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Abstract  

Soil temperature (Ts) is critical in regulating agricultural production, ecosystem 

functions, hydrological cycling and climate dynamics. However, the inherent spatial 

and temporal heterogeneity of soil thermal regimes constitutes a persistent challenge in 

obtaining high-resolution, continuous gridded Ts datasets along vertical profiles. To 5 

address this issue, we propose a spatially adaptive layer-cascading Extreme Gradient 

Boosting (XGBoost) algorithm to generate daily multi-layer Ts data (0, 5, 10, 15, 20, 

and 40 cm) at a spatial resolution of 1 km in China from 2010 to 2020. The methodology 

dynamically partitions non-uniformly distributed measuring sites (2,093 sites across the 

country) to quadtrees and incorporates thermal coupling effects propagated between 10 

neighbor soil layers. Multi-source data, including satellite retrievals of land surface 

temperature and vegetation index, and ERA5 reanalysis climate variables were used as 

inputs. Validation using spatial block cross-validation and independent flux tower 

observations demonstrated the robustness and accuracy of the product.Independent 

tests demonstrated high robustness and accuracy of our model, with depth-specific 15 

values of coefficients of determination (R²) being 0.94~0.98 and root mean square 

errors (RMSE) values ranging 1.75~2.21K. It is noted the model’s performance was 

lower in summers and winters than in springs and autumns. Compared to existing global 

or regional Ts products, the dataset developed here is characterized by its fine spatio-

temporal patterns and high reliability, enabling it to provide supports for precision 20 

agriculture, ecosystem modeling and understanding climate-land feedback. Free access 

to the dataset can be found at https://doi.org/10.11888/Terre.tpdc.302333  (Wang et al., 

2025b)(X. Wang et al., 2025). 
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1. Introduction 

Soil temperature (Ts) is a critical driver of ecosystem dynamics, influencing nearly 

all physical, chemical, and biological processes (Bayatvarkeshi et al., 2021; Xu et al., 35 

2023; Liu et al., 2025). Ts plays a pivotal role in land-atmosphere exchanges. By 

controlling the partitioning of net radiation into sensible and latent heat fluxes, Ts 

directly shapes atmospheric boundary layer circulation, with cascading effects on 

regional climate patterns (Mahanama et al., 2008; Chen et al., 2021a). Ts also drives 

soil freeze-thaw cycles, which are critical for hydrological processes in cold regions. 40 

Permafrost thaw alters subsurface water storage, runoff dynamics and groundwater 

recharge, with implications for both local and basin-scale hydrology (Zhang et al., 2005; 

Shati et al., 2018). In addition, it governs the rates of soil microbial activities, nutrient 

cycling, and organic matter decomposition, with direct implications for carbon 

dynamics. For instance, Ts modulates microbial respiration, thereby regulating the 45 

release of organic carbon into the atmosphere as CO2 that is central to global carbon 

cycling (Yang et al., 2011). Given its multifaceted influences on carbon cycling, climate 

feedbacks and hydrological systems, accurate Ts estimation is indispensable for 

advancing ecosystem monitoring, refining climate models, and developing effective 

strategies to mitigate and adapt to climate change. 50 

Ts exhibits high heterogeneity at large spatial scales due to varying driving factors. 

Solar radiation changes its radiation intensity by adjusting the incident angle and 

sunshine duration, thus affecting the heating effects on surface soils (Wang and 

Dickinson, 2013). Additionally, diurnal variations of air temperature cause periodic 

changes in surface temperature, while the amplitude is often closely related to the local 55 

climate and topography. Furthermore, surface covers (e.g., vegetation and snow) 

significantly impact Ts (Xu et al., 2020; Mortier et al., 2024). Vegetation canopies 

effectively intercept and scatter solar radiation, while root systems modulate soil 
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moisture distribution, thereby stabilizing deeper soil temperatures (Li et al., 2024). 

Snow cover, characterized by high albedo, reflects substantial solar radiation and acts 60 

as an effective insulator, mitigating cold air penetration and maintaining warmer soil 

temperatures during winter months (Myers-Smith et al., 2015). Moreover, thermal 

conductivity and heat capacity are critical parameters controlling vertical heat transfer 

in soils. Sandy soils have higher porosity and lower water retention, resulting in lower 

heat capacity and higher thermal conductivity, thus responding rapidly to temperature 65 

changes. In contrast, clay soils have lower porosity and stronger water retention, leading 

to higher heat capacity and significant thermal stability, characterized by delayed 

responses to temperature variations (Ochsner et al., 2001; Zhao et al., 2022). 

Understanding these mechanisms is essential for developing refined vertical Ts 

distribution models and improving the accuracy of Ts estimation.  70 

Given these complex processes, accurately estimating Ts across different depths is 

challenging. Quite a few models have been proposed for Ts estimation. These models 

can be generally classified into physical, statistical or empirical, and machine learning 

(ML) types (Li et al., 2024; Farhangmehr et al., 2025). Physical models, derived from 

fundamental heat conduction laws and energy balance equations, provide explicit 75 

mechanistic interpretations but suffer from computational complexity and heavy 

reliance on multi-domain input parameters, which range from soil properties to climatic 

variables (Gao et al., 2008; Hu et al., 2016; Badache et al., 2016). Statistical or empirical 

models, such as autoregressive integrated moving average and regression methods 

(Xing et al., 2018), are usually limited to localized, small-sample applications. Data-80 

driven MLmachine learning techniques demonstrate a superior ability to capture 

nonlinear relationships and thus usually can obtain high prediction accuracy. For 

instance, at site scale, Feng et al. (2019) estimated multi-layer Ts at half-hourly 

resolutions using Extreme Learning Machine, with a RMSE ranging from 2.26~2.95 K. 

Li et al., (2022) implemented an attention-aware long short-term memory (LSTM) 85 

model for predicting next-day Ts and the model obtained a RMSE of 0.74~2.53 K. At 

the regional scale, Xu et al. (2023) integrated satellite remote sensing with a deep belief 
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network model to reconstruct continuous Ts profiles (at depths of 5––40 cm) across the 

Qinghai-Tibetan Plateau (QTP), obtaining R² > 0.836 and MAE < 2.152 °C. Similarly, 

Farhangmehr et al. (2025) developed a hybrid convolutional neural network-LSTM 90 

(CNN-LSTM) architecture for predicting Ts across North American climatic zones at 

0-–7 cm depths, with R² ranging from 0.93 to 0.99.  

Although significant advances have been made in estimating Ts, large-scale Ts 

prediction continues to confront critical challenges, sourcing from environmental 

complexity and methodological limitations. First, Ts exhibits considerable spatial 95 

heterogeneity driven by regional disparities in topography, soil composition, vegetation 

density, and microclimate (Bayatvarkeshi et al., 2021). These factors create 

nonstationary relationships between Ts and explanatory variables (e.g., air temperature, 

soil moisture), necessitating regionally tailored modeling approaches. Second, data 

scarcity and uneven spatial distribution of site measurements introduce further 100 

complexity. Aggregating sparse, unevenly distributed measurements into a single model 

often leads to overfitting: high accuracy on training data but poor generalization to 

underrepresented regions or previously unseen data (Li et al., 2024). Ultimately, 

developing models that reconcile scalability (for large spatial scales) with localized 

precision (to capture site-specific interactions) remains an unresolved priority, 105 

underscoring the persistent challenge of balancing universal applicability with spatially 

adaptive fidelity in Ts prediction methodology. 

