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Abstract

Soil temperature (75) is critical in regulating agricultural production, ecosystem
functions, hydrological cycling and climate dynamics. However, the inherent spatial
and temporal heterogeneity of soil thermal regimes constitutes a persistent challenge in
obtaining high-resolution, continuous gridded 75 datasets along vertical profiles. To
address this issue, we propose a spatially adaptive layer-cascading Extreme Gradient
Boosting (XGBoost) algorithm to generate daily multi-layer T data (0, 5, 10, 15, 20,
and 40 cm) at a spatial resolution of 1 km in China from 2010 to 2020. The methodology
dynamically partitions non-uniformly distributed measuring sites (2,093 sites across the
country) to quadtrees and incorporates thermal coupling effects propagated between
neighbor soil layers. Multi-source data, including satellite retrievals of land surface
temperature and vegetation index, and ERAS reanalysis climate variables were used as

inputs. Validation using spatial block cross-validation and independent flux tower

(RETHR: FHEE K6

observations demonstrated the robustness and accuracy of the product.lndependent

errors{(RMSE)valuesranging +-75~22H< It is noted the model’s performance was

lower in summers and winters than in springs and autumns. Compared to existing global
or regional Ts products, the dataset developed here is characterized by its fine spatio-
temporal patterns and high reliability, enabling it to provide supports for precision
agriculture, ecosystem modeling and understanding climate-land feedback. Free access

to the dataset can be found at https://doi.org/10.11888/Terre.tpdc.302333 —(Wang et al.,
2025b)X— Wang-etal;2025).
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1. Introduction

Soil temperature (75) is a critical driver of ecosystem dynamics, influencing nearly
all physical, chemical, and biological processes (Bayatvarkeshi et al., 2021; Xu et al.,
2023; Liu et al., 2025). Ts plays a pivotal role in land-atmosphere exchanges. By
controlling the partitioning of net radiation into sensible and latent heat fluxes, T
directly shapes atmospheric boundary layer circulation, with cascading effects on
regional climate patterns (Mahanama et al., 2008; Chen et al., 2021a). T also drives
soil freeze-thaw cycles, which are critical for hydrological processes in cold regions.
Permafrost thaw alters subsurface water storage, runoff dynamics and groundwater
recharge, with implications for both local and basin-scale hydrology (Zhang et al., 2005;
Shati et al., 2018). In addition, it governs the rates of soil microbial activities, nutrient
cycling, and organic matter decomposition, with direct implications for carbon
dynamics. For instance, 75 modulates microbial respiration, thereby regulating the
release of organic carbon into the atmosphere as CO» that is central to global carbon
cycling (Yang et al., 2011). Given its multifaceted influences on carbon cycling, climate
feedbacks and hydrological systems, accurate 7s estimation is indispensable for
advancing ecosystem monitoring, refining climate models, and developing effective
strategies to mitigate and adapt to climate change.

T, exhibits high heterogeneity at large spatial scales due to varying driving factors.
Solar radiation changes its radiation intensity by adjusting the incident angle and
sunshine duration, thus affecting the heating effects on surface soils (Wang and
Dickinson, 2013). Additionally, diurnal variations of air temperature cause periodic
changes in surface temperature, while the amplitude is often closely related to the local
climate and topography. Furthermore, surface covers (e.g., vegetation and snow)
significantly impact 7s (Xu et al., 2020; Mortier et al., 2024). Vegetation canopies

effectively intercept and scatter solar radiation, while root systems modulate soil
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moisture distribution, thereby stabilizing deeper soil temperatures (Li et al., 2024).
Snow cover, characterized by high albedo, reflects substantial solar radiation and acts
as an effective insulator, mitigating cold air penetration and maintaining warmer soil
temperatures during winter months (Myers-Smith et al., 2015). Moreover, thermal
conductivity and heat capacity are critical parameters controlling vertical heat transfer
in soils. Sandy soils have higher porosity and lower water retention, resulting in lower
heat capacity and higher thermal conductivity, thus responding rapidly to temperature
changes. In contrast, clay soils have lower porosity and stronger water retention, leading
to higher heat capacity and significant thermal stability, characterized by delayed
responses to temperature variations (Ochsner et al., 2001; Zhao et al., 2022).
Understanding these mechanisms is essential for developing refined vertical T
distribution models and improving the accuracy of 75 estimation.

Given these complex processes, accurately estimating 75 across different depths is
challenging. Quite a few models have been proposed for 7 estimation. These models
can be generally classified into physical, statistical or empirical, and machine learning
(ML) types (Li et al., 2024; Farhangmehr et al., 2025). Physical models, derived from
fundamental heat conduction laws and energy balance equations, provide explicit
mechanistic interpretations but suffer from computational complexity and heavy
reliance on multi-domain input parameters, which range from soil properties to climatic
variables (Gao et al., 2008; Hu et al., 2016; Badache et al., 2016). Statistical or empirical
models, such as autoregressive integrated moving average and regression methods
(Xing et al., 2018), are usually limited to localized, small-sample applications. Data-
driven MLwrachine—learnine techniques demonstrate a superior ability to capture
nonlinear relationships and thus usually can obtain high prediction accuracy. For
instance, at site scale, Feng et al. (2019) estimated multi-layer 7 at half-hourly
resolutions using Extreme Learning Machine, with a RMSE ranging from 2.26~2.95 K.
Li et al., (2022) implemented an attention-aware long short-term memory (LSTM)
model for predicting next-day 75 and the model obtained a RMSE of 0.74~2.53 K. At

the regional scale, Xu et al. (2023) integrated satellite remote sensing with a deep belief

(BB THR: FHAE KE
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network model to reconstruct continuous T profiles (at depths of 5—40 cm) across the

Qinghai-Tibetan Plateau (QTP), obtaining R? > 0.836 and MAE < 2.152 °C. Similarly,
Farhangmehr et al. (2025) developed a hybrid convolutional neural network-LSTM

(CNN-LSTM) architecture for predicting 7s across North American climatic zones at
0-—7 cm depths, with R” ranging from 0.93 to 0.99.

