reanalysis datasets often underestimate these events compared to observational records, 610 

highlighting the need for more accurate, high-resolution Ts data. In the context of 
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intensifying global warming and extreme climate events, access to reliable Ts datasets 

is essential for improving the monitoring and prediction of environmental stressors. 

These advancements are not only vital for understanding terrestrial ecosystem 

dynamics but also for strengthening climate resilience at both regional and national 615 

scales. 

Moreover, Ts plays a pivotal role in ecological and hydrological modeling, offering 

a more direct representation of surface processes than air temperature. It serves as a 

sensitive indicator of biogeochemical cycles and phenological changes (Lembrechts et 

al., 2022). For example, Liu et al., (2024) demonstrated that Ts is a dominant driver of 620 

spring phenology in Chinese forests, making it a valuable input for climate–vegetation 

interaction models. In cold regions, Ts governs soil freeze–thaw cycles, which are 

critical for hydrological processes such as runoff generation, groundwater recharge, and 

permafrost monitoring (Smith et al., 2022; Xu et al., 2022). Furthermore, Ts is a key 

driver of soil respiration, influencing CO₂ fluxes and terrestrial carbon cycling (Lloyd 625 

and Taylor, 1994; Hursh et al., 2017). As such, the development of high-resolution Ts 

products enables more accurate simulation of ecosystem carbon dynamics and regional 

carbon budgeting, thereby advancing our understanding of climate feedback 

mechanisms. 

4.3 Limitations and future perspective 630 

Despite the strong performance of our spatially adaptive Ts estimation framework, 

several limitations warrant acknowledgment. As shown in Figure 6, model validation 

at station level reveals spatial heterogeneity in prediction accuracy, with relatively 

lower performance observed in the YGP and the QTP regions. On the one hand, as 

evidenced by Figure 9, our multi-source modeling framework captures Ts variations 635 

across different elevations and geomorphic conditions more effectively than existing 

datasets. However, the QTP and YGP are characterized by complex terrain and high 

altitudes, coupled with rapidly changing climatic conditions, which significantly 

complicate Ts estimation. These findings align with previous studies showing that high 

elevations intensify the disconnect between air temperature and LST, thereby increasing 640 
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the uncertainty in thermal modeling (Mo et al., 2025). 

MODIS LST serves as a critical input to our modeling framework. However, as an 

optical remote sensing product, it is highly susceptible to cloud contamination, often 

resulting in data gaps. Despite the use of spatiotemporal interpolation and SG filtering, 

residual uncertainties persist in the reconstructed LST data. Future improvements in Ts 645 

reconstruction can be pursued along two main directions. First, more physically 

grounded LST reconstruction methods can be adopted, such as incorporating surface 

energy balance models and diurnal temperature cycle models (Hong et al., 2022; 

Firozjaei et al., 2024; Wang et al., 2024). These methods apply energy conservation 

principles to estimate Ts during periods of missing or unreliable observations, thereby 650 

providing more realistic estimates of land surface thermal conditions during periods of 

cloud cover. Second, integrating higher temporal resolution remote sensing 

observations may help overcome the limitations of MODIS. For instance, passive 

microwave satellite data provide all-weather observations and are less sensitive to cloud 

interference (Duan et al., 2017; Wu et al., 2022). In addition, next-generation 655 

geostationary satellites such as Himawari-8 offer observations at 10-minute intervals, 

substantially enhancing the temporal continuity and quality of surface temperature 

estimates (Yamamoto et al., 2022; You et al., 2024). These enhancements are expected 

to significantly improve the accuracy and temporal continuity of Ts monitoring. 

Our results (Figures 7 and 8) show that model accuracy varies across soil depths 660 

and is further influenced by season and land-use conditions. Accuracy is relatively 

lower at the surface (0 cm), improves at intermediate depths (5~10 cm), and declines 

again at deeper layers (20~40 cm). This depth-dependent pattern can be explained by 

the physical characteristics of the soil profile. Surface Ts responds strongly to short-

term meteorological fluctuations such as radiation, precipitation, and 665 

evapotranspiration, resulting in greater spatiotemporal variability and consequently 

larger prediction errors. In contrast, intermediate soil layers buffer high-frequency 

temperature fluctuations through thermal diffusion and higher heat capacity. As a result, 

Ts becomes more stable with lower natural variability at these depths, leading to lower 
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RMSE and higher R² values. 670 

At deeper layers, prediction accuracy decreases because surface-level errors 

propagate downward through the hierarchical modeling framework, and uncertainties 

in soil texture inputs gradually accumulate with depth; during periods such as summer 

and winter, these combined uncertainties may be further amplified. Short-term changes 

in soil moisture alter fundamental soil thermal properties, including heat capacity, 675 

thermal conductivity, and thermal diffusivity, which in turn control heat transfer 

processes and sub-daily Ts dynamics. (Abu-Hamdeh, 2003; Subin et al., 2013). 