To address the above challenges, this study proposes a spatially adaptive 

methodology based on quadtrees. This approach dynamically partitions the study area 

into grids of varying sizes, with smaller grids in densely observed regions and larger 110 

grids in sparsely sampled areas, thereby enabling localized modeling that better 

captures spatial heterogeneity across complex environmental gradients. In addition, 

multi-source environmental predictors are integrated, and XGBoost models are applied 

within each grid cell to capture the nonlinear relationships between Ts and its driving 

factors. Importantly, we employ a spatial block cross-validation strategy to evaluate the 115 

model’s generalization ability in unseen regions. Based on this framework, the 
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objectives of this study are to: (1) construct a spatially adaptive modeling system; (2) 

generate a multi-layer Ts dataset at a daily time-step and one kilometer resolution in 

China from 2010-2020; and (3) evaluate the dataset through independent validation 

with flux tower observations and benchmarking against widely used Ts products. The 120 

proposed methodology could directly address the scaling challenges induced by spatial 

heterogeneity and uneven data distribution. The generated products would provide a 

robust foundation for high-resolution environmental modeling, precision agriculture 

and climate impact assessments. 

In this study, we propose a spatial scale-adaptive methodology based on quadtrees for 125 

multi-layer Ts estimation. The objectives are to: (1) develop a novel modeling 

framework by integrating multi-source data, including in-situ observations, remote 

sensing products, meteorological variables, and auxiliary environmental data; (2) 

generate a multi-layer Ts dataset at a daily time-step and one kilometer resolution in 

China from 2010-2020; and (3) assess the accuracy of the dataset through independent 130 

validation and benchmarking against widely used Ts products. The proposed 

methodology could explicitly address the scaling challenges induced by spatial 

heterogeneity and uneven data distribution. The generated products would provide a 

robust foundation for high-resolution environmental modeling, precision agriculture 

and climate impact assessments. 135 

 

2. Materials and methods 

2.1 In-situ Ts observations 

In this study, in-situ Ts observations was measured at six depths: at the surface (0 

m), and at subsurface levels of 0.05, 0.10, 0.15, 0.20, and 0.40 meters. Data were 140 

collected through the national weather station network operated by the China 

Meteorological Administration (CMA), in accordance with standardized measurement 

protocols. At each site, Ts was recorded every 10 minutes and automatically uploaded 

to a central server. Daily mean values at each depth were calculated from these high-

frequency records. We then assessed data completeness for the period 2010–2020 and 145 
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excluded stations with more than 20% missing daily records at any depth. After quality 

control, 2,093 stations were retained for model development.In this study, in-situ Ts 

observations were sourced from the China Meteorological Administration, 

encompassing daily mean Ts data collected from 2,093 stations across the period 2010–

2020. These stations recorded Ts at six standard soil depths: 0, 5, 10, 15, 20, and 40 cm.  150 

The observation network spans a wide range of climatic zones—from cold and 

temperate to subtropical and tropical, and includes diverse land-use and ecosystem 

types, such as forests, grasslands, croplands, and barren lands. However, the spatial 

distribution of stations is notably uneven. High station density is observed in 

northeastern China, the central and eastern plains, and the southern hilly regions, 155 

whereas station coverage is sparse in the arid and semi-arid regions of northwestern 

China and on the QTP. The spatial distribution of in-situ observation sites is shown in 

Figure 1, and details of the dataset partitioning strategy are provided in Section 

2.3.3.Figure.1 illustrates the spatial configuration of the dataset: gray dots represent 

samples used for model training, while red dots denote those reserved for model testing. 160 

Details regarding the dataset partitioning strategy are provided in Section 2.3.3. 
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Figure 1. Spatial distribution of in-situ Ts sites at different depths across China and 

the corresponding environmental variables. This figure presents the spatial 165 

distribution of 2,093 in-situ Ts sites across China, with samples divided into the 

training set (gray) and the test set (red). The environmental variables corresponding to 

these sites include (a) land cover types (forests, barren land, grasslands, croplands, 

water bodies, and urban areas), (b) elevation (ranging from -156 m to 8424 m), (c) 

mean annual temperature (MAT, ranging from -18°C to 26°C), and (d) mean annual 170 

precipitation (MAP, ranging from 11 mm to 10,800 mm). 

 

2.2 Predictor variables 

To construct a robust multi-layer Ts estimation model, we selected a 

comprehensive suite of predictor variables, integrating remote sensing products, 175 

meteorological factors, and auxiliary environmental data. Meteorological variables, 

especially air temperature and precipitation, have been consistently recognized in 

previous studies as primary determinants of Ts variability (Bond-Lamberty et al., 2005; 

Nahvi et al., 2016). Among these, air temperature has been widely regarded as the most 

influential variable due to its strong linear relationship with Ts (Khosravi et al., 2023). 180 

      In addition, both net solar radiation and downward longwave radiation 

(LWD) were considered. Net solar radiation directly represents the shortwave energy 

absorbed by the land surface and serves as the primary driver of the daytime surface 

energy budget, whereas LWD plays a particularly important role under nighttime and 

winter conditions by regulating surface heat loss through the longwave radiation 185 

balance. Together, they jointly control the surface energy balance and directly drive the 

spatiotemporal dynamics of Ts .(Peng et al., 2016).In addition, solar radiation was 
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included, given its significant role in regulating the surface energy balance through its 

influence on net radiation, latent heat flux, and ground heat flux, all of which directly 

affect Ts dynamics. 190 

Thermal infrared remote sensing data also exhibit a high correlation with near-

surface Ts. Integrating thermal remote sensing products and energy balance-based 

models offers an effective means of estimating Ts with high spatial and temporal 

continuity. This strategy has been validated by numerous studies (Huang et al., 2020; 

Xu et al., 2023). Surface land cover further modulates Ts by altering surface albedo, 195 

regulating evapotranspiration (ET), and influencing energy partitioning processes. 

Accordingly, the enhanced vegetation index (EVI), derived from satellite observations, 

was incorporated as a proxy for vegetation density and type (Bright et al., 2017; Li et 

al., 2024b). To capture the influence of underlying surface characteristics on Ts, 

topographic variables such as elevation and slope were included, along with soil texture 200 

data across various depths. These features collectively reflect the heterogeneous 

physical and thermal properties of the soil, contributing to spatial variations in heat 

conduction and storage capacity. A full list of the predictor variables used in the model 

is summarized in Table 1. 

Table 1. Details of the predictor variables for training the model. 205 

Type Data Variable 
Spatial 

resolution 

Temporal 

resolution 
Reference 

Remotely sensed 

product 

MOD09GA EVI 500 m×500 m Daily 
Huete et al., 

2002 

MOD11A1 LST_ Day 1 km×1 km Daily  

MOD11A1 LST_ Night 1 km×1 km Daily  

Climate data ERA5-Land 

Temperature_2m 

surface_net_solar_r

adiation_sumSolar_

radiation 

 

surface_thermal_ra

diation_downwards

_sum 

Precipitation 

Wind_10m 

9 km×9 km Daily 

Muñoz-

Sabater et al., 

2021 

Supplementary USGS_STRM Elevation 30 m   
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data Slope 30 m   

Soil Texture 

Sand, Silt, Clay 

Depth: 

0-5, 5-15, 15-30, 

30-60cm 

250 m×250 m  Liu et al., 2022 

 
In-situ 

measurements 

Soil temperature 

at 0, 5, 10, 15, 20, 

and 40 cm 

- Daily  

 

2.2.1 Remote sensing data 

The MOD11A1 LST product, at a daily time-step and a spatial resolution of 1 km, 

was utilized. It includes both daytime (LSTday) and nighttime (LSTnight) temperatures at 

10:30 AM and 10:30 PM, respectively, along with quality assessment information (Wan 210 

and Dozier, 1996). To enhance the estimation of daily mean Ts, the average of LSTday 

and LSTnight values was calculated and used in the analysis. 