Although significant advances have been made in estimating Ts, large-scale T
prediction continues to confront critical challenges, sourcing from environmental
complexity and methodological limitations. First, 75 exhibits considerable spatial
heterogeneity driven by regional disparities in topography, soil composition, vegetation
density, and microclimate (Bayatvarkeshi et al., 2021). These factors create
nonstationary relationships between T and explanatory variables (e.g., air temperature,
soil moisture), necessitating regionally tailored modeling approaches. Second, data
scarcity and uneven spatial distribution of site measurements introduce further
complexity. Aggregating sparse, unevenly distributed measurements into a single model
often leads to overfitting: high accuracy on training data but poor generalization to
underrepresented regions or previously unseen data (Li et al., 2024). Ultimately,
developing models that reconcile scalability (for large spatial scales) with localized
precision (to capture site-specific interactions) remains an unresolved priority,
underscoring the persistent challenge of balancing universal applicability with spatially
adaptive fidelity in T prediction methodology.

To address the above challenges, this study proposes a spatially adaptive

methodology based on quadtrees. This approach dynamically partitions the study area

into grids of varying sizes, with smaller grids in densely observed regions and larger

grids in sparsely sampled areas, thereby enabling localized modeling that better

captures spatial heterogeneity across complex environmental gradients. In addition

multi-source environmental predictors are integrated, and XGBoost models are applied

within each grid cell to capture the nonlinear relationships between 75 and its driving

factors. Importantly, we employ a spatial block cross-validation strategy to evaluate the

model’s generalization ability in unseen regions. Based on this framework, the
5
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objectives of this study are to: (1) construct a spatially adaptive modeling system; (2)

generate a multi-layer 7 dataset at a daily time-step and one kilometer resolution in

China from 2010-2020; and (3) evaluate the dataset through independent validation

120  with flux tower observations and benchmarking against widely used 75 products. The

proposed methodology could directly address the scaling challenges induced by spatial

heterogeneity and uneven data distribution. The generated products would provide a

robust foundation for high-resolution environmental modeling, precision agriculture

and climate impact assessments.
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2. Materials and methods

2.1 In-situ Ts observations

In this study, in-situ 75 observations was measured at six depths: at the surface (0 (BBTH#HR: FHHE: ke

(BBTHR: THHE B

140 m), and at subsurface levels of 0.05, 0.10, 0.15, 0.20, and 0.40 meters. Data were

collected through the national weather station network operated by the China

Meteorological Administration (CMA), in accordance with standardized measurement

protocols. At each site, 75 was recorded every 10 minutes and automatically uploaded

to a central server. Daily mean values at each depth were calculated from these high-

145  frequency records. We then assessed data completeness for the period 2010-2020 and
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excluded stations with more than 20% missing daily records at any depth. After quality

control, 2,093 stations were retained for model development In-this—study—in-sita—Fs

(BETHR: FHEE BEe

The observation network spans a wide range of climatic zones—from cold and

temperate to subtropical and tropical, and includes diverse land-use and ecosystem
types, such as forests, grasslands, croplands, and barren lands. However, the spatial
distribution of stations is notably uneven. High station density is observed in
northeastern China, the central and eastern plains, and the southern hilly regions,
whereas station coverage is sparse in the arid and semi-arid regions of northwestern

China and on the QTP. The spatial distribution of in-situ observation sites is shown in

(BETHR: 26 T, THHe B

Figure 1, and details of the dataset partitioning strategy are provided in Section
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Figure 1. Spatial distribution of in-situ T sites at different depths across China and
the corresponding environmental variables. This figure presents the spatial
distribution of 2,093 in-situ 7 sites across China;-wi v i
training-set{gray)-and-the test set{red). The environmental variables corresponding to
these sites include (a) land cover types (forests, barren land, grasslands, croplands,
water bodies, and urban areas), (b) elevation (ranging from -156 m to 8424 m), (c)
mean annual temperature (MAT, ranging from -18°C to 26°C), and (d) mean annual
precipitation (MAP, ranging from 11 mm to 10,800 mm).

2.2 Predictor variables

To construct a robust multi-layer 75 estimation model, we selected a
comprehensive suite of predictor variables, integrating remote sensing products,
meteorological factors, and auxiliary environmental data. Meteorological variables,
especially air temperature and precipitation, have been consistently recognized in
previous studies as primary determinants of 7 variability (Bond-Lamberty et al., 2005;
Nahvi et al., 2016). Among these, air temperature has been widely regarded as the most

influential variable due to its strong linear relationship with 7 (Khosravi et al., 2023).

In addition, both net solar radiation and downward longwave radiation
(LWD) were considered. Net solar radiation directly represents the shortwave energy
absorbed by the land surface and serves as the primary driver of the daytime surface
energy budget, whereas LWD plays a particularly important role under nighttime and
winter conditions by regulating surface heat loss through the longwave radiation
balance. Together, they jointly control the surface energy balance and directly drive the

spatiotemporal dynamics of Ts_;(Peng et al., 2016).In—-addition;—selarradiation—was
8
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Thermal infrared remote sensing data also exhibit a high correlation with near-
surface Ts. Integrating thermal remote sensing products and energy balance-based
models offers an effective means of estimating 7 with high spatial and temporal
continuity. This strategy has been validated by numerous studies (Huang et al., 2020;
Xu et al., 2023). Surface land cover further modulates 7s by altering surface albedo,
regulating evapotranspiration (ET), and influencing energy partitioning processes.
Accordingly, the enhanced vegetation index (EVI), derived from satellite observations,
was incorporated as a proxy for vegetation density and type (Bright et al., 2017; Li et
al., 2024b). To capture the influence of underlying surface characteristics on T,
topographic variables such as elevation and slope were included, along with soil texture
data across various depths. These features collectively reflect the heterogeneous
physical and thermal properties of the soil, contributing to spatial variations in heat
conduction and storage capacity. A full list of the predictor variables used in the model
is summarized in Table 1.

Table 1. Details of the predictor variables for training the model.