Consequently, the absence of soil moisture information may introduce additional 

uncertainty when modeling daily and sub-daily Ts dynamics, especially at deeper layers. 

Incorporating high-resolution soil moisture datasets in future work would improve the 680 

representation of soil hydrothermal interactions and further enhance Ts estimation 

accuracy. 

Seasonal variations and differences in land cover also contribute to the 

spatiotemporal differences in model performance. As shown in Figures 7 and 8, the 

model performs better in spring and autumn, whereas its accuracy declines in summer 685 

and winter. In summer, vigorous vegetation growth and canopy closure alter surface–

atmosphere energy exchange processes and weaken the relationship between canopy 

temperature and subsurface Ts, thereby reducing the effectiveness of LST as a proxy for 

near-surface Ts (Kropp et al., 2020; Cui et al., 2022). Moreover, because satellite sensors 

measure radiometric temperature, LST in densely vegetated regions often represents 690 

canopy-top temperature rather than the surface Ts, introducing an additional source of 

uncertainty. In winter, snow cover further increases complexity: the high albedo of 

snow reduces net radiation (Loranty et al., 2014; Li et al., 2018), and its insulating effect 

weakens the soil’s response to cold-air fluctuations (Zhang, 2005; Myers-Smith et al., 

2015). Meanwhile, Meanwhile, freezing of soil water alters soil thermal conductivity 695 

and heat capacity, and frequent freeze–thaw cycles introduce nonlinear dynamics into 

Ts, increasing modeling uncertainty (Li et al., 2023a; Imanian et al., 2024). Although 

our multi-source adaptive modeling framework demonstrates robust performance 
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across varying depths and environmental conditions, it does not explicitly represent the 

physical mechanisms governing vertical heat transfer. Future research could 700 

incorporate deep learning models capable of learning complex spatiotemporal 

dependencies to enhance the physical interpretability of Ts variations across time, space, 

and depth. 

 

5. Conclusion 705 

This study addresses the lack of high spatiotemporal resolution multi-layer Ts data 

by proposing a spatially adaptive ML framework, successfully constructing a retrieval 

model for multi-layer Ts. By integrating in-situ observations, reanalysis data, satellite 

remote sensing data, as well as topographic and soil texture data, the model 

demonstrates high accuracy across different depths, seasons, and land use types. The 710 

results indicate relatively higher performance in spring and autumn than in summer and 

winter, and greater accuracy in bare land, cropland, and grassland compared with 

forested areas. In comparison with ERA5-Land and GLDAS 2.1 Ts products, the multi-

layer Ts data generated in this study exhibit significant improvements in both accuracy 

and spatial detail. Based on this framework, we have first developed the long-term 715 

(2010-2020) high spatiotemporal resolution (daily, 1 km resolution) multi-layer (0, 5, 

10, 15, 20, 40 cm) Ts dataset for China. Future research could further explore methods 

that simultaneously integrate temporal, spatial, and depth information, and utilize multi-

source sensor data to enhance the spatiotemporal monitoring capabilities of Ts at 

different depths. Overall, this study demonstrates the potential of multi-source data in 720 

Ts estimation and provides a reliable tool and data foundation for ecological modeling, 

agricultural production and related studies.  

 

6. Data availability 

The daily multi-layer Ts products (0, 5, 10, 15, 20, and 40 cm) at 1 km resolution 725 

from 2010 to 2020 are freely available in HDF5 format to the public at 

https://doi.org/10.11888/Terre.tpdc.302333 (Wang et al., 2025b). In addition, monthly 

https://doi.org/10.11888/Terre.tpdc.302333
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multi-layer Ts data are also provided to meet the needs of various users. 

 

7. Code availability 730 

The R scripts used to implement the rotated-quadtree spatial adaptive partitioning are 

publicly available at: https://github.com/wangxt1314/Rotated-quadtree 
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