EVI from 2010 to 2020 were selected as predictor of Ts. The MODIS Surface 

Reflectance Product (MOD09GA), derived from MODIS Level-1B data, provides daily 

surface reflectance of seven bands at 500 m × 500 m resolution. The EVI is defined by 215 

Huete et al., (2002), and the retrieval equation is as follows: 

 
( )

( )
_ 1 2

1

_

_ 1 _ _22 3

SR b SR b

SR b SR b SR b

EVI G
C C L

 

  

−
= 

+    −   +
 (1) 

where G = 2.5, C1 = 6, C2 = 7.5, L = 1. The remote sensing reflectance variables 

SR_b1(620-670nm), SR_b2 (841-876nm) and SR_b3 (459–479 nm) of MOD09GA data 

represents red, near-infrared and blue bands. The coefficients 2.5 and 1 represent the 220 

gain and canopy background, respectively (Huete et al., 2002). The atmospheric 

influence on the red band is corrected using the blue band and the coefficients 6 and 

7.5, respectively. 

Subsequently, cloud contamination caused partial spatial absences in the daily LST 

and EVI. To address this issue, we applied a temporal and spatial linear interpolation 225 

algorithm, which utilizes time-series data from adjacent days and spatial information 

from neighboring pixels to fill the current missing values, thereby generating a time-

continuous and spatially complete image series. This approach follows the methods 
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described in Chen et al., (2017) and Cao et al., (2018), with modifications to better suit 

our dataset. Then, the Savitzky-Golay (S-G) filter was used to smooth the interpolated 230 

data, resulting in continuous surface temperature and vegetation index data with high 

temporal and spatial resolution (Kong et al., 2019; Chen et al., 2021b). All data 

preprocessing, including image filtering and interpolation, was conducted within the 

Google Earth Engine (GEE) platform. 

 235 

2.2.2 Climate data 

The ERA5-Land is the fifth-generation reanalysis dataset produced by the 

European Centre for Medium-Range Weather Forecasts (ECMWF). It assimilates 

multi-source data, including weather station measurements, numerical weather 

predictions, and satellite observations, into dynamic models to generate reanalysis data 240 

(Muñoz-Sabater et al., 2021). It provides high-quality environmental variables related 

to water and energy fluxes between the land surface and atmosphere, with continuous 

coverage from 1981 to the present. ERA5-Land offers a spatial resolution of 0.1° (~9 

km at the equator) and an hourly temporal resolution, making it well-suited for 

modeling near-surface processes. In this study, we extracted daily mean values of key 245 

climate variables, including 2-meter air temperature (Temperature_2m), surface solar 

radiation ,and total precipitation, and 10-meter wind speed (wind_speed_10m), from 

the ERA5-Land Daily dataset. All variables were accessed and processed using the GEE 

platform. 

 250 

2.2.3 Auxiliary data 

Topographic and soil-related variables were incorporated as auxiliary predictors to 

improve the accuracy of Ts estimation. Elevation and slope were derived from the 

Shuttle Radar Topography Mission (SRTM) digital elevation model (Farr et al., 2007), 

specifically using the Version 3 (SRTM Plus) product with a spatial resolution of 1 arc 255 

second (~30 m). Soil texture plays a critical role in determining Ts through its influence 

on thermal conductivity, which is affected by physical properties such as particle size 
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distribution, porosity, bulk density, and moisture retention capacity. In this study, we 

represented soil texture using the relative proportions of clay (fine), silt (medium), and 

sand (coarse) particles. To capture vertical variability in soil properties, we employed 260 

the China Soil Information Grid dataset developed by Liu et al. (2022), which provides 

gridded estimates of soil composition at four depth intervals: 0–5 cm, 5–15 cm, 15–30 

cm, and 30–60 cm. The dataset offers a spatial resolution of 1 km and is suitable for 

high-resolution, profile-based soil modeling. 

 265 

2.3 Methods 

The spatial adaptive modeling framework consists of three modules as shown in 

Fig. 3. Module Ⅰ is for data collection and preprocessing, which mainly involves in-situ 

observations, remote sensing, meteorological and supplementary data. Module Ⅱ is 

spatial adaptive modeling, which mainly includes the construction of rotated quadtrees 270 

and local modeling based on XGBoost. Finally, module Ⅲ is the layer-to-layer 

reconstruction of daily 1km resolution multi-layer (0, 5, 10, 15, 20, and 40 cm) Ts 

datasets in China from 2010 to 2020. 

 

2.3.1. Feature selection 275 

Multicollinearity among multiple source variables may affect the robustness of the 

models. Therefore, we rigorously evaluated the multicollinearity among the 

independent variables using the variance inflation factor (VIF) before modeling to 

remove highly correlated variables. The VIF is a diagnostic statistic used to quantify 

the degree of multicollinearity by measuring how much the variance of a regression 280 

coefficient is inflated due to correlations with other predictorsTo mitigate 

multicollinearity among predictor variables, we calculated the Variance Inflation Factor 

(VIF) for all candidate features(Akinwande et al., 2015) (Akinwande et al., 

2015)(Akinwande et al., 2015).  (Akinwande et al., 2015). It is calculated as: 

 
2

1

1
i

i

VIF
R

=
−

  (2) 285 
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where
2

iR is the coefficient of determination obtained by regressing the i -th predictor 

against all other predictors. Variables with VIF exceeding 10 are generally considered 

severely multicollinear and should be removed. 

Based on the VIF analysis, we applied the following adjustments to the predictor 

set. Accordingly, some variables were excluded due to severe multicollinearity or 290 

redundancy. Specifically, sand, silt, and clay are compositional variables whose 

proportions sum to 100%, leading to perfect collinearity. To reduce redundancy, we 

removed silt while retaining sand and clay. In addition, LWD was found to be highly 

correlated with net solar radiation at the daily mean scale (Fig. S1) and was therefore 

excluded from the final modeling. 295 

In contrast, although the daily mean LST (LST_mean) and air temperature also 

exhibited strong collinearity, with VIF values exceeding 10 (Fig. S2), we decided to 

retain both. This decision reflects their physical distinctness and complementary 

information: LST_mean provides higher spatial resolution (1 km), whereas air 

temperature offers broader meteorological consistency (9 km). Such differences are 300 

particularly important in complex ecosystems such as forests, where canopy structure 

and biological processes substantially influence thermal dynamics (Liu et al., 2025).As 

shown in Fig. S1, both the daily mean LST (LST_mean) and air temperature exhibited 

high collinearity, with VIF values exceeding 10. Although LST_mean offers higher 

spatial resolution (1 km) compared to air temperature (9 km), it is crucial to recognize 305 

that these two variables are physically distinct. Their differences become particularly 

pronounced in complex ecosystems such as forests, where canopy structure and 

biological processes significantly influence thermal dynamics (Liu et al., 2025). Given 

these considerations, both LST_mean and air temperature were retained for the 

estimation of Ts at the 0 cm depth, as they offer complementary information. Following 310 

feature selection, all retained variables were resampled to a common spatial resolution 

of 1 km using bilinear interpolation to ensure consistency in subsequent modeling steps. 

 

2.3.2. Spatial adaptive partition of site measurements 
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A quadtree is a hierarchical spatial data structure that recursively subdivides a two-315 

dimensional space into four quadrants, enabling efficient spatial indexing and localized 

data organization. In this study, we adopted a bottom-up, rotated quadtree-based spatial 

partitioning strategy that adaptively generates finer grids in regions with dense samples 

and coarser grids in sparse regions. Compared to global modeling or static grid 

partitioning, this adaptive approach offers improved regional modeling fidelity while 320 

significantly enhancing computational efficiency. The procedure consists of the 

following steps:A quadtree is a hierarchical spatial data structure that recursively 

subdivides a two-dimensional space into four quadrants, enabling efficient spatial 

indexing and localized data organization. In this study, we adopted a rotated quadtree-

based spatial partitioning strategy to facilitate region-specific Ts modeling. The 325 

procedure comprises the following steps: 

 

(1) Initialization of Minimum Units 

The entire spatial domain was first divided into uniform, minimum-sized units 

(leaf nodes), each representing a fundamental spatial element. These units may contain 330 

zero or more in-situ observations. This initial step provides the base resolution for 

subsequent hierarchical construction. The structure and principle of quadtree spatial 

indexing are illustrated in Fig. S32. 