Spatial Temporal
Type Data Variable Reference
resolution resolution
Huete et al.,
MODO09GA EVI 500 mx500 m  Daily
Remotely sensed 2002
product MODI11A1 LST_ Day 1 kmx1 km Daily
MODI11A1 LST_ Night, 1 kmx1 km Daily

Temperature 2m
surface_net_solar_r
adiation_sumsSelar—

Mufoz-
Climate data ERAS-Land 9 kmx9 km Daily Sabater et al.,
surface thermal ra 2021

diation_downwards
_sum
Precipitation
Wind—+0m,
Supplementary USGS_STRM Elevation 30m
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(RETHR: FHEE EE

(RETHR: T (F) +FXEX (5%




210

215

220

225

data Slope 30m

Sand, Silt, Clay
Depth:
Soil Texture 250 mx250 m Liuetal., 2022
0-5, 5-15, 15-30,
30-60cm

Soil temperature
at 0, 5, 10, 15, 20, - Daily
and 40 cm

In-situ

measurements

2.2.1 Remote sensing data

The MOD11A1 LST product, at a daily time-step and a spatial resolution of 1 km,
was utilized. It includes both daytime (LSTday) and nighttime (LS Thignt) temperatures at
10:30 AM and 10:30 PM, respectively, along with quality assessment information (Wan
and Dozier, 1996). To enhance the estimation of daily mean Ty, the average of LSTqay
and LSThigne values was calculated and used in the analysis.

EVI from 2010 to 2020 were selected as predictor of 7s. The MODIS Surface
Reflectance Product (MODO09GA), derived from MODIS Level-1B data, provides daily
surface reflectance of seven bands at 500 m x 500 m resolution. The EVI is defined by
Huete et al., (2002), and the retrieval equation is as follows:

(pSR_bl ~Psr_b2 )

EVI =G x
(pSR_bl + G x Psr_b2 -C,x Psr b3t L)

(M

where G = 2.5, C1 =6, C2 = 7.5, L = 1. The remote sensing reflectance variables
SR _b1(620-670nm), SR_b2 (841-876nm) and SR_5b3 (459-479 nm) of MODO9GA data
represents red, near-infrared and blue bands. The coefficients 2.5 and 1 represent the
gain and canopy background, respectively (Huete et al., 2002). The atmospheric
influence on the red band is corrected using the blue band and the coefficients 6 and
7.5, respectively.

Subsequently, cloud contamination caused partial spatial absences in the daily LST
and EVI. To address this issue, we applied a temporal and spatial linear interpolation
algorithm, which utilizes time-series data from adjacent days and spatial information
from neighboring pixels to fill the current missing values, thereby generating a time-
continuous and spatially complete image series. This approach follows the methods

10



described in Chen et al., (2017) and Cao et al., (2018), with modifications to better suit
230  our dataset. Then, the Savitzky-Golay (S-G) filter was used to smooth the interpolated
data, resulting in continuous surface temperature and vegetation index data with high
temporal and spatial resolution (Kong et al., 2019; Chen et al., 2021b). All data
preprocessing, including image filtering and interpolation, was conducted within the
Google Earth Engine (GEE) platform.
235
2.2.2 Climate data
The ERA5-Land is the fifth-generation reanalysis dataset produced by the
European Centre for Medium-Range Weather Forecasts (ECMWEF). It assimilates
multi-source data, including weather station measurements, numerical weather
240  predictions, and satellite observations, into dynamic models to generate reanalysis data
(Mufpz-Sabater et al., 2021). It provides high-quality environmental variables related
to water and energy fluxes between the land surface and atmosphere, with continuous
coverage from 1981 to the present. ERAS-Land offers a spatial resolution of 0.1° (~9
km at the equator) and an hourly temporal resolution, making it well-suited for
245  modeling near-surface processes. In this study, we extracted daily mean values of key
climate variables, including 2-meter air temperature (Temperature 2m), surface solar
radiation_sand total precipitation;-and-1+0-meter—wind-speed-(wind—speed—10m); from
the ERAS-Land Daily dataset. All variables were accessed and processed using the GEE

platform.

250 - (ke B EASHE 2 FH

2.2.3 Auxiliary data
Topographic and soil-related variables were incorporated as auxiliary predictors to
improve the accuracy of Ts estimation. Elevation and slope were derived from the
Shuttle Radar Topography Mission (SRTM) digital elevation model (Farr et al., 2007),
255  specifically using the Version 3 (SRTM Plus) product with a spatial resolution of 1 arc
second (~30 m). Soil texture plays a critical role in determining 7 through its influence

on thermal conductivity, which is affected by physical properties such as particle size

11
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distribution, porosity, bulk density, and moisture retention capacity. In this study, we
represented soil texture using the relative proportions of clay (fine), silt (medium), and
sand (coarse) particles. To capture vertical variability in soil properties, we employed
the China Soil Information Grid dataset developed by Liu et al. (2022), which provides
gridded estimates of soil composition at four depth intervals: 0-5 cm, 5-15 cm, 15-30
cm, and 30—60 cm. The dataset offers a spatial resolution of 1 km and is suitable for

high-resolution, profile-based soil modeling.

2.3 Methods

The spatial adaptive modeling framework consists of three modules as shown in
Fig. 3. Module I is for data collection and preprocessing, which mainly involves in-situ
observations, remote sensing, meteorological and supplementary data. Module II is
spatial adaptive modeling, which mainly includes the construction of rotated quadtrees
and local modeling based on XGBoost. Finally, module III is the layer-to-layer
reconstruction of daily lkm resolution multi-layer (0, 5, 10, 15, 20, and 40 cm) T

datasets in China from 2010 to 2020.

2.3.1. Feature selection

Multicollinearity among multiple source variables may affect the robustness of the

(

AR Mt B 2 7R

(

HRIEY: St ERAE 2 7

(
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models. Therefore, we rigorously evaluated the multicollinearity among the

independent variables using the variance inflation factor (VIF) before modeling to

remove highly correlated variables. The VIF is a diagnostic statistic used to quantify

the degree of multicollinearity by measuring how much the variance of a regression

coefficient is inflated due to correlations with other predictorsFo—mitigate

205 Akinwande-etal52045)— (Akinwande et al., 2015), It is calculated as:

1
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VIF, = Q).
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where R?is the coefficient of determination obtained by regressing the i-th predictor e BETHR: PN AR BE

A A ia

|\ RETHER: TN, FEHE BE

against all other predictors. Variables with VIF exceeding 10 are generally considered )

severely multicollinear and should be removed,

(RETHA SHEE BE

Based on the VIF analysis, we applied the following adjustments to the predictor_ixw
(BB THER TN PG BE

set. Accordingly, some variables were excluded due to severe multicollinearity or { HRRE: Gt B4 2 7N

U

redundancy. Specifically, sand, silt, and clay are compositional variables whose

proportions sum to 100%, leading to perfect collinearity. To reduce redundancy, we

removed silt while retaining sand and clay. In addition, LWD was found to be highly

correlated with net solar radiation at the daily mean scale (Fig. S1) and was therefore [iﬁET*ﬁ:‘rﬁ: R BN

excluded from the final modeling.

In contrast, although the daily mean LST (LST mean) and air temperature also

exhibited strong collinearity, with VIF values exceeding 10 (Fig. S2), we decided to (RETHR FREER

retain _both. This decision reflects their physical distinctness and complementary

information: LST mean provides higher spatial resolution (1 km), whereas air

temperature offers broader meteorological consistency (9 km). Such differences are

particularly important in complex ecosystems such as forests, where canopy structure

and biological processes substantially influence thermal dynamics (Liu et al., 2025).As (BT HR: FHHE BE

< (R g BORE 278

2.3.2. Spatial adaptive partition of site measurements

13
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A quadtree is a hierarchical spatial data structure that recursively subdivides a two-

(RETHR: THHE HE5

dimensional space into four quadrants, enabling efficient spatial indexing and localized

data organization. In this study, we adopted a bottom-up, rotated quadtree-based spatial

partitioning strategy that adaptively generates finer grids in regions with dense samples

and coarser grids in sparse regions. Compared to global modeling or static grid

artitioning, this adaptive, approach offers improved regional modeling fidelity while

significantly enhancing computational efficiency. The procedure consists of the

folloving stepss—grstpeeiehiomeebionl et b e halpocps i b

(1) Initialization of Minimum Units

The entire spatial domain was first divided into uniform, minimum-sized units
(leaf nodes), each representing a fundamental spatial element. These units may contain
zero or more in-situ observations. This initial step provides the base resolution for
subsequent hierarchical construction. The structure and principle of quadtree spatial
indexing are illustrated in Fig. S32.

(2) Hierarchical Merging

(RETHR: FHHE BB S

(BBTHRX: FHRE e

is-assigned-alocalized Fipredietion-modelStarting from the leaf nodes, groups of four

(BETHER: FhHe Be

adjacent quadrants were recursively merged into parent nodes if each contained fewer

than 30 observation sites (threshold selection detailed in Fig. S4). The merging process

(BBTHRX: FHRE e
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continued upward until no further groups met the threshold. This approach ensures that

each node has sufficient sample size while achieving spatially adaptive partitioning

across the study area. Each subregion is then assigned a localized T prediction model.

(BBTHRX: FHHE: EE

A

(3) Rotation at different angles

To reduceaddress potential edge effects introduced by static grid boundaries, we

(BBTHR: FHHE e

(BETHER FHHAE XF2

(RETHR: FHEE Ee

implemented a rotated quadtree partitioning strategy. The quadtree structure was rotated
at six angles (0°, 15°,30°, 45°, 60°, and 75°), producing distinct sets of spatial partitions
for each orientation (Fig. 2). Independent models were trained for each rotated
configuration, and the final 7 estimates were obtained by averaging the outputs from

all six models. This rotation-based ensemble method improves spatial smoothness and

(BETHR: FhHe: Be

minimizes discontinuities at partition boundariesFhis—retational-ensemble—approach
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Figure 2. multi-angle adaptive quadtree partitioning of site observations (0°, 15°, 30°,
45°, 60°, 75°)

2.3.3. Machine learning algorithm
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multi-laycr-sotl-meoisturc-cstimation-(Karthikeyan-and-Mishra.2021):Wc adopted the

XGBoost (Extreme Gradient Boosting) algorithm as the core regression model for 7§

375  estimation due to its strong predictive performance, computational efficiency, and

scalability across large environmental datasets. XGBoost constructs an ensemble of

regression trees in a stage-wise boosting process, where each successive tree is trained

to minimize the residuals of the previous iteration, thereby producing a robust and

optimized model, (Chen and Guestrin, 2016), One of the key strengths of XGBoost is BRETHR: FRHE: BE

380 its ability to handle heterogeneous and high-dimensional predictor sets, which are BE TR =06 B

(
(BBTHR: THHE B
(
(

common in geoscience applications involving complex terrain, land cover variability, RETHR: FHHE: Ee

o U L

and climatic gradients. Recent studies have demonstrated its effectiveness in similar

BRETHRI: FEHE G

domains, including land surface temperature reconstruction (Li etal., 2024), multi-layer

BETHRI: FHHE e

BRETHRI: FEHE BE

385 (Wang et al., 2025a)

}, and crop vield prediction (Li et al., 2023b), k

BRETHRI: FEHE G

(
soil moisture estimation (Karthikeyan and Mishra, 2021), drought event attribution EiﬁETﬁ?&' G G
(
(
(

Given these proven strengths and the spatially nonstationary characteristics of 7% in our :‘i:f (BETHERX: TAHE EE

(RETHER THEE BE

study area, XGBoost was selected to train localized prediction models within spatial
BETHRR: FEHE B
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subregions.

(

N
(BEBTHR: ShPe e
(R Bt 5% 053F

0 U A

390




400

405

410

415

420

To rigorously account for the strong spatial autocorrelation of 75 and avoid

potential data leakage between training and testing subsets, we employed a spatial block

cross-validation scheme rather than random splitting. Specifically, within each rotated

quadtree grid, observation sites were grouped into spatial blocks based on their

geographic coordinates: station latitude and longitude were each divided by 1° and

floored to integer values, and stations sharing the same index were assigned to the same

block. This ensured that samples within the same spatial block were not simultaneously

assigned to both the training and testing subsets, thereby avoiding data leakage due to

spatial autocorrelation and enabling a more reliable evaluation of the model’s

generalization capability.