(2) Hierarchical Merging 

Beginning with the leaf nodes, neighboring quadrants (i.e., groups of four adjacent 335 

nodes) were recursively merged into parent nodes if they satisfied a specified threshold: 

each sub-node contained fewer than 30 observational sites. This criterion ensures a 

balance between regional modeling precision and sample size sufficiency. The merging 

process continued upward through the hierarchy until no further aggregation met the 

threshold. The resulting partitions define spatially adaptive subregions, each of which 340 

is assigned a localized Ts prediction model.Starting from the leaf nodes, groups of four 

adjacent quadrants were recursively merged into parent nodes if each contained fewer 

than 30 observation sites (threshold selection detailed in Fig. S4). The merging process 
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continued upward until no further groups met the threshold. This approach ensures that 

each node has sufficient sample size while achieving spatially adaptive partitioning 345 

across the study area. Each subregion is then assigned a localized Ts prediction model. 

 

(3) Rotation at different angles 

To reduceaddress potential edge effects introduced by static grid boundaries, we 

implemented a rotated quadtree partitioning strategy. The quadtree structure was rotated 350 

at six angles (0°, 15°, 30°, 45°, 60°, and 75°), producing distinct sets of spatial partitions 

for each orientation (Fig. 2). Independent models were trained for each rotated 

configuration, and the final Ts estimates were obtained by averaging the outputs from 

all six models. This rotation-based ensemble method improves spatial smoothness and 

minimizes discontinuities at partition boundariesThis rotational ensemble approach 355 

enhances spatial continuity and reduces boundary artifacts in the final predictions. 

 

Figure 2. multi-angle adaptive quadtree partitioning of site observations (0°, 15°, 30°, 

45°, 60°, 75°) 

2.3.3. Machine learning algorithm 360 

We selected the XGBoost (Extreme Gradient Boosting) algorithm for Ts estimation 

due to its proven accuracy, computational efficiency, and scalability for large-scale 

regression tasks. Introduced by(Chen and Guestrin, 2016), XGBoost constructs an 

ensemble of regression trees in a sequential manner, where each new tree is trained to 
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correct the residuals of the preceding ones. This iterative boosting process continues 365 

until convergence criteria are met, and the final prediction is obtained by aggregating 

the outputs of all trees. Compared to other machine learning algorithms such as support 

vector machines, random forests, and neural networks, XGBoost offers optimized 

performance through parallel computing, efficient memory usage, and a second-order 

gradient descent optimization strategy that accelerates training. Its robustness and 370 

predictive power have been widely demonstrated in geoscience and remote sensing 

applications, including land surface temperature reconstruction (Li et al., 2024) and 

multi-layer soil moisture estimation (Karthikeyan and Mishra, 2021).We adopted the 

XGBoost (Extreme Gradient Boosting) algorithm as the core regression model for Ts 

estimation due to its strong predictive performance, computational efficiency, and 375 

scalability across large environmental datasets. XGBoost constructs an ensemble of 

regression trees in a stage-wise boosting process, where each successive tree is trained 

to minimize the residuals of the previous iteration, thereby producing a robust and 

optimized model (Chen and Guestrin, 2016). One of the key strengths of XGBoost is 

its ability to handle heterogeneous and high-dimensional predictor sets, which are 380 

common in geoscience applications involving complex terrain, land cover variability, 

and climatic gradients. Recent studies have demonstrated its effectiveness in similar 

domains, including land surface temperature reconstruction (Li et al., 2024), multi-layer 

soil moisture estimation (Karthikeyan and Mishra, 2021), drought event attribution 

(Wang et al., 2025a)(Zhang et al., 2025), and crop yield prediction (Li et al., 2023b). 385 

Given these proven strengths and the spatially nonstationary characteristics of Ts in our 

study area, XGBoost was selected to train localized prediction models within spatial 

subregions. 

As shown in Fig. 3, (Chen and Guestrin, 2016)the observational dataset was stratified 

into training (70%), validation (20%), and test (10%) subsets through random sampling. 390 

A separate XGBoost model was constructed for each spatial grid using the Python 

XGBoost package(Chen and Guestrin, 2016). To prevent overfitting, model 

hyperparameters were carefully tuned. Specifically, we optimized key parameters 
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including the number of trees (n_estimators), maximum tree depth (max_depth), and 

learning rate (eta). GridSearchCV was applied to conduct an exhaustive search over the 395 

hyperparameter space defined in Table S1. Five-fold cross-validation was used to 

evaluate model generalizability and identify the optimal hyperparameter combinations 

for each local model. 

 

To rigorously account for the strong spatial autocorrelation of Ts and avoid 400 

potential data leakage between training and testing subsets, we employed a spatial block 

cross-validation scheme rather than random splitting. Specifically, within each rotated 

quadtree grid, observation sites were grouped into spatial blocks based on their 

geographic coordinates: station latitude and longitude were each divided by 1° and 

floored to integer values, and stations sharing the same index were assigned to the same 405 

block. This ensured that samples within the same spatial block were not simultaneously 

assigned to both the training and testing subsets, thereby avoiding data leakage due to 

spatial autocorrelation and enabling a more reliable evaluation of the model’s 

generalization capability. 

Within each spatial grid, the data were partitioned into training (90%) and testing 410 

(10%) subsets at the block level. The training subset was further subjected to 10-fold 

spatial block cross-validation using GridSearchCV to optimize three key 

hyperparameters: the number of trees (n_estimators), maximum tree depth (max_depth), 

and learning rate (learning_rate). Detailed parameter settings are provided in Appendix 

Table S1. The hyperparameter set that yielded the lowest average validation error across 415 

the ten folds was selected as optimal. The final model was retrained on the full training 

set with the optimized parameters and evaluated on the held-out testing set to assess 

generalization. 

A layer-wise prediction strategy was adopted to estimate Ts along the soil profile. 

For the surface layer (0 cm), predictors included air temperature and daily mean LST. 420 

For subsurface layers, these two variables were replaced by the Ts estimate from the 

immediately preceding layer, enabling the model to capture vertical heat conduction 
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processes and thereby improving the continuity and physical consistency of layer-wise 

Ts estimationallowing the model to account for vertical temperature conduction 

processes and improving the continuity of layer-wise Ts estimation. 425 
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Figure 3. Workflow of the proposed method to obtain multi-layer Ts over the China. 

 430 

2.3.4. Model evaluation metrics 

The modeling performance and quality of the predicted Ts were evaluated in terms 

of RMSE, Mean Absolute Error (MAE), R², and Bias. RMSE and MAE were used to 

assess the ability to estimate volatility and fluctuation amplitude, respectively. R² 

represented the percentage of variance explained by the ML models. Bias was used to 435 

determine whether the estimations were overestimated or underestimated. These 

metrics were computed as follows:  
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where
iy and 

ix denoted the in-situ Ts and estimated Ts for all the stations and periods, 445 

respectively. Y and X represented the mean values of the in-situ Ts and estimated Ts, 

respectively. 

 

3. Results 

3.1 Model performance across sites 450 

Figure 4 illustrates the accuracy performance of all models constructed at various 

depths, utilizing different grid configurations and rotation angles, for both the training 

and validationtest sets. The grouped box plots demonstrate that the R² values for the 

training and test validation sets at different depths range from 0.82 to 0.98, and the 

RMSE values vary from 0.6 to 2.8 K. Both the training and test validation sets exhibit 455 

high accuracy with no evident signs of overfitting. A depth-wise comparison shows that 

model performance at 0 cm and 40 cm is marginally lower than at other depths. 

Furthermore, to enhance the independence of the evaluation, we validated the final 

dataset against daily Ts observations from 18 flux tower sites of the ChinaFLUX 

network. For consistency, we retained measurements only at depths of 0, 5, 10, 15, 20, 460 

and 40 cm. Metadata for these sites is provided in Table S2, and the corresponding 

validation results are presented in Figure 5. The evaluation shows that our dataset 

achieves high accuracy at these independent sites (R² = 0.85–0.90; RMSE = 3.3–4.2 K), 

further demonstrating the robustness of our approach. Taken together, the validation 

results from both spatial block cross-validation and flux tower observations confirm 465 

that the spatially adaptive model we developed exhibits reliable accuracy and strong 

spatial generalization capability.Additionally, we evaluated the model's performance at 
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different depths using an independent dataset comprising 210 sampling sites. Final 

predictions at each site were obtained by averaging the outputs from six rotations. 

Figure 5 presents scatter density plots comparing the predicted results with in-situ 470 

observations. The results at all depths are close to the 1:1 reference line. The R² values 

for different depths range from 0.93 to 0.97, and RMSE values between 1.74 and 2.25 

K. Although the validation accuracy at depths of 0 cm and 40 cm is marginally lower 

than at 5, 10, 15, and 20 cm, the independent validation results across all depths 

demonstrate excellent overall performance. Overall, the accuracy validation results 475 

from the model's training set, validation set, and independent sample points indicate 

that the spatially adaptive model we developed has robust accuracy and strong 

generalization capability. 设置了格式: 字体颜色: 蓝色
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 480 

Figure 4. Model performance for training and test sets across different 

depths.Accuracy performance of model (different rotations and depths) training and 

validation set 

 

 485 
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Figure 5. Density scatter plots comparing estimated daily Ts with flux tower 

observations at different depthsFigure 5. Scatter density plot comparing the accuracy 

of different depths in the test set 

 490 

3.2 Model performance at individual sites 

To evaluate spatial prediction accuracy in the spatial-scale evaluation, R² and 

RMSE were calculated at each station. Model performance was assessed across all soil 

depths at the station level. Spatial results show that station-level R² values range from 

0.70 to 1.00, and RMSE values range from 0 to 3 K, indicating acceptable prediction 495 

accuracy across all soil layers. As illustrated in Figures 6 and 7, most stations achieve 

R² values above 0.90. Regions with higher prediction accuracy are mainly located in 

the northwest, northeast, and central areas, whereas larger errors are concentrated in the 

Yunnan–Guizhou Plateau (YGP) and the sparsely monitored QTP. The histogram in Fig. 

7 further shows that RMSE values for most depths fall between 0.5 and 2.0 K, indicating 500 

generally good predictive performance. Notably, prediction errors were highest at the 

surface layer (0 cm), decreased with depth, but slightly increased again at 40 cm, where 

performance was weaker than at 5–20 cm Notably, Prediction errors at the surface layer 

(0 cm) are notably higher than those at greater depths. In general, error decreases with 

increasing depth, although a slight increase is observed at 40 cm, where performance is 505 

slightly poorer than at 5-20 cm. 
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Figure 6. Goodness of R² across China estimated during the model testing phase. 

Performance metrics are calculated between predicted_Ts and in-situ Ts data sets. 510 
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Figure 7. Goodness of RMSE across China estimated during the model testing phase. 515 

Performance metrics are calculated between predicted Ts and in-situ Ts data sets. 

 

3.3 Evaluation across land cover types and seasons 

Figure 8 shows grouped box plots of the prediction performance of Ts across 

different land cover types (barren land, cropland, forest, and grassland) at six depths (0, 520 
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5, 10, 15, 20, and 40 cm). The evaluation metrics include R² and RMSE. The median 

R² values across land cover types and depths range from 0.96 to 0.98, consistently 

exceeding 0.96 (red dashed line), indicating overall high prediction accuracy. Among 

land cover types, barren land exhibits the highest R² values, followed by cropland, while 

forest and grassland show slightly lower performance. The median RMSE values 525 

generally range from 1.1 to 1.8 K. Barren land shows higher RMSE compared with 

other land cover types, whereas cropland, forest, and grassland maintain lower and 

more stable RMSE. Across depths, RMSE is highest at the surface layer (0 cm), 

decreases steadily with increasing depth, and shows a slight increase at 40 cmFigure 8 

shows grouped box plots illustrating the prediction performance of Ts across different 530 

land cover types (bare land, farmland, forest, grassland) at six depths (0 cm, 5 cm, 10 

cm, 15 cm, 20 cm, 40 cm). The evaluation metrics include the R² and RMSE. . 

Mean R² values across all depths and land cover types range from 0.82 to 0.98, 

indicating overall high prediction accuracy. Notably, the mean R² values consistently 

exceed 0.96 (indicated by the red dashed line). Among the land cover categories, bare 535 

land exhibits the highest R² values, followed by farmland, whereas forest and grassland 

exhibit slightly lower performance. RMSE values vary depending on both soil depth 

and land cover type, generally ranging from 0.6 to 2.8 K. Bare land displays higher 

RMSE values, likely due to larger diurnal temperature variations and a relatively small 

sample size. In contrast, farmland, forest, and grassland show lower and more stable 540 

RMSE values. The highest RMSE is observed at the surface layer (0 cm), reflecting the 

strong sensitivity of shallow soil temperatures to external environmental conditions. 

RMSE tends to decrease with depth, although a slight increase is noted at 40 cm, where 

prediction errors are marginally higher than those at 5-20 cm. 

Furthermore, seasonal variations in prediction accuracy are shown in Fig. 9. The 545 

median R² values across depths range from 0.6 to 0.98, with higher values in spring 

(green) and autumn (pink) and lower values in summer (orange) and winter (blue), 

particularly at 20–40 cm depth. The median RMSE values range from approximately 

1.0 to 2.0 K, being lower in spring and autumn and higher in summer and winter, with 
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the largest median error observed at 40 cm depth in winter. With increasing soil depth, 550 

the median errors decrease from the surface (0 cm) to 5–10 cm, and then gradually 

accumulate from 15 to 40 cmFurthermore, seasonal variations in prediction accuracy 

are further presented in Fig. 9. . 

The results demonstrate that the R² values in spring (green) and autumn (pink) are 

significantly higher than those in summer (orange) and winter (blue), particularly at 555 

shallow depths (0 cm and 5 cm). This suggests that the model captures Ts variability 

more effectively during spring and autumn. Seasonal RMSE values range 

approximately from 0.98 to 1.97 K, with the highest errors occurring at 0 cm depth 

during summer and winter. These elevated errors are likely attributed to increased 

surface temperature fluctuations driven by external environmental factors such as solar 560 

radiation, which add complexity to the prediction. Overall, RMSE decreases with 

increasing soil depth across all seasons, indicating improved thermal stability and 

enhanced prediction accuracy in deeper layers. 
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 565 

Figure 8. Evaluation of predicted Ts at different depths (i.e., 0, 5, 10, 15, 20, 40cm) 

across various land use types (i.e., Forest, Grassland, Cropland, Barren) 

 

设置了格式: 字体颜色: 蓝色



29 

 

 570 

Figure 9. Evaluation of the predicted_Ts in different depth (ie.0,5,10,15,20,40 cm) at 

sites with four seasons (i.e., spring, summer, autumn, winter). Winter is defined as 

December, January, and February; spring as March, April, and May; summer as June, 

July, and August; and autumn as September, October, and November. 

 575 

3.4 Comparison with other products 

Figure 10 presents a comparative analysis of different Ts products at the surface 

(0 cm depth), evaluating the spatial characteristics of the model-generated Ts against 

the ERA5-Land and GLDAS 2.1 products across both national-scale regions (Fig. 10a–

c) and zoomed-in local areas (Fig. 10d–f). Compared to the GLDAS 2.1 product (Fig. 580 

11c and 11f), the model generated Ts exhibits significantly finer spatial resolution and 

a superior ability to capture localized spatial heterogeneity. The GLDAS 2.1 product, 

characterized by a coarser resolution, inadequately represents local features and 

exhibits notable limitations, especially in specific regions (Fig. 10f). Conversely, the 

spatial distribution of our Ts data closely matches that of the ERA5-Land product (Fig. 585 

10b and 10e). Nevertheless, the ERA5-Land product may be constrained by its input 

resolution, whereas our adaptive modeling approach achieves greater precision in 

representing fine-scale spatial variability.  