Within each spatial grid, the data were partitioned into training (90%) and testing

10%) subsets at the block level. The training subset was further subjected to 10-fold

spatial block cross-validation using GridSearchCV  to optimize three key

hyperparameters: the number of trees (n_estimators), maximum tree depth (max_depth),

and learning rate (learning_rate). Detailed parameter settings are provided in Appendix

Table S1. The hyperparameter set that yielded the lowest average validation error across

the ten folds was selected as optimal. The final model was retrained on the full training

set with the optimized parameters and evaluated on the held-out testing set to assess

generalization.

A layer-wise prediction strategy was adopted to estimate 7s along the soil profile.
For the surface layer (0 cm), predictors included air temperature and daily mean LST.
For subsurface layers, these two variables were replaced by the T estimate from the

immediately preceding layer, enabling the model to capture vertical heat conduction

17
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processes and thereby improving the continuity and physical consistency of layer-wise

Ts estimationa

L iprovined nsitee of ] ise 7. ostimation.

Module I
Dataset and Preprocessing
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Figure 3. Workflow of the proposed method to obtain multi-layer 75 over the China. «
2.3.4. Model evaluation metrics
The modeling performance and quality of the predicted s were evaluated in terms
of RMSE, Mean Absolute Error (MAE), R?, and Bias. RMSE and MAE were used to
assess the ability to estimate volatility and fluctuation amplitude, respectively. R?
represented the percentage of variance explained by the ML models. Bias was used to
determine whether the estimations were overestimated or underestimated. These

metrics were computed as follows:

X) =@y, -Y)I
N

>l -

RMSE =

(32)

N
E. X — Y.
MAE:—'=1|2' il (43)
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Bias:%il(xi-yi) (54)

R? =1——Zi=;(yi —%) (65)
N Y

A

wherey.and x denoted the in-situ 75 and estimated 75 for all the stations and periods,

respectively. VAand Y‘rcprcscntcd the mean values of the in-situ 75 and estimated 7,

(BBTHR: e 565

[ BRETHR: FHHE HE S

BRETHN: FEHE BES

BRETHER: FHHE BES

respectively.

3. Results
3.1 Model performance across sites

Figure 4 illustrates the accuracy performance of all models constructed at various

(
(BETHR: FHHE 565
(
(

BETHR: FEHE EE S

o J J U )

(BETHR: FHEHE Ee

depths, utilizing different grid configurations and rotation angles, for both the training
and validatientest sets. The grouped box plots demonstrate that the R? values for the
training and test validation-sets at different depths range from 0.82 to 0.98, and the
RMSE values vary from 0.6 to 2.8 K. Both the training and test validation-sets exhibit
high accuracy with no evident signs of overfitting. A depth-wise comparison shows that
model performance at 0 cm and 40 c¢m is marginally lower than at other depths.

Furthermore, to enhance the independence of the evaluation, we validated the final

dataset against daily 7 observations from 18 flux tower sites of the ChinaFLUX

network. For consistency, we retained measurements only at depths of 0, 5, 10, 15, 20

and 40 cm. Metadata for these sites is provided in Table S2, and the corresponding

validation results are presented in Figure 5. The evaluation shows that our dataset

achieves high accuracy at these independent sites (R2=0.85-0.90; RMSE =3.3-4.2 K),

further demonstrating the robustness of our approach. Taken together, the validation

results from both spatial block cross-validation and flux tower observations confirm

that the spatially adaptive model we developed exhibits reliable accuracy and strong

spatial generalization capability.Additionally;-we-evaluated-the-medel'sperformaneeat
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3.2 Model performance at individual sites

To evaluate spatial prediction accuracy in the spatial-scale evaluation, R? and
RMSE were calculated at each station. Model performance was assessed across all soil
depths at the station level. Spatial results show that station-level R? values range from
0.70 to 1.00, and RMSE values range from 0 to 3 K, indicating acceptable prediction
accuracy across all soil layers. As illustrated in Figures 6 and 7, most stations achieve
R? values above 0.90. Regions with higher prediction accuracy are mainly located in
the northwest, northeast, and central areas, whereas larger errors are concentrated in the
Yunnan—Guizhou Plateau (YGP) and the sparsely monitored QTP. The histogram in Fig.
7 further shows that RMSE values for most depths fall between 0.5 and 2.0 K, indicating

generally good predictive performance. Notably, prediction errors were highest at the

(BBTHR: 76 Ema

(R B

(RBETHER THHE B

surface layer (0 cm), decreased with depth, but slightly increased again at 40 cm, where

performance was weaker than at 5-20 cm-Netably;Prediction-errors-atthe surface layer
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510 Performance metrics are calculated between predicted T and in-situ 7s data sets.
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Performance metrics are calculated between predicted 75 and in-situ 7 data sets.

3.3 Evaluation across land cover types and seasons

igure 8 shows grouped box plots of the prediction performance of Ts across | @B T FHHE K&

different land cover types (barren land, cropland, forest, and grassland) at six depths (0,
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5,10, 15, 20, and 40 cm). The evaluation metrics include R? and RMSE. The median

R? values across land cover types and depths range from 0.96 to 0.98, consistently

exceeding 0.96 (red dashed line), indicating overall high prediction accuracy. Among

land cover types, barren land exhibits the highest R? values, followed by cropland, while

forest and grassland show slightly lower performance. The median RMSE values

generally range from 1.1 to 1.8 K. Barren land shows higher RMSE compared with

other land cover types, whereas cropland, forest, and grassland maintain lower and
more stable RMSE. Across depths, RMSE is highest at the surface layer (0 cm)

decreases steadily with increasing depth, and shows a slight increase at 40 cmFigure-8

Furthermore, seasonal variations in prediction accuracy are shown in Fig. 9. The

median R? values across depths range from 0.6 to 0.98, with higher values in spring

(green) and autumn (pink) and lower values in summer (orange) and winter (blue),

particularly at 20-40 c¢cm depth. The median RMSE values range from approximately

1.0 to 2.0 K, being lower in spring and autumn and higher in summer and winter, with
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the largest median error observed at 40 cm depth in winter. With increasing soil depth,

the median errors decrease from the surface (0 ¢cm) to 5-10 c¢m, and then gradually

accumulate from 15 to 40 cmFurthermeore,seasenal-variations—in-prediction-aceuraey
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Figure 8. Evaluation of predicted T at different depths (i.e., 0, 5, 10, 15, 20, 40cm)
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across various land use types (i.e., Forest, Grassland, Cropland, Barren)
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Figure 9. Evaluation of the predicted 7 in different depth (ie.0,5,10,15,20,40 cm) at
sites with four seasons (i.e., spring, summer, autumn, winter). Winter is defined as
December, January, and February; spring as March, April, and May; summer as June,
July, and August; and autumn as September, October, and November.