Scatter density plots in Fig. S53 further indicate that our estimated Ts achieves 
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significantly higher site-level accuracy compared to ERA5-Land and GLDAS 2.1. 590 

Specifically, the R² values between in-situ observations and our estimations at depths 

of 0, 10, and 40 cm range from 0.94 to 0.97, compared to 0.83–0.89 for ERA5-Land 

and 0.83–0.87 for GLDAS 2.1. These results underscore the reliability and enhanced 

accuracy of our Ts estimation product at both spatial and site scales, effectively 

overcoming the limitations associated with GLDAS 2.1 and ERA5-Land products. 595 

These findings highlight the strong potential of the model to accurately capture the 

spatial distribution of Ts and enhance regional-scale Ts modeling. 

 

Figure 10. Comparison of different Ts products (e.g., 0 cm) 600 
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3.5 Spatial and temporal patterns of Ts at varied soil depths across China 

To examine seasonal and vertical variations in the spatial distribution of Ts, we 

selected two contrasting dates: January 1, 2020 (winter) and July 1, 2020 (summer). 

Figure 11 a–f illustrates the spatial distribution and corresponding histograms of Ts at 605 

different depths (0 cm, 5 cm, 10 cm, 15 cm, 20 cm, 40 cm) across China on January 1, 

2020. The results show that Ts in northern China (particularly in the northeast, northwest, 

and the QTP) is generally lower in January, exhibiting distinct cold zones. In contrast, 

southern areas exhibit higher Ts values, forming a gradual north-to-south temperature 

gradient. Moreover, deeper soil layers (e.g., 40 cm) exhibit higher temperatures than 610 

surface layers (0 cm), especially in northeastern China and the QTP, reflecting the 

insulating effect of deeper soils during winter. 

Figure 11a1–f1 illustrates the spatial distribution and histograms of Ts on July 1, 

2020. Compared to January, a significant increase in Ts is observed across China in July, 

with widespread high-temperature zones in the eastern and southern regions. The 615 

increase is particularly pronounced in northern areas, while changes in the south are 

relatively moderate. In contrast to winter conditions, Ts decreases with increasing soil 

depth during summer, with surface temperatures (0 cm) exceeding those at 40 cm, 

indicating the downward heat conduction from the surface. Overall, Comparative 

analysis of Fig. 11a–f and Fig. 11a1–f1 elucidates both seasonal variation and vertical 620 

patterns of Ts: deeper layers (5-40 cm) are warmer than the surface (0 cm) during winter, 

whereas the surface is warmer in summer. The histogram further illustrates the variation 

in Tssoil temperature distribution across different depths. The results indicate that 

temperature fluctuations in deeper soil layers are significantly smaller than those near 

the surface, reflecting greater thermal stability in the subsurface. These patterns reflect 625 

the combined influences of geographic location, topography, and climatic conditions 

on Ts spatial distribution and vertical dynamics, offering valuable insights into soil 

thermal behavior. 
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 630 

Figure 11. Spatial patterns and histograms of Estimated Ts at different depths (0, 5, 

10, 15, 20, and 40 cm) 

 

To further assess the temporal performance of Ts estimation, Fig. 12 presents the 

time series of estimated Ts alongside in-situ measurements at four randomly selected 635 

stations (e.g., Station 56746, 99.53°E, 25.45°N) from January 2018 to January 2020. 

The figure displays Ts at two depths (0 cm and 40 cm), including estimated Ts 

(Estimated_0cm, Estimated_40cm), in-situ Ts (In-situ_0cm, In-situ_40cm), daily mean 

land surface temperature (Daily_mean_LST), and 2-meter air temperature 

(Temperature_2m). The air temperature shows distinct seasonal cycles, while Ts 640 

exhibits smoother temporal variations. In general, Ts reaches its peak during summer 

and its minimum in winter, though its temporal dynamics vary with soil depth. 

Specifically, Ts at 0 cm responds rapidly to air temperature changes and exhibits larger 

amplitude variations, while Ts at 40 cm shows slower responses and a noticeable lag, 
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reflecting the damping effect of vertical heat conduction. Site-level accuracy was 645 

evaluated using RMSE, which ranged from 0.84 K to 1.80 K across both depths, 

indicating strong agreement between predicted and observed values.The RMSE was 

used to assess model accuracy, with RMSE values ranging from 1.72 K to 2.28 K for 0 

cm and 40 cm depths, indicating high consistency between estimated and observed 

values. Notably, RMSE at the surface (0 cm) is slightly lower than at 40 cm, possibly 650 

due to stronger direct influences from surface cover and meteorological conditions. 

Overall, the time series analysis confirms the robustness and reliability of the model in 

estimating Ts across varying depths, offering valuable insights into regional soil thermal 

dynamics. 

655 

设置了格式: 字体颜色: 蓝色

设置了格式: 字体颜色: 蓝色



35 

 

 

Figure 12. Time series of the Estimated_0cm, Estimated_40cm, Daily_mean_LST, 

and Temperature_2m at four sites from different regions between 2018-2019. 

 

 660 

4. Discussion 

4.1 The advantages of the spatially adaptive model 

Previous studies have explored various approaches for constructing Ts datasets. 

For example, Lembrechts et al., (2022) constructed the Global Soil Bioclimatic 

Variables dataset using Random Forest models, based on time series data from 8,519 665 

unique temperature sensors distributed across major terrestrial biomes worldwide. 

However, this dataset only provides long-term climatological averages. Subsequently, 

Wang et al., (2023) created a daily multi-layer Ts dataset for China (1980-2010) at 0.25° 

resolution, employing interpolation techniques including the thin-plain spline and the 
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angular distance weight interpolation methods with over 2,000 in-situ observations. 670 

However, these methods do not capture the complex nonlinear relationships between Ts 

and factors such as meteorology, topography, and vegetation, and its coarse spatial 

resolution limits detailed modeling of Ts correlations. 

Reanalysis datasets, which synergize data assimilation systems with numerical 

weather prediction and land surface modeling frameworks, provide valuable 675 

representations of land-atmosphere interactions and subsurface heat transfer processes. 

These products are particularly advantageous for large-scale climate simulations and 

long-term environmental assessments. Yang and Zhang (2018) assessed the Ts accuracy 

of four reanalysis datasets (ERA-Interim/Land, MERRA-2, CFSR, and GLDAS-2.0) in 

China using in-situ monthly mean Ts observations. The results showed that all 680 

reanalysis datasets consistently underestimated Ts across the country. More recently, the 

ERA5-Land and GLDAS 2.1 Ts dataset offers high temporal resolution (hourly/3-hour), 

but it is limited by a spatial resolution of 0.1 or 0.25 degrees. The methodological 

advances presented in this study address these dual challenges of accuracy and 

resolution. As quantified in Fig. S3, our integrated approach achieves substantial 685 

improvements in Ts estimation. Furthermore, the enhanced spatial resolution enables 

explicit resolution of local-scale thermal patterns that critically influence vegetation 

dynamics and soil biogeochemical processes. 