3.4 Comparison with other products

Figure 10 presents a comparative analysis of different 7 products at the surface
(0 cm depth), evaluating the spatial characteristics of the model-generated 7 against
the ERA5-Land and GLDAS 2.1 products across both national-scale regions (Fig. 10a—
¢) and zoomed-in local areas (Fig. 10d—f). Compared to the GLDAS 2.1 product (Fig.
11c and 11f), the model generated 7 exhibits significantly finer spatial resolution and
a superior ability to capture localized spatial heterogeneity. The GLDAS 2.1 product,
characterized by a coarser resolution, inadequately represents local features and
exhibits notable limitations, especially in specific regions (Fig. 10f). Conversely, the
spatial distribution of our T data closely matches that of the ERAS5-Land product (Fig.
10b and 10e). Nevertheless, the ERAS-Land product may be constrained by its input
resolution, whereas our adaptive modeling approach achieves greater precision in
representing fine-scale spatial variability.

Scatter density plots in Fig. S53 further indicate that our estimated 75 achieves
29
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significantly higher site-level accuracy compared to ERAS5-Land and GLDAS 2.1.
Specifically, the R? values between in-situ observations and our estimations at depths
of 0, 10, and 40 cm range from 0.94 to 0.97, compared to 0.83—0.89 for ERAS5-Land
and 0.83-0.87 for GLDAS 2.1. These results underscore the reliability and enhanced
accuracy of our Ty estimation product at both spatial and site scales, effectively
overcoming the limitations associated with GLDAS 2.1 and ERAS5-Land products.
These findings highlight the strong potential of the model to accurately capture the

spatial distribution of T and enhance regional-scale Ts modeling.
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3.5 Spatial and temporal patterns of T at varied seil-depths across China

To examine seasonal and vertical variations in the spatial distribution of Ts, we
selected two contrasting dates: January 1, 2020 (winter) and July 1, 2020 (summer).
Figure 11 a—f illustrates the spatial distribution and corresponding histograms of 7 at
different depths (0 cm, 5 cm, 10 cm, 15 cm, 20 cm, 40 cm) across China on January 1,
2020. The results show that 7 in northern China (particularly in the northeast, northwest,
and the QTP) is generally lower in January, exhibiting distinct cold zones. In contrast,
southern areas exhibit higher 75 values, forming a gradual north-to-south temperature
gradient. Moreover, deeper soil layers (e.g., 40 cm) exhibit higher temperatures than
surface layers (0 cm), especially in northeastern China and the QTP, reflecting the
insulating effect of deeper soils during winter.

Figure 11al-f1 illustrates the spatial distribution and histograms of 75 on July 1,
2020. Compared to January, a significant increase in 7 is observed across China in July,
with widespread high-temperature zones in the eastern and southern regions. The
increase is particularly pronounced in northern areas, while changes in the south are
relatively moderate. In contrast to winter conditions, 75 decreases with increasing soil
depth during summer, with surface temperatures (0 cm) exceeding those at 40 cm,
indicating the downward heat conduction from the surface. Overall, Comparative
analysis of Fig. 11a—f and Fig. 11al—f1 elucidates both seasonal variation and vertical
patterns of 75: deeper layers (5-40 cm) are warmer than the surface (0 cm) during winter,
whereas the surface is warmer in summer. The histogram further illustrates the variation
in [set—temperature distribution across different depths. The results indicate that
temperature fluctuations in deeper soil layers are significantly smaller than those near
the surface, reflecting greater thermal stability in the subsurface. These patterns reflect
the combined influences of geographic location, topography, and climatic conditions
on T spatial distribution and vertical dynamics, offering valuable insights into soil

thermal behavior.
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Figure 11. Spatial patterns and histograms of Estimated 75 at different depths (0, 5,
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10, 15, 20, and 40 cm)

To further assess the temporal performance of 7s estimation, Fig. 12 presents the
time series of estimated 7s alongside in-situ measurements at four randomly selected
stations (e.g., Station 56746, 99.53°E, 25.45°N) from January 2018 to January 2020.
The figure displays 7s at two depths (0 cm and 40 cm), including estimated T
(Estimated Ocm, Estimated 40cm), in-situ 7s (In-situ_Ocm, In-situ_40cm), daily mean
land surface temperature (Daily mean LST), and 2-meter air temperature
(Temperature_2m). The air temperature shows distinct seasonal cycles, while T
exhibits smoother temporal variations. In general, Ts reaches its peak during summer
and its minimum in winter, though its temporal dynamics vary with soil depth.
Specifically, Ts at 0 cm responds rapidly to air temperature changes and exhibits larger

amplitude variations, while 75 at 40 cm shows slower responses and a noticeable lag,
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645  reflecting the damping effect of vertical heat conduction. Site-level accuracy was
evaluated using RMSE, which ranged from 0.84 K to 1.80 K across both depths,
indicating strong agreement between predicted and observed values.Fhe RMSE-was

650
Overall, the time series analysis confirms the robustness and reliability of the model in
estimating T across varying depths, offering valuable insights into regional soil thermal
dynamics.
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Figure 12. Time series of the Estimated Ocm, Estimated 40cm, Daily mean LST,
and Temperature_2m at four sites from different regions between 2018-2019.