Spatially adaptive modeling demonstrates superior adaptability and flexibility 

compared to traditional interpolation techniques and globally trained ML models in 690 

estimating surface Ts. A key strength of spatially adaptive approaches lies in their 

capacity for localized modeling, which accounts for regional variability in terrain, soil 

texture, and climate conditions. As illustrated in Fig. S4, the rotated quadtree method 

partitions spatial grids at six different orientations, enabling it to effectively capture 

local spatial heterogeneity. By averaging model outputs across these rotated partitions, 695 

the approach mitigates edge effects commonly associated with static grid boundaries, 

resulting in smoother and more continuous spatial representations. Additionally, we 

examined the influence of incorporating satellite-derived LST on the model's spatial 
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accuracy. Figure. S5 demonstrates that LST is more effective than air temperature in 

detecting spatial variations in surface Ts in sparsely vegetated areas, with particularly 700 

notable improvements observed in northwestern China. This underscores the value of 

integrating multi-source remote sensing data, which significantly enhances the 

performance of spatially adaptive models, especially in areas characterized by low 

vegetation cover. 

Previous studies have explored various approaches for constructing Ts datasets. 705 

For instance, Wang et al., (2023) created a daily multi-layer Ts dataset for China (1980-

2010) at 0.25° resolution, employing interpolation techniques including the thin-plain 

spline and the angular distance weight interpolation methods with over 2,000 in-situ 

observations. A persistent challenge in building national-scale Ts datasets, however, lies 

in the highly uneven spatial distribution of observation stations—densely clustered in 710 

eastern lowlands while remaining sparse in western and high-altitude regions. Global 

modeling approaches, which train a single unified function across the entire domain, 

are inherently limited in capturing the nonlinear and non-stationary relationships 

between Ts and its predictors in such heterogeneous landscapes. Specifically, in sparsely 

sampled regions, global models lack sufficient data to learn effectively, resulting in low 715 

prediction accuracy. In contrast, in densely sampled areas, the model tends to overfit, 

and the training process becomes disproportionately influenced by those regions. This 

imbalance introduces systematic biases and limits model generalizability.  

Reanalysis datasets, which synergize data assimilation systems with numerical 

weather prediction and land surface modeling frameworks, provide valuable 720 

representations of land-atmosphere interactions and subsurface heat transfer processes. 

These products are particularly advantageous for large-scale climate simulations and 

long-term environmental assessments. Yang and Zhang (2018) assessed the Ts accuracy 

of four reanalysis datasets (ERA-Interim/Land, MERRA-2, CFSR, and GLDAS-2.0) in 

China using in-situ monthly mean Ts observations. The results showed that all 725 

reanalysis datasets consistently underestimated Ts across the country. More recently, the 

ERA5-Land and GLDAS 2.1 Ts dataset offers high temporal resolution (hourly/3-hour), 
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but it is limited by a spatial resolution of 0.1 or 0.25 degrees. Beyond reanalysis datasets, 

some efforts have focused on constructing empirical Ts products using ML approaches. 

For example, the Global Soil Bioclimatic Variables dataset (Lembrechts et al., 2022), 730 

derived from Random Forest modeling with 8,519 global sensors, provides only long-

term climatological means, rather than high-resolution daily estimates. 

In contrast, the methodological framework proposed in this study addresses both 

accuracy and resolution limitations. The spatially adaptive modeling strategy offers 

significant advantages over traditional interpolation and globally trained ML models. 735 

Its core strength lies in localized modeling, which accounts for regional variability in 

topography, soil properties, and climate conditions. As shown in Fig. S6, the rotated 

quadtree strategy partitions space at six orientations (0°–75°), enabling a more nuanced 

representation of spatial heterogeneity. By averaging predictions across these rotated 

configurations, the method reduces boundary artifacts often associated with static grids, 740 

resulting in smoother and more continuous spatial outputs. Moreover, the fine spatial 

resolution (1 km) enables the model to resolve localized thermal patterns that are critical 

for understanding vegetation dynamics and soil biogeochemistry. We also assessed the 

contribution of satellite-derived LST to model performance. As shown in Figs. S7 and 

S8, incorporating LST as an input variable, relative to using only air temperature, 745 

significantly enhances overall modeling accuracy and improves performance across 

sites with different land cover types, with the most pronounced improvements observed 

in barren land areas. This highlights the importance of multi-source data fusion in 

boosting the performance of spatially adaptive models under data-scarce conditions. In 

summary, our spatially adaptive local modeling approach offers a more robust and 750 

scalable solution for large-scale Ts estimation under heterogeneous station distributions 

and complex environmental conditions. 

 

4.2 Potential applications of the Ts product 

The high-resolution, multi-layer Ts datasets generated using the spatially adaptive 755 

estimation method fill a significant data gap in China, where comprehensive Ts profile 
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records are scarce. As a key biophysical variable, Ts provides crucial insights into soil–

atmosphere interactions that are not captured by air temperature alone. In agricultural 

systems, Ts governs fundamental processes throughout the crop life cycle—from 

sowing and germination to growth and yield formation (Rahman et al., 2019). Multi-760 

layer Ts data can optimize accumulated temperature models, enhancing the precision of 

sowing decisions and supporting sustainable field management. Additionally, Ts 

influences nutrient decomposition and water movement within soil profiles (Jebamalar 

et al., 2012), directly impacting soil fertility, moisture retention, and thus, the overall 

efficiency of agroecosystems. 765 

Beyond agricultural applications, Ts is increasingly recognized as a critical 

variable for assessing ecosystem responses to climate extremes. For instance, Fan et al., 

(2024) proposed the Soil Composite Drought Heatwave Soil Composite Drought 

Heatwave (SCDHW) index to evaluate the severity of concurrent drought and heatwave 

events. However, their findings show that existing reanalysis datasets often 770 

underestimate these events compared to observational records, highlighting the need 

for more accurate, high-resolution Ts data. In the context of intensifying global warming 

and extreme climate events, access to reliable Ts datasets is essential for improving the 

monitoring and prediction of environmental stressors. These advancements are not only 

vital for understanding terrestrial ecosystem dynamics but also for strengthening 775 

climate resilience at both regional and national scales. 

Moreover, Ts plays a pivotal role in ecological and hydrological modeling, offering 

a more direct representation of surface processes than air temperature. It serves as a 

sensitive indicator of biogeochemical cycles and phenological changes (Lembrechts et 

al., 2022). For example, Liu et al., (2024) demonstrated that Ts is a dominant driver of 780 

spring phenology in Chinese forests, making it a valuable input for climate–vegetation 

interaction models. In cold regions, Ts governs soil freeze––thaw cycles, which are 

critical for hydrological processes such as runoff generation, groundwater recharge, and 

permafrost monitoring (Smith et al., 2022; Xu et al., 2022). Furthermore, Ts is a key 

driver of soil respiration, influencing CO₂ fluxes and terrestrial carbon cycling (Lloyd 785 
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and Taylor, 1994; Hursh et al., 2017). As such, the development of high-resolution Ts 

products enables more accurate simulation of ecosystem carbon dynamics and regional 

carbon budgeting, thereby advancing our understanding of climate feedback 

mechanisms. 

 790 

4.3 Limitations and future perspective 

Despite the strong performance of our spatially adaptive Ts estimation framework, 

several limitations warrant acknowledgment. As shown in Figures 6 and 7, model 

validation at station level reveals spatial heterogeneity in prediction accuracy, with 

relatively lower performance observed in the YGP and the QTP regions. On the one 795 

hand, as evidenced by Figure 10, our multi-source modeling framework captures Ts 

variations across different elevations and geomorphic conditions more effectively than 

existing datasets. However, the QTP and YGP are characterized by complex terrain and 

high altitudes, coupled with rapidly changing climatic conditions, which significantly 

complicate Ts estimation. These findings align with previous studies showing that high 800 

elevations intensify the disconnect between air temperature and LST, thereby increasing 

the uncertainty in thermal modeling (Mo et al., 2025). 