4. Discussion

4.1 The advantages of the spatially adaptive model

(BETHR: 2HHE 565




670

675

680

685

690

695

36



100 detecti (ol variations i face T | 1 i cularl

705 Previous studies have explored various approaches for constructing 75 datasets.«— ( ##=: Gtk EH%H: 2 T

For instance, Wang et al., (2023) created a daily multi-layer 7 dataset for China (1980-

2010) at 0.25° resolution, employing interpolation techniques including the thin-plain

spline and the angular distance weight interpolation methods with over 2,000 in-situ

observations. A persistent challenge in building national-scale 7 datasets, however, lies

710  in the highly uneven spatial distribution of observation stations—densely clustered in

eastern lowlands while remaining sparse in western and high-altitude regions. Global

modeling approaches, which train a single unified function across the entire domain,

are inherently limited in capturing the nonlinear and non-stationary relationships

between T and its predictors in such heterogeneous landscapes. Specifically, in sparsely

715  sampled regions, global models lack sufficient data to learn effectively, resulting in low

prediction accuracy. In contrast, in densely sampled areas, the model tends to overfit,

and the training process becomes disproportionately influenced by those regions. This

imbalance introduces systematic biases and limits model generalizability.

Reanalysis datasets, which synergize data assimilation systems with numerical

720  weather prediction and land surface modeling frameworks, provide valuable

representations of land-atmosphere interactions and subsurface heat transfer processes.

These products are particularly advantageous for large-scale climate simulations and

long-term environmental assessments. Yang and Zhang (2018) assessed the 7 accuracy

of four reanalysis datasets (ERA-Interim/Land, MERRA-2, CFSR, and GLDAS-2.0) in

725  China using in-situ monthly mean 7 observations. The results showed that all

reanalysis datasets consistently underestimated 7 across the country. More recently, the

ERAS5-Land and GLDAS 2.1 T dataset offers high temporal resolution (hourly/3-hour),
37




but it is limited by a spatial resolution of 0.1 or 0.25 degrees. Beyond reanalysis datasets,

some efforts have focused on constructing empirical 7 products using ML approaches.

730  For example, the Global Soil Bioclimatic Variables dataset (Lembrechts et al., 2022),

derived from Random Forest modeling with 8,519 global sensors, provides only long-

term climatological means, rather than high-resolution daily estimates.

In contrast, the methodological framework proposed in this study addresses both«—( ##Rt: ikt Bk 2 FF

accuracy and resolution limitations. The spatially adaptive modeling strategy offers

735  significant advantages over traditional interpolation and globally trained ML models.

Its core strength lies in localized modeling, which accounts for regional variability in

topography, soil properties, and climate conditions. As shown in Fig. S6, the rotated [iﬁETﬁ?&: FHEE HE 5

quadtree strategy partitions space at six orientations (0°~75°), enabling a more nuanced

representation of spatial heterogeneity. By averaging predictions across these rotated

740  configurations, the method reduces boundary artifacts often associated with static grids

resulting in smoother and more continuous spatial outputs. Moreover, the fine spatial

resolution (1 km) enables the model to resolve localized thermal patterns that are critical

for understanding vegetation dynamics and soil biogeochemistry. We also assessed the

contribution of satellite-derived LST to model performance, As shown in Figs. S7 and (RBTHR: FHHE: BE

(BETHR: FREER

745 S8, incorporating LST as an input variable, relative to using only air temperature,

significantly enhances overall modeling accuracy and improves performance across

sites with different land cover types, with the most pronounced improvements observed

in barren land areas, This highlights the importance of multi-source data fusion in (BBTHR: FHHE B

(BBTHR: e BE5

boosting the performance of spatially adaptive models under data-scarce conditions. In
750  summary, our spatially adaptive local modeling approach offers a more robust and

scalable solution for large-scale T estimation under heterogeneous station distributions

and complex environmental conditions.

4.2 Potential applications of the Ts product
755 The high-resolution, multi-layer 7 datasets generated using the spatially adaptive

estimation method fill a significant data gap in China, where comprehensive T profile
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records are scarce. As a key biophysical variable, Ts provides crucial insights into soil—
atmosphere interactions that are not captured by air temperature alone. In agricultural
systems, 7Ts governs fundamental processes throughout the crop life cycle—from
sowing and germination to growth and yield formation (Rahman et al., 2019). Multi-
layer T data can optimize accumulated temperature models, enhancing the precision of
sowing decisions and supporting sustainable field management. Additionally, T
influences nutrient decomposition and water movement within soil profiles (Jebamalar
et al., 2012), directly impacting soil fertility, moisture retention, and thus, the overall
efficiency of agroecosystems.

Beyond agricultural applications, T is increasingly recognized as a critical
variable for assessing ecosystem responses to climate extremes. For instance, Fan et al.,
(2024) proposed the Soil Composite Drought Heatwave Seil-CempesiteDrought
Heatwave(SEDHW)-index to evaluate the severity of concurrent drought and heatwave

events. However, their findings show that existing reanalysis datasets often
underestimate these events compared to observational records, highlighting the need
for more accurate, high-resolution 7 data. In the context of intensifying global warming
and extreme climate events, access to reliable 75 datasets is essential for improving the
monitoring and prediction of environmental stressors. These advancements are not only
vital for understanding terrestrial ecosystem dynamics but also for strengthening
climate resilience at both regional and national scales.

Moreover, Ts plays a pivotal role in ecological and hydrological modeling, offering
a more direct representation of surface processes than air temperature. It serves as a
sensitive indicator of biogeochemical cycles and phenological changes (Lembrechts et
al., 2022). For example, Liu et al., (2024) demonstrated that T is a dominant driver of

spring phenology in Chinese forests, making it a valuable input for climate—vegetation
interaction models. In cold regions, 75 governs soil freeze—thaw cycles, which are
critical for hydrological processes such as runoff generation, groundwater recharge, and

permafrost monitoring (Smith et al., 2022; Xu et al., 2022). Furthermore, T is a key

driver of soil respiration, influencing CO: fluxes and terrestrial carbon cycling (Lloyd

39
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and Taylor, 1994; Hursh et al., 2017). As such, the development of high-resolution T
products enables more accurate simulation of ecosystem carbon dynamics and regional
carbon budgeting, thereby advancing our understanding of climate feedback

mechanisms.

< (BERe B BO%SHE 238

4.3 Limitations and future perspective

Despite the strong performance of our spatially adaptive T estimation framework,

(BB THR: T (hX) Rb, FHHE EE S

several limitations warrant acknowledgment. As shown in Figures 6 and 7, model

validation at station level reveals spatial heterogeneity in prediction accuracy, with

relatively lower performance observed in the YGP and the QTP regions. On the one

hand, as evidenced by Figure 10, our multi-source modeling framework captures T

variations across different elevations and geomorphic conditions more effectively than

existing datasets. However, the QTP and YGP are characterized by complex terrain and

high altitudes, coupled with rapidly changing climatic conditions, which significantly

complicate T estimation. These findings align with previous studies showing that high

(BBETHR: T (P30 Rk

elevations intensify the disconnect between air temperature and LST, thereby increasing

the uncertainty in thermal modeling (Mo et al., 2025).

(BETHR: TH (730 Kb, FHHE HE S

MODIS LST serves as a critical input to our modeling framework. However, as an

optical remote sensing product, it is highly susceptible to cloud contamination, often

resulting in data gaps. Despite the use of spatiotemporal interpolation and SG filtering,

residual uncertainties persist in the reconstructed LST data. Future improvements in 75

reconstruction can be pursued along two main directions. First, more physically

grounded LST reconstruction methods can be adopted, such as incorporating surface

energy balance models and diurnal temperature cycle models (Hong et al., 2022:

(BETHR: $HHE BE5

Firozjaei et al., 2024; Wang et al., 2024). These methods apply energy conservation

principles to estimate 7 during periods of missing or unreliable observations, thereby

providing more realistic estimates of land surface thermal conditions during periods of

cloud cover. Second, integrating higher temporal resolution remote sensing

observations may help overcome the limitations of MODIS. For instance, passive
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microwave satellite data provide all-weather observations and are less sensitive to cloud

interference, (Duan et al., 2017; Wu et al.,, 2022). In addition, next-generation

(BETHR: FHHE HE5

geostationary satellites such as Himawari-8 offer observations at 10-minute intervals,

substantially enhancing the temporal continuity and quality of surface temperature

estimates, (Yamamoto et al., 2022; You et al., 2024). These enhancements are expected

(BETHR: FHHE L5

to significantly improve the accuracy and temporal continuity of soil temperature
monitoring.

Our results (Figures 8 and 9) show that model accuracy varies across different soil

depths, with additional influences from season and land use. Accuracy is relatively

lower at the surface (0 cm), improves at intermediate depths (5—10 cm), and then

declines again at greater depths (20-40 cm). This depth-dependent pattern can be

explained by the physical characteristics of soil temperature. Surface soil temperature

is highly sensitive to short-term meteorological fluctuations such as radiation,

precipitation, and evapotranspiration, leading to greater spatiotemporal variability and

larger prediction errors. In contrast, intermediate soil layers benefit from the buffering

effects of thermal diffusion and soil heat capacity, which dampen high-frequency

fluctuations and stabilize the relationship between predictors and 7, thereby improving

performance at these depths. At greater depths, however, surface-level errors propagate

downward through the cascading framework, resulting in reduced accuracy —

particularly during summer and winter.,

(BRBTHR: FHHE BHES

2024)Seasonal changes and variations in land cover further contribute to differences in

estimation accuracy. As shown in Figures 8 and 9, the model exhibits higher accuracy

in spring and autumn, whereas its performance tends to decline during summer and

winter. During summer, dense vegetation growth and canopy closure reduce the

influence of surface—atmosphere energy exchanges on 7s, weakening the correlation

between canopy temperature and subsurface 7 (Kropp et al., 2020; Cui et al., 2022). In

(BETHR: 2HHE BE5

winter, snow cover introduces a suite of confounding effects: high surface albedo
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reduces net radiation (Loranty et al., 2014; Li et al., 2018), while snow acts as an

insulator, limiting the soil's response to cold air incursions (Zhang, 2005; Myers-Smith

etal., 2015). Additionally, low temperatures lead to soil water freezing, which alters the

soil’s thermal conductivity and heat storage capacity. These factors, together with

frequent freeze—thaw cycles, introduce complex nonlinear dynamics in 7 that increase

modeling uncertainty, (Li et al., 2023a; Imanian et al., 2024). While our multi-source (BBTHR: FHHE BES5

adaptive modeling framework performs well across depths, it does not explicitly

account for the physical mechanisms of vertical heat transfer. Future research could

explore deep learning models that are capable of learning complex spatiotemporal

features and improving the physical interpretability of 7 variations across time, space,

and depth, (BETHR: THHE BES

(REBTHR: REET

42



875

880

885

890

895

900

5. Conclusion

This study addresses the lack of high spatiotemporal resolution multi-layer 7 data
by proposing a spatially adaptive ML framework, successfully constructing a retrieval
model for multi-layer 7s. By integrating in-situ observations, reanalysis data, satellite

remote sensing data, as well as topographic and soil texture data, the model

land;-eropland;and-grassland-compared-toforest—The results indicate relatively higher
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performance in spring and autumn than in summer and winter, and greater accuracy in

bare land, cropland, and grassland compared with forested areas. In comparison with

ERAS5-Land and GLDAS 2.1 T products, the multi-layer 7 data generated in this study

RETHER: FRHE BE

exhibit significant improvements in both accuracy and spatial detailCempared—te
ERAS Eandand GEDAS 2T the multi-layer T-data-gencrated-in-this-study-exhibits
signilicant —advantages—in—both—accuracy —and —spatial —detail.  Based on  this
frameworkBased-on-this-medel, we have first developed the long-term (2010-2020)

high spatiotemporal resolution (daily, 1 km resolution) multi-layer (0, 5, 10, 15, 20, 40
cm) Ts dataset for China. Future research could further explore methods that
simultaneously integrate temporal, spatial, and depth information, and utilize multi-
source sensor data to enhance the spatiotemporal monitoring capabilities of T at
different depths. Overall, this study demonstrates the potential of multi-source data in
T; estimation and provides a reliable tool and data foundation for ecological modeling,

agricultural production and related studies.

6. Data availability

The daily multi-layer 7 products (0, 5, 10, 15, 20, and 40 cm) at 1 km resolution
from 2010 to 2020 are freely available in HDF5 format to the public at
https://doi.org/10.11888/Terre.tpdc.302333 (Wang et al., 2025b). In addition, monthly

multi-layer 7T data are also provided to meet the needs of various users.
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