MODIS LST serves as a critical input to our modeling framework. However, as an 

optical remote sensing product, it is highly susceptible to cloud contamination, often 

resulting in data gaps. Despite the use of spatiotemporal interpolation and SG filtering, 805 

residual uncertainties persist in the reconstructed LST data. Future improvements in Ts 

reconstruction can be pursued along two main directions. First, more physically 

grounded LST reconstruction methods can be adopted, such as incorporating surface 

energy balance models and diurnal temperature cycle models (Hong et al., 2022; 

Firozjaei et al., 2024; Wang et al., 2024). These methods apply energy conservation 810 

principles to estimate Ts during periods of missing or unreliable observations, thereby 

providing more realistic estimates of land surface thermal conditions during periods of 

cloud cover. Second, integrating higher temporal resolution remote sensing 

observations may help overcome the limitations of MODIS. For instance, passive 
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microwave satellite data provide all-weather observations and are less sensitive to cloud 815 

interference (Duan et al., 2017; Wu et al., 2022). In addition, next-generation 

geostationary satellites such as Himawari-8 offer observations at 10-minute intervals, 

substantially enhancing the temporal continuity and quality of surface temperature 

estimates (Yamamoto et al., 2022; You et al., 2024). These enhancements are expected 

to significantly improve the accuracy and temporal continuity of soil temperature 820 

monitoring. 

Our results (Figures 8 and 9) show that model accuracy varies across different soil 

depths, with additional influences from season and land use. Accuracy is relatively 

lower at the surface (0 cm), improves at intermediate depths (5–10 cm), and then 

declines again at greater depths (20–40 cm). This depth-dependent pattern can be 825 

explained by the physical characteristics of soil temperature. Surface soil temperature 

is highly sensitive to short-term meteorological fluctuations such as radiation, 

precipitation, and evapotranspiration, leading to greater spatiotemporal variability and 

larger prediction errors. In contrast, intermediate soil layers benefit from the buffering 

effects of thermal diffusion and soil heat capacity, which dampen high-frequency 830 

fluctuations and stabilize the relationship between predictors and Ts, thereby improving 

performance at these depths. At greater depths, however, surface-level errors propagate 

downward through the cascading framework, resulting in reduced accuracy —

particularly during summer and winter. 

(Prigent et al., 2016)(Prigent et al., 2016)(Yamamoto et al., 2022; You et al., 835 

2024)Seasonal changes and variations in land cover further contribute to differences in 

estimation accuracy. As shown in Figures 8 and 9, the model exhibits higher accuracy 

in spring and autumn, whereas its performance tends to decline during summer and 

winter. During summer, dense vegetation growth and canopy closure reduce the 

influence of surface–atmosphere energy exchanges on Ts, weakening the correlation 840 

between canopy temperature and subsurface Ts (Kropp et al., 2020; Cui et al., 2022). In 

winter, snow cover introduces a suite of confounding effects: high surface albedo 
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reduces net radiation (Loranty et al., 2014; Li et al., 2018), while snow acts as an 

insulator, limiting the soil's response to cold air incursions (Zhang, 2005; Myers-Smith 

et al., 2015). Additionally, low temperatures lead to soil water freezing, which alters the 845 

soil’s thermal conductivity and heat storage capacity. These factors, together with 

frequent freeze–thaw cycles, introduce complex nonlinear dynamics in Ts that increase 

modeling uncertainty (Li et al., 2023a; Imanian et al., 2024). While our multi-source 

adaptive modeling framework performs well across depths, it does not explicitly 

account for the physical mechanisms of vertical heat transfer. Future research could 850 

explore deep learning models that are capable of learning complex spatiotemporal 

features and improving the physical interpretability of Ts variations across time, space, 

and depth. 

Despite the promising performance of our spatially adaptive Ts estimation 

framework, several limitations should be acknowledged. As illustrated in Fig. 7, 855 

stations with relatively low estimation accuracy are primarily located in southwestern 

China. One key factor is the reliance on MODIS data from polar-orbiting satellites, 

which have low temporal resolution (1–16 days) and provide instantaneous snapshots 

rather than continuous observations. Although we employed a spatiotemporal linear 

interpolation method to reconstruct missing data caused by cloud contamination, 860 

residual uncertainties remain inevitable. In high-altitude regions such as the QTP and 

the YGP, complex topography and rapidly changing climatic conditions further 

exacerbate the difficulty of accurate Ts prediction, consistent with findings reported by 

Mo et al., (2025). 

Seasonal dynamics and land cover types also introduce considerable variability in 865 

estimation performance. The model generally performs better in spring and autumn, 

while summer and winter present greater challenges. During summer, dense vegetation 

growth and canopy closure reduce the influence of surface–atmosphere energy 

exchanges on Ts, weakening the correlation between canopy temperature and 

subsurface soil temperature (Kropp et al., 2020; Cui et al., 2022). In winter, snow cover 870 

introduces a suite of confounding effects: high surface albedo reduces net radiation 
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(Loranty et al., 2014; Li et al., 2018), while snow acts as an insulator, limiting the soil's 

response to cold air incursions (Zhang, 2005; Myers-Smith et al., 2015). Additionally, 

low temperatures lead to soil water freezing, altering thermal conductivity and heat 

capacity. These changes, along with repeated freeze–thaw cycles, introduce significant 875 

nonlinearity and temporal variability in Ts, ultimately reducing model accuracy (Li et 

al., 2023a; Imanian et al., 2024). 

Future studies could address these limitations by incorporating data from 

microwave satellite sensors, which offer all-weather imaging capabilities and can 

reduce information loss caused by cloud cover in optical sensors like MODIS (Prigent 880 

et al., 2016). Moreover, leveraging data from next-generation geostationary satellites 

(e.g., Himawari-8), which provide observations at 10-minute intervals, may 

significantly enhance temporal continuity and quality (Yamamoto et al., 2022; You et 

al., 2024). Combining high-frequency geostationary data with traditional optical 

sources holds great potential for advancing Ts monitoring. While our multi-source data-885 

driven ML model has shown strong predictive capability across multiple depths, current 

variable importance analyses lack a mechanistic explanation for vertical heat 

conduction processes. Future research could explore deep learning models that are 

capable of learning complex spatiotemporal features and improving the physical 

interpretability of Ts variations across time, space, and depth. 890 

 

5. Conclusion 

This study addresses the lack of high spatiotemporal resolution multi-layer Ts data 

by proposing a spatially adaptive ML framework, successfully constructing a retrieval 

model for multi-layer Ts. By integrating in-situ observations, reanalysis data, satellite 895 

remote sensing data, as well as topographic and soil texture data, the model 

demonstrates high accuracy across different depths, seasons, and land use types. 

Independent validation results indicate that the model performs better in springs and 

autumns compared to summers and winters, and shows superior performance in bare 

land, cropland, and grassland compared to forest. The results indicate relatively higher 900 
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performance in spring and autumn than in summer and winter, and greater accuracy in 

bare land, cropland, and grassland compared with forested areas. In comparison with 

ERA5-Land and GLDAS 2.1 Ts products, the multi-layer Ts data generated in this study 

exhibit significant improvements in both accuracy and spatial detailCompared to 

ERA5_Land and GLDAS 2.1 Ts, the multi-layer Ts data generated in this study exhibits 905 

significant advantages in both accuracy and spatial detail. Based on this 

frameworkBased on this model, we have first developed the long-term (2010-2020) 

high spatiotemporal resolution (daily, 1 km resolution) multi-layer (0, 5, 10, 15, 20, 40 

cm) Ts dataset for China. Future research could further explore methods that 

simultaneously integrate temporal, spatial, and depth information, and utilize multi-910 

source sensor data to enhance the spatiotemporal monitoring capabilities of Ts at 

different depths. Overall, this study demonstrates the potential of multi-source data in 

Ts estimation and provides a reliable tool and data foundation for ecological modeling, 

agricultural production and related studies.  

 915 

6. Data availability 

The daily multi-layer Ts products (0, 5, 10, 15, 20, and 40 cm) at 1 km resolution 

from 2010 to 2020 are freely available in HDF5 format to the public at 

https://doi.org/10.11888/Terre.tpdc.302333 (Wang et al., 2025b). In addition, monthly 

multi-layer Ts data are also provided to meet the needs of various users. 920 